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We explore current ideas around the representation of a protein as an amorphous material, in turn represented
by an abstract graph G with edges weighted by elastic stiffnesses. By embedding this graph in physical space,
we can map every graph to a spectrum of conformational fluctuations and responses (as a result of, say, ligand-
binding). This sets up a ‘genotype–phenotype’ map, which we use to evolve the amorphous material to select
for fitness. Using this, we study the emergence of allosteric interaction, hinge joint, crack formation and a slide
bolt in functional proteins such as adenylate kinase, HSP90, calmodulin and GPCR proteins. We find that these
emergent features are associated with specific geometries and mode spectra of floppy or liquid-like regions.
Our analysis provides insight into understanding the architectural demands on a protein that enable a prescribed
function and its stability to mutations.
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1. Introduction

Only a small fraction of the allowable protein ‘uni-
verse’ constitutes real biological proteins (Anfinsen
1973; Koonin et al. 2002). For example, of the 20300

number of possible sequences of a polypeptide chain
with � 300 residues that can potentially be generated
from the naturally available 20 amino acids, living
systems such as Saccharomyces cerevisiae exhibit only
� 104 (Koonin et al. 2002; Milo and Phillips 2015;
Sartori and Leibler 2020). This dimensional reduction
comes about because, out of the numerous possible
proteins, only a small subset are functionally relevant,

robust and explored by evolution. We have, for many
years, been interested in understanding the architectural
demands on a protein that enable a specific function,
and its stability to mutations, fluctuations and cycles of
performance. Some aspects of this program are not new
and, recently, rather elegant theoretical formalisms
have emerged (Yan et al. 2017; Tlusty et al. 2017;
Dutta et al. 2018; Yan et al. 2018; Eckmann et al.
2019). Here we offer our perspective on this problem.
We focus on proteins that undergo significant con-

formational changes between their native and func-
tional states. We first consider ‘allosteric proteins’,
where the intriguing mechanism of ‘action-at-a-
distance’ drives function. Motivated by the tantalising
similarities between functional proteins and amorphous
materials, in terms of molecular packing (Liang and
Dill 2001), free energy landscape (Frauenfelder et al.
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1991) and relaxation mechanisms (Iben et al. 1989),
we explore if allosteric regulation proceeds via emer-
gence of ‘allosteric chains’, reminiscent of ‘force
chains’ in granular media (Cates et al. 1998). There are
two proposed mechanisms of allostery – the induced-fit
mechanism, where the conformational switch depends
on a ligand-induced change in protein conformation
that leads to specificity of enzyme action (Koshland
et al. 1966), and the conformational selection mecha-
nism, where the enzyme explores a multiplicity of
conformation states, independent of ligand structure
and occupancy, which are then differentially stabilized
by the ligand (Monod et al. 1965; Changeux 2012).
Since allosteric propagation and binding scenarios in
proteins span a repertoire of selection and adjustment
processes, it is likely that both these mechanisms could
be operative in the same protein in physiological set-
tings (Tsai et al. 1999; Ramanoudjame et al. 2006;
Csermely et al. 2010; Rajasekaran and Naganathan
2017). Here we focus on induced fit proteins, such as
adenylate and guanylate kinase (Müller and Schulz
1992; Stehle and Schulz 1992; Müller et al. 1996;
Maragakis and Karplus 2005; Chu and Voth 2007),
HSP90 (Shiau et al. 2006), calmodulin (Babu et al.
1988; Osawa et al. 1999; Stefan et al. 2008) and
GPCR proteins (Cherezov et al. 2007; Hilger et al.
2018; Weis and Kobilka 2018), and ask what are the
necessary physical (architectural) features that the
protein must have in order to perform a specific func-
tion with high fidelity.
To do this, we need a coarse-grained representation

of a protein that is appropriate for this task. A protein
represented as a heteropolymer (Garel et al. 1997) is
indeed a convenient starting point if the question per-
tains to the dynamics of folding into a native state, or to
the dynamics of assembly driven by multivalent inter-
actions of intrinsically disordered proteins (Socci and
Onuchic 1994). However, a coarse-grained description
of changes in protein conformation in the native state,
either as a result of spontaneous fluctuations or induced
by ligand binding, or during the process of chemical
reaction, requires a different starting point. We need a
representation that enables a classification of the low-
energy excitations and modes of deformation about the
native state of a protein (Maragakis and Karplus 2005).
This would involve accounting for inter-monomer (or
inter-sector) (Halabi et al. 2009; Smock et al. 2010)
interactions of varying strengths, both along the
heteropolymer backbone and across it, giving it a three-
dimensional character. This suggests that the appro-
priate coarse-grained description for deformations of a
functional protein is to treat the protein as a three-

dimensional amorphous solid with heterogeneous
interactions that have been designed to facilitate a
prescribed function with high fidelity. The strategy that
we will use to design the heterogeneous interactions is
akin in spirit to a ‘gain of function’ approach (Kuhlman
et al. 2003; Ahmed et al. 2022). The ability to render a
specific function with high fidelity puts constraints on
the free energy landscape explored by the amorphous
solid.
A key result is that in order for the protein (repre-

sented as an amorphous solid) to render a prescribed
function (such as allostery) with high fidelity, it must
possess ‘liquid-like’ channels of a specific geometry
and orientation. The low-energy excitations of such a
channel can be described by the spectrum of the graph
Laplacian or equivalently of a pinned liquid–gas
interface (Jasnow 1984). Alternately, one may think of
the design process as a ‘pruning’ of an amorphous solid
described by non-affine elasticity (DiDonna and
Lubensky 2005).

2. Representation of a protein as an amorphous
material

Here we make precise the representation of a protein as
an amorphous solid. For simplicity, we will consider
proteins that have a large molecular weight and are
globular, with a well-defined ‘bulk’ and ‘surface’. A
globular protein is a linear heteropolymer with side
groups, which in its native conformation is folded up in
a ball. This enables each monomer to interact with the
rest of the monomers across three-dimensional space,
via interactions of varying bond strengths. It is in this
setting that we define the genotype–phenotype space
and the representation as an amorphous solid.

2.1 ‘Genotype’ space

Let the set of amino acids (monomer types) be
fAig : i ¼ 1; . . .K, each characterised by a hydrody-
namic radius faig and the set of bond types be
fBag : a ¼ 1; . . .M, with M � K, each characterised
by a bond strength fbag (figure 1a). A realisation of a
‘protein’ is a weighted graph G ¼ fV; Eg, with the
vertices V taken from fAig and edges E taken from
fBag. Note that a given vertex can have any number of
edges emanating from it; the number of edges can be
greater than 1 (if surface vertex) or 2 (if bulk vertex)
and less than a maximum Emax. Together these con-
stitute the genotype space G.
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2.2 ‘Phenotype’ space – Embedding in physical
space

As shown in figure 1b, we embed this graph G in
physical space, that is to say, the N vertices are

embedded in Euclidean space of d dimensions Rd (with
coordinates fxi0g : i ¼ 1; . . .N). With this embedding,
each vertex is subjected to forces arising from steric
repulsion upon contact and short-range harmonic
extensional springs from the connecting bonds. In
addition, one could include contributions to the force,
such as bending and torsion. This sets the stage for
viewing the protein as an amorphous solid with
heterogeneous spring constants.
Because the protein is a polymer with a defined

backbone characterised by stronger peptide bonds, the
energy scales associated with the extensional springs in
the above representation will show a clear separation in
bond strengths. We will refer to the peptide bonds of
the backbone as strong bonds, and the interactions such
as electrostatic, hydrophobic, hydrogen bonding,

disulphide and salt bridges, and van der Waals collec-
tively as weak bonds. Neighbouring monomers that do
not interact will be connected by a non-bonding edge.
Given that the protein is a linear polymer, every bulk
vertex will have two strong bonds emanating from it.
Together these define the phenotype space P.

2.3 Fidelity of function as fitness

Having established the genotype–phenotype map
G ! P, we would like to drive changes in the geno-
type space to arrive at a desired phenotype. We do this
by defining a fitness function.
Since we will be concerned with native proteins that

undergo specific conformational change in response to
a local external stimulus, such as ligand binding, the
fitness function must describe the fidelity and speci-
ficity of the conformational change. Thus, in general,
we define fitness as a scalar function of the displace-
ments of the vertices of the physical graph, i.e.,

Figure 1. (a) Genotype space G constructed from the set of monomers and bonds with different stiffnesses to generate a
weighted protein graph G ¼ fV; Eg representing the abstract protein network. (b) Phenotype space P obtained by embedding
the graph G in physical space. This embedding assigns coordinates to the vertices. We draw it on a cylinder to depict that we
impose periodic boundary conditions in the x1-direction and free boundaries in the x2-direction. This choice of boundary
conditions is dictated by the nature of the fitness function F . (c) Every network in G gets embedded in P, from which we
compute the fitness function F . We then change the network in G and iterate untill we reach the optimum fitness.
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F : P ! R. This function has as input I , the pre-
scribed displacement vectors of a subset of vertices
i 2 I � P, and as output O, a scalar function of the
displacement vectors of a different subset of vertices
j 2 O � P. The goal is to sample the genotype space G
and optimise the fitness function F over the space of
phenotypes P. In section 3 we will consider several
examples of this fitness function F .

2.4 Optimisation algorithm

While our proposed optimisation algorithm should hold
in any dimension, we will, for convenience, describe
the procedure in two spatial dimensions. We start with
a phenotype graph P with vertices on a triangular lat-
tice of dimension Kk � K? (figure 1b), and edges
connecting nearest neighbour vertices, with periodic
boundary conditions. Let the initial coordinates of the
vertices be fxi0g.
For the problem at hand, we can, without loss of

generality, take all the monomers to be the same and
assign all the genotypic diversity to the bonds. Thus,
we randomly assign the weight of an edge to be fbag :
a ¼ 1; . . .M with probability pa, where b1 � 0 corre-
sponds to the non-bonded edges. A useful parameter in
the model is the number fraction of bonded edges /0.
This assignment should be subjected to constraints,
such as ensuring a polymer backbone, i.e., that there
exists one and only one path in P comprising strong
covalent bonds alone that spans all vertices, but for
now we will ignore this constraint.
Given a realisation of bond strength bs on the phe-

notype graph P, we can compute real space displace-
ments ui of every vertex by minimising the total elastic

energy E ¼ 1
2

P
i;j bijðxi � xj � aÞ2, with respect to ui,

where xi ¼ xi0 þ ui and a � xi0 � xj0. If our physical
embedding was associated with a bath of temperature
T, we could in principle even compute the displacement
fluctuations at every vertex. These measurable physical
quantities will depend on the spring constants that
reside in the bonds and in the hydrodynamic radii that
reside in the vertex.
Now for every realisation of bond strengths fbijg on

the phenotype graph P, we can compute the fitness
function F for the prescribed input. We then change
the realisation of fbijg and repeat the calculation. By
sampling over all the realisations of b, we arrive at one
that optimises F for the same fixed input. In practice
this is hard because the dimensionality of the search

space goes as MN , a very large number. We will
therefore restrict the bond strengths to fb ¼ 0; 1g, in
units of a typical energy scale, and sample the genotype
space G using a Metropolis Monte Carlo sampling
scheme.
We implement the algorithm as follows:
We first prepare the system by distributing the bond

strengths f0; 1g randomly, such that with probability p,
the bond strength is 1; this specifies the number frac-
tion of bonded edges /0. We construct a well-defined,
physically motivated, fitness function F (with nice
convergence properties), and choose a large N, a large
enough p to ensure percolation and boundary condi-
tions that are either open or periodic. Then,

1. We provide fixed displacement vectors for the
input vertices. In response to this localized strain,
all bonds with nonzero stiffness will elastically
deform. We then compute the displacements fuig
of all the vertices that minimise the total elastic
energy,

E ¼ 1

2

X

i;j

bijðui � ujÞ2 : ð1Þ

2. Using this energy minimized displacement vectors
of the output vertices, we compute the fitness
function F . This will be large in general.

3. We now make moves in genotype space G
(mutations), which corresponds to moving in bond
space fBig. For simplicity, we restrict the space of
moves to those that interchange the 0s and 1s
(bond exchange moves). This fixes the number
fraction of bonded edges at its initial value /0.
This is not necessary; one could easily study
moves which sample number fractions spread
about /0 (as an aside, altering the value of /0

can lead us to study issues surrounding isostaticity
or overconstrained configurations).

4. We then repeat the calculation and determine the
new fitness. We follow this procedure until the
fitness F is maximized.

In order to efficiently sample G to maximise F ,
especially when N is large, one might choose a
simulated annealing scheme, with a fictitious temper-
ature Tf . For any nonzero Tf , there will be a
distribution of optimal configurations; the true optimal
network will be obtained by slowly taking Tf ! 0.
In practice, we have implemented the above algo-

rithm on a triangular lattice with the number of vertices
N ¼ 156 arranged in a 12� 13 grid. We have used a
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slightly distorted lattice to avoid straight lines of ver-
tices and that result in the appearance of floppy mod-
es (Yan et al. 2017). The number of strength-1 bonds
NS ¼ 360, which we fix throughout the simulation.
This in turn fixes the average coordination number,
z ¼ 2NS=N ¼ 5. In addition, the vertices are also
connected to their next neighbours via weak springs
with stiffness 10�4. Periodic boundary condition is
imposed based on the specific case being modelled, as
specified in section 3.
The binding of the ligand is modelled by imposing a

displacement field, fuIg, at the input vertices i 2 I
(we take it to be 4 adjacent vertices located at the centre
of the lower boundary of the grid). Such an imposed
displacement results in a deformation of the entire

network, leading to a displacement, fuI 0g, at every
other vertex of the network. We numerically evaluate

fuI 0g by solving the corresponding global stiffness
matrix.
All vertices obey local force balance. Thus, for the

vertices i 2 I , the external forces required to impose
the displacements should balance the internal elastic
forces, while for the vertices j 2 I 0 (the complement of
I ), the internal elastic forces should add up to zero. In
block matrix form,

FI

0

" #

¼ BII BII 0

BI 0I BI 0I 0

" #
uI

uI
0

� �

; ð2Þ

where B is the block stiffness matrix. The unknown
displacements can be obtained by simple matrix
inversion.
Every time we move through the genotype space, we

change the topology of the network, and construct a
new B, which is then used to calculate the unknown

displacements uI
0
. Under this evolution, we search for

networks that generate a response, which matches a

target displacement, ujT , at sites j 2 O located far from
the input stimulus I . The fitness of the network is
evaluated in terms of the deviation of the displacement
field at the output sites from its target value,

F ¼ �
X

j2O
ðujT � ujÞ2

 !1=2

: ð3Þ

To evolve towards the optimum in this non-convex
optimization problem, we perform a Monte Carlo
simulation using Metropolis sampling at a fictitious
temperature Tf ¼ 0:01. The simulation is performed for

5� 105 steps, where the fitness value usually con-
verges within 100 Monte Carlo steps. We present a

movie of the evolution of the network towards opti-
mality in Network Evolution (https://github.com/
codesrivastavalab/allostery-theory/blob/main/
convergence.gif).
In the following section, we employ this algorithm to

study four different functional proteins. We then char-
acterize the optimised network in terms of the spatial
profiles of the mean coordination number and
displacement.

3. Emergence of functional proteins

Among the quantities we measure are the distributions
means and fluctuations of scalars such as (i) averaged
local coordination number (number of bonds per site
with weight 1) and (ii) mean square displacement (SD)

at every vertex (
� juij2P

i2I 0 ju
ij2
�
). This allows us to classify

the variety of protein types according to the relative
fraction of liquid to solid regions and geometry of these
liquid regions. Using the above genotype–phenotype
map, we study the emergence of allosteric interaction,
hinge joint, crack formation and a slide bolt in func-
tional proteins, such as adenylate kinase, HSP90,
calmodulin and so on.

3.1 Allosteric proteins with slide bolt behaviour

In this case, the active site consists of 4 consecutive
vertices on the top boundary. Such a representation
models the case of globular allosteric proteins, where
the active and allosteric sites are located at specific
distant sites, each comprising a small part of the protein
surface. In the abstract network, the stimulus site can
thus be considered as an ‘allosteric’ site, while the site
for targeted response is the ‘active’ site of an allosteric
protein. A periodic boundary condition is imposed on
the side boundaries along the x1-direction.
In figure 2, we show the typical structure of a fit

network, and the mean coordination and squared dis-
placement maps. In the fit network, the displacements
at the response site are found to be close to the
expected values. The mean coordination map indicates
the presence of a less coordinated region connecting
the stimuli and response sites, which is surrounded by
two comparatively better connected regions. The shape
of this ‘floppy’ region is similar to a ‘trumpet’, with the
narrow end connecting the stimuli site and the wide
end connecting the response site, as observed earlier in
Yan et al. (2017). This observation indicates the pos-
sible presence of allosteric chains – highly deformable
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or ‘liquid-like’ regions in allosteric proteins whose
orientation, geometry and fluctuations are tuned to the
desired functionality of the protein.
In a strained elastic network, away from the site of

the applied strain, the deformations die down fast.
However, in this case, the deformations, measured in
terms of the mean squared displacements at all the
vertices of the network, decrease far away from the
stimuli sites and peak again near the response sites.
This feature is also noticed for the fit abstract networks
in all the other cases considered. Such an observation
again indicates the presence of highly deformable
regions in the protein, which can allow the strain to
propagate.
Implications for structure of potentially allosteric

proteins are oligomers resulting from the assembly of
proteomers associated in such a way that the molecule
possesses at least one axis of symmetry. The oligomeric
structure creates a potentially cooperative assembly of
subunits (as noted by the Monod–Wyman–Changeux

(MWC) model). It remains to be seen from a detailed
finite size analysis whether this continuous pathway of
soft interaction from I to O will be retained when we
increase the size of the protein.

3.2 Hinge behaviour commonly found in kinases

Proteins such as adenylate kinase (ADK) and
guanylate kinase undergo open-to-closed state
structural transition in order to perform their catalytic
action. We model such conformational change in our
abstract model by fixing the response sites at the top
boundary of the network, where half of the vertices
have expected displacements that are rotated relative
to the other half. Through this, we intend to model
the open-close motion of multi-domain proteins,
such as ADK. The other two boundaries along the x1-
direction are kept open with no periodic boundary
condition.

Figure 2. (a) The closed antagonist-bound inactive state conformation (PDB ID: 4YAY) and the (b) open agonist-bound
fully active state conformation (PDB ID: 6DO1) of a GPCR protein (Lu et al. 2021) (c) An evolved optimised network. Red
and cyan in the network indicate strong and zero bonds, respectively. The blue arrows indicate the imposed stimuli at the
allosteric site (4 nodes at the bottom boundary), the magenta arrows on the top boundary indicate the expected response at the
active sites, and the black arrows are the the response field of the optimised network. (d) Average coordination number map
and (e) mean squared displacement map of the optimised network.
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In figure 3, we show the structure of a fit network
and the mean coordination and squared displacement
maps. The fit network is observed to be divided into
two very rigid domains by a weakly connected liquid-
like region that connects the stimuli and response sites.
The two rigid domains are weakly connected near the
allosteric (stimuli) sites, which mimics the hinge region
of the kinases around which the rigid domains opens
and closes (figure 3a and b).

3.3 Conformation changes due to ‘buried’ active
sites becoming solvent-exposed

In this case, we intend to model the subsequent
exposure of buried residues upon ligand binding at
the target sites, such as in case of GTPase, maltose

binding protein (MBP) and calmodulin. We do this
by fixing the response site at 4 consecutive vertices
in the bulk of the network with target displacements
perpendicular to the bottom boundary. A periodic
boundary condition is imposed along the x1-direction
as in case A (section 3.1), for globular allosteric
proteins.
Figure 4 shows a fit network and the mean coordi-

nation and squared displacement maps. The mean
coordination map in this case is seen to be very dif-
ferent from the earlier two cases. The response site is
located within a strongly connected region, with a
weakly coordinated region around it. This liquid-like
region surrounds the response region on both sides and
is connected at the site of stimuli. One can think of the
rigid response region as the calcium binding sites of
calmodulin that stay on the rigid surface of the protein,

Figure 3. (a) The open-state conformation [PDB ID: 4AKE](top) and the closed-state conformation [PDB ID: 1EX6] of
adenylate kinase (Müller and Schulz 1992). (b) The open-state conformation [PDB ID: 1EX6] (top) and the ligand-bound
closed-state conformation [PDB ID: 1EX7] of guanylate kinase (Stehle and Schulz 1992). (c) An evolved optimised network
with all the top boundary nodes as active sites. Red and cyan in the network indicate strong and zero bonds, respectively. The
blue arrows indicate the imposed stimuli at the allosteric site (4 nodes at the bottom boundary), the magenta arrows on the top
boundary indicate the expected response at the active sites, and the black arrows are the response field of the optimised
network. (d) Average coordination number map and (e) mean squared displacement map of the optimised network.
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while the low connected regions are the two target sites
that open up when calcium is bound.

3.4 Hinge and twist motion as in chaperone
proteins

Molecular chaperones like HSP90 undergo open-to-
closed state structural transition that involve large
domain movements. Here we model such functional
proteins in terms of the abstract network, where the
response site consists of the two side boundaries with
target displacements that are rotated with respect to
each other. Through this representation, we try to
model the hinge motions of proteins consisting of two
distinct domains. As the boundaries along the x1-
direction serve as the response sites, no periodic
boundary condition is applied in this case.
Figure 5 shows the structure of a fit network and the

mean coordination and squared displacement maps.
The displacements at the two boundaries of the fit

network are found to be very close to the expected
response. The mean coordination map indicates a very
weakly connected region in the middle of the network,
similar to that observed in case B (section 3.2).
However, unlike the former, the liquid-like region
does not connect the stimuli and response sites.
Rather, the network is divided into two very rigid
domains which move in opposite directions. As in
case B, the liquid-like region is connected at the site
of applied stimuli, which acts like the hinge region. In
terms of the HSP90 example, the two rigidly con-
nected regions can be thought of as the two flexing
arms, which render the open and close form of the
protein (figure 5a and b).

4. Localized soft channels and non-affine elasticity

The measured quantities evaluated on the configuration
or graph that optimizes the fitness have distinct features
in each of the examples studied. Each of them have a

Figure 4. (a) The open-state conformation of Calmodulin (PDB ID: 3CLN ) and (b) the peptide-bound state conformation
(PDB ID: 1CKK) (Babu et al. 1988; Osawa et al. 1999). (c) An evolved optimised network with 4 nodes in the bulk as active
sites. Red and cyan in the network indicate strong and zero bonds, respectively. The blue arrows indicate the imposed stimuli
at the allosteric site (4 nodes at the bottom boundary), the magenta arrows in the bulk indicate the expected response at the
active sites, and the black arrows are the the response field of the optimised network. (d) Average coordination number map
and (e) mean squared displacement map of the optimised network.
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contiguous channel comprising vertices with low
coordination number (relatively low constrained ver-
tices) and large displacements, sharply separated from
regions with high coordination number (highly con-
strained vertices) and low displacements. When
embedded in a bath of temperature T, these low coor-
dination number channels will be associated with large
volume fluctuations; such volume fluctuations have
been observed to accompany structural changes along
allosteric paths (Law et al. 2017). The channels
resemble a liquid channel embedded in an amorphous
solid, and exhibit a distinct geometry and orientation.
These liquid-like regions represent soft or flexible parts
of the ‘evolved’ protein that drive the input–output
response as encoded by the fitness function.
To proceed with this intuition, we first note from

equation 1 that the optimal configurations are min-

imisers of the ‘energy’ E ¼ 1
2

P
i;j bijðxi � xjÞ2, sub-

ject to constraints implied by the fixed input and
desired output. These constraints can be either taken

to be hard constraints, in which case these vertices
are pinned, or soft constraints, represented as a term
in the energy that represents the fitness function. This
harmonic energy E can be formally represented
through the spectral properties of the graph Lapla-
cian L (Banerjee and Jost 2008). The graph Laplacian
L acts on functions defined on the graph G. Let u be a
real-valued function on G, i.e., u : V ! R, with inner
product

ðu; vÞ ¼
X

i

niuðiÞvðiÞ ð4Þ

where ni is the degree of i. Consider an operator D on
this space of functions whose action on function u is

DuðiÞ ¼ uðiÞ � 1

ni

X

j� i

uðjÞ ð5Þ

If g is an arbitrary function on G (and therefore, one can
view g as a column vector), then

Figure 5. (a) The closed-state conformation of HSP70 (PDB ID: 2IOP)and (b) the open active state conformation (PDB ID:
2IOQ) (Shiau et al. 2006). (c) An evolved optimised network with all nodes on the side boundaries as the active sites. Red
and cyan in the network indicate strong and zero bonds, respectively. The blue arrows indicate the imposed stimuli at the
allosteric site (4 nodes at the bottom boundary), the magenta arrows on the side boundaries indicate the expected response at
the active sites, and the black arrows are the the response field of the optimised network. (d) Average coordination number
map and (e) mean squared displacement map of the optimised network.
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ðg; LgÞ
ðg; gÞ ¼

P
i� jðgðiÞ � gðjÞÞ2
P

i nðiÞgðiÞ
2

ð6Þ

which will clearly highlight the interface of the liquid–
solid regions. The spectrum of the graph Laplacian
describes the interface fluctuations. One can study the
evolution of the eigenvalues and eigenvectors of L as
one moves through the genotype space towards the
optimal configuration.
To this graph Laplacian we add the constraints

implied by the fixed input and desired output. The
corresponding ‘Hamiltonian’ graph operator that acts
on functions on the graph is described by an elliptical
operator of the form LG þ V , where LG is the graph
Laplacian on the network G and V is the potential that
imposes this constraint in P. A simple choice for V in
section 3.1 is

VðPÞ ¼
X

i2I
Kið/i � /l

iÞ
2 þ

X

j2O
Jið/j � /a

j Þ
2

ð7Þ

where / is the scalar function defined on G (e.g., local
coordination number (density) or root square
displacement) and the coefficientsKi; Jk are large so as to
impose the constraint strongly. This acts like a pinning
potential in the target space of I and O.
The Hamiltonian we have constructed bears a close

resemblance to the Cahn–Hilliard theory describing the
fluctuation spectrum of a pinned liquid–gas interface,

H½/ðxÞ� ¼
Z

d2x
r
2
ðr/Þ2 þ f ð/Þ þ Vpinð/Þ

h i

ð8Þ

The last term is a pinning potential that breaks the
Euclidean invariance of the interface (Jasnow 1984).
The lowest eigenvalues of this model (Jasnow 1984)
includes a capillary and peristaltic mode, which
resembles the liquid-like excitations of the channel
shown in figure 2.
Another perspective is from the theory of amorphous

solids. One may think of the elastic network as a
realisation of an amorphous solid, and ask how one
may systematically tune the properties of the amor-
phous solid so as to get the desired phenotype (Rocks
et al. 2017; Hexner et al. 2018). The ‘energy’,

E ¼ 1
2

P
i;j bijðxi � xjÞ2, is equivalent to an elastic

energy functional
R
x BðxÞðruÞ2, where u is the local

displacement field and B are the local elastic moduli.
With B taken to be randomly distributed about a mean,
this is equivalent to the non-affine elastic theory of
amorphous solids (DiDonna and Lubensky 2005).

Now starting with a network where all the bonds are
stiff, one imposes the local stress and response dis-
placements at I and O. All the bonds in the network
will then undergo deformation, resulting in a high
elastic energy. We then make the stiffnesses of the most
deformed bonds weaker ensuring that the constraints at
I and O are maintained – this results in a lowering of
the energy. The network obtained as a result of this
‘pruning’ (Hexner et al. 2018) will be the optimal
network described above. This procedure corresponds
to a random annealing of the elastic moduli to arrive at
the optimal protein. The optimal solution arrived at in
the example of the allosteric protein is akin to shear-
banding in amorphous solids (Barbot et al. 2020).

5. Discussion

In this study, we explored ideas around a functional
protein as an amorphous solid, designed to perform a
specific function with high fidelity. The examples we
studied include proteins that exhibit allosteric changes
such as hinge joint (e.g., adenylate kinase and HSP90),
crack formation (e.g., calmodulin) and slide bolt (e.g.,
GPCR). Here, we explored the mechanical rather than
the chemical facets of such a mechano-chemical
machine.
This mechanical approach highlights some general

points of principle. For instance, it is generally believed
that in the native state, the packing density is high,
making it too restricted to exhibit the variety of ways in
which allostery manifests. Our analysis suggests that
the native state should be allowed to be locally com-
pressible (looser packing), thus exploring a higher
dimensional low energy landscape.
Our results should remind us of the concept of sec-

tors (Reynolds et al. 2011), envisaged as evolutionarily
conserved, spatially organized molecular motifs that
can enable perturbations at specific surface positions to
rapidly initiate conformational control over protein
function.
The optimization of fitness F over the space of

phenotypes is not convex, implying that there will be
many solutions to the optimisation problem. In future
work, we will study the geometry of the fitness land-
scape, the number of minima and maxima and their
proximity to one another. If there are a small number of
optimal solutions, then one might expect these optimal
features have been arrived at multiple times in the
evolutionary history of proteins, thereby explaining the
frequent reemergence of protein architectural motifs.
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Many extensions of this work can be envisaged, such
as extension to three dimensions, separating the back-
bone covalent interactions from the rest of the inter-
actions, and including nematic correlations
representing the effect of secondary structures (Chak-
raborty et al. 2021). We hope to take up these ques-
tions in the future.
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