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Probing quantum scars and weak ergodicity breaking through quantum complexity
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Scar states are special many-body eigenstates that weakly violate the eigenstate thermalization hypothesis
(ETH). Using the explicit formalism of the Lanczos algorithm, usually known as the forward scattering
approximation in this context, we compute the Krylov state (spread) complexity of typical states generated
by the time evolution of the PXP Hamiltonian, hosting such states. We show that the complexity for the Néel
state revives in an approximate sense, while complexity for the generic ETH-obeying state always increases.
This can be attributed to the approximate SU(2) structure of the corresponding generators of the Hamiltonian.
We quantify such “closeness” by the q-deformed SU(2) algebra and provide an analytic expression of Lanczos
coefficients for the Néel state within the approximate Krylov subspace. We intuitively explain the results in
terms of a tight-binding model. We further consider a deformation of the PXP Hamiltonian and compute the
corresponding Lanczos coefficients and the complexity. We find that complexity for the Néel state shows nearly
perfect revival while the same does not hold for a generic ETH-obeying state.
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I. INTRODUCTION

Thermalization is a well-known fact for a generic, isolated
quantum system, where a statistical description emerges at
late times in the thermodynamic limit [1–5]. The system re-
laxes locally, with energy being the only conserved quantity
[6]. This is often attributed to the eigenstate thermalization
hypothesis (ETH), which states that the highly excited eigen-
states of generic many-body systems are thermal [7–10].
However, integrable systems [11] and many-body localized
states [12–18] are known to strongly violate ETH. Thus, for a
quantum-chaotic system, the local observables are expected to
reach the thermal value irrespective of the choice of the initial
state. Recently, a weak violation of ETH has been observed for
a few specific states in quantum many-body systems, although
most states still follow ETH and show fast relaxation [19]. The
full system is still nonintegrable, as can be verified using the
level statistics [19]. These weak ergodicity-breaking states are
commonly referred to as “scar states” [20], which manifested
themselves in the experimentally observed perfect revival
of some special initial states in Rydberg atom chains [21],
and optical lattices [22,23], and led to a flurry of theoretical
studies in recent times [19,24–44]. Time evolution of these
specific initial states shows a finite overlap with themselves
even after a sufficiently long time [45]. This weak break-
ing of ergodicity is also evident in the behavior of bipartite
entanglement entropy, which fails to respect the volume-law
scaling [46,47]. The slow thermalization is often attributed to
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the approximate Hilbert space division into thermalizing and
nonthermalizing part H ≈ Hnonth

⊕
Hth [48]. In this space,

scar states are represented in terms of the Krylov basis vectors.
The evolution focuses inside the Krylov space, usually termed
as the “Krylov-restricted thermalization” [49].

In this paper, we aim to look at this weak ergodicity break-
ing in terms of quantum complexity. Complexity, primarily
borrowed from computer science, is a fairly new concept that
has emerged as a new tool for diagnosing quantum chaos
[50–54] and scrambling [55,56] in many-body systems. The
term complexity refers to the cost of implementing any task
at hand in the minimum number of steps. For our purpose,
we consider the difficulty of spreading an initial state in the
Hilbert space through the time evolution of a Hamiltonian.
The difficulty is naturally understood in terms of complex-
ity, dubbed as “spread complexity” [57]. The definition is
straightforward and suitable compared to the other theoreti-
cal cousins, namely, the circuit complexity [58,59]. Recently,
it has been shown to detect topological and nontopological
phases in many-body systems [60]. The formulation is based
upon the iterative process of the Lanczos algorithm [61],
often known as the forward scattering approximation [26].
Although the formulation works in any generic case, symme-
try greatly simplifies the problem, and Lanczos coefficients
can be extracted analytically. Here we should mention that
this formulation is conceptually different than studying the
operator growth, where the behavior of Lanczos coefficients is
speculated by the universal operator growth hypothesis [50].

We begin by studying the time evolution of the |Z2〉
(i.e., |1010101010101010〉 for N = 16 lattice size) state for a
simple paramagnetic spin-chain Hamiltonian Hp = ∑N

n=1 σ x
n ,

where σ x
n denotes the Pauli X matrices. This state is the

lowest-weight state in the j = N/2 representation of the
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SU(2) symmetry of the Hamiltonian. By this, we mean that
the Hamiltonian can be separated into two parts H±, where
H± and Hz follow the SU(2) algebra (Hz is obtained by the
commutator [H+, H−]). Then we study the evolution of the
|Z2〉 and a generic |0〉 state (i.e., an initial state without
any Z symmetry which does not fall into the representation
of the symmetry) for the PXP Hamiltonian. For numerical
consistency (lattice size N = 16), we fix the choice |0〉 =
|0010100100100010〉 (in σ z basis). It is known that the para-
magnetic Hamiltonian (more generally H± and Hz) satisfies
the SU(2) symmetry relations. Therefore, the Lanczos co-
efficients and complexity can be computed analytically. On
the other hand, the PXP Hamiltonian is known to break the
SU(2) symmetry algebra. For this purpose, we implement
the Lanczos algorithm numerically to compute the Lanczos
coefficients, the Krylov wave functions, and complexity. We
find that the complexity for the Néel state (i.e., the |Z2〉
state) demonstrates an oscillatory component while that of a
generic (|0〉) state does not. Furthermore, the growth of the
spread complexity for the Néel state appears to be slower
than that of the generic state. We explain these observations
in terms of the weak ergodicity breaking observed in the PXP
Hamiltonian.

We investigate the Lanczos coefficients of the PXP Hamil-
tonian in detail. This allows us to study the SU(2) algebra
breaking since the underlying symmetry algebra controls the
Lanczos coefficients of any system. We find that scaling the
PXP Hamiltonian by a factor (which we determine numeri-
cally) gives rise to a Hamiltonian that approximately follows
a q-deformed SU(2) algebra, denoted as SUq(2). We study
the system for sizes N = 12 to 30, and find a system-size-
dependent q value. Extrapolation to 1/N → 0 gives us the
q value in the thermodynamic limit. We explicitly write the
algebra and determine the algebra-breaking terms.

We finally consider first-order perturbative correction to
the PXP Hamiltonian. Here, we show that a scaled perturbed
PXP Hamiltonian is very well approximated by an SU(2)
algebra for the Néel state, with some explicit algebra-breaking
terms. We then evaluate the Krylov basis wave functions and
complexity for the Néel state and the |0〉 state. The Néel
state is found to demonstrate strong revival with nearly full
oscillatory behavior for the Krylov wave functions and com-
plexity. The growth rate for the complexity is much slower
[characteristic of SU(2) algebra] than the growth without per-
turbation. Therefore, adding first-order perturbations moves
the approximate algebra from q < 1 to q ≈ 1. Adding first-
order perturbation initiates a stronger ergodicity breaking and
a nearly exact division of the Hilbert space into the thermaliz-
ing and nonthermalizing parts.

The paper is organized as follows. In Sec. II, we provide
a brief review of Krylov complexity for states (spread com-
plexity) and describe the Lanczos algorithm. In Sec. III, we
briefly review q-deformed SU(2) algebra. We provide our
analytical and numerical results in Sec. IV for the param-
agnetic Hamiltonian and the PXP Hamiltonian. In Sec. V,
we present the results for both PXP Hamiltonian and per-
turbed PXP Hamiltonian and describe a physical picture to
understand the behavior of Lanczos coefficients and complex-
ity. Section VI summarizes our results and proposes future
directions.

II. KRYLOV (SPREAD) COMPLEXITY FOR STATES

Here we introduce the ideas of Krylov complexity for
quantum states [57]. This is a somewhat different formal-
ism as compared to the formalism of Krylov complexity for
describing operator growth [50]. This notion finds various ap-
plications in the study of chaos, scrambling, and integrability
in many-body quantum and semiclassical systems [51,52,54–
56,62–78].

To describe the notion of Krylov complexity for states, we
consider the Hamiltonian evolution of a quantum state under
a time-independent Hamiltonian

|�(t )〉 = e−iHt |�(0)〉 , (1)

where |�(0)〉 is not an eigenstate of the Hamiltonian H . This
is a well-known quantum quench protocol [79]. This time
evolution can be visualized (by writing a series expansion for
e−iHt ) as the successive application of H on the state |�(0)〉.
This generates a basis {Hn |�(0)〉 , n ∈ N} in which the time-
evolved state |�(t )〉 can be expanded into, as a Taylor series
in t . From a physical perspective, it quantifies the spreading
of the state |�(0)〉 in the Hilbert space H. Generally, there
exist an infinite number of possible choices of such bases to
describe the time evolution of |�(0)〉. The question, then, is to
find the most optimal basis in the sense of minimizing some
cost function. The way to construct such an optimal basis is
by orthonormalizing the above basis in a way similar to the
Gram-Schmidt orthonormalization process. One performs a
recursive algorithm known as the Lanczos algorithm [57,61]

|An+1〉 = (H − an) |Kn〉 − bn |Kn−1〉 ,

|Kn〉 = b−1
n |An〉 , (2)

where one starts from an initial state |K0〉 and recursively
orthonormalizes the states |An〉. The constants an’s and bn’s
(with b0 = 0) are known as Lanczos coefficients and usually
obtained by the normalization factor from the orthonormaliza-
tion procedure as

an = 〈Kn|H |Kn〉 , bn =
√

〈An|An〉. (3)

The basis thus generated is known as the Krylov basis |Kn〉
with n = 0, 1, . . . . The action of Hamiltonian on this basis is
given by

H |Kn〉 = an |Kn〉 + bn |Kn−1〉 + bn+1 |Kn+1〉 . (4)

On such basis, the Hamiltonian takes a symmetric tridiagonal
form, where the primary diagonal elements are given by an’s,
and the subdiagonal and the superdiagonal elements consist of
bn’s. By performing the above procedure, we readily express
the time evolution of the state on the Krylov basis as

|�(t )〉 =
∑

n

ψn(t ) |Kn〉 , (5)

where ψn(t )’s are known as the Krylov basis functions, and
they are complex in general. They are obtained by solving the
following recursive differential equation

i∂tψn(t ) = anψn(t ) + bn+1ψn+1(t ) + bnψn−1(t ) (6)

with b0 = 0. The conservation of probability implies∑
n |ψn(t )|2 = 1. The first element ψ0(t ) = 〈�(t )|�(0)〉 ≡
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S(t ) is often called the “return amplitude” or the autocor-
relation function in the operator context [50]. Further, this
motivates us to define the complexity as

C(t ) =
∑

n

n|ψn(t )|2, (7)

which is minimized by the above choice of Krylov basis [57].
In this sense, complexity acts as a natural “cost functional.”
For practical purposes, it has to be computed in case-by-case
examples. However, if the evolution Hamiltonian possesses
some symmetry, then one can directly obtain the correspond-
ing Lanczos coefficients and compute the complexity (see
Appendix A). In later sections, we see how to understand such
a case having SU(2) symmetry.

III. q-DEFORMED SU(2) ALGEBRA
AND LANCZOS COEFFICIENTS

This section briefly reviews q-deformed SU(2) algebra.
The notion of q deformations has been studied since the late
1990s. Extensive studies have included studies of spin chains,
Dirac oscillators, conformal quantum mechanics, and many
others [80–84]. We will focus on q deformations of SU(2)-like
algebras. For a better understanding of q deformations and
their various applications, we direct the readers’ attention to
the references [85–95].

Canonically, q numbers are defined as a version of ordinary
numbers parametrized by q, with a correspondence

[x]q := qx − q−x

q − q−1
, lim

q→1
[x]q = x, (8)

i.e., the ordinary numbers are recovered in the limit q → 1.
The parameter q could be a real number, or it could be a
complex phase. For real case, we write q = eτ , while q = eiτ

for complex phase. In either case, τ ∈ R. However, in this pa-
per, we only take it as a positive real number. Some examples
of the q numbers are [0]q = 0, [1]q = 1, [2]q = q + q−1, and
[3]q = 1 + q2 + q−2, etc.

It is important to note that the q numbers can be alternately
expressed in terms of Chebyshev polynomials of the second
kind [96,97]

[n]q = Un−1(x), (9)

where x = (q + q−1)/2. The above identity can be easily
verified by parametrization of q, and using the identity
Un−1(cos θ ) = sin(nθ )/ sin θ . It is also evident from the defi-
nition that q numbers are symmetric under the transformation
q → 1/q. Therefore, for this work, we restrict ourselves to the
region 0 < q � 1. Any value of q outside this region can be
mapped into it by q → 1/q.

The q-deformed SU(2), known as SUq(2) [98], is generated
by three generators J0 and J±, with the following algebra
[80,81]:

[J0, J±] = ±J±, [J+, J−] = [2J0]q, (10)

where [2J0]q has to be understood as a q-deformed operator.
For two cases, where q can be real or complex phase, we

expand the second commutation relation as [86]

[J+, J−] = 1

sinh τ

∞∑
n=0

(2τJ0)2n+1

(2n + 1)!
for q = eτ ,

[J+, J−] = 1

sin τ

∞∑
n=0

(−1)n (2τJ0)2n+1

(2n + 1)!
for q = eiτ . (11)

Hence, the algebra SUq(2) is a nonlinear generalization of
standard SU(2). The limit q → 1 implies τ → 0, where we
recover the usual SU(2) algebra.

The natural basis of this algebra is given by | j, n〉 where
− j � n � j. The states can be formed by repeatedly acting
the annihilation ladder operator J− on the highest-weight state
| j, j〉 or the creation ladder operator J+ on the lowest-weight
state | j,− j〉. Here, we choose the latter, with a slight abuse
of notation n → j + n, to make it consistent with [57,70]. We
have the states

| j,− j + n〉 =
√

[�(2 j − n + 1)]q

[n]q! [�(2 j + 1)]q
Jn
+ | j,− j〉 , (12)

where n = 0, . . . , 2 j. The action of the generators is defined
as [91]

J0 | j,− j + n〉 = (− j + n) | j,− j + n〉 ,

J+ | j,− j + n〉 = √
[n + 1]q [2 j − n]q | j,− j + n + 1〉 ,

J− | j,− j + n〉 = √
[n]q [2 j − n + 1]q | j,− j + n − 1〉 .

Here, the ordinary numbers are replaced by the q numbers.
We consider the Hamiltonian of the form

H = α(J+ + J−) + η0 J0 + δ1, (13)

where α, β, and γ are some model-dependent numbers. The
Krylov basis is formed by the basis vectors of SUq(2), i.e.,
|Kn〉 = | j,− j + n〉. It is straightforward to compute the Lanc-
zos coefficients as

a(q)
n = η0(− j + n) + δ, b(q)

n = α
√

[n]q [2 j − n + 1]q.

(14)

Using (9), we write them in terms of Chebyshev polynomials
as

b(q)
n = α

√
Un−1(x)U2 j−n(x) = α

[
n−1∑
k=0

U2 j−2n+2k+1(x)

]1/2

,

(15)

where in the last equality we have used the product formulas
of Chebyshev polynomials. It is tempting to call them q-
Lanczos coefficients, generated from the q-deformed algebra.
However, for simplicity, we continue to call them Lanczos
coefficients and denote them by bn. The Lanczos coefficients
for different values of q are shown in Fig. 1.

IV. NUMERICAL RESULTS

A. Paramagnetic Hamiltonian

To begin with, we consider the simple paramagnetic
Hamiltonian Hp = ∑N

n=1 σ x
n [26] with periodic boundary con-

dition. Since we are interested in the time evolution of the
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FIG. 1. Growth of bn’s [from Eq. (9)] for j = 1 for various values
of q. Although the n takes a discrete value, we use a continuum n for
the plotting. This visualization will be useful for understanding the
behavior of the Lanczos coefficients in later sections.

Z2 symmetry-broken Néel state, we take N to be even. The
Hamiltonian can be separated into two different parts as Hp =
H+ + H− where

H± =
∑

n

(
σ±

2n + σ∓
2n−1

)
. (16)

Here σ±
n = (σ x

n ± iσ y
n )/2. The two parts follow the exact

SU(2) algebra, namely, [Hz, H±] = ±H± and [H+, H−] =
2Hz with Hz = ∑

n(σ z
2n − σ z

2n−1)/2, furnishing |Z2〉 and |Z′
2〉

as the lowest- and the highest-weight states, respectively, in
the representation of spin j = N/2 [24]. Choosing the initial
state as the Néel state |Z2〉, the time-evolved state |�(t )〉 =
e−iHpt |Z2〉 = ∑N

n=0 ψn(t ) |Kn〉 spreads over the Krylov basis,
constructed from the basis function ψn(t ) and the basis vectors
|Kn〉. As said before, the lowest- and the highest-weight states
are |K0〉 = |Z2〉 and |Kn〉 = |Z′

2〉, respectively. The fidelity for
the |Z2〉 state shows exact revival. In fact, for any other initial
state such as |Z′

2〉, |Z3〉, |Z4〉, etc., we shall see perfect revival
in fidelity due to the integrable nature of the Hamiltonian. The
exact representation allows us to infer the Lanczos coefficients
(see Appendix A) directly as

an = 0, bn =
√

n(N − n + 1). (17)

The Lanczos coefficients bn show the maximum at n = (N +
1)/2 and terminates at n = N + 1 [see Fig. 2(a)], which is the
dimension of the Krylov space. The wave functions are given
by ψn(t ) = (NCn)1/2(i cot t )−n cosN t , and they are related by
the recursion (6). Complexity is simply computed using (7) as

C(t ) =
N∑

n=0

n|ψn(t )|2 = N sin2 t, (18)

which is periodic with a time period T = π , same as the
revival of the survival amplitude S(t ) = ψ0 = 〈�(t )|Z2〉 =
cosN t . Moreover, it reaches maxima of a value N at half-
period T = π/2. This is expected as |Z2〉 does not show
decoherence, and complexity should not decay with time. The
numerical plot is shown in Fig. 2(b). The long-time average
of complexity is C̄ = N/2, which is extensive in system size.
All the analytic expressions are perfectly consistent with the

FIG. 2. (a) Growth of bn’s and (b) evolution of complexity C(t )
for the paramagnetic Hamiltonian Hp = ∑N

n=1 σ x
n , initialized in the

|Z2〉 state for a system of lattice size N = 16. The expression for the
Lanczos coefficients and the complexity is given by Eqs. (17) and
(18), respectively. The Lanczos coefficients exactly terminate at n =
N + 1 = 17, which implies the dimension of the Krylov subspace is
K = 17.

numerical results in Figs. 2(a) and 2(b), obtained by the direct
implementation of the Lanczos algorithm equations (2) and
(3).

B. PXP Hamiltonian

Now we turn to the more complicated PXP Hamiltonian.
The Hamiltonian is [19]

HPXP =
N∑

m=1

Pm−1σ
x
mPm+1, (19)

where P = |0〉 〈0| is the projector and σx = |0〉 〈1| + |1〉 〈0|
is the Pauli X matrix. We consider a system of N sites with
periodic boundary condition, for which P0 = PN and PN+1 =
P1. The dimension of the Hilbert space can be shown to be
DN = FN+1 + FN−1 ∼ φN for large N , where FN is the N th Fi-
bonacci number and φ = 1.61803 . . . is the golden ratio. The
Hamiltonian possesses translational and inversion symmetries
[29]. The presence of the projectors in the PXP Hamiltonian

205150-4



PROBING QUANTUM SCARS AND WEAK ERGODICITY … PHYSICAL REVIEW B 106, 205150 (2022)

FIG. 3. Growth of bn’s (disks) for the |Z2〉 state versus the q-
deformed SU(2) (thick line) result for the PXP Hamiltonian (19).
The standard SU(2) result is given for comparison (dashed line).
The bn’s for a generic state (|0〉 state; without any Z symmetry) is
also plotted (circles). Here we choose the system size N = 16 and
K ∼ 20 Krylov basis vectors. Around K ∼ N + 1, the state is driven
out of the approximate Krylov subspace. This is in contrast with the
paramagnetic Hamiltonian in Fig. 2(a), where the Krylov subspace
was exact and shown by the dashed line in this figure.

ensures that no two adjacent sites are in the excited |1〉 state)
(see [99] for similar hard-boson model), and therefore this
Hamiltonian is nonintegrable and thermalizing. However, its
thermalizing nature is sensitive to the choice of the initial
state. It is observed that the |Z2〉 state, written as |010101 . . .〉,
shows weak thermalization [19]. States without any Z sym-
metries are known to thermalize much faster. Even states with
larger Z symmetries, like |Z3〉, also thermalize slower than a
generic state in the system. However, their thermalizing nature
is stronger than the |Z2〉 state. These states are related to
the many-body scar states (i.e., the weakly entangled eigen-
states) of the PXP Hilbert space. Specifically, such Z states
are known to be comprised of superposition of the weakly
entangled eigenstates [24].

Similar to the paramagnetic case, we split the Hamiltonian
as HPXP = H+ + H− as [26]

H± =
∑

m∈odd

Pm−1σ
∓
m Pm+1 +

∑
m∈even

Pm−1σ
±
m Pm+1. (20)

However, in this case, the generators H± satisfy [H+, H−] =∑
m(−1)mPm−1σ

z
mPm+1, and [Hz, H±] ≈ ±H±, i.e., it does not

obey the exact SU(2); it only obeys approximately, marked by
the notation “≈” [26]. It is indeed possible to associate the
H± to a broken SU(2) algebra via appropriate scaling of the
H± generators. Due to forming such a “broken” algebra, the
fragmentation of the PXP Hamiltonian is only approximate
HPXP ≈ Hnonth

⊕
Hth. Hence, we cannot apply the above ana-

lytic tools as we did in the previous section. We start from two
different initial states |Z2〉 and a generic state |0〉 without any
Z symmetry. We evolve them by the PXP Hamiltonian. Our
results for bn are presented in Fig. 3 for N = 16. Interestingly
enough, we find that the an’s turn out to be exactly zero
numerically which provides us an additional motivation for

FIG. 4. q values versus 1/N for the PXP model. Possibly due to
finite-size effects, the q values are different for different system sizes
N . The asymptotic value turns out to be q∞ = 0.9947 ± 0.0044,
which is close to the SU(2) value (q = 1). The system sizes con-
sidered in this are N = 12, 14, . . . , 30. The linear regression fit has
an R2 value of 0.992 and a standard error of 0.0040.

breaking the Hamiltonian into of H± as an approximation
of the SU(2) algebra for PXP [see Eqs. (A1) and (A3)]. We
approximate the Lanczos coefficients bn’s for |Z2〉 initial state
by the q-deformed SU(2) algebra by (15). We find that a good
approximation to the observed bn(PXP) is given by α in the
range {0.400, 0.442}, and the q value is dependent on the
system size, due to finite-size effects. One may note that the
value of α varies with system sizes. However, the variation
does not follow any obvious pattern. This leads us to suspect
that the reason behind it may be finite-size effects and/or in-
herent numerical inaccuracies in the Lanczos algorithm. The
q value (and α) is determined individually for each system size
via a least-square fit of the Lanczos coefficients. The function∑N+1

n=0 |bPXP
n − b(q)

n |2 is minimized for q and α. The asymptotic
value of q at N → ∞ is obtained by a linear fit on the q versus
1/N plot (Fig. 4). The extrapolation of the fitting gives the
value of q∞ to be 1.0053 ± 0.0044. However, since we have
chosen the convention that q is restricted between 0 and 1,
and since the quantity b(q)

n remains same under q → 1/q, we
choose q∞ = 1/1.0053 = 0.9947.

To see the extent of the difference that occurs between
q = 0.9947 and 1, it is instructive to parametrize q = eτ and
perform a series expansion near τ = 0 for the same. The first
term is O(1) term which is the usual SU(2) expression. The
next O(τ ) term turns out to be proportional to N5/2. There-
fore, one can infer that despite the thermodynamic result, the
deviation of the Lanczos coefficient from the SU(2) result is
infinitely large. The same can be seen numerically, comparing
the difference between the SUq(2) (or even the PXP) Lanczos
coefficients and the SU(2) Lanczos coefficients for different
values of N . While the value of q for increasing N does
increase towards unity, the difference between the q-deformed
and pure SU(2) Lanczos also increases. Thus, the Lanczos
coefficients tell us that even though the thermodynamic limit
is close to SU(2) in terms of the parameter q, in terms of mea-
surable quantities it is indeed very distant from pure SU(2).
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The “broken” SU(2) algebra satisfies the following com-
mutation relations:

[J+, J−] = 2J0, (21)

[J0, J±] = ±J± + extra terms, (22)

where the PXP Hamiltonian is written as H = α(J+ + J−).
The Lanczos coefficients and the wave functions correspond-
ing to the Krylov basis expansion for an unbroken SU(2)
algebra are derived in Appendix A. We note the expression
for the Lanczos coefficients below

bn = α
√

n(2 j − n + 1). (23)

A q deformation of such an SU(2) algebra would lead us to
the expression (15). As mentioned, we numerically obtain
the condition that α ∈ {0.400, 0.442}. The additional terms
in (22) reflect the deviation from the SU(2) algebra. We find
that q deformation of this algebra is a good approximation to
Eqs. (21) and (22). However, it is not exact, and there are still
additional terms present, as we will see shortly. Therefore, the
algebra satisfied by the PXP ladder operators is a “broken”
q-deformed SU(2).

The algebra in Eqs. (21) and (22) can be explicitly seen to
be as follows [[27] and Eq. (20)]:

H± =
∑

n

σ̃∓
2n+1 + σ̃±

2n, (24)

where σ̃ (∗)
m ≡ Pm−1σ

(∗)
m Pm+1. We have the following commu-

tator:

[H+, H−] =
∑

n

σ̃ z
2n − σ̃ z

2n+1 ≡ 2H0. (25)

It is straightforward to see that the following commutator
holds:

[H0, H±] = ±
(∑

n

σ̃∓
2n+1 + σ̃±

2n

)
± X±, (26)

where the “extra terms” X± are

−X± =
∑

m∈odd

Pm−2Pm−1σ
∓
m Pm+1 + Pm−1σ

∓
m Pm+1Pm+2

+
∑

m∈even

Pm−2Pm−1σ
±
m Pm+1 + Pm−1σ

±
m Pm+1Pm+2.

As mentioned in [27], this algebra is readily identified as
a broken SU(2), where the algebra-breaking terms are X±.
However, such an algebra interpreted as SU(2) implies that we
must have α = 1, which is not the case as seen from Fig. 3.
Rather, we find the α values mentioned in Table I represent
a better approximation to the PXP Hamiltonian’s Lanczos
coefficients.

To write the algebra given above as a broken SU(2), we
begin by writing the PXP Hamiltonian as HPXP = α(J+ + J−)
(for some constant α) where we have

J± = 1

α

∑
n

σ̃∓
2n+1 + σ̃±

2n. (27)

For the rest of this discussion, we assume that α is a real
number. The commutation relations between these ladder op-

TABLE I. Table outlining the values of q and α obtained numer-
ically via least-square fitting for system sizes N = 12 to 30.

N q value α

N = 12 q12 = 0.78047 α12 = 0.40059
N = 14 q14 = 0.81093 α14 = 0.40759
N = 16 q16 = 0.83240 α16 = 0.40971
N = 18 q18 = 0.84775 α18 = 0.40762
N = 20 q20 = 0.87539 α20 = 0.44092
N = 22 q22 = 0.88607 α22 = 0.44219
N = 24 q24 = 0.89463 α24 = 0.44212
N = 26 q26 = 0.90152 α26 = 0.44069
N = 28 q28 = 0.90698 α28 = 0.43765
N = 30 q30 = 0.91115 α30 = 0.43256

erators are

[J+, J−] = 1

α2
[H+, H−] = 2

α2
H0 ≡ 2J0. (28)

This gives us the relation that

J0 = 1

α2
H0. (29)

We write the commutator between J0 and J± as

[J0, J±] = ± 1

α2
J± ± 1

α3
X±. (30)

From Eqs. (21) and (22), we note that this is not exactly a
broken SU(2) algebra. To cast it into that form, we absorb a
term 1−α2

α2 J± into X±. Therefore, the commutator in Eq. (30)
is better written as

[J0, J±] = ±J± ± X̃±, (31)

where we have X̃± = 1
α3 X± + (1−α2 )

α2 J±.

C. Broken q-deformed SU(2) algebra for the PXP Hamiltonian

Interpreting the algebra of PXP Hamiltonian as a version
of q-deformed algebra, we have

[J+, J−] = [2J0]q, (32)

[J0, J±] = ±J±, (33)

where [2J0]q = sinh 2τJ0
sinh τ

, using q = eτ . This relation can, in
principle, be inverted, provided the inversion is treated as a
series. Therefore, we would have

J0 = 1

2τ
sinh−1([2J0]q sinh τ )

= 1

2τ

∞∑
n=0

(−1)n(2n)!

22n(n!)2(2n + 1)
(sinh τ )2n+1([J+, J−])2n+1.

We evaluate [J0, J±] and demonstrate that it is close to ±J±.
This can be done by considering the series expansion given
above term by term. We consider only the first-order correc-
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tion to the J0:

J0 = sinh τ

2τ
[J+, J−] − (sinh τ )3

12τ
[J+, J−]3 + · · · . (34)

Note that in the τ → 0 limit, this reduces to the usual com-
mutation relation. Splitting the Hamiltonian in (as before)
HPXP = α(J+ + J−), we know that these follow the commu-

tation relations (21) and (22):

1
2 [[J+, J−], J±] = ±(J± + X̃±). (35)

We introduce the notation Q = [J+, J−] and use the relation
[Q, J±] = ±2(J± + X̃±). Evaluating the commutator [J0, J±]
gives us

[J0, J±] = ± sinh τ

τ
(J± + X̃±) ∓ (sinh τ )3

6τ

(
Q2(J± + X̃±) + Q(J± + X̃±)Q + (J± + X̃±)Q2

) + · · · .

From here, we can read off the extra terms in the commutator as

[J0, J±]extra = ± sinh τ

τ
X̃ ± ∓ (sinh τ )3

6τ

(
Q2(J± + X̃±) + Q(J± + X̃±)Q + (J± + X̃±)Q2

) ∓
(

1 − sinh τ

τ

)
J± . . . . (36)

Therefore, we find that the PXP Hamiltonian, when written in terms of ladder operators J±, corresponds to a broken version of
the q-deformed algebra given in (32) and (33). The algebra-breaking terms are given in (36).

D. Perturbative correction

In the previous section, we showed that q-deformed algebra
enables us to find an analytic form of the Lanczos coefficients
within an excellent approximation. The analytical expression
holds only within the approximate Krylov subspace. This
approximation occurs because the symmetry algebra of the
PXP Hamiltonian is not exact SUq(2). However, the SU(2)
structure can be recovered by adding a suitable term in the
PXP Hamiltonian

Hpert = λ

N∑
m=1

(PXPP + PPXP). (37)

with λ = 0.108 [27] (we assume the same perturbation
strength for system sizes N = 12, . . . , 26 and find excellent
agreement). Consider the full Hamiltonian as H (1)

PXP = HPXP +
Hpert. Here, we use a compact notation PXPP to denote
Pm−1σ

x
mPm+1Pm+2 and similarly for the second one. We plot

the Lanczos coefficients (see Fig. 5) and the first few wave

FIG. 5. Plot of bn’s for the |Z2〉 state, after adding the pertur-
bation (37) to the PXP model for different lattice sizes. The dots
indicate the numerical results while the line indicates the expression
(38) (α ≈ 0.7025). Both are in excellent agreement for all system
sizes considered.

functions ψi(t ) with i = 1, . . . , 4 [see Fig. 8(b)] correspond-
ing to the Krylov basis expansion for the Hamiltonian H (1)

PXP,
initialized by the same Néel state. We see that the Lanczos
coefficients closely follow a “broken” SU(2), and the revival
of complexity also increases compared to the unperturbed
PXP Hamiltonian. It is worth mentioning that q deformation
of the “broken” SU(2) algebra does not yield a better approx-
imation. In other words, attempting to q deform this algebra
and numerically determine the q value ends up giving q = 1
for all system sizes considered.

First, we begin by considering the Lanczos coefficients. We
consider system sizes from N = 12 to 26 and evolve the |Z2〉
state. The Lanczos coefficients show excellent agreement with
the “broken” SU(2) result (see Fig. 5)

bn = α
√

n(N − n + 1), (38)

with α ≈ 0.7025 for all system sizes considered. The value
of α again suggests that writing H (1)

PXP = α(J (1)
+ + J (1)

− ), the
ladder operators must satisfy the commutation relations in
Eqs. (21) and (22), with numerically fixed α.

Following the discussion on nonperturbed PXP, we write
αJ (1)

± = H (1)
± where

H (1)
± =

∑
n

σ̃∓
2n+1 + σ̃±

2n + λ
∑

n

σ̃∓
2n+1P2n+3 + σ̃±

2nP2n+2

+ λ
∑

n

P2n−1σ̃
∓
2n+1 + P2n−2σ̃

±
2n. (39)

The commutator of these ladder operators can be evaluated to
give

1

2
[H (1)

+ , H (1)
− ] =

∑
n

σ̃ z
2n − σ̃ z

2n+1

− 2λ
∑

n

P2n−2σ̃
z
2n − P2n−1σ̃

z
2n+1

+ 2λ
∑

n

σ̃ z
2nP2n+2 − σ̃ z

2n+1P2n+3

+ λ
∑

n

σ̃+
2nσ̃

−
2n+2P2n+3 − σ̃+

2n+1σ̃
−
2n+3P2n+4
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+ λ
∑

n

σ̃−
2nσ̃

+
2n+2P2n+3 − σ̃−

2n+1σ̃
+
2n+3P2n+4

+ λ2Y (1), (40)

where we have only written the O(λ0) and O(λ) terms. There
are also O(λ2) terms, which are written collectively as the
operator Y (1). Therefore, the right-hand side of Eq. (40) can
be identified as α2J (1)

0 . Using this, the commutator [J (1)
0 , J (1)

± ]
can be evaluated. One can see that it possible to write this
commutator1 as [

J (1)
0 , J (1)

±
] = ±J (1)

± ± X̃ (1)
± , (41)

where X̃ (1)
± contains terms up to order λ3. Here we again have

absorbed a 1−α2

α2 J (1)
± term into X̃ (1)

± .
The perturbation strength λ is canonically fixed by

studying the fidelity and complexity and ensuring that it
demonstrates nearly perfect revival at a periodic time interval.
We provide an intuitive explanation of the behavior of the
wave functions ψn(t )’s and the complexity C(t ) in the next
section.

In Appendix A, we study the wave functions in the Krylov
basis expansion of the |Z2〉 state. For Hamiltonians of the type
α(H+ + H−) the wave function ψn’s depend parametrically
only on α. The “zeroth” wave function, i.e., ψ0 is nothing but
fidelity. We plot the same for the |Z2〉 state and a generic state
and fit it to (A16). The results are given in Fig. 8(a). As is
clear, there is strong agreement between the perturbed PXP
fidelity and (A16) (for n = 0). We also evaluate a few other
ψn(t ) (n = 1, 2, 3, 4) numerically, and find good agreement
with (A16) in all cases.

In summary, the PXP Hamiltonian with first-order per-
turbation H (1)

PXP corresponds to a broken SU(2) algebra. We
find very strong agreement with the Lanczos coefficients and
Krylov basis wave functions of unbroken SU(2). The algebra-
breaking terms, therefore, have a subleading contribution.

V. COMPLEXITY OF THE |Z2〉 STATE:
RESULTS AND A PHYSICAL PICTURE

Application of the Hamiltonian on any initial state can
be thought of as a single-particle tight-binding problem on
a lattice, when expressed in Krylov basis due to Eq. (4),
where the nth Krylov basis state can be interpreted as the
nth lattice site. The Lanczos coefficients bn and bn+1 denote
the hopping amplitude from nth site to (n − 1)th and (n +
1)th sites, respectively, under application of H . Further, the
square of Krylov basis wave functions |ψn(t )|2 corresponds
to the probability of finding the particle at the nth site. For
a given Hamiltonian, if under time evolution of the initial
state (achieved by repeated application of the Hamiltonian),
we obtain a perfect revival. This implies that we must have a
finite number of Krylov basis states (compared to the size of
the Hilbert space). In other words, the effective tight-binding
model is defined only over a finite number of lattice sites. The

1While these commutators are very tedious to evaluate by hand, it
is possible to evaluate them in a few seconds using [100].

particle starts initially from the 0th site and “hops” between
those finite numbers of lattice sites states under time evolu-
tion. This can happen if the Hamiltonian has perfect SU(2)
symmetry and can be split into parts which can be used to
generate the finite number of Krylov basis states from the
initial state, as explained in Sec. IV. For the case of |Z2〉
state evolved by the integrable paramagnetic Hamiltonian, the
initial |Z2〉 state corresponds to the 0th site and |Z′

2〉 state
corresponds to the last site of the finite tight-binding lattice.

For a system of size N = 16 the Hilbert-space dimension
is ∼6.5 × 104, yet we only need 17 Krylov basis states to
describe the evolution of |Z2〉 in the paramagnetic model. In
Fig. 2(a) we observe bn is exactly 0 for n = 0 and 17, implying
that under time evolution, the state can never go beyond the
17th Krylov basis state as the hopping is entirely suppressed.
Hence, the time evolution is bounded within the nonthermal
sector of the Hilbert space given by the Krylov basis states.
The structure of the bn’s also tells that the hopping rates are
higher in the middle of the lattice and are gradually suppressed
at either end. From a kinetic point of view, we may say that
the particle, on average, spends most of the time near the 0th
and 17th sites. However, it periodically moves back and forth
between the two ends.

Complexity defined as C(t ) = ∑
n n|ψn(t )|2 can now be

easily interpreted as the “average position of the particle”
under time evolution in the lattice. In terms of Krylov basis
states, we can rephrase it by saying that under time evolu-
tion, the state is most likely to be “close” to |Z2〉 or |Z′

2〉
state, and it periodically oscillates in-between, which is nicely
captured by the oscillatory behavior of the complexity shown
in Fig. 2(b). The extrema of C(t ) occur at values close to 0
and 16, denoting the positions of the states |Z2〉 and |Z′

2〉 in
Krylov basis, where it is most likely to be found if observed
over some interval of time.

Regarding the evolution of |Z2〉 state under the
nonintegrable PXP model, we observe in Fig. 3 that bn’s
do not become zero at any finite n although they tend to come
close to zero (at n = 17 for N = 16) before shooting off to
larger values. This initial tendency is well understood by
the weakly broken SU(2) structure of the Hamiltonian and
the presence of the scar states in the Hilbert space. In this
case, in the tight-binding picture, the particle is not bound
inside the first 17 sites, although there is a tendency to stay
localized near the 0th and 17th sites due to the suppressed
hopping. Once it reaches the 17th site, it can hop outside
the region with a higher amplitude given by the next bn. In
the Krylov basis picture, we understand this as the initial
|Z2〉 state, after sufficient time, “leaks” into the thermal
part of the Hilbert space and thereby deviating from the
exact revival over time as shown in the plot for fidelity
or |ψ0(t )| = | 〈�(t )|Z2〉 | in Fig. 6(a). We also show the
fidelity of a generic product state, which quickly goes to zero,
showing no sign of periodic revival at all. Specifically,
we consider the state given by |0010100100100010〉
(in terms of σ z configuration) for system size
N = 16.

In Fig. 6(b) we have shown the behavior of the absolute
values of the Krylov wave functions ψ0, ψ1, ψ2, ψ3, and
ψ4, whose squares are the probabilities of finding the particle
in (0, 1, 2, 3, 4)th Krylov bases “lattice sites” as functions
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FIG. 6. (a) Behavior of ψ0(t ) for |Z2〉 state (red disk) in PXP
model. The brown circles represent ψ0(t ) for an arbitrary state that
does not possess Z symmetry (|0〉 state). (b) ψ0(t ), ψ1(t ), ψ2(t ),
ψ3(t ), and ψ4(t ) for |Z2〉 state in PXP model showing the evolution
of initial state in the Krylov basis with a slight decay at revival due
to the broken SU(2) symmetry of the model. In all cases, we choose
N = 16.

of time. We observe that as time progresses, the particle
gradually moves from the 0th site to the subsequent sites.2

Before the revival period also, we see that the particle slowly
returns to the 0th site from the latter sites and then, after a
reflection at the 0th site again moves towards the next sites.
The reflection can be understood by the presence of the double
peaks of |ψn(t )|’s for n = 0 and the single peaks of |ψ0(t )|
around the revival period. However, the decreasing amplitude
of all the wave functions at revival is due to the broken SU(2)
structure and the “leaking” of the state into the thermal part of
Hilbert space which has already been explained.

The complexity plot in Fig. 7 for the |Z2〉 state in the case
of the PXP model also has interesting signatures of weak
ergodicity breaking. Like the case of the integrable and SU(2)
symmetric paramagnetic model, the C(t ) has an oscillatory

2See [101] for a similar situation, but with slightly different moti-
vation.

FIG. 7. Evolution of complexity C(t ) for the |Z2〉 state (in red)
and for a generic state without Z symmetry (|0〉 state, in blue) in
PXP model for system size N = 16. The complexity for the generic
state grows without any constraint, only to be bounded by the finite
number of Krylov basis states considered in our computation. This
is reflected by the sudden dip in the complexity (shown in blue).
Subsequent time evolution only makes it hop towards lower Krylov
basis states.

behavior. However, it is not bounded between any finite por-
tion of the Krylov basis. Hence, along with an oscillatory part,
it also grows slowly into higher-order Krylov basis states,
implying that under time evolution, it never fully comes back
to the |Z2〉 state. On the other hand, a generic state starts
spreading into the Krylov space of basis states right away and
only gets bounded because we have only taken a finite number
of Krylov basis states for computational convenience. Then,
the subsequent application of Hamiltonian on this state only
makes it come back to the lower Krylov basis vectors.

The approximate recovery of SU(2) algebra after the addi-
tion of a suitable perturbation, for the case of |Z2〉 initial state,
can be observed directly from the behavior of the Lanczos
coefficients, the Krylov wave functions, and the complexity.
Figure 5 shows the bounded nature of bn for different system
sizes. This behavior is almost exactly like the case of the
SU(2) paramagnetic model, implying that the Hilbert space
division into nonthermal and thermal parts is nearly exact.
The perturbation strength is fixed by ensuring that the time-
periodic revival of the state is almost perfect without any
noticeable reduction of amplitude. This is seen in plot for
fidelity or |ψ0(t )| of the |Z2〉 state in Fig. 8(a). We have also
shown the fidelity for the same generic state as before given by
|0010100100100010〉 in σz basis, which decays to zero after a
small time interval.

The plots for the wave function in Fig. 8(b) have a similar
feature to the case without perturbation. However, in this case,
there is a very negligible amount of the decay of the wave
functions at revival, implying the nearly “lossless” dynamics
of the initial state in the finite Krylov basis. The complexity
also regains its fully oscillatory behavior, very much like the
exact SU(2) case. However, there is a slight increase in com-
plexity which can be noticed only after a number of periods.
To contrast the two cases, we show the complexity before and
after adding the perturbation term in a single plot in Fig. 9.
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FIG. 8. (a) Behavior of ψ0(t ) for λ = 0.108 for the |Z2〉 state
(red disk) compared with the analytical result (A16) (dashed red line,
for n = 0). The brown circles represent ψ0(t ) for an arbitrary state
that does not possess Z symmetry (|0〉 state). (b) ψ0(t ), ψ1(t ), ψ2(t ),
ψ3(t ), and ψ4(t ) for |Z2〉 state in perturbed PXP model showing the
evolution of initial state in the Krylov basis. The amplitudes are the
same at revival periods because of the recovered SU(2) structure due
to the addition of perturbation. In all cases, we choose N = 16.

FIG. 9. Evolution of complexity C(t ) for the |Z2〉 state in case of
PXP model (in blue) and perturbed PXP model (in red) for system
size N = 16.

Thus, the behavior of bn, the Krylov wave functions, and
the periodic and bounded nature of complexity can be invoked
to understand the periodic revival of certain initial states for
a nonintegrable Hamiltonian, which can happen due to the
presence of weakly entangled scar states.

VI. CONCLUSION

In this work, we have extended the study of Krylov state
(spread) complexity for the time evolution governed by the
PXP Hamiltonian. While the exact SU(2) algebra allows
us to infer the closed-form expression of Lanczos coeffi-
cients and corresponding complexity, it is not the case for
the PXP Hamiltonian. The algebra is not exact SU(2), yet
still close to SU(2). We have quantified this closeness by
mapping the algebra to a class of well-known q-deformed
algebra SUq(2), where the deformation generically encodes
the algebra-breaking terms. Still, as we have shown that PXP
cannot be written as exact SUq(2) for any q, but the approx-
imation is much better compared to the usual SU(2) algebra.
However, the crucial point is that expressing as SUq(2) allows
us to compute the Lanczos coefficients for the initial Néel
state in terms of Chebyshev polynomials. This was missing
in previous studies, and we aim to fill this gap by proving
analytic expression, which fits the numerical results in good
approximation. The complexity for the Néel fails to become
completely periodic and oscillates with a much slower value
compared to the generic state. The complete periodicity can
be well recovered by adding a perturbation to the PXP Hamil-
tonian, which primarily restricts the generators within a closed
algebra in an approximate sense. This, however, no longer
holds for a generic state.

Previous studies [60] have been focused on the complexity,
where one uses the spin- 1

2 representation of SU(2) algebra.
This suggests that only two Krylov bases are possible, and the
complexity can be written in terms of fidelity. Hence, com-
plexity and fidelity carry the same information. On the other
hand, we have worked with an effective spin-N/2 representa-
tion, thus allowing us to consider a larger number of Krylov
basis vectors. This implies that in our case, complexity, in
general, carries more information than fidelity.

Furthermore, the physical interpretation of Lanczos co-
efficients, Krylov basis wave functions, and the complexity
is general and not specific to the system discussed in the
paper. Such a picture will help to understand the behavior of
complexity of any initial state evolving under generic Hamil-
tonian. Specifically, this work opens up possibilities to extend
for other Z symmetric state (e.g., like |Z3〉, |Z4〉) with and
without perturbation. Another interesting future direction will
be to study the behavior of complexity beyond the PXP model
such as higher spin [102,103], periodically driven systems
[104–107], and hypercube models [108].

For the PXP model itself, it will be interesting to consider
other possibilities such as (p, q) deformation or general �

deformation of SU(2) [95] satisfied by the Hamiltonian. For
the q deformation studied in this work, it would be worth
attempting to derive exact analytic expressions for the Krylov
basis wave functions, as well as complexity and K entropy, if
possible. Additionally, understanding the reason behind the
system-size dependence of the q value might shed further
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light on the true nature of the algebra describing the PXP
Hamiltonian.

Finally, it would be interesting to study the effect of trans-
verse magnetic field on the PXP Hamiltonian [25]

H =
∑

m

(
Pm−1σ

x
mPm+1 − χ σ z

m

)
(42)

with χ > 0. This Hamiltonian not only possesses scar states
but also contains the critical states near a critical value χ =
χc ≈ 0.655 [25], where an Ising-type phase transition occurs.
For such Hamiltonian, |Z2〉 state thermalizes near the critical
regime while it fails to thermalize off criticality. It is tempting
to think that, in such a case, the complexity might show
unbounded growth even for the |Z2〉 state. We hope to return
to some of these questions in future studies.
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APPENDIX A: COMPLEXITY FOR SU(2) SYMMETRY

Here we briefly discuss the symmetry Krylov basis con-
struction, if the Hamiltonian has any particular symmetry
[57]. Here we primarily focus on the SU(2) algebra for spin
j, which is given by [J0, J±] = ±J± and [J+, J−] = 2J0. The
corresponding Hamiltonian can be explicitly expressed in
terms of the SU(2) generators as

H = α(J+ + J−) + η0J0 + δI. (A1)

The associated Krylov basis vectors are finite dimensional
and given by |Kn〉 = | j,− j + n〉, where n = 0, . . . , 2 j. The
lowest-weight state corresponds to n = 0, and we take it as
the initial state. It is time evolved according to

|�(t )〉 = e−iHt |K0〉 =
2 j∑

m=0

ψn(t ) |Kn〉 , (A2)

where ψn(t )’s are the Krylov basis coefficients. Note that the
initial state is not an eigenstate of the Hamiltonian (A1). The
symmetry allows us to directly extract the associated Lanczos

coefficients as [57]

an = η0(− j + n) + δ, bn = α
√

n(2 j − n + 1). (A3)

Let us now note the following relations [111]. For an operator
given by

Ĝ = eλ+T++λ−T−+λ0T0+ω1, (A4)

where T0, T± satisfy the commutation relations

[T+, T−] = 2T0, [T0, T±] = ±T±. (A5)

We have the following expression for Ĝ:

Ĝ = eωe�+T+elog(�0 )T0 e�−T− , (A6)

and we have the functions �±,�0 given by

�0 =
(

cosh ν − λ0

2ν
sinh ν

)−2

, (A7)

�± = 2λ± sinh(ν)

2ν cosh ν − λ0 sinh ν
, (A8)

ν2 =
(

λ0

2

)2

+ λ+λ−. (A9)

Therefore, the time evolution operator is given as

e−iHt = e−iωt eAT+eBT0 eCT− . (A10)

We find the following expressions for A, B, and C (by noting
that λ+ = λ− = α) in the Hamiltonian.

H = α(T+ + T−) + η0T0 + ω1. (A11)

For the given Hamiltonian (A11), we have the following ex-
pressions for ν,�±:

ν = it

2

√
4α2 + η2

0, (A12)

B = −2 log

(
cos

(
t

2

√
4α2 + η2

0

)
,

+ i
η0 sin

(
t
2

√
4α2 + η2

0

)
√

4α2 + η2
0

)
, (A13)

A = C = 2α

i
√

4α2 + η2
0 cot

(
t
2

√
4α2 + η2

0

) − η0

. (A14)

Therefore, the time-evolved state is given by

|ψ (t )〉 = e−iHt | j,− j〉

= e−iωt e−B j
2 j∑

n=0

An

√
�(2 j + 1)

n!�(2 j − n + 1)
| j,− j + n〉 .

(A15)

From here, the wave functions can be easily read off:

ψn(t ) = e−iωt e−B jAn

√
�(2 j + 1)

n!�(2 j − n + 1)
. (A16)
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As one can see here, the expression for ψn(t ) for η0 = 0 and
ω = 0 depends solely on α, as is reflected in our numerical
results.

From Eq. (A16), one can see that the nonzero basis func-
tions can be obtained until n = 2 j + 1. This is due to the
existence of the reciprocal gamma function in (A16) and it
is well known that limz→m 1/�(−m) = 0 for m = 0, 1, 2, . . .

[112]. Thus, we get a simpler expression for the complexity
as

C(t ) = 2 j

1 + η2
0

4α2

sin2

(
t

2

√
4α2 + η2

0

)
. (A17)

Note that the evolution of complexity depends on α and η0,
whereas the spin j only sets its amplitude of it. Also, note the
periodic nature of the C(t ). We can also compute the entropy

SK (t ) = −
N∑

n=0

|ψn(t )|2 log |ψn(t )|2. (A18)

The plot for entropy is shown in Fig. 10(b).

APPENDIX B: SOME COMMUTATION RELATIONS

During our discussions on the algebra satisfied by the PXP
Hamiltonian with first-order perturbation, we omit the full
expressions for the commutators of the ladder operators. In
this Appendix, we explicitly list the same. In (40), we denote
the O(λ2) terms collectively as Y (1). The explicit expression
for the same is as follows (we again resort to the notation
σ̃ (∗)

m ≡ Pm−1σ
(∗)
m Pm+1):

FIG. 10. (a) Evolution of ψn(t )’s and the (b) evolution of entropy
SK (t ) for the paramagnetic model. We choose lattice size N = 16.

Y (1) =
∑

n

P2n−1σ̃
z
2n+1 − P2n−2σ̃

z
2n +

∑
n

σ̃ z
2nP2n+2 − σ̃ z

2n+1P2n+3 + 1

2

∑
n

σ̃+
2nσ

−
2n+2P2n+3 − σ̃+

2n+1σ
−
2n+3P2n+4

+ 1

2

∑
n

σ̃−
2nσ

+
2n+2P2n+3 − σ̃−

2n+1σ
+
2n+3P2n+4 + 2

∑
n

P2n−1σ̃
z
2n+1P2n+3 − P2n−2σ̃

z
2nP2n+2

− 1

2

∑
n

P2n−2σ̃
+
2nσ

−
2n+2P2n+3 − P2n−1σ̃

+
2n+1σ

−
2n+3P2n+4 − 1

2

∑
n

P2n−2σ̃
−
2nσ

+
2n+2P2n+3 − P2n−1σ̃

−
2n+1σ

+
2n+3P2n+4

+ 1

2

∑
n

σ̃+
2nσ

−
2n+2P2n+3P2n+4 − σ̃+

2n+1σ
−
2n+3P2n+4P2n+5 + 1

2

∑
n

σ̃−
2nσ

+
2n+2P2n+3P2n+4 − σ̃−

2n+1σ
+
2n+3P2n+4P2n+5.

Similarly, during our discussion of the commutator (41),
we do not write the explicit expression for X̃ (1)

± . To write
a little more, it is prudent to first consider the commutator
[H (1)

0 , H (1)
± ] = α3[J (1)

0 , J (1)
± ]. We obtain the following result:

[
H (1)

0 , H (1)
±

] = ±H (1)
± ±

16∑
n=1

fn(λ)X̃ (1)
n,±, (B1)

where X̃n,± are terms containing multiple P and σ opera-
tors [100]. There are 16 such terms in this expression, and
they are weighted by the functions fn(λ). These functions
are polynomials of λ, of order up to λ3. Thus, we rewrite
the above expression in terms of J (1)

0 and J (1)
± as (41), with

X̃ (1)
± = 1−α2

α2 J (1)
± + 1

α3

∑16
n=1 fn(λ)X̃ (1)

n,±.
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[13] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[14] V. Oganesyan and D. A. Huse, Localization of interact-
ing fermions at high temperature, Phys. Rev. B 75, 155111
(2007).

[15] A. Pal and D. A. Huse, Many-body localization phase transi-
tion, Phys. Rev. B 82, 174411 (2010).

[16] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenol-
ogy of fully many-body-localized systems, Phys. Rev. B 90,
174202 (2014).

[17] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[18] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Collo-
quium: Many-body localization, thermalization, and entangle-
ment, Rev. Mod. Phys. 91, 021001 (2019).

[19] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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