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1 Introduction

The holographic correspondence [1] between AdS and CFT [2, 3] is remarkable because
it provides an apparently complete definition of quantum gravity in asymptotically AdS
spacetimes. Since the correspondence is highly non-local, AdS/CFT shifts the mystery of
quantum gravity to the question of how the bulk seems to have a local description in terms
of the dual holographic variables. Ultimately, we would like to have an intrinsically CFT
answer to this question, but a good first step is to write fields that solve the semi-classical
bulk equations of motion in terms of boundary operators. At the semi-classical level, this
can be accomplished by inverting the usual extrapolate AdS/CFT dictionary for bulk fields
and was done in a series of papers [4, 5] culminating in the celebrated work of Hamilton,
Kabat, Lifshitz, and Lowe (HKLL) [6–9]. See [10–12] for extensions, and [13, 14] for reviews.
These papers write local bulk operators containing only the normalizable mode as an integral
of local CFT operators on (sub-)regions of the AdS boundary. In other words, local bulk
operators can be described using certain non-local operators in the boundary theory.

HKLL construction is typically done for the normalizable mode [15]. This is natural
because the non-normalizable bulk solution is best thought of as a deformation of the CFT
rather than as an operator in the spectrum of the CFT. Despite this, at the level of free
probe fields, nothing prevents us from doing an analogue of HKLL construction for the
non-normalizable mode as well — it can be viewed as an exercise in solving bulk wave
equations with non-standard boundary conditions. A further fact that motivates such a
calculation is that within the Breitenlohner-Freedman (BF) window of masses [16, 17] both
solutions of the wave equation are acceptable as genuine operators in the CFT. So it is useful
to develop the formalism for the “other” mode as well. This is the context of the present
paper. While this is of intrinsic technical interest in AdS/CFT, as we have just outlined,
we also have other (more conceptual) motivations for doing this. These motivations have
their origins in questions of flat space holography that have come up in [18–28]. The way
the two modes of a wave equation are organized in flat space is seemingly distinct from
that in AdS. Depending on whether we choose the holographic screen to be I [25], or a
timelike cut-off [24], the data can be stored in terms of ingoing/outgoing modes [26–28], or
in terms of a bulk source and a homogeneous mode [24]. This is to be contrasted with the
normalizable and non-normalizable solutions1 that arise in AdS. The re-organization of
holographic data in flat space makes it interesting to understand the bulk-reconstruction
aspects of even the non-normalizable mode in AdS. In any event, the HKLL kernel for the
non-normalizable mode will be a primary object of interest in this paper, and some related
questions in flat space holography will be discussed elsewhere.

Our goal, then, is simply to write down the bulk field in terms of the two independent
boundary modes in the schematic form

Φ(b) =
∫
Kn(b;x) φn(x) +

∫
Knn(b;x) φnn(x), (1.1)

where b stands for a bulk location, and the integrals are over the boundary (schematically
captured by the coordinate x). The existence of the two independent modes is a property

1Note that the latter corresponds to a boundary source in AdS.
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of second-order PDEs, and in the context of AdS, the subscript n denotes the normalizable
mode and nn, the non-normalizable one. Our task is to identify the corresponding kernels
— the various subtleties will be elucidated as we proceed. Note that it is crucial for our
discussion here that we are working with linear wave equations so that we can simply
sum the two modes together. We will conduct our discussion at the level of these two
boundary modes, and they will implicitly determine the holographic data, namely the
expectation value and the CFT source. When the non-normalizable mode is set to zero, as
is well-known, the expectation value is simply the normalizable mode [15, 17]. But when
there is a non-normalizable mode, extracting the expectation value is less trivial, see, for
e.g. the discussion in section 2.2 of [29].

It was noted in [24] that in flat space, the solutions of linear wave equations lead to a
similar structure to (1.1), where the analogue of the non-normalizable mode is a bulk source
localized on a holographic screen, and the normalizable mode is replaced by the homogeneous
solution. It was pointed out that the structure is, in fact, identical in AdS as well, with the
nice extra property that when the screen is moved to the AdS boundary, this bulk source
turns into the boundary source after the usual radial scaling of the non-normalizable mode.
In other words, the structure of the two modes has a nice understanding in spacetimes
more general than AdS, with the structure reducing to the usual story in AdS when we
take the source to the AdS boundary. This is one of our motivations for believing that it is
worthwhile understanding the general structure (1.1) better.

1.1 Summary of the paper

In constructing the kernel for the non-normalizable mode, we find natural variations of
results for the normalizable case. We try to give a unified presentation where (hopefully)
the context and general ideas are also clear because the subject is riddled with various
technicalities and special cases. We first consider global AdS and define the reconstruction
kernel for the non-normalizable mode in two ways — using a mode sum approach as well as
a spacelike Green’s function approach. The mode sum approach proceeds analogously to
the normalizable case [7], and we obtain explicit kernels in even and odd dimensions. The
spacelike Green’s function approach relies on first constructing a Green’s function in terms
of the chordal distance and applies only in even-dimensional AdS.2 For the normalizable
mode, it matched with the (even-dimensional) mode sum construction [7]. In this paper,
we develop a similar spacelike Green’s function approach using the chordal distance for the
non-normalizable mode. We do this in even dimensions, where we expect it to be reliable.
We show that the result indeed matches the explicit mode sum result. A notable feature of
the spacelike chordal Green’s function approach is that, unlike in Euclidean signature [1],
the normalization is to be fixed by integrating only over the spacelike separated region of
the boundary. This is natural, and this is necessary for the matching to work.

2We are not aware of a compelling discussion in the literature of why the chordal distance method only
applies in even dimensions. It seems plausible to us that it is related to the fact that the Huygens principle
for wave propagation applies only in even dimensions. In an appendix, we show that the normalizable HKLL
kernel obtained via the chordal distance approach vanishes in any real non-even AdS dimension.
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Going ahead to the Poincaré patch, in both even and odd-dimensional cases, we write
down formulas for the kernels by explicitly doing the mode sum integrals. Explicit mode sum
integrals have previously been written down in some specific dimensions for the normalizable
mode [5, 8], we generalize them to arbitrary even and odd dimensions and also present
the expressions for the non-normalizable mode.3 Using some hypergeometric identities, we
can re-write these results in a form that makes the connection with the global AdS results
more plausible. In particular, for any value of the scaling dimension of the scalar field ∆,
the mode summed Poincaré expressions can be written in a form that matches precisely
with the global AdS kernel via an antipodal matching, plus some remainder terms. As
far as we are aware, these remainder terms have not been investigated in the literature,
except in the case of AdS3 for integer scaling dimensions ∆ ≥ 2. In that case, an argument
was provided in appendix C of [7] for why these terms can be safely omitted from the
kernel.4 We will not settle this issue here for all values of ∆ and d, but we find that
slightly complexifying a suitable radial spatial direction of the boundary (we will call it an
iε-prescription) leads to an immediate generalization of the argument in appendix C of [7]
that applies to all half-integer ∆ ≥ d

2 in even-dimensional AdSd+1 and to all integer ∆ ≥ d
in odd-dimensional AdSd+1, for the normalizable mode. Our observation can be viewed as
a natural generalization of appendix C of [7].

The Poincaré kernels that we write down via our hypergeometric identities are initially
supported over the entire Poincaré boundary. But in even-dimensional AdS, as we mentioned
above, they can be restricted to the spacelike separated region of the Poincaré boundary.
This is via an argument that is closely related to an antipodal identification argument for
the normalizable mode that was presented in [7] for relating the global and Poincaré kernels.
We show that this argument can be extended to the non-normalizable mode as well, where
the phases involved are different but are precisely suited for the matching to work. We also
demonstrate the matching between the Poincaré and global non-normalizable kernels in
odd AdS via a straightforward adaptation of the normalizable results of [7].

In the next few sections, first, we develop the mode sum, and chordal Green’s function
approaches for global AdS. Then we turn to the mode sum kernels for the Poincaré patch
and then discuss aspects of the antipodal mapping, which helps to connect to the global
results. We will also show that when the scaling dimensions are within the BF window,
our results have some particularly nice features. Various appendices are dedicated to
exploring various ideas and technicalities not emphasized in the main body of the paper.
In appendix A, we demonstrate that the spacelike Green’s function approach of [7, 30]
for the normalizable mode leads to a trivial kernel if the AdS is not even-dimensional.
Appendix D discusses the iε-prescription in a spacelike boundary coordinate that is natural
in some of these discussions. The argument is of some elegance, and we feel that it may

3These results hold for generic values of the scalar field massm. In an appendix, we also write down explicit
evaluations of the non-normalizable mode sum integrals for special values of the mass when ν ≡

√
d2
4 +m2

is an integer. In this special case, the general solution of the scalar field in AdS contains Bessel functions of
the second kind.

4The restriction that the lowest value ∆ can take is 2 for the argument to go through in AdS3, was not
emphasized there.
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be of broader interest. Appendix E writes down explicit formulas for bulk reconstruction
kernels in arbitrary dimensions for the normalizable and non-normalizable modes by making
boundary coordinates imaginary — this generalizes the AdS3 results for the normalizable
mode in [8]. Appendix F writes down the kernel for the special case when the mass of
the scalar is non-generic, ν ≡

√
d2

4 +m2 ∈ Z. Other appendices contain technical results,
including evaluations of some integrals, which are useful in the main body of the paper.
Throughout the paper, we have tried to present explicit formulas and also to emphasize
ambiguities and open problems. See [31–37] for some recent papers that are on the topic of
bulk reconstruction.

2 Mode-sum kernel in global AdS

In this section, we derive the expressions for the spacelike bulk reconstruction kernel
corresponding to the non-normalizable mode in global AdS as a mode sum. This is a close
adaptation of the procedure outlined in [7] for the normalizable mode. We present it in
some detail to establish notation and because some of these expressions will be useful later.

The bulk wave equation in global AdS is

−∂2
τΦ + ∂2

ρΦ + (d− 1) sec ρ csc ρ∂ρΦ− csc2 ρ∇2
ΩΦ−m2R2 sec2 ρΦ = 0 (2.1)

The solution to this wave equation is

Φ(τ, ρ,Ω) = Φ1(τ, ρ,Ω) + Φ2(τ, ρ,Ω) (2.2)

where Φ1 is the normalizable mode and Φ2 is the non-normalizable mode. Their explicit
expressions are

Φ1(τ,ρ,Ω) =
∞∑
n=0

∑
l,m

anlme
−iωn,1τ (cosρ)∆(sinρ)lP∆− d2 ,l+

d
2−1

n (−cos2ρ)Yl,m(Ω)+c.c (2.3)

Φ2(τ,ρ,Ω) =
∞∑
n=0

∑
l,m

bnlme
−iωn,2τ (cosρ)d−∆(sinρ)lP

d
2−∆,l+ d

2−1
n (−cos2ρ)Yl,m(Ω)+c.c (2.4)

in terms of Jacobi polynomials. The quantization conditions for the normalizable and
non-normalizable modes5 give the following expressions for ω [15]:

ωn,1 = ∆ + l + 2n (2.5)
ωn,2 = d−∆ + l + 2n (2.6)

We will focus on the non-normalizable mode in what follows.
5Note that the quantization condition on the non-normalizable mode is a restriction we are choosing to

impose for aesthetic reasons. This is unlike in the case of the normalizable mode, where such a condition is
necessary — the normalizable solutions have a basis of normal modes. In general, especially when outside
the BF window, it is not necessary that such a condition be imposed on the non-normalizable solution. But
we will find that imposing such a restriction results in a final kernel which matches nicely with appropriate
expressions obtained via the chordal Green function approach, Poincare patch expresions, etc. It may be
interesting to investigate this point further, but we will not undertake it here.
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2.1 Even AdS

In order to obtain the expression for the kernel in even-dimensional6 AdS, we focus first
on the center of AdS (ρ = 0) where only the s-wave (l = 0) contributes. The result can be
extended to arbitrary bulk points using AdS isometries.

Φ2(τ, ρ = 0,Ω) =
∞∑
n=0

bne
−i(2n+d−∆)τP

d
2−∆, d2−1
n (−1) + c.c (2.7)

The other ingredient required is the s-wave part of the boundary field, obtained by extracting
the non-normalizable scaling (cos ρ)d−∆. This is given by

Φ0(τ) ≡ Φ0+(τ) + Φ0−(τ) (2.8)

where the boundary field is split into its positive and negative frequency modes Φ0±(τ)
which are given by

Φ0+ =
∞∑
n=0

bne
−i(2n+d−∆)τP

d
2−∆, d2−1
n (1) (2.9)

Φ0− =
∞∑
n=0

b∗ne
i(2n+d−∆)τP

d
2−∆, d2−1
n (1) (2.10)

In terms of Φ0+(τ), bn can be written as (where Vd−1 is the volume of the sphere Sd−1)

bn = 1

πVd−1P
d
2−∆, d2−1
n (1)

∫ π/2

−π/2
dτ
∫

dΩ√gΩ e
i(2n+d−∆)τΦ0+(τ) (2.11)

The bulk field s-wave at the origin (τ ′ = 0, ρ′ = 0) is then written as

Φ2|origin =
∫ π/2

−π/2
dτ
∫

dd−1Ω√gΩK+(ρ′, τ ′,Ω′|τ,Ω)Φ0+(τ,Ω) + c.c (2.12)

where

K+ = 1
πVd−1

∞∑
n=0

ei(2n+d−∆)τ P
d
2−∆, d2−1
n (−1)

P
d
2−∆, d2−1
n (1)

(2.13)

This summation can be performed by using the explicit form of the Legendre P functions
in terms of Γ functions, and using the series representation of Hypergeometric 2F1

K+ = 1
πVd−1

z
d−∆

2 2F1

(
1, d2 ; d2 −∆ + 1;−z

)
(2.14)

using the notation z = e2iτ . Using the hypergeometric identity (C.1) which is valid in even
AdS, we can re-write (2.14) as

K+ = 1
πVd−1

z
d−∆

2

(
Γ(d2 −∆ + 1)Γ(d2 − 1)

Γ(d2)Γ(d2 −∆)
z−1

2F1

(
1, 1 + ∆− d

2 ; 2− d

2 ;−1
z

)

+
Γ(d2 −∆ + 1)Γ(1− d

2)
Γ(1−∆) z−

d
2 2F1

(
−∆, d2 ; d2 ;−1

z

))
(2.15)

6We work with AdSd+1, so even AdS corresponds to odd d.
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The first term in (2.15) can be expanded in a series in z. The series has the form
z
d−∆

2
∑
n=0 cnz

−n. It can be shown that each term in this series will vanish when integrated
against Φ0+(τ), so it can be dropped from the full kernel expression. The surviving term
in (2.15) simplifies to

K+ = 1
πVd−1

z
d−∆

2
Γ(d2 −∆ + 1)Γ(1− d

2)
Γ(1−∆) z−

d
2

(
1 + 1

z

)−∆
(2.16)

Note that √
z + 1√

z
= 2 cos τ = lim

ρ→π
2

2σ(τ,Ω|τ ′ = 0, ρ′ = 0,Ω′) cos ρ, (2.17)

where σ is the AdS covariant length, see (3.16) for the explicit formula. In terms of σ, the
final kernel becomes (using the expression for Vd−1)

KG
2 (τ,Ω|τ ′ = 0, ρ′ = 0,Ω′) = −2−∆Γ(∆) tan π∆

2π d2 Γ(∆− d
2)

lim
ρ→π

2

(σ cos ρ)−∆θ(spacelike)

≡ a′d∆ lim
ρ→π

2

(σ cos ρ)−∆θ(spacelike) (2.18)

Since this expression is constructed out of the AdS covariant length, it also holds for
arbitrary bulk points. We have introduced the notation a′d∆ to avoid wasting electrons,
later.

2.2 Odd AdS

For odd-dimensional AdS, again we can re-write (2.14), but it is important here that d
2 ∈ Z.

The following identity is useful

2F1(a, a+m; c; z) = Γ(c)(−z)−a−m
Γ(a+m)Γ(c− a)

∞∑
n=0

(a)n+m(1− c+ a)n+mz
−n

n!(n+m)! (ln(−z) + hn)

+ Γ(c)(−z)−a
Γ(a+m)

m−1∑
n=0

Γ(m− n)(a)n
Γ(c− a− n)n!z

−n (2.19)

where hn = ψ(1 + m + n) + ψ(1 + n) − ψ(a + m + n) − ψ(c − a −m − n). This identity
does not hold for c− a ∈ Z. Note that this identity is distinct from (C.2).

By a similar argument as in the previous subsection, it can be shown that the only term
that contributes to the kernel is the one proportional to ln(−z), the other terms vanish
when integrated against Φ0+(τ). Using the values of a, b, c from (2.14) and (C.3) we get

K+ = 1
πVd−1

z
d−∆

2
ln(z)Γ(d2 −∆ + 1)

Γ(d2)Γ(d2 −∆)Γ(1− d
2 + ∆)

πz−d/2

sin π∆Γ(1−∆)

(
1 + 1

z

)−∆

=
Γ(d2 −∆ + 1) sin π(d2 −∆)

Γ(d2) sin π∆Γ(1−∆)
(2σ cos ρ)−∆ ln z (2.20)

In the second line we have partially re-written some of the terms using the invariant chordal
distance (2.17). Our goal is now to write the entire expression in this way, so that we can
invoke AdS isometries to move away from the center of AdS.
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We first observe that the series expansion of (σ cos ρ)−∆ in powers of z can be re-written
in the two forms

lim
ρ→π/2

(2σ cos ρ)−∆ = z−∆/2
∞∑
n=0

cnz
−n = z∆/2

∞∑
n=0

dnz
n (2.21)

The coefficients can be determined, but are not important. The point is that the first form
vanishes when integrated against positive frequency boundary modes and the second form
vanishes when integrated against negative frequency modes. Therefore, we obtain

∫ π/2

−π/2
dτ
∫

dΩ√gΩ (σ cos ρ)−∆(φ0+(τ) + φ0−(τ)) = 0 (2.22)

Since z∗ = 1
z , we can also re-write (2.12) as

Φ|origin = A

∫ π/2

−π/2
dτ
∫

dΩ√gΩ (2σ cos ρ)−∆ ln z(φ0+(τ)− φ0−(τ)) (2.23)

where A = Γ( d2−∆+1) sinπ( d2−∆)
Γ( d2 ) sinπ∆Γ(1−∆) . Following [7] and differentiating (2.22) with respect to ∆,

and using (2.21), we find

∫ π/2

−π/2
dτ
∫

dΩ√gΩ (σ cos ρ)−∆ ln z(φ0+(τ)− φ0−(τ))

= 2
∫ π/2

−π/2
dτ
∫

dΩ√gΩ lim
ρ→π/2

(σ cos ρ)−∆ ln(σ cos ρ)φ0(τ) (2.24)

This lets us express the value of the field at the origin of AdS in terms of an integral over
points on the boundary that are spacelike separated from the origin in an AdS covariant
form

Φ|origin = 2A
∫ π/2

−π/2
dτ
∫

dΩ√gΩ lim
ρ→π/2

(2σ cos ρ)−∆ ln(σ cos ρ)φ0(τ) (2.25)

This form allows us to extend the result to arbitrary bulk points via AdS isometry. The
final form of the kernel is

KG
2 =

(−1) d2 +12−∆Γ(d2 −∆ + 1)
π
d
2 +1Γ(1−∆)

lim
ρ→π/2

(σ cos ρ)−∆ ln(σ cos ρ)θ(spacelike)

≡ c′d∆ lim
ρ→π/2

(σ cos ρ)−∆ ln(σ cos ρ)θ(spacelike) (2.26)

We introduce the notation c′d∆ to reduce future clutter. Note that as a result of the
manipulations we have done above to write the kernel in an AdS covariant form, in the odd
AdS case, the kernel is to be integrated against the full boundary mode and not just its
positive frequency part. This will be important when we try to relate the global result here
with the Poincaré result later.
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3 Chordal Green’s function in global AdS

We will consider the following bulk-to-bulk Green’s function, where the θ(spacelike) indicates
the region spacelike separated from the unprimed bulk point in global coordinates:7

GG∆(σ) = 2−∆CG∆
2∆− d σ

−∆
2F1

(∆
2 ,

∆ + 1
2 ; ∆− d

2 + 1; 1
σ2

)
θ(spacelike) (3.1)

The claim is that this is a natural Green’s function to be used for the non-normalizable mode
— this will be explained further when we re-visit this discussion in Poincaré coordinates in
section 7, see also the discussion of the complementary (normalizable) spacelike Green’s
function in appendix A of [7]. Our goal in this section is to use the above Green’s function
to reproduce the global HKLL kernel that we arrived at in the last section via mode sum.
As we have briefly alluded to before (and will discuss in more detail in section 7), the
chordal distance Green’s function we are using above is expected to yield the right answer
only in even-dimensional AdS.

One can use Green’s theorem to relate the above Green’s function to the kernel and we
will do so momentarily. But in order to get a precise match with the mode sum result, we
need to fix the normalization factor CG∆. This is what we turn to first.

The strategy for fixing the normalization is an adaptation of the Euclidean argument
due to Witten [1, 38]. We first define the bulk-to-boundary propagator. In Poincaré
coordinates this is defined via

KP∆(z,x;x′) = lim
z′→0

√
γz′(z′)d−∆nz

′
∂z′G∆(z,x;z′,x′) = lim

z′→0
(z′)−∆z′∂z′GP∆(z,x;z′,x′) (3.2)

where we have nz′ = 1√
gz′z′

and √γz′ = 1
z′d

. We will use the above expression in section 7.
The analogous definition in global coordinates is (using nρ′ = 1√

gρ′ρ′
)

KG∆(ρ, τ,Ω; τ ′,Ω′) = lim
ρ′→π/2

√
γρ′(cos ρ′)d−∆nρ

′
∂ρ′GG∆(ρ, τ,Ω; τ ′,Ω′)

= lim
ρ′→π/2

(cos ρ′)−∆ cos ρ′∂ρ′GG∆(ρ, τ,Ω; τ ′,Ω′) (3.3)

We will elevate the relations in (3.2) and (3.3) to a covariant statement. Such a relation is
best understood in terms of the product K∆ × j0, where j0 is the non-normalizable mode
on the boundary. In terms of a bulk-to-bulk Green’s function G∆, this product can be
written as

K∆(r, x;x′)j0(x′) = lim
r′→r′

∂

√
γ′∂j(r

′, x′)nr′∂r′G∆(r, x; r′, x′) (3.4)

where we use the notation r′ (and r) to denote the “radial coordinate” in the chosen
coordinate system (for example, z in Poincaré and ρ in global coordinates). We use the bulk
field j(r′, x′) instead of φ(r′, x′) to instruct the reader to pick the non-normalizable mode

7The superscript G denotes that the object is defined in global coordinates. Note that we are working in
the large σ-limit when near the boundary, so delta functions arising from radial derivatives acting on the
step function can be ignored.

– 8 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
5

when taking the limit in (3.4). The subscript ∂ implies the value of the respective function
on the AdS boundary (for example, the boundary metric is denoted by γ∂ and the boundary
value of the radial coordinate is r∂). All the other coordinates are represented collectively
by the x′ coordinates. The vector nr′ denotes the normal vector to the r′ = constant
surface. Applying this to the global coordinates by using (3.3) and the using relation
cos ρ′∂ρ′G∆|ρ′→π/2 = −∆G∆|ρ′→π/2 for the Green’s function (3.1), we obtain the following
expression

KG∆(ρ, τ,Ω; τ ′,Ω′) = lim
ρ′→π/2

−(2∆− d)
(cos ρ′)∆ G

G
∆(ρ, τ,Ω; τ ′,Ω′) (3.5)

Using this allows us to write the expression for the kernel as

KG∆(ρ, τ,Ω; τ ′,Ω′) = lim
ρ′→π/2

−CG∆ (2σ cos ρ′)−∆θ(spacelike) (3.6)

In order to properly normalize GG∆, we demand a δ function normalization for the
bulk-boundary propagator in (3.3), in the limit that both points go to the boundary. In
Euclidean signature, this was implemented in a somewhat magical way by Witten in [1].
We will remove the magic by writing the normalization condition in the explicit form

lim
z→0

∫
ddx′KP∆(z, x;x′)j0(x′) = lim

z→0
j(z, x) (3.7)

in Poincaré patch or as

lim
ρ→π/2

∫
dτdd−1Ω′KG∆(ρ, τ,Ω; τ ′,Ω′) j0(τ ′,Ω′) = lim

ρ→π/2
j(ρ, τ,Ω) (3.8)

in global coordinates. These demands fix the corresponding normalization constants. Note
that we have not introduced superscripts P or G for the fields j or sources j0, they will be
distinguishable by their arguments. We have explicitly done this integral in the Poincaré
case in section 7 to determine CP∆. To compute the normalization in global coordinates, we
need to evaluate

CG∆

∫
global spacelike

dτ ′dd−1Ω′(2σ cos ρ′)−∆j0(τ ′,Ω′) (3.9)

The integration domain is the region of the global boundary that is spacelike separated from
the bulk point. It turns out that this integral is easiest to evaluate by doing a coordinate
change to Poincaré coordinates. This turns the above expression into (here x′ = {~x′, t′})

CG∆

∫
global spacelike

dt′dd−1~x′ (2σz′)−∆ j0(t′, x′)

= 2CG∆
∫

Poincaré spacelike
dt′dd−1~x (2σz′)−∆ j0(t′, x′) (3.10)

In the first expression we have used the Jacobian connecting the measures in the two
coordinates as well as the relation between the boundary modes in the two coordinates:

dτ ′dd−1Ω′
(cos ρ′)d = dt′dd−1~x′

(z′)d (3.11)

(cos ρ′)d−∆j0(τ ′,Ω′) = (z′)d−∆j0(t′, ~x′) (3.12)

– 9 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
5

Analogous relations were also used in section 3.1 of [7] to connect the normalizable boundary
modes in global and Poincaré coordinates. The second expression in (3.10) restricts the
integration range to the spacelike part of the Poincaré boundary, and follows from an
antipodal identification — this is discussed in great detail in section 6. The final integral is
precisely one that is done in section 7, to determine CP∆, see equation (7.6). Together with
this, we have therefore fixed both CP∆ and CG∆. The final expression for CG∆ is

CG∆ = Γ(∆) tan π∆
2πd/2Γ(∆− d

2)
(3.13)

With the normalization at hand, we now proceed to determine the global kernel using
Green’s theorem starting from (3.1). Using the asymptotic behavior of the bulk fields

Φ1(τ, ρ,Ω)|ρ→π
2
→ (cos ρ)∆φ0(τ,Ω) (3.14)

Φ2(τ, ρ,Ω)|ρ→π
2
→ (cos ρ)d−∆j0(τ,Ω) (3.15)

and the expression for the chordal distance σ

σ(τ, ρ,Ω|τ ′, ρ′,Ω′) = cos(τ − τ ′)− sin ρ sin ρ′ cos(Ω− Ω′)
cos ρ cos ρ′ (3.16)

we observe the following limits (using k∆ = 2−∆−2Γ(∆) tanπ∆
Γ(∆− d2 +1)π

d
2

)

GG∆(σ)|ρ′→π/2 = k∆σ
−∆ (3.17)

∂ρ′GG∆(σ)|ρ′→π/2 = −∆k∆
σ−∆

cos ρ′ (3.18)

Similarly, the bulk solution (Φ(τ, ρ,Ω) = Φ1(τ, ρ,Ω) + Φ2(τ, ρ,Ω)) and its derivative behave
in the following way at the boundary limit

Φ(τ, ρ,Ω)|ρ→π/2 = (cos ρ)∆φ0(τ,Ω) + (cos ρ)d−∆j0(τ,Ω) (3.19)
∂ρΦ(τ, ρ,Ω)|ρ→π/2 = −∆(cos ρ)∆−1φ0(τ,Ω)− (d−∆)(cos ρ)d−∆−1j0(τ,Ω) (3.20)

Using Green’s theorem

Φ(τ,ρ,Ω) =
∫

dτ ′dd−1Ω′
√
g′(Φ(τ ′,ρ′,Ω′)∂ρ′GG∆(σ)−GG∆(σ)∂ρ′Φ(τ ′,ρ′,Ω′))|ρ′→π/2 (3.21)

we get

Φ(τ, ρ,Ω) =
∫

dτ ′dd−1Ω′
√
g′(Φ(τ ′, ρ′,Ω′)∂ρ′GG∆(σ)− GG∆(σ)∂ρ′Φ(τ ′, ρ′,Ω′))|ρ′→π/2

= −
∫

dτ ′dd−1Ω′
√
g′
(
((cos ρ′)∆φ0(τ ′,Ω′) + (cos ρ′)d−∆j0(τ ′,Ω′))∆k∆

σ−∆

cos ρ′

+ k∆
σ−∆

cos ρ′ (∆(cos ρ′)∆φ0(τ ′,Ω′) + (d−∆)(cos ρ′)d−∆j0(τ ′,Ω′))
)
|ρ′→π/2

= −
∫

dτ ′dd−1Ω′(cos ρ′)−d+1
(
(2∆− d)k∆

σ−∆

cos ρ′ (cos ρ′)d−∆j0(τ ′,Ω′)
)
|ρ′→π/2

(3.22)
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This gives us the following reconstruction kernel (noting that (2∆− d)k∆ = −a′d∆) for the
non-normalizable mode

KG
2 (τ, ρ,Ω|τ ′,Ω′) = a′d∆ lim

ρ′→π/2
(σ cos ρ′)−∆θ(spacelike) (3.23)

This reproduces (2.18) precisely.
Note that in doing the above Green’s theorem calculation we could have set the

normalizable mode to zero. We have retained it anyway, because the Green’s function we
are working with is the non-normalizable one, and it precisely picks out the right answer.
A further observation that is worth noting is that the Poincaré coordinates result comes
with an additional factor of 2, which is expected due to the antipodal mapping between the
spacelike regions of the two coordinate systems. We will see this again elsewhere.

4 Poincaré mode-sum kernels

In this section, we switch gears and consider Poincaré AdS. We will write down the mode
expansions for the scalar field (for generic and special masses), and write down the kernels
as formal inversions of these expressions.

4.1 Mode expansions

We begin by considering a probe scalar field of generic mass in Lorentzian AdSd+1. The
metric in Poincaré coordinates is given by

ds2 =
−dt2 + dz2 + d~x2

d−1
z2 (4.1)

The solution to the wave equation in this background is

Φ(x, z) =
∫ ddq

(2π)d e
iq.xz

d
2
(
a(q)Jν(|q|z) + b(q)J−ν(|q|z)

)
(4.2)

where x ≡ (t, ~x), ν =
√

d2

4 +m2 and q = (ω,~k), with |q| =
√
ω2 − |k|2. The near-boundary

behavior of this solution can be see from the asymptotic expansion of the Bessel functions
near z = 0. The coefficients of each z term can be written as a function of x. Using the
notation ν = ∆− d

2 , we have the following series

Φ(x, t, z) = zd−∆j0(x) + zd−∆+2j2(x) + · · ·+ zd−∆+2nj2n(x) + · · ·
+ z∆φ0(x) + z∆+2φ2(x) + · · ·+ z∆+2nφ2n + · · ·

=
∞∑
n=0

zd−∆+2nj2n(x) + z∆+2nφ2n(x) (4.3)

The coefficients at each order are

j2n(x) = 1
2−ν (−1)n 1

4nΓ(n+ 1)Γ(n− ν + 1)

∫ ddq
(2π)d b(q)e

iq.x|q|2n−ν (4.4)

φ2n(x) = 1
2ν (−1)n 1

4nΓ(n+ 1)Γ(n+ ν + 1)

∫ ddq
(2π)da(q)eiq.x|q|2n+ν (4.5)
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The above discussion applies when the mass of the scalar is generic. As customary,
this is the case that we will mostly be concerned with in this paper. But in the case where
ν ∈ Integer ≡ p, the solution of the bulk wave equation involves Bessel functions of the
second kind as well. We will present some of the details of the HKLL kernels for the ν = p

case in an appendix. The mode expansion in this case takes the form

Φ(x, z) =
∫ ddq

(2π)d e
iq.xz

d
2
(
a(q)Jp(|q|z) + b(q)Yp(|q|z)

)
(4.6)

The asymptotic expansions of the Bessel J and Y allows us to write the solution again as
an expansion in z.

Φ(x, z) = zd−∆j0(x) + zd−∆+2j2(x) + · · ·+ zd−∆+2nj2n(x) + · · ·+ zd−∆+2p−2j2p−2(x)

+ ln(z)
(
z∆φ̃0(x) + z∆+2φ̃2(x) + · · ·+ z∆+2nφ̃2n(x) + · · ·

)
+ z∆φ0(x) + z∆+2φ2(x) + · · ·+ z∆+2nφ2n(x) + · · ·

=
p−1∑
n=0

zd−∆+2nj2n(x) +
∞∑
n=0

ln(z)z∆+2nφ̃2n(x) +
∞∑
n=0

z∆+2nφ2n(x) (4.7)

To get to the above form, we have defined Bk = (−1)k
4kΓ(k+p+1)Γ(k+1)

(
ψ(k + 1) + ψ(k + p+ 1)

)
,

Dk = Γ(p−k)
4kΓ(k+1) and Ak = (−1)k

4kΓ(k+1)Γ(k+p+1) , and we have the following expressions for the
z-independent coefficients:

φ2n(x) = 1
2pAn

∫ ddq
(2π)da(q)eiq.x|q|2n+p − 1

2pπBn
∫ ddq

(2π)d b(q)e
iq.x|q|2n+p

+ 2
2pπAn

∫ ddq
(2π)d b(q)e

iq.x|q|2n+p ln
( |q|

2

)
(4.8)

φ̃2n(x) = 2
2pπAn

∫ ddq
(2π)d b(q)e

iq.x|q|2n+p (4.9)

j2n(x) = − 1
2−pπDn

∫ ddq
(2π)d b(q)e

iq.x|q|2n−p ∀ n ∈ {0, p− 1} (4.10)

Note that none of the j2n(x) combine with φ2n(x). This is because the highest power of z
arising in that term is d −∆ + 2(p − 1). Now, we know that p = ∆ − d

2 . Therefore, the
highest power is d−∆ + 2(∆− d

2 − 1) = ∆− 2, which is less than the lowest power of z on
the φ2n(x) terms (which is ∆).

4.2 Kernels as formal mode-sum integrals

The integrals in (4.5)–(4.4) and (4.8)–(4.10) can be inverted to find the expressions for a(q)
and b(q). To do this, it is necessary to pick two independent pieces of data, one from the φ
side (any φ2n) and one from the j side (any j2n). Once such pieces are chosen (say using
the expressions for n = 0), then the rest of the terms (φ2n, j2n) can be evaluated in terms
of them. The resultant expressions for a(q) and b(q) are obtained as Fourier transforms of
the boundary fields.
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Let’s begin by looking at (4.5). Fixing n = 0 gives

φ0(x) = 1
2ν

1
Γ(ν + 1)

∫ ddq
(2π)da(q)eiq.x|q|ν (4.11)

An inverse Fourier transform extracts a(q) in terms of q and φ0. Therefore, we can write

a(k) = 2ν Γ(1 + ν)
|k|ν

∫
φ0(x)e−ik.xddx (4.12)

The calculation for b(q) follows in a similar fashion to give us

b(k) = |k|ν Γ(1− ν)
2ν

∫
j0(x)e−ik.xddx (4.13)

Using this, we can write all the other φ2n and j2n as follows

φ2n(x) = (−1)n Γ(1 + n)
4nΓ(n+ 1)Γ(n+ ν + 1)

∫
ddx′

∫ ddq
(2π)d |q|

2neiq.(x−x
′)φ0(x′) (4.14)

j2n(x) = (−1)n Γ(1− ν)
4nΓ(n+ 1)Γ(n− ν + 1)

∫
ddx′

∫ ddq
(2π)d |q|

2neiq.(x−x
′)j0(x′) (4.15)

In terms of φ0(x) and j0(x) the bulk solution is

Φ(x, z) =
∫

ddx′K1(z, x;x′)φ0(x′) +
∫

ddx′K2(z, x;x′)j0(x)

where we have the following integral representations of the bulk reconstruction kernels8

K1(z, x;x′) =
∫ ddq

(2π)d
2νΓ(1 + ν)
|q|ν

eiq.(x−x
′)z

d
2Jν(|q|z) (4.16)

K2(z, x;x′) =
∫ ddq

(2π)d
|q|νΓ(1− ν)

2ν eiq.(x−x
′)z

d
2J−ν(|q|z) (4.17)

We can write down similar expressions for the non-generic mass as well. We begin
by looking at (4.8)–(4.10). These are the expressions for ν = p ∈ Integers. It is clear
that φ̃2n(x) and j2n(x) are related to each other, since both terms arise from the Bessel Y
function. Note however, that this is true only up to n = p− 1, which is the number of j2n
that exist. Similar to the previous case, two independent pieces of data on the boundary
are required. The rest of the fields at the boundary can then be written in terms of those
two. Inverting the expression (4.10) for n = 0 gives an expression for b(k) in terms of j0(x).
This expression can be used in (4.8) with n = 0 to determine a(k) in terms of the boundary
fields φ0 and j0.

b(k) =− |k|
pπ

2pΓ(p)

∫
j0(x)e−ik.xddx (4.18)

a(k) = 2pΓ(p+1)
|k|p

∫
φ0(x)e−ik.xddx+

(γ−ψ(p+1)+2ln
(
|k|
2

)
)|k|p

2pΓ(p)

∫
j0(x)e−ik.xddx (4.19)

8There are many different kernels we work with in this paper, distinguished by the fact that they are for
the normalizable mode or non-normalizable mode, Poincaré or global patches, odd or even AdS, etc. We
will distinguish normalizable and non-normalizable kernels by the subscripts 1 and 2 respectively. Global
kernels will carry the superscript G and Poincaré will carry none. Odd and even AdS kernels should be clear
from the context, and so we do not distinguish them via notation.
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Using the equations (4.19) and (4.18), Φ(x, z) (4.6) can be written in terms of φ0 and j0.

Φ(x, z) =
∫

ddx′K̃1(z, x;x′)φ0(x′) +
∫

ddx′K̃2(z, x;x′)j0(x′) (4.20)

where the integral representations of the bulk reconstruction kernels corresponding to φ0
(denoted by K̃1) and j0 (by K̃2) are

K̃1(z,x;x′) =
∫ 2pΓ(p+1)

|q|p
eiq.(x−x

′)z
d
2Jp(|q|z) ddq

(2π)d (4.21)

K̃2(z,x;x′) =−
∫ |q|pπ

2pΓ(p)e
iq.(x−x′)z

d
2

{−γ+ψ(p+1)−2ln(|q|/2)
π

Jp(|q|z)+Yp(|q|z)
} ddq

(2π)d
(4.22)

5 Poincaré kernel integral: explicit evaluation

In this section, we evaluate the integral for the reconstruction kernels in (4.16)–(4.17) by
generalizing the argument of [5, 7] to arbitrary dimensions. We start with

K1(z, x;x′) =
∫ ddq

(2π)d
2νΓ(1 + ν)
|q|ν

eiq.(x−x
′)z

d
2Jν(|q|z) (5.1)

Following the result in appendix B (B.15), this integral can be simplified (by noting that
the ζν = Jν in (B.15)) to the following

K1(z, x;x′) = 2νΓ(1 + ν)
π(2π) d2

z
d
2

X
d
2−1

∫ ∞
a=0

aµ+ d
2Jν(az)K d

2−1(aX)da (5.2)

where the notation X =
√

∆x2 −∆t2 is used, see appendix B for more detail on the notation.
Note that, ∆t comes with a +iε to handle singularities. For this integration, we use the
identity [39]∫ ∞

0
x−λKµ(ax)Jν(bx)dx = bν

2λ+1aν−λ+1Γ(1 + ν)Γ
(
ν − λ+ µ+ 1

2

)
Γ
(
ν − λ− µ+ 1

2

)
× 2F1

(
ν − λ+ µ+ 1

2 ,
ν − λ− µ+ 1

2 ; ν + 1;− b
2

a2

)
∀ Re(a± ib) > 0 & Re(ν − λ+ 1) > |Re(µ)| (5.3)

Using this identity, and identifying that µ = d
2 −1 and λ = ν− d

2 , we get the following result
(with C3 = Γ( d2 )

2ν−
d
2 +1Γ(1+ν)

, and also noting that ν−λ+1 = ν−ν+ d
2 +1 = d

2 +1 > d
2−1 = |µ|

and Re(a± ib) = ReX > 0)

K1(z, x;x′) = Γ(d/2)
2πd/2

zν+ d
2

(
√

∆x2 −∆t2)d 2F1

(
d

2 , 1; ν + 1;− z2

∆x2 −∆t2

)
(5.4)

This is the result obtained in [5] for the specific case of d = 4.
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The kernel for the non-normalizable mode for the non-integer ν = ∆− d
2 case, given

in (4.17), is obtained similarly:

K1(z, x;x′) = Γ(d/2)
2πd/2

z∆

(
√

∆x2 −∆t2)d 2F1

(
d

2 , 1; 1− d

2 + ∆;− z2

∆x2 −∆t2

)
(5.5)

K2(z, x;x′) = Γ(d/2)
2πd/2

zd−∆

(
√

∆x2 −∆t2)d 2F1

(
d

2 , 1; 1 + d

2 −∆;− z2

∆x2 −∆t2

)
(5.6)

These expressions hold for both even and odd AdS, and for the normalizable mode in both
integer and non-integer case. The only case that is excluded from this is the non-normalizable
mode for integer value of ν. This special case is studied in appendix F.

We would like to cast these kernels in an AdS covariant form. To achieve this, we use
transformation formulas for the hypergeometric functions in (5.5)–(5.6). The two cases of
even and odd AdS have to be treated separately, since the transformation identities of the
hypergeometric functions are different when the parameters for the function are integers as
opposed to when they are not. In the following, we study the two cases separately.

5.1 Even AdS case

First, we study even AdS. Since d is odd, we can directly employ the relation (C.1) in (5.5).
For convenience, we shall denote

√
∆x2 −∆t2 by X and cd = Γ(d/2)

2πd/2 .

K1(z, x;x′) = cd
z∆

Xd

(
X2

z2

)
Γ(ν + 1)Γ(d2 − 1)

Γ(d2)Γ(ν) 2F1

(
1, 1− ν; 2− d

2 ;−X
2

z2

)

+ cd
z∆

Xd

(
X2

z2

) d
2 Γ(1 + ν)Γ(1− d

2)
Γ(1 + ν − d

2) 2F1

(
d

2 ,
d

2 − ν; d2 ;−X
2

z2

)
(5.7)

Using the relation that 2F1(β, α;α; z) = (1− z)−β , we get

K1(z, x;x′) = cd
z∆−2

Xd−2
Γ(∆− d

2 + 1)Γ(d2 − 1)
Γ(d2)Γ(∆− d

2) 2F1

(
1, 1−∆ + d

2 ; 2− d

2 ;−X
2

z2

)

+ cd
Γ(1 + ∆− d

2)Γ(1− d
2)

Γ(1 + ∆− d)

(
z2 +X2

z

)∆−d

(5.8)

We make the following two observations regarding this kernel. First, we note that
(using the series representation of the hypergeometric 2F1) the powers of z arising from the
first line of the above equation go as z∆−2−2n. These powers do not occur in the series
expansion (in z) of the normalizable mode (4.3). This is a suggestion that these terms
should vanish when integrated against the positive energy mode. Let us also note that
an identical hypergeometric function showed up in the global AdS kernel expression in
equation (14) of [7].9 Even though structurally different,10 this term was found to vanish
when integrated against the positive frequency mode.

9See also related discussion near our (2.15).
10The argument of the hypergeometric function in our case contains bulk coordinates.
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We will take these observations as circumstantial evidence that the first line in the
expression above ought to vanish when integrated against the positive frequency boundary
mode (and hence can be dropped from the expression). This turns out to also be natural
for matching with the global kernel, as we will see in the next section. Similar suggestions
have appeared previously [7], but we are not aware of a universal statement of this type
that is demonstrably valid for all d and ∆. It may be necessary that some form of analytic
continuation of coordinates (see eg. [8]) is necessary before this expectation can be made
fully precise and established.

In this paper, we will not state or prove these statements for general values of ∆. But
when ∆ is a half-integer ≥ d

2 , the first line of (5.7) reduces to a polynomial. In this case,
we can give a precise meaning to the statement in terms of an iε-prescription in the spatial
direction and prove that it drops out. We present the details in appendix D. This argument
can be viewed as a generalization of the argument used in appendix C of [7] to argue that
the extra terms are indeed vanishing. The discussion in appendix C of [7] was for an odd
AdS case (specifically, AdS3), but the generalization works in both even and odd dimensions,
as we will see in the next subsection.

In any event, the remaining terms can be written in terms of the chordal distance σ as
(see appendix G for some definitions):

K1(z, x;x′) = lim
z′→0

(−1) d−1
2 2∆−dΓ(1 + ∆− d

2)
2π d2 Γ(1 + ∆− d)

lim
z′→0

(σz′)∆−d

≡ ad∆ lim
z′→0

(σz′)∆−d (5.9)

where we have used the expression for cd. We will later write this result as a kernel with
support only on the spacelike region of Poincaré. The result will lead to a precise match
including a factor of 2 with the global spacelike kernel [7]. We also introduce the notation ad∆.

Similar to the normalizable mode, for generic ∆ and for the non-normalizable case, we
can transform (5.6) using hypergeometric identities to

K2(z, x;x′) = cd
zd−∆−2

Xd−2
Γ(1−∆ + d

2)Γ(d2 − 1)
Γ(d2)Γ(d2 −∆) 2F1

(
1, 1 + ∆− d

2 ; 2− d

2 ;−X
2

z2

)

+ cd
zd−∆

Xd

(
X2

z2

) d
2 Γ(1−∆ + d

2)Γ(1− d
2)

Γ(1−∆)

(
1 + X2

z2

)−∆

(5.10)

Similar to the kernel for the normalizable mode, we observe that the first line in the above
expression does not contain the correct powers of z. The series expansion of the first term
appears with the powers of z as zd−∆−2−2n. These powers do not appear in the j2n part
in (4.3). The remaining term is then given by

K2(z, x;x′) = lim
z′→0

cd
Γ(1−∆ + d

2)Γ(1− d
2)

Γ(1−∆) (2σz′)−∆ (5.11)
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Plugging in the value of cd, we get

K2(z, x;x′) =
(−1) d−1

2 2−∆Γ(1−∆ + d
2)

2π d2 Γ(1−∆)
lim
z′→0

(σz′)−∆

= −2−∆Γ(∆) tan π∆
2π d2 Γ(∆− d

2)
lim
z′→0

(σz′)−∆

= a′d∆ lim
z′→0

(σz′)−∆ (5.12)

In the next section, we will write this result in a form that has support only on the spacelike
separated region of the Poincaré boundary. It will match with the spacelike Green’s function
in global coordinates except for a factor of 2 in the coefficient. This factor of 2 is expected [7],
because the regions of integration in the global and Poincaré kernels are different. Let us
also note that the result that we have obtained above, after using the explicit form of the
Poincare chordal distance (G.1), turns into expression (14) of [29]. This can be viewed as
another argument for dropping the extra terms we mentioned earlier.

For the non-normalizable case, we will not discuss the analogues of the half-integer ∆
cases we discussed above for the normalizable mode. This is because it turns out that the
iε-prescription is of use only when ν is an integer, but the expressions (5.5) and (5.6) do
not apply for integer ν.

5.2 Odd AdS case

This case needs to be treated separately since d
2 = m+ 1 ∈ Z and we need the transforma-

tion (C.2). Employing it in (5.5), we get the result

K1(z, x;x′)

= cd
z∆

Xd 2F1

(
1,m+ 1; ∆−m;− z2

X2

)

= cd
z∆

Xd

(−1)mΓ(∆−m) ln(1 + z2

X2 )
Γ(∆− 2m− 1)Γ(∆−m− 1)Γ(m+ 1)

∞∑
k=0

Γ(k −m− 1 + ∆)
Γ(k + 1)

(
X2

X2 + z2

)k+ d
2

+ cd
z∆

Xd

(−1)mΓ(∆−m)
Γ(∆− 2m− 1)Γ(∆−m− 1)Γ(m+ 1)

∞∑
k=0

Γ(k −m− 1 + ∆)hk
Γ(k + 1)

(
X2

X2 + z2

)k+ d
2

+ cd
z∆

Xd

X2

z2 +X2
Γ(∆−m)

Γ(m+ 1)Γ(∆−m− 1)Γ(∆− 2m− 1)

×
m−1∑
k=0

Γ(∆− 2m− 1 + k)Γ(m− k)(−1)k
(

X2

X2 + z2

)k
(5.13)
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where we have used the notation X2 = ∆x2 −∆t2 and hk is given in (C.2). Using (C.3),
we can see that (5.13) reduces to the following simpler expression

K1(z, x;x′) = lim
z′→0

cd
(−1) d2−12∆−dΓ(∆− d

2 + 1)
Γ(∆− d+ 1)Γ(d2)

(σz′)∆−d
(

ln(σz′) + ln
( 2z
X2

))

+ cd
z∆

Xd

(−1) d2−1Γ(∆− d
2 + 1)

Γ(∆− d+ 1)Γ(∆− d
2)Γ(d2)

∞∑
k=0

Γ(k − d
2 + ∆)hk

Γ(k + 1)

(
X2

X2 + z2

)k+ d
2

+ cd
z∆

Xd

Γ(∆−m)
Γ(m+ 1)Γ(∆−m− 1)Γ(∆− 2m− 1)

×
m−1∑
k=0

Γ(∆− 2m− 1 + k)Γ(m− k)(−1)k
(

X2

X2 + z2

)k+1
(5.14)

For reasons similar to the discussions in the even AdS case, we expect that all the terms
except the first term ∝ (σz′)∆−d ln(σz′) can be set to zero after suitable re-interpretation.
Note in particular that the construction of Poincaré kernel starting from global modes, does
not lead to such terms [7]. As in the even AdS case, we can explicitly show the absence of
the extra terms for an infinite sub-class of cases using the spatial iε-prescription: in odd
AdS, this happens when ∆ ≥ d is an integer. In this case, we again argue that the extra
terms reduce to polynomials whose pole structure is easily handled via our iε prescription.

In any event, assuming that the kernel K1 can be written as

K1(z, x;x′) = lim
z′→0

(−1) d2−12∆−d−1Γ(∆− d
2 + 1)

Γ(∆− d+ 1)π d2 +1
(σz′)∆−d ln(σz′) (5.15)

we can note the following. It is possible to always add any extra piece to the kernel as
long as it vanishes when integrated against the boundary field. Therefore, in this regard,
the kernel K1 can be modified by adding its complex conjugate. The complex conjugate
will vanish when integrated against the positive energy modes, since that integration is
done by adding a positive iε piece to t− t′ in (4.16)–(4.17). But since the kernel above is
real, adding the complex conjugate simply doubles it. This is similar to another argument
presented in appendix C of [7]. The basic point here is that even though the kernel is real,
it is not analytic, and therefore it picks up different pieces when multiplied against the
positive and negative frequency modes.11

As a result of this we obtain 2 times the result of (5.15), where it is understood that now
we are multiplying the kernel against the full boundary mode (which is the sum of the positive
and negative energy modes). This factor of 2 should not be confused with a factor of 2 that
will arise in some discussions due to antipodal mapping relating global and Poincaré kernels.
In any event, an equally viable kernel for the normalizable mode would be the following

K1(z, x;x′) = lim
z′→0

(−1) d2−12∆−dΓ(∆− d
2 + 1)

Γ(∆− d+ 1)π d2 +1
(σz′)∆−d ln(σz′)

≡ cd∆ lim
z′→0

(σz′)∆−d ln(σz′) (5.16)

where we have introduced the notation cd∆.
11We thank Dan Kabat for a helpful discussion on this argument.
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For the non-normalizable mode (5.6), one can retrace some of the same steps as above.
This gives us the following expression

K2(z,x;x′) = cd
zd−∆

Xd

Γ(m+2−∆)(−1)m ln(1+ z2

X2 )
Γ(m+1)Γ(1−∆)Γ(1+m−∆)

∞∑
k=0

Γ(1+m−∆+k)
Γ(1+k)

(
X2

X2+z2

)k+ d
2

+cd
zd−∆

Xd

Γ(m+2−∆)(−1)m
Γ(m+1)Γ(1−∆)Γ(1+m−∆)

∞∑
k=0

Γ(1+m−∆+k)hk
Γ(1+k)

(
X2

X2+z2

)k+ d
2

+cd
zd−∆

Xd

Γ(2+m−∆)
Γ(m+1)Γ(m−∆+1)

d
2−2∑
k=0

(−1)kΓ(m−k)Γ(1−∆)
(

X2

X2+z2

)k+1

(5.17)

Using (C.3), we note that (5.17) reduces to the following expression

K2(z, x;x′) = lim
z′→0

cd
Γ(1 + d

2 −∆)(−1) d2−12−∆

Γ(d2)Γ(1−∆)
(σz′)−∆

(
ln(σz′) + ln

( 2z
X2

))

+ cd
zd−∆

Xd

Γ(1 + d
2 −∆)(−1) d2−1

Γ(d2)Γ(1−∆)Γ(d2 −∆)

∞∑
k=0

Γ(d2 −∆ + k)hk
Γ(1 + k)

(
X2

X2 + z2

)k+ d
2

+ cd
zd−∆

Xd

Γ(1 + d
2 −∆)

Γ(d2)Γ(d2 −∆)

d
2−2∑
k=0

(−1)kΓ
(
d

2 − k − 1
)

Γ(1−∆)
(

X2

X2 + z2

)k+1

(5.18)

Using similar arguments, we are again lead to

K2(z, x;x′) = lim
z′→0

Γ(1 + d
2 −∆)(−1) d2−12−∆

π
d
2 +1Γ(1−∆)

(σz′)−∆ ln(σz′)

= c′d∆ lim
z′→0

(σz′)−∆ ln(σz′) (5.19)

As in the even AdS case, it turns out that for the non-normalizable mode, the cases for which
the iε-prescription applies occur when ν is an integer and therefore (5.6) does not apply.

6 Spacelike kernel: antipodal mapping

The mode-sum kernels we have written down in the previous section have support everywhere
on the boundary of the Poincaré patch, and not just on the points that are spacelike separated
from the bulk point that we are trying to reconstruct. The relevant regions of the AdS
spacetime spanned by the Lorentzian Poincaré and global coordinates are represented and
compared in figure 1. In this section, we will show that in the even-dimensional case (at
least), we can restrict ourselves to the spacelike region. This will help us also connect with
the global kernels from earlier sections.

For the normalizable and non-normalizable modes, we reproduce the expressions derived
in the previous section (5.9) and (5.12) here for convenience:

K1 = ad∆ lim
z′→0

(σz′)∆−d, K2 = a′d∆ lim
z′→0

(σz′)−∆. (6.1)
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Figure 1. The Penrose diagram for Lorentzian AdS space. The region in blue is spanned by the
Lorentzian Poincaré coordinates (known as the Poincaré patch). The region in grey is the exempted
region. The full box is spanned by the Lorentzian global coordinates. As is evident, half of the AdS
boundary (denoted by ρ = π/2 and Ωd = 1) is not covered by the Poincaré coordinates.

We start by reviewing the normalizable mode discussion of [7] from a purely Poincaré
perspective. The bulk field contribution at a point P = (z, x, t) (in the Poincaré patch) from
the normalizable mode is written as an integral over the boundary field φPoincaré

0 as follows
(all integrals considered in this section are over the Poincaré patch, and let us emphasize
that we will often suppress limz′→0 to avoid clutter):

Φnormalizable(z, x, t) =
∫

dt′dd−1x′ad∆(σz′)∆−dφPoincaré
0 (x′, t′) (6.2)

The kernel limz′→0(σz′)∆−d has a lightcone singularity, and needs a prescription to make it
fully well-defined. Motivated by its connection to the global coordinates discussion in [7],
we will take it to be defined via

Φnormalizable(z, x, t) =
∫

dt′dd−1x′ad∆|σz′|∆−d


eiπ∆φ̃0(x′, t′) (x′, t′) ∈ I
φ̃0(x′, t′) (x′, t′) ∈ II
e−iπ∆φ̃0(x′, t′) (x′, t′) ∈ III

 (6.3)

We can motivate this as a phase arising from an antipodal mapping of the field from the
region complementary to the Poincaré patch in global coordinates (see [7] for more details)

φPoincaré
0 (x′, t′) =


eiπ∆φ̃0(x′, t′) future timelike region of P (I)
φ̃0(x′, t′) spacelike region of P (II)
e−iπ∆φ̃0(x′, t′) past timelike region of P (III)

(6.4)

and then absorbing the phase into a redefinition of the kernel. This essentially shifts the
boundary field (which is integrated over in (6.2)) from φPoincaré

0 to φ̃0. Viewing the phase
as being part of the kernel from this point on, we will call it K̃1 instead of K1.
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Now, consider the following function

F (z, t, x; t′, x′) =
( 1

2z (z2 + |x− x′|2 − (t′ − t− iε)2)
)∆−d

(6.5)

The pole/branch point of this function is at t′ = t±
√
z2 + |x− x′|2 + iε. Therefore, F is

analytic in the lower half t′ plane. When F is integrated against φ̃0(x′, t′), it is easy to see
that the condition ω > |k| implies that the integral vanishes:∫

dt′dd−1x′F (z, t, x;x′, t′)φ̃0(x′, t′) = 0 (6.6)

Therefore we can add multiples of this function to the kernel without affecting its bulk
reconstruction properties. Now, the iε prescription ensures that the function F takes the
following forms in the three regions of the point P :

F =


−eiπ∆|σz′|∆−d future timelike region of P (I)
|σz′|∆−d spacelike region of P (II)
−e−iπ∆|σz′|∆−d past timelike region of P (III)

(6.7)

where we have used the fact that d is odd.
Therefore, if we modify the kernel K̃1 as

K̃1 → K̃1 + ad∆F (6.8)

then the modified K̃1 is perfectly acceptable as a bulk reconstruction kernel, but has the
advantage that it vanishes in the past and future timelike regions (while resulting in a factor
of 2 in the spacelike region). The final kernel is therefore spacelike as we wanted (we again
suppress the tilde)

K1 = 2ad∆ lim
z′→0

(σz′)∆−dθ(spacelike) (6.9)

The above argument is directly motivated by the discussion in section 3.1 of [7]. But
let us emphasize that it is conceptually different. In [7], the goal was to get to a spacelike
Poincaré kernel by starting with a spacelike global kernel. In our case, we started with
a Poincaré kernel, but one that was not spacelike. We introduced ingredients that are
naturally motivated from the global picture and the antipodal map to restrict our kernel
to the spacelike region of Poincaré. Satisfyingly, this enabled us to argue that we can
restrict our kernel entirely to the spacelike Poincaré region, if we simply double the overall
coefficient. In the end, all these perspectives are mutually consistent including the precise
normalization factors.

6.1 Non-normalizable mode in even AdS

We now turn to the restriction of the kernel corresponding to the non-normalizable mode to
the spacelike region. The general idea is parallel, even though the details of the phase are
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different. The contribution of the non-normalizable mode in the bulk field can be written
analogous to (6.2) as

Φnon-normalizable(z, x, t) =
∫

dt′dd−1x′a′d∆(σz′)−∆jPoincaré
0 (x′, t′) (6.10)

In this case, the following redefinition of the boundary non-normalizable mode jPoincaré
0 is

useful

jPoincaré
0 =


−e−iπ∆j̃0(x′, t′) future timelike region of P (I)
j̃0(x′, t′) spacelike region of P (II)
−eiπ∆j̃0(x′, t′) past timelike region of P (III)

(6.11)

The non-normalizable contribution to the bulk field at P is then written in terms of the
redefined boundary field j̃0 as

Φnon-normalizable(z, x, t) =
∫

dt′dd−1x′a′d∆|σz′|−∆


−e−iπ∆j̃0(x′, t′) (x′, t′) ∈ I
j̃0(x′, t′) (x′, t′)∈ II
−eiπ∆j̃0(x′, t′) (x′, t′) ∈ III

 (6.12)

We can again define a tilded kernel that absorbs the phases, K̃2. Exercising the freedom to
add terms to the kernel that vanish when integrated against the boundary field, we now
add the following function to the kernel

F ′(z, t, x; t′, x′) =
( 1

2z (z2 + |x− x′|2 − (t′ − t− iε)2)
)−∆

(6.13)

It is straightforward to see that similar to (6.5), F ′ will also vanish when integrated against
j̃0(x′, t′). The iε prescription ensures that the function F ′ takes the following forms in the
three regions of the point P :

F ′ =


e−iπ∆|σz′|−∆ future timelike region of P (I)
|σz′|−∆ spacelike region of P (II)
eiπ∆|σz′|−∆ past timelike region of P (III)

(6.14)

Now we modify K̃2 as K̃2 → K̃2 + a′d∆F
′. This has no effect on the bulk field at point P .

The modified K2 vanishes in the past and future timelike regions and gives a factor of 2 in
the spacelike region. So we have

K2 = 2a′d∆ lim
z′→0

(σz′)−∆θ(spacelike) (6.15)

In analogy with section 3.1 of [7], the above result can be given a natural interpretation
(including the factor of 2) in terms of the global spacelike Green’s function, via an antipodal
identification argument. In fact this was our motivation fo the phases we chose in (6.11), as
we illustrate in the next subsection.

In the previous subsection, the antipodal map from the global boundary to the Poincaré
patch [7] was viewed as the motivation for the choice of phases in the normalizable mode.
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Let us exhibit the origin of the analogous choice of phases (6.10) for the non-normalizable
mode. The positive frequency part of the non-normalizable mode was written down in
section 3. From that it is clear that under the antipodal mapping [7]

A : τ → τ ± π ρ invariant Ω→ ΩA (6.16)

the positive frequency non-normalizable mode transforms as

jglobal
0+ (Ax) = e±iπ(∆−d)jglobal

0+ (x) (6.17)

where we have renamed Φ0+ from section 3 to jglobal
0+ here, for clarity in the present setting.

This serves as inspiration for the phases for the field in (6.11), where we have used the fact
that d is odd.

6.2 Connection to global: non-normalizable mode

As we discussed below (6.9), the discussion in this section has been about restricting the
Poincaré kernel to a spacelike region in even-dimensional AdS. The methods we used were
inspired by the global-to-Poincaré connection in even AdS for the normalizable mode [7].
In this subsection we will make the connection between global and Poincaré explicit for
the non-normalizable mode as well, and also discuss the connection between Poincaré and
global non-normalizable kernels in odd AdS. These are a direct adaptation of the discussion
in section 3 of [7], and we include it here only for completeness.

In even-dimensional AdS, the non-normalizable global kernel is given by the following
spacelike expression (2.18)

KG
2 = a′d∆ lim

ρ′→π
2

(σ cos ρ′)−∆θ(spacelike) (6.18)

From (6.17), we find that for d ∈ odd, the antipodal map acts on the positive frequency
non-normalizable mode as

jglobal
0+ (Ax) = −e±iπ∆jglobal

0+ (x) (6.19)

The past timelike region (region I) of the Poincaré patch is mapped into the spacelike patch
(region II) by the transformation τ → τ + π and the future timelike region (region III) is
mapped into the spacelike patch by τ → τ − π. Therefore, the global smearing function can
be written as follows (where the bulk field is evaluated at the point P )

φ(P ) =
∫

dτ ′dd−1Ω′KG
2 (τ ′,Ω′|P )(jglobal

0+ + jglobal
0− )

=
∫

Poincaré patch
dτ ′dd−1Ω′a′d∆|σ cos ρ′|−∆


−eiπ∆j̃global

0 in image of I

j̃global
0 in region II

−e−iπ∆j̃global
0 in image of III

(6.20)

From here, the steps described in (6.12) to (6.15) can be followed, again with the func-
tion (6.14), and the end result is precisely (6.15) as we want. Let us emphasize that the
θ(spacelike) in this final result covers the Poincaré spacelike region.
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We turn our attention now to the odd AdS case (i.e. d ∈ even). The global AdS kernel
is now given by (2.26)

KG
2 = c′d∆ lim

ρ′→π/2
(σ cos ρ′)−∆ ln(σ cos ρ′)θ(spacelike) (6.21)

Note that d ∈ even changes the antipodal mapping for jglobal
0+ (6.17). We have

jglobal
0+ (Ax) = e±iπ∆jglobal

0+ (x) (6.22)

and for the smearing function we get

φ(P ) =
∫

dτ ′dd−1Ω′KG
2 (τ ′,Ω′|P )(jglobal

0+ + jglobal
0− )

=
∫

Poincaré patch
dτ ′dd−1Ω′c′d∆|σ cos ρ′|−∆ ln |σ cos ρ′|


eiπ∆jglobal

0+ in image of I

jglobal
0+ in region II

e−iπ∆jglobal
0+ in image of III

(6.23)

We have suppressed the complex conjugate in the last expression to reduce clutter. Regarding
the phases as part of the smearing function rather than as part of the boundary non-
normalizable mode, we get the following expression in Poincaré coordinates

φ(P ) =
∫

dt′dd−1x′


eiπ∆

1
e−iπ∆

 c′d∆|σz′|−∆ ln |σz′| j0+ + c.c (6.24)

where we have followed appendix B of [7] to replace ln |σ cos ρ′| by ln |σz′|, and the j0 is
the Poincaré non-normalizable mode. The phases in the smearing function can now be
absorbed via the same iε prescription as suggested in section 3.2 of [7] to get φ(P ) =∫

dt′dd−1x′K2 j0+ + c.c where

K2 = c′d∆|σz′|−∆
t′→t′−iε ln |σz′| (6.25)

This is the same result that we found via mode sum in (5.19), with a specific understanding
for the timelike iε prescription.

7 Chordal Green’s functions in Poincaré AdS

In this section, we will present a direct method for constructing the spacelike kernel, where
we start with a Green’s function that is a function of the chordal distance. We have briefly
discussed this method in the context of the global kernel in section 3, but here we will
present more motivation and details, as well as present the details of the Poincaré calculation.
This will bring the discussion full circle.

The chordal distance approach (for the normalizable mode) was considered in appendix A
of [7] (see also [30]). We will make a brief comment about the normalizable mode later in
this section (as well as discuss some aspects of it in an appendix) but our primary goal here
is to discuss the chordal distance approach for the non-normalizable mode.
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Before we proceed, let us emphasize a comment made in a footnote in our Introduction.
The chordal distance approach works only in even dimensions. We will see in the appendix
that the normalizable spacelike kernel constructed this way, vanishes identically in any real
value of the AdS dimension other than when it is even (which was the case considered in
appendix A of [7]). The distinction between waves in even and odd dimensions is well-known
already in flat space — Huygens’ principle applies only in even dimensions, and it is therefore
natural to suspect that Green’s functions cannot simply be functions of the chordal distance
in odd dimensions.12 Because of this, it is natural to expect that our calculation below for
the non-normalizable mode, should also be trusted only in even dimensions. In fact we will
see that in even dimensions, the chordal function matches with the spacelike kernel of the
previous section, but in odd dimensions there is no simple comparison.

In order to construct the normalizable kernel, appendix A of [7] started with a Green’s
function that had a delta function divergence in the bulk. This is related to the fact
that the normalizable mode dies down at infinity. When looking for the kernel for the
non-normalizable mode therefore, it is natural to start instead with Witten’s original Green’s
function in [1] which had a divergence at the boundary. This was done initially in Euclidean
AdS space. We will quickly review this following [1, 38, 41], before adapting it to the
Lorentzian signature we need.13 We start with the bulk-bulk propagator in the form

G∆(σ) = 2−∆C∆
2∆− d σ

−∆
2F1

(∆
2 ,

∆ + 1
2 ; ∆− d

2 + 1; 1
σ2

)
. (7.1)

Note that this corresponds to the Associated Legendre function Qµν solution of the chordal
wave equation. The other Pµν solution was the one used in [7]. In the σ → ∞ limit (i.e.
z′ → 0), we get the following relation

G∆(σ)|z′→0 = C∆
2∆− dz

′∆
(

z

z2 + |~x|2
)∆
≡ z′∆

2∆− dK∆(z, x) (7.2)

The function K∆ is the bulk-boundary propagator — it is related to (but should not
be confused with) the kernel. Now, K∆ is required to have a normalized δ-function
behavior [1, 38], and we integrate K∆ over x to fix the normalization:∫

ddxK∆(x) = C∆z
∆
∫

dd~x 1
(z2 + |~x|2)∆

= C∆z
∆Ωd−1

∫
dx xd−1

(z2 + x2)∆

= C∆z
d−∆Ωd−1

∫ ∞
0

dt td−1

(1 + t2)∆ with |~x| = x = tz

= C∆z
d−∆Ωd−1

Γ(d2)Γ(∆− d
2)

2Γ(∆) (7.3)

12As a result of (the absence of) Huygens’ principle, the flat space odd-dimensional Green’s function gets
support not just from the lightcone, but also from points inside it. We are not aware of a satisfying intuitive
explanation for the dimension-dependence of Huygens’ principle, but see a discussion in [40]. It will be nice
to study this in detail in AdS, because the background is now curved, and also we allow massive fields.

13See also our discussion in section 3 which is complementary.
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This gives us the coefficient C∆ = Γ(∆)
π
d
2 Γ(∆− d2 )

. And with this, we may write

K∆(z, x;x′) = zd−∆δd(x− x′) (7.4)

This was in Euclidean signature. We are interested in Lorentzian signature, and we
now adopt a similar procedure. Note that since x now contains both timelike and spacelike
coordinates, the same integral as given above, will not hold. However, it now gets modified
as follows (denoting this Lorentzian function by K∆)∫

spacelike
ddxKP∆(x) =CP∆z

∆
∫

spacelike
ddx 1

(z2+x2)∆

=CP∆z
∆Ωd−2

∫
spacelike

dxdt xd−2

(z2+x2−t2)∆

=CP∆z
d−∆Ωd−2

∫ ∞
u=0

∫ √1+u2

v=−
√

1+u2
dudv ud−2

(1+u2−v2)∆ with x= zu & t= zv

=CP∆z
d−∆Ωd−2

∫ ∞
u=0

duud−2 2 2F1(1
2 ,∆; 3

2 ;1)
(1+u2)∆− 1

2

=CP∆z
d−∆Ωd−2

∆Γ
(
d−1

2

)
cos(π∆)Γ(−∆)Γ

(
∆− d

2

)
2
√
π

=−CP∆zd−∆π
d
2−1Γ(1−∆)Γ

(
∆− d2

)
cosπ∆ (7.5)

Note that in the third step in this calculation, we have restricted v ∈ (−
√

1 + u2,
√

1 + u2).
This is because we are doing this integral only over the spacelike region, since the Green’s
function is taken to vanish everywhere else.

This gives us the following coefficient

CP∆ = − 1
π
d
2−1Γ(1−∆)Γ(∆− d

2) cosπ∆
= −Γ(∆) tan π∆

π
d
2 Γ(∆− d

2)
(7.6)

Hence we get the following expression for the spacelike Poincaré Green’s function in terms
of the chordal distance:

GP∆(σ) = −2−∆−1Γ(∆) tan π∆
Γ(∆− d

2 + 1)π d2
σ−∆

2F1

(∆
2 ,

∆ + 1
2 ; ∆− d

2 + 1; 1
σ2

)
θ(spacelike) (7.7)

Note that this is the Poincaré spacelike bulk-to-bulk propagator, to be distinguished from
the corresponding global object we discussed in section 3. The normalizations of the two
were related there, and the resulting kernel precisely matched the global mode sum result.

Note that the argument of the Hypergeometric 2F1(ξ) function satisfies the constraint
|ξ| < 1. This is because after analytic continuation we will be restricting to the spacelike
region (σ > 1). It is well known [42, 43] that in this region, the Hypergeometric 2F1 is
analytic for all real/complex values. Therefore, the functional form of the Green’s function
in (7.7) carries through to Lorentzian case from the Euclidean case.
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In the limit z′→ 0 (i.e. σ→∞), we get the following result (with k∆ =−2−∆−1Γ(∆)tanπ∆
Γ(∆− d2 +1)π

d
2

)

GP∆(σ)|z′→0 = k∆σ
−∆ (7.8)

∂z′GP∆(σ)|z′→0 = ∆k∆
σ−∆

z′
(7.9)

For the field Φ(x, t, z), from Green’s identity

Φ(x, t, z) =
∫

dt′dd−1x′
√
g′(Φ(x′, t′, z′)∂z′GP∆(σ)− GP∆(σ)∂z′Φ(x′, t′, z′))|z′→0 (7.10)

we get

Φ(x, t, z) =
∫

dt′dd−1x′
√
g′

(
(z′∆φ0(x′) + z′d−∆j0(x′))∆k∆

σ−∆

z′

− k∆
σ−∆

z′
(∆z′∆φ0(x′) + (d−∆)z′d−∆j0(x′))

)
|z′→0

=
∫

dt′dd−1x′z′−d+1
(

(2∆− d)k∆
σ−∆

z′
z′d−∆j0(x′)

)
(7.11)

This gives us the following reconstruction kernel (noting that (2∆− d)k∆ = 2a′d∆) for the
non-normalizable mode

K2(x, t, z, x′, t′) = 2a′d∆ lim
z′→0

(σz′)−∆ (7.12)

Happily, this result matches with (6.15). The Poincaré kernels computed via either method
(mode sum or chordal Green’s function) match, and they match (up to the factor of 2 and
the integration domain) with the global kernels computed via either method.

For the normalizable mode, the chordal distance approach in even-dimensional AdS
was undertaken in [7]. We will not repeat it here, except to note that there also, in Poincaré
AdS there was an extra factor of two. We encountered this factor in our discussion in
section 6. In global AdS [7, 15] the normalizable kernel is given by [7]

K1 = ad∆ lim
ρ′→π

2

(σ cos ρ′)∆−dθ(spacelike). (7.13)

Note that spacelike-ness ensures that σ cos ρ′ is always a positive quantity. So it can be
replaced by |σ cos ρ′|:

K1 = ad∆ lim
ρ′→π

2

|σ cos ρ′|∆−dθ(spacelike). (7.14)

At this stage, we can convert to Poincaré coordinates [44]. If we consider the entire kernel
integral including the boundary field, the boundary field will acquire the phases discussed
in section 6 after the antipodal mapping to Poincaré. Again, these phases can be absorbed
into the definition of the kernel and then by the addition of a “trivial” function (6.5) we can
remove the non-spacelike pieces while producing an extra factor of two in the spacelike region:

K1 = 2ad∆ lim
z′→0

(σz′)∆−dθ(spacelike). (7.15)
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This is the same as (6.9), as expected. Note that the step function in the last expression
restricts the kernel to the spacelike region of the Poincaré patch, as opposed to the spacelike
region of the global patch. The philosophy here is that we wish to view the global and
Poincaré coordinates to mesh together in a nice geometric way, and antipodal matching
is the natural way to do it. As a result, the phase structure of the trivial function (6.5)
precisely cancels the extra phases arising from the antipodal matching.

We conclude this section by summarizing the definitions of the coefficients that show
up in our kernels.

• a′d∆ = The coefficient for the non-normalizable kernel in even AdS (defined in global
coordinates, so the Poincaré coefficient is twice this).

• c′d∆ = The coefficient for the non-normalizable kernel in odd AdS (which is the same
in Poincaré and global coordinates).

• ad∆ = The coefficient for the normalizable kernel in even AdS (defined in global
coordinates, so the Poincaré coefficient is twice this).

• cd∆ = The coefficient for the normalizable kernel in odd AdS (which is the same in
Poincaré and global coordinates).

8 Inside the Breitenlohner-Freedman window

Our results so far are somewhat formal. This is because the kernel integrals are not
convergent for all relevant values of ∆ (even though they are convergent for infinite ranges
of values of ∆). Therefore they need analytic continuation to be fully defined. This was
emphasized in [45, 46], where analytic continuation prescriptions were presented that were
used above the unitarity bound for the normalizable kernel. In this section, we will use the
same analytic continuation argument to argue that both kernels can be made simultaneously
well-defined within the Brienlohner-Freedman (BF) window. This is useful because, in this
regime of scaling dimensions, we expect the source mode to also be fully understood as a
CFT operator (in the Legendre transformed CFT [17]).

The key observation is simple. Even though the authors of [45, 46] do not state it in
this way, it is easy to see that their analytic continuation argument is used when the power
of σ in the kernel is

power ≥ −d2 − 1 (8.1)

When we have both the normalizable and non-normalizable kernels, this leads to two
simultaneous conditions which together yield

d

2 − 1 ≤ ∆ ≤ d

2 + 1 (8.2)

which comfortably contains the BF window.
The fact that the lower end of the range extends below the lower end of the BF window

makes one suspect that the analytic continuation argument of [45] is not maximal and can
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perhaps be extended further. In fact, it turns out that even though [45] uses their result
above the unitarity bound, the argument can, in fact, be extended to generic values of ∆,
making the kernel well-defined on generic points on the complex ∆-plane.

Let us conclude this section by noting one nice feature of the BF window when we are
considering both kernels together. Consider our mode solution in the Poincaré patch (4.2),
which is valid when ω2 > |k|2. Even though we did not emphasize it, our argument for
omitting the ω2 < |k|2 modes was that this leads to a Bessel I function. The Bessel I, even
though it has the correct (normalizable and non-normalizable) behavior at the boundary,
blows up at the Poincaré horizon. From the CFT point of view, this elimination of certain
modes may seem ad-hoc. For the normalizable mode, however, since it is mapped to a
CFT operator, it is plausible that it only contains modes that satisfy ω2 > |k|2.14 For the
non-normalizable mode, on the other hand, since it is associated with a source, generically,
there is no obvious CFT reason that can justify the omission of the ω2 < |k|2 modes. This
situation changes in the BF window because we know that the source is also be a CFT
operator, albeit in a different (holographic) CFT [17] — therefore, it is natural from the
perspective of the BF window that the non-normalizable modes are also subject to the same
restriction as the normalizable modes.

9 Discussion and open questions

We have already summarized our main results in the introduction, so we will conclude by
reviewing some (but not all) of them and also mentioning some open questions. Note that
while the focus of our discussion in this paper has been on the non-normalizable mode,
some of our observations on the normalizable mode fill some gaps in the literature.

We used the mode sum approach on the Poincaré patch to obtain results for the two
kernels via mode sum integrals in arbitrary even and odd dimensions. The even and odd-
dimensional cases have technical differences (presumably related to the nature of Huygens’
principle in odd vs. even dimensions). We expect that we can re-write these expressions in
an AdS covariant form but present explicit demonstrations of this only in certain (half-)
integer ∆ cases for the normalizable mode. For this we developed an iε prescription that
leads to a generalization of an argument used for integer ∆ ≥ 2 cases in AdS3 in [7]. Our iε
prescription involves a slight complexification of a boundary coordinate. In that sense, it
has moral similarities to the discussion in [8] (see also our appendix E), where an integral
over a complex boundary spatial coordinate was introduced in the context the Poincaré
patch kernel. This Poincaré integral had connections to the complexification required in the
Rindler kernel [7–9]. Rindler reconstruction is presently understood by viewing the kernel
as a distribution [48, 49] that is useful for extracting correlators (and not directly the bulk

14In the vacuum, this constraint arises simply by Fourier transforming the CFT two-point Wightman
function to momentum space, while demanding Lorentz invariance. We leave it as an exercise for the reader
to check this. This argument holds for the vacuum 2-point function. It is believed that around black hole
backgrounds, this constraint no longer applies, and that all modes appear [47]. But direct evidence for this,
is only available from bulk calculations. We thank Dan Kabat for discussions on these questions.
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operators). It would be interesting to investigate these connections further and understand
where our prescription fits into this landscape.

In the even AdS case, the AdS covariant form of the kernel can be restricted to a
spacelike region. This makes a natural connection to the antipodal map noted in [7] from the
global coordinates. We identified an antipodal map for the non-normalizable mode as well
in global coordinates to connect with our discussion. The spacelike non-normalizable kernel
can, in fact, also be obtained from a spacelike chordal Green’s function approach — the
two methods are very different, but the two results match precisely. We have also presented
various auxiliary results in the text and in the appendix that may be of some interest,
we will emphasize one here — we used a simple Lorentzian version of Witten’s original
Euclidean argument to fix the normalization of the spacelike kernel for the non-normalizable
mode in the chordal distance language.

An outstanding technical question that seems to have not gotten adequate attention is
the comparison between Poincaré and global kernels. It is tantalizing that the Poincaré
kernels we obtained via mode sums have a natural re-writing in an AdS covariant form (with
immediate connections to global), but only up to some extra terms. It will be interesting
to find a general argument (valid for all relevant15 ∆) for dropping these extra terms, or
alternatively, come up with an understanding of why they need not be dropped. Our iε
prescription as well as the complexification of [7] seem to suggest that to make a general
statement regarding this, we may require some form of analytic continuation.
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A Normalizable chordal Green’s function in general dimensions

In this appendix, we will try to generalize the chordal function approach of [7] for the
normalizable mode, to general dimensions. We will fail, and see that the kernel vanishes in
any (real) dimension other than when it is even.

To begin with, we will review the even-dimensional calculation [7]. In terms of the
chordal distance in Euclidean AdS,

σ(z, x; z′, x′) = z2 + z′2 + |x− x′|2
2zz′ (A.1)

15Note that unitarity constraints etc. suggest that the argument need not be valid for arbitrary ∆.
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the wave equation reduces to the following form:

(σ2 − 1)φ′′(σ) + (d+ 1)σφ′(σ)−∆(∆− d)φ(σ) = 0 (A.2)

The general solution is

φ(σ) = (σ2 − 1)−µ/2(c1P
µ
ν (σ) + c2Q

µ
ν (σ)) (A.3)

where µ = d−1
2 and ν = ∆ − d+1

2 and P and Q are associated Legendre functions. In
the even-dimensional case, where µ is an integer, the Legendre polynomials behave in the
following way in the limit σ → 1 (which corresponds to coincident points)

Pµν (σ) ∼ 2−µ/2Γ(ν + µ+ 1)
µ!Γ(ν − µ+ 1) (σ − 1)µ/2, Qµν (σ) ∼ 2µ/2−1eiπµΓ(µ)(σ − 1)−µ/2 (A.4)

The interesting fact to note here is that the asymptotic behavior of Pµν given above holds
only for µ = m ∈ Integer, while the behavior of Qµν holds for any µ as long as µ+ ν = ∆− 1
is not a negative integer.

There are two points we need to address when µ is not integer. The first problem
is that we need to determine a solution that replaces Pµν with the correct short distance
behavior (A.4). The second is that Qµν is no longer real.

The latter problem is easily fixed, it is known that

Qµ
ν (σ) = e−iµπ

Γ(µ+ ν + 1)Q
µ
ν (σ) (A.5)

is real even when µ is not an integer. So we will work with Qµ
ν instead of Qµν as the second

independent solution.
To identify the other independent solution, we first note the hypergeometric function

representation of Pmν . From here on, m will denote an integer value, while µ can mean
either integer or non-integer.

Pmν (x) = Γ(ν+m+1)
2mΓ(ν−m+1)Γ(m+1)(x2−1)m/2 2F1

(
ν+m+1,m−ν;m+1, 1−x2

)
(A.6)

The advantage of this form is that it is immediate to read off the asymptotic behavior of the
function when the argument goes near unity, from the fact that hypergeometric function
goes to 1 in that limit. Let us also note the useful relations,16

Pµν (x) = Γ(ν + µ+ 1)
Γ(ν − µ+ 1)P

−µ
ν (x) + 2 sin(µπ)e−iµπ

π
Qµν (x), (A.7)

as well as
2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z), (A.8)

and

P−µν (x) = 1
Γ(µ+ 1)

(
x− 1
x+ 1

)µ/2
2F1

(
−ν, ν + 1;µ+ 1; 1− x

2

)
. (A.9)

16All the identities used in this subsection are taken from [42, 50] and the Digital Library of Mathematical
Functions.
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Note again that the last formula is useful when we want to fix the short distance behavior.
Using (A.8) in (A.9), we get the following expression (note that c = µ + 1, a = −ν and
b = ν + 1)

P−µν (x) = 1
Γ(µ+ 1)

(
x− 1
x+ 1

)µ/2(1 + x

2

)µ
2F1

(
µ+ ν + 1, µ− ν;µ+ 1; 1− x

2

)
= 1

2µΓ(µ+ 1)(x2 − 1)µ/2 2F1

(
µ+ ν + 1, µ− ν;µ+ 1; 1− x

2

)
(A.10)

Using (A.10) and (A.7), we see the interesting combination

Pµν (x)− 2sin(µπ)e−iµπ
π

Qµν (x) = Γ(ν+µ+1)
Γ(ν−µ+1)P

−µ
ν (x)

= Γ(ν+µ+1)(x2−1)µ/2
2µΓ(µ+1)Γ(ν−µ+1) 2F1

(
µ+ν+1,µ−ν;µ+1; 1−x

2

)
(A.11)

One can compare it to (A.6) and see that these are exactly the same, with m replaced by µ.
The short distance behavior is manifest. This suggests that we utilize the following two real
functions as the two independent solutions, when we are away from integer µ, if we want
the short-distance behavior on the right hand sides of (A.4):

φ1(σ) = (σ2 − 1)−µ/2
(
Pµν (σ) + λQµ

ν (σ)
)

(A.12)

φ2(σ) = (σ2 − 1)−µ/2Qµ
ν (σ) (A.13)

where λ = − 2
πΓ(µ+ ν + 1) sin πµ. The general solution is

φ(σ) = (σ2 − 1)−µ/2(c1φ1(σ) + c2φ2(σ)). (A.14)

A.1 Fixing constants by analytic continuation to the cut

We will attempt fix the constants by demanding specific short distance behavior and by
demanding that the Green’s function vanish in the timelike region. This will be our spacelike
Green’s function.

With (A.14) we can demand the same short distance behavior for the Euclidean Green’s
function for generic µ, as was demanded for integer µ [7]:17

GE(r) ∼ − 1
(d− 1)Vol(Sd)rd−1 , as r → 0 (A.15)

Noting that σ ∼ 1 + r2

2R2 (in global coordinates), we have the following information about
the constraints

c1 = arbitrary c2 = − 1
2µ−1(d− 1)Vol(Sd)Γ(µ)Rd−1 (A.16)

17When we write d, this means that we do not necessarily have to even work with integer dimensions.
Note in particular that the volume of a sphere in d-dimensions can be defined using Gamma functions etc.
for non-integer d.
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Now, we wick rotate to Lorentizan signature GM (σ) = iφ(σ + iε), and we restrict to
−1 < σ < 1. Above the cut, the behavior of Pµν and Qµν are known, and are as follows

Pµν (x+ iε) = i−µP̂µν (x), (A.17)

Qµ
ν (x+ iε) = iµ

Γ(µ+ ν + 1)
(
Q̂µν (x)− iπ

2 P̂
µ
ν (x)

)
, (A.18)

where P̂ and Q̂ denote Ferrers functions of the first and second kind. All we need to keep
in mind about these functions is that they are real in the cut −1 < x < 1. Inserting this
in (A.14) gives us

GM (σ) = i(−1)−µ/2(1− σ2)−µ/2
(
c1

(
i−µP̂µν (σ) + iµλ

Γ(µ+ ν + 1)

{
Q̂µν (σ)− iπ

2 P̂
µ
ν (σ)

})
+ c2

Γ(µ+ ν + 1) i
µ
{
Q̂µν (σ)− iπ

2 P̂
µ
ν (σ)

})
.

(A.19)

This can be re-written as

GM (σ) = i(1−σ2)−µ/2
((

(−1)−µc1−
iπ(λc1+c2)
2Γ(µ+ν+1)

)
P̂µν (σ)+ c1λ+c2

Γ(µ+ν+1)Q̂
µ
ν (σ)

)
(A.20)

At this stage, we consider the real part of GM as our sought-after Green’s function,
since we are dealing with real boundary data and real fields.18 Picking only the real part of
GM and demanding that it vanishes in the cut region (which corresponds to the timelike
region) gives us the following result

Re
(
i(−1)−µc1 + π(λc1 + c2)

2Γ(µ+ ν + 1)

)
= 0 (A.21)

Re(ic1λ+ ic2) = 0 (A.22)

Note that in the case where µ is an integer (even-dimensional AdS), we have λ = 0.
Therefore, we can write this as

Re
(
ic1 + (−1)µπc2

2

)
= 0 (A.23)

Re(ic2) = 0 (A.24)

The second equation is trivially satisfied, since c2 is real, and the first equation gives the
result noted in [7]

Re(ic1) + (−1)µπc2
2 = 0 (A.25)

But we are interested in arbitrary µ for the remainder of the calculation. Writing
c1 = α+ iβ, we get the following constraint from (A.22)

2
π

Γ(µ+ ν + 1)β sin πµ = 0 (A.26)

18We could have also considered imaginary part, which also leads to a real Green’s function, but this does
not substantively change the conclusion as can be checked.
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Note that (A.26) does not tell us anything at all when µ is an integer. However, when µ is
non-integer, β = 0. Therefore, c1 is purely real. Now let us recall the solution φ(σ)

φ(σ) = (σ2 − 1)−µ/2(c1(Pµν (σ) + λQµ
ν (σ)) + c2Qµ

ν (σ)) (A.27)

The analytic continuation GM (σ) = iφ(σ + iε) into the spacelike region does not cause any
functional difference in P,Q since now σ > 1, and thus outside the cut −1 < σ < 1. Hence
the epsilon is unimportant and we simply have the following analytic continuation

GM (σ) = i(σ2 − 1)−µ/2(c1(Pµν (σ) + λQµ
ν (σ)) + c2Qµ

ν (σ)) (A.28)

Again, one can see that for even dimensions µ ∈ Z, λ is 0. By noting that Pµν , λQµ
ν and

c2Qµ
ν are all real, we can see that the real part of the Green’s function will be

Re(GM (σ)) = −β(σ2 − 1)−µ/2(Pµν (σ) + λQµ
ν (σ)) (A.29)

with β given by (A.26). Therefore, the real spacelike Green’s function vanishes except for
integer µ, i.e. except for even AdS.

B Two general integrals

The kind of integral that we come across quite often in mode sum integrals in empty AdS
is the following

K =
∫
|q|2≥0

ddq

(2π)d e
iq.(x−x′)z

d
2 |q|µζν(|q|z) (B.1)

where ζν is some Bessel function. We write some fairly general result for this integral. We
consider both Lorentzian (KL) and Euclidean (KE) AdS.

We begin with the Lorentzian case.

KL =
∫
|q|2≥0

ddq

(2π)d e
iq.(x−x′)z

d
2 |q|µζν(|q|z)

=
∫
ω>|k|

dωdd−1~k

(2π)d e−iω(t−t′)ei
~k.(~x−~x′)z

d
2

(√
ω2 − |k|2

)µ
ζν

(√
ω2 − |k|2z

)
(B.2)

Writing ~k.(~x− ~x′) = k∆x cos θ, θ ∈ (0, π)

KL =
∫
ω>|k|

dωdd−1~k

(2π)d e−iω(t−t′)ei
~k.(~x−~x′)z

d
2

(√
ω2−|k|2

)µ
ζν

(√
ω2−|k|2z

)
= Ωd−3

(2π)d
∫
ω>k

dωdke−iω∆tkd−2z
d
2
(√

ω2−k2
)µ
ζν
(√

ω2−k2z
)∫ π

0
(sinθ)d−3eik∆xcosθdθ

(B.3)
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where Ωd−3 = 2π
d
2−1

Γ( d2−1) . The integral over θ uses the result

Iθ =
∫ π

0
sind−3 θ1e

ik∆x cos θ1dθ1

=
∫ 1

−1
(1− t2)

d
2−2eik∆xtdt

=
√
π

Γ(d2 − 1)
Γ(d−1

2 ) 0F1

(
d− 1

2 ,−(k∆x)2

4

)

=
√
πΓ(d2 − 1)2

d−3
2
J d−3

2
(k∆x)

(k∆x) d−3
2

(B.4)

Therefore, (B.3) becomes

KL =
Ωd−3

√
π2 d−3

2 Γ(d2−1)
(2π)d(∆x) d−3

2

∫
ω>k

dωdke−iω∆tk
d−1

2 z
d
2 (
√
ω2−k2)µζν(

√
ω2−k2z)J d−3

2
(k∆x)

(B.5)

Note that since ω > k, we choose the parametrization

ω = a cosh y k = a sinh y 0 < a, y <∞ (B.6)

The Jacobian of this transformation is a.
Therefore, we get the following result

KL =
Ωd−3

√
π2 d−3

2 Γ(d2 − 1)
(2π)d(∆x) d−3

2

×
∫ ∞
a=0

daz
d
2 aµ+ d+1

2 ζν(az)
∫ ∞
y=0

dye−ia∆t cosh y(sinh y)
d−1

2 J d−3
2

(a∆x sinh y) (B.7)

To evaluate the y integral Iy, we proceed as follows

Iy =
∫ ∞

0
dy(sinh y)

d−1
2 e−ia∆t cosh yJ d−3

2
(a∆x sinh y)

=
∫ ∞

1
dx(

√
x2 − 1)

d−3
2 e−ixa∆tJ d−3

2
(a∆x

√
x2 − 1) (B.8)

Define α = a∆t and β = a∆x

Iy =
∫ ∞

1
dx(

√
x2 − 1)

d−3
2 e−ixαJ d−3

2
(β
√
x2 − 1) (B.9)

At this stage, it is necessary to introduce a small complex piece to α in order to make the
integral convergent. Specifically, we elevate α to α̃ = α− iε, with ε > 0. This gives us the
following integral

Iy =
∫ ∞

1
dx(

√
x2 − 1)

d−3
2 e−x(ε+iα)J d−3

2
(β
√
x2 − 1) (B.10)
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We use the following identity [39]∫ ∞
1

(x2 − 1)ν/2e−αxJν(β
√
x2 − 1)dx =

√
2
π
βν(α2 + β2)−

ν
2−

1
4Kν+ 1

2

(√
α2 + β2

)
(B.11)

Using this identity and identifying α̃ = α− iε gives us

Iy =
√

2
π
β
d−3

2 (β2 + (i)2α̃2)
2−d

4 K d
2−1

(√
β2 − α2

)
(B.12)

Inserting the expressions for α and β, we get (we replace ∆t = t− t′ with ∆t̃ = t′ − t by
extracting a −ve sign, to keep a consistent convention throughout the paper).

Iy =
√

2
π
a−

1
2 (∆x)

d−3
2
(
∆x2 − (∆t̃+ iε)2

) 2−d
4 K d

2−1

(
a
√

∆x2 − (∆t̃+ iε)2
)

(B.13)

Hence, we use this to write the expression forKL. We use the notationX ≡
√

∆x2−(∆t̃+iε)2

=
√

(x−x′)2−(t′−t+iε)2.

KL =
√

2Ωd−3
√
π2 d−3

2 Γ(d2 − 1)
(2π)dX d

2−1√π
z
d
2

∫ ∞
a=0

aµ+ d
2 ζν(az)K d

2−1(aX)da (B.14)

From here on we will refrain from explicitly mentioning the iε term, but it is to be understood
that it is necessary to include this term to handle singularities

The coefficients in the front simplify to give us the following result

KL =
∫
|q|2≥0

ddq

(2π)d e
iq.(x−x′)z

d
2 |q|µζν(|q|z) = 1

π(2π) d2
z
d
2

X
d
2−1

∫ ∞
a=0

aµ+ d
2 ζν(az)K d

2−1(aX)da

(B.15)
We turn to the Euclidean case. This is considerably simpler because all the momentum

vector components are on the same footing. The integral is then written as

KE =
∫
q≥0

ddq

(2π)d e
iq.(x−x′)z

d
2 |q|µζν(|q|z)

= Ωd−2
(2π)d

∫
q≥0

qd−1dqdθ(sin θ)d−2eiq∆x cos θz
d
2 qµζν(qz) (B.16)

where Ωd−2 = 2π
d−1

2

Γ( d−1
2 ) . The θ integral then gives us (following (B.4))

Iθ =
√
πΓ
(
d− 1

2

)
2
d
2−1

J d
2−1(q∆x)

(q∆x) d2−1
(B.17)

Therefore, we get

KE =
Ωd−2

√
π2 d2−1Γ(d−1

2 )
(2π)d(∆x) d2−1

z
d
2

∫
q>0

q
d
2 +µζν(qz)J d

2−1(q∆x)dq (B.18)

The coefficient out front simplifies to give us (with X = ∆x)

KE =
∫

ddq

(2π)d e
iq.(x−x′)z

d
2 |q|µζν(|q|z) = 1

(2π) d2
z
d
2

X
d
2−1

∫ ∞
q=0

qµ+ d
2 ζν(qz)J d

2−1(qX)dq (B.19)

Using these standard results (B.15), (B.19) we can compute the integrals of the type (B.1)
for any Bessel function ζν in the Lorentzian and Euclidean cases respectively.

– 36 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
5

C Identities involving hypergeometric/gamma functions

In this section we will employ variable transformation relations for the results in (5.5)–(5.6).
Certain transformations are distinct for d even or odd. Therefore, we treat these cases
separately. The general strategy would be to employ the transformation (following [7]) to
the hypergeometric function

2F1(a, b; c; z) = Γ(c)Γ(b− a)
Γ(b)Γ(c− a)(−z)−a 2F1

(
a, 1− c+ a; 1− b+ a; 1

z

)
+ Γ(c)Γ(a− b)

Γ(a)Γ(c− b)(−z)−b 2F1

(
b, 1− c+ b; 1− a+ b; 1

z

)
(C.1)

However, this relation holds only when a− b is not an integer. In the case where a− b is an
integer, we resort to the following series sum

2F1(a,a+m;c;z)
Γ(c) = (−1)m(1−z)−a−m

Γ(a)Γ(c−a−m)

∞∑
k=0

(a+m)k(c−a)k
Γ(k+1)Γ(k+m+1)(1−z)−k(ln(1−z)+hn)

+ (1−z)−a
Γ(a+m)Γ(c−a)

m−1∑
k=0

(a)k(c−a−m)kΓ(m−k)
Γ(k+1) (z−1)−k (C.2)

where hn = ψ(k + 1) + ψ(1 + k +m)− ψ(a+m+ k)− ψ(c− a+ k).The expression is valid
for |z − 1| > 1 and |ph(1− z)| < π. In the following subsection, we will find the expressions
to have the argument z such that it precisely satisfies these conditions.

We will also need to use the following expansion for a binomial

(1 + x)α = −sin πα
π

Γ(1 + α)
∞∑
n=0

Γ(n− α)
Γ(n+ 1) (−x)n (C.3)

It is fairly straightforward to derive this relation. All one needs for this is the usual series
representation for (1 + x)α, and the relation between Γ(1− z) and Γ(z) for z not an integer.
These are as follows

(1 + x)α =
∞∑
n=0

Γ(α+ 1)
Γ(n+ 1)Γ(α− n+ 1)x

n (C.4)

Γ(1− z)Γ(z) = π

sin πz (C.5)

Using (C.5) and replacing z by n− z, we get the relation

Γ(n− z)Γ(1− n+ z) = (−1)n−1Γ(z)Γ(1− z) (C.6)

Using (C.6) in (C.4), we get (C.3). Now, we can turn to the odd and even d + 1 cases
separately.

D Spatial iε-prescription

In expressions like (5.8), we encounter certain extra terms beyond those in the final form of
the kernel. We expect they should vanish, for various reasons discussed in the main text.
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From a simple series expansion in the first term of (5.8), we see that it consists of
powers of (T 2 −R2), while the second term of (5.8) has powers of (T 2 −R2 − Z2). Here,
T = t′ − t and R = |x′ − x|. The exponent in each case need not be integer. The argument
we present in this appendix will enable us to drop terms that are polynomials in (negative,
fractional) powers of (T 2 − R2), while retaining those in (T 2 − R2 − Z2). Naively this is
enough to drop the first line while retaining the second. But the trouble is that the first line
of (5.7) contains a hypergeometric function and therefore generically it is not a polynomial
of this type. It can have zeroes or poles not just in (T 2−R2) but also (T 2−R2−Z2), that
are invisible from the naive power series expansion around the origin. So our argument
in this section applies only in those special cases where the troublesome contributions
from (T 2 −R2 − Z2) are absent. We have checked that examples of this type arise when
half-integer ∆ ≥ d

2 in even-dimensional AdS as well as integer ∆ ≥ d in odd AdS, both for
the normalizable mode.19 For the more general case an argument that goes beyond what
we discuss here will be necessary.

Consider the kernel integrated against the positive frequency boundary mode

I =
∫
K1(z, x;x′)φ0+(x′, t′)dd−1~x′dt′. (D.1)

Using the Fourier modes of the boundary field,

φ0+(x, t) =
∫
φ̃0+(ω, k)e−iωtei~k.~xdd−1~kdω (D.2)

the following two types of integrals of interest emerge (we restrict to AdS4 concreteness,
but a similar argument can be made in other dimensions as well):

IA =
∫ ∞
T,X,Y=−∞

(T 2 −X2 − Y 2)λe−iωT eikxXeikyY dXdY dT (D.3)

IB =
∫ ∞
T,X,Y=−∞

(T 2 −X2 − Y 2 − Z2)λe−iωT eikxXeikyY dXdY dT (D.4)

These expressions are eventually integrated over ω,~k (from (D.2)), and since φ̃0+ is 0 for
ω < |k|, this condition can be applied when performing the integrals (D.3)–(D.4).

It is useful to perform the integral (D.3) (and similarly (D.4)) in two parts. In the region
Y > 0, the integral IA can be written with the usual parametrization X = R cosφ, Y =
R sinφ, where φ is defined with respect to the + ve X-axis and R lies in the range (0,∞).

IA|Y >0 =
∫ ∞
T=−∞

∫ ∞
R=0

∫ π

φ=0
R (T 2 −R2)λe−iωT eikxR cosφeikyR sinφdR dφ dT (D.5)

In the region Y < 0, a different parametrization is chosen. With the angle φ′ defined with
respect to the −ve X-axis, the parametrization X = R′ cosφ′, Y = R′ sinφ′ is used, but
(crucially!) with R′ ∈ (−∞, 0). The integral (D.3) becomes

IA|Y <0 =
∫ ∞
T=−∞

∫ 0

R′=−∞

∫ π

φ′=0
R′ (T 2−R′2)λe−iωT eikxR′ cosφ′eikyR

′ sinφ′dR′dφ′dT (D.6)

19For the non-normalizable mode the analogous values lead to wave equation solutions which are Bessel
functions of the second kind, whose reconstruction kernels are presented in appendix F.
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Note that the range of R′ is correspondingly adjusted to (−∞, 0) in order to compensate
for this choice of angle φ′.

Suppressing the primes in the dummy variables in (D.6), we can now add (D.5) and (D.6)
trivially to provide an expression for the full integral (D.3) where the range of R is the
entire real line:

IA =
∫ ∞
T=−∞

∫ ∞
R=−∞

∫ π

φ=0
R (T 2 −R2)λe−iωT eikxR cosφeikyR sinφdR dφ ddT (D.7)

This now explains our motivation behind choosing the peculiar parametrization in the
previous paragraph — had we chosen an ordinary polar coordinate system, the radial
variable would be strictly positive. Instead, we wish to treat it as a real variable spanning
(−∞,∞) so that the integral can be computed by closing the contour in the upper or lower
half R-plane. Note that in the above integral, the variables R and φ should not be confused
with the usual polar coordinates. In particular R spans the entire real line, and φ ranges
only over (0, π) and not (0, 2π). It should also be clear that a similar construction can be
done in higher dimensions, by spanning the sphere via two separate coordinate systems —
one based on the North pole and the other, the South pole.

Denote kx = k cosα and ky = k sinα, with k > 0 and α ≡ arctan(ky/kx). This puts
the integral (D.7) in the following form

IA =
∫ ∞
T=−∞

∫ ∞
R=−∞

∫ π

φ=0
R(T 2 −R2)λe−iωT eikR cos(φ−α)dφdRdT (D.8)

Similarly, the integral (D.4) can be written as

IB =
∫ ∞
T=−∞

∫ ∞
R=−∞

∫ π

φ=0
R(T 2 −R2 − Z2)λe−iωT eikR cos(φ−α)dφdRdT (D.9)

In terms of the U = T −R, V = T +R coordinates the integral (D.8) becomes

IA =
∫ ∞
U,V=−∞

∫ π

φ=0

(
V − U

2

)
(UV )λe−iω−Ue−iω+V dφdUdV (D.10)

where ω± = ω ± k cos(φ− α) > 0. The range of integration is U, V ∈ (−∞,∞).
Positivity of ω± implies that the integration contour has to be closed in the lower half

plane (LHP) for both U and V . The integral (D.10) would acquire a non-trivial value if
there is any pole/branch point of the integrand inside the integration contour. Since the
integrand has singularities on the real line at (noting that d > 2)

UV = 0, (D.11)

we will introduce an iε-prescription as R→ R±iε to handle them. This shifts the coordinates
U and V by ∓iε and ±iε respectively. This is reflected in the following modification to the
pole/branch point condition (D.11)

(U ∓ iε)(V ± iε) = 0 (D.12)
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With this condition, the integral (D.10) can be done first on either U or V , depending on
which term comes with a −iε shift.

Let us consider the case where the pole/branch point is given by (U − iε)(V + iε) = 0.
This arises from the choice R→ R+ iε. In terms of the U coordinate, the location of the
pole/branch point is U = iε. It is located in the positive imaginary axis, and hence outside
the contour of integration for U (which is the LHP). So the function is analytic in U , and
the integral over U will give 0.

Let us also consider (D.4) to ensure that it does not vanish. In the U, V language, it
becomes

IB =
∫ ∞
U,V=−∞

∫ π

φ=0

(
V − U

2

)
(UV − Z2)λe−iω−Ue−iω+V dφdUdV (D.13)

The pole/branch point condition is (considering the iε prescription)

(U ∓ iε)(V ± iε)− Z2 = 0 (D.14)

Considering the R→ R+ iε case, the following condition for the pole/branch point emerges

(U − iε)(V + iε) = Z2

=⇒ U = Z2

V
− iεZ

2

V 2 + iε (D.15)

The singularity is outside the contour of integration of U for Z2

V 2 < 1, and would be
inside the contour for Z2

V 2 > 1. This condition will be satisfied for V 2 < Z2. Since the
integration (D.13) is also over the full range of V , there will be some range of V for which
this inequality is satisfied. Thus, there is some pole/branch point inside the contour of
integration, which ensures that the integral does not vanish.

The key point is that these results are achieved as long as U and V are shifted by iε
with opposite signs. Accordingly one can choose to integrate along either U or V , whichever
comes with the −iε in (D.14). Since ω± in (D.13) are always positive (as ω > |k|), the
contour is closed in the LHP of the chosen integration variable. While this particular
demonstration is done for AdS4, similar arguments will hold for general AdSd+1 as long as
the extra terms are polynomials, as we discussed.

We suspect that the spatial iε-prescription that we have presented in this section
is related to the Wick rotation of spatial coordinates over which the integral is done,
as was discussed in [8]. Note in particular that the specific choice of the sign of the
epsilon prescription was not important for the success of our calculation. It will be nice to
understand the connection with the Wick rotation prescription, better. For completeness, we
present explicit formulas in general dimensions for the kernel with the Wick rotated spatial
coordinates, in the next section. It turns out that the mode sum integrals simplify when we
do this, effectively allowing us to bypass some of the subtleties we discussed in detail. But
of course the price is that now the integrals are over imaginary spatial coordinates.

– 40 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
5

E Kernels with complex boundary coordinates

In this appendix, we complexify the boundary coordinates in general dimensions and
obtain an expression for the kernel in terms of the complex boundary coordinates. It is
a generalization of the result in [7], where it was done for AdS3, to general dimensions.
The generalization is not entirely trivial, so we present the calculation explicitly for the
normalizable mode. The non-normalizable case follows similarly.

One can write the solution of the wave equation φ as follows

φ(t,x,z)

= 2νΓ(1+ν)
(2π)d

∫
ω>|k|

dωdd−1kzd/2
Jν(z
√
ω2−k2)

(
√
ω2−k2)ν

∫
dt′dd−1x′e−iω(t−t′)ei

~k.(~x−~x′)φ0(t′,x′)

= 2νΓ(1+ν)
(2π)d

∫
ω>|k|

dωdd−1ke−iωt ei
~k.~xzd/2

Jν(z
√
ω2−k2)

(
√
ω2−k2)ν

φ̃0(ω,k) (E.1)

where we have used the Fourier decomposition of φ0(x′, t′)

φ̃0(ω, k) =
∫

dt′dd−1x′eiωt
′
e−i

~k.~x′φ0(x′, t′) (E.2)

To write this in terms of complex boundary coordinates, we need show that
Jν(z

√
ω2 − |k|2)

(
√
ω2 − k2)ν

∝ I =
∫
t′2+y′2<z2

dt′dd−1y′(z2 − t′2 − y′2)ν−
d
2 e−iωt

′
e−

~k.~y′ (E.3)

We start by writing the integral I as

I =
∫
t′2+y′2<z2

dt′(z2 − t′2 − y′2)ν−
d
2 e−iωt

′
∫
e−

~k.~y′dd−1y′

= Ω0

∫
t′2+y′2<z2

dt′(z2 − t′2 − y′2)ν−
d
2 e−iωt

′
∫
e−ky

′ cos θ(sin θ)d−3y′d−2dy′dθ (E.4)

where Ω0 = 2π
d
2−1

Γ( d2−1) and y′ = |~y′|. That is, we cast the y′ coordinates in their polar
representation.

Using the following integral representation of the Bessel I

Iν(z) =
(1

2z)ν
√
πΓ(ν + 1

2)

∫ π

0
e±z cos θ(sin θ)2νdθ (E.5)

we have the result

I = Ω0
2 d−3

2 πΓ(d2 − 1)
√
π

∫
t′2+y′2<z2

dt′(z2 − t′2 − y′2)ν−
d
2 e−iωt

′
∫
y′d−2

I d−3
2

(ky′)

(ky′) d−3
2

dy′ (E.6)

Therefore, we need to tackle the following integral (we use c = Ω0
2
d−3

2
√
πΓ( d2−1)

k
d−3

2
= (2π)

d−1
2

k
d−3

2
for simplicity)

I = Ω0
2 d−3

2 πΓ(d2 − 1)
√
π

∫
t′2+y′2<z2

dt′(z2 − t′2 − y′2)ν−
d
2 y′d−1

I d−3
2

(ky′)

(ky′) d−3
2
e−iωt

′dy′

= c

∫
t′2+y′2<z2

dt′dy′(z2 − t′2 − y′2)ν−
d
2 y′

d−1
2 I d−3

2
(ky′)e−iωt′ (E.7)
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At this stage it is convenient to redefine the variables t′ = uz and y′ = vz.

I = cz2ν− d−3
2

∫
u2+v2<1

dudv(1− u2 − v2)ν−
d
2 v

d−1
2 I d−3

2
(kvz)e−iωuz (E.8)

Due to the constraint u2 + v2 < 1, we can use the parametrization u = a cos θ, v = a sin θ.

I = cz2ν− d−3
2

∫ 1

a=0

∫ π

θ=0
a
d+1

2 (1− a2)ν−
d
2 (sin θ)

d−1
2 I d−3

2
(kaz sin θ)e−iωaz cos θdadθ (E.9)

We perform the θ integral first

A =
∫ π

θ=0
(sin θ)µ+1Iµ(α sin θ)e−iβ cos θdθ (E.10)

where we have used the notation µ = d−3
2 , α = kaz and β = ωaz. Using the relation

Iµ(z) = i−µJµ(iz), the integral A becomes (with α̃ ≡ iα)

A = i−µ
∫ π

0
(sin θ)µ+1Jµ(α̃ sin θ)e−iβ cos θdθ (E.11)

Splitting the integral into 0 − π/2 and π/2 − π, and using θ → π − θ for the second
integral, we get the following result

A = 2i−µ
∫ π/2

0
(sin θ)µ+1Jµ(α̃ sin θ) cos(β cos θ)dθ (E.12)

The following result is used to replace the cos(β cos θ)

J− 1
2
(z) =

√
2
πz

cos z (E.13)

With this substitution, the integral A equals

A = 2i−µ
√
πβ

2

∫ π/2

0
(sin θ)µ+1Jµ(α̃ sin θ) cos1/2(β cos θ)J− 1

2
(β cos θ)dθ (E.14)

Here we shall employ the following identity∫ π/2

0
Jν(z1 sin θ)Jµ(z2 cos θ) sinν+1 θ cosµ+1 θdθ

=
zν1z

µ
2 Jν+µ+1

(√
z2

1 + z2
2

)
(√

z2
1 + z2

2

)µ+ν+1 ∀ Re(µ) > −1, Re(ν) > −1 (E.15)

Using this, we can write the integral A as

A = 2i−µ
√
πβ

2
β−

1
2 α̃µJµ+ 1

2
(
√
β2 + α̃2)

(
√
β2 + α̃2)µ+ 1

2
(E.16)
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Inserting α̃ = iα and µ = d−3
2 , this expression simplifies to

A =
√

2παµ
J d

2−1(
√
β2 − α2)

(
√
β2 − α2) d2−1

(E.17)

Using the explicit expressions of β and α

A =
√

2π
az
k
d−3

2
J d

2−1(az
√
ω2 − k2)

(
√
ω2 − k2) d2−1

(E.18)

We insert A in I (E.9) to get

I =
√

2πck
d−3

2 z2ν− d2 +1
∫ 1

0
a
d
2 (1− a2)ν−

d
2
J d

2−1(az
√
ω2 − k2)

(
√
ω2 − k2) d2−1

da (E.19)

To evaluate this, we use the following result∫ 1

0
xν+1(1− x2)µJν(bx)dx = 2µΓ(µ+ 1)b−µ−1Jµ+ν+1(b) (E.20)

Employing this to (E.19), we get the result

I =
√

2πck
d−3

2 z2ν− d2 +12ν−
d
2 Γ
(
ν − d

2 + 1
)

Jν(z
√
ω2 − k2)

zν−
d
2 +1(
√
ω2 − k2)ν

= 2νπ
d
2 Γ
(
ν − d

2 + 1
)
zν
Jν(z
√
ω2 − k2)

(
√
ω2 − k2)ν

(E.21)

From (E.21) and (E.3), one can write

Jν(z
√
ω2 − k2)

(
√
ω2 − k2)ν

= 1
2νπ d2 Γ(ν − d

2 + 1)zν

∫
t′2+y′2<z2

dt′dd−1y′(z2 − t′2 − y′2)ν−
d
2 e−iωt

′
e−

~k.~y′

(E.22)

Plugging it back into (E.1), we get (denoting C = 2νΓ(1+ν)
(2π)d2νπ

d
2 Γ(ν− d2 +1)

= Γ(1+ν)
(2π)dπ

d
2 Γ(ν− d2 +1)

for simplicity)

φ(x,t,z) =C

∫
ω>|k|

dωdd−1k e−iωtei
~k.~xzd/2

Jν(z
√
ω2−k2)

(
√
ω2−k2)ν

φ̃0(ω,k)

=C

∫
t′2+y′2<z2

dt′dd−1y′
(
z2−t′2−y′2

z

)ν− d2 ∫
dωdd−1k e−iω(t+t′)ei

~k.(~x+i~y′)φ0(ω,k)

= (2π)dC
∫
t′2+y′2<z2

dt′dd−1y′ lim
z′→0

(2z′σ(t,x,z; t+t′,x+iy′,z′))ν−
d
2φ0(t+t′,x+iy′)

(E.23)

From this expression, we can read off the kernel K1 corresponding to the normalizable
mode. Recall that for normalizable mode, we have ν = ∆− d

2 and for non-normalizable mode
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we have ν = d
2 −∆ (also φ0 is replaced by j0). Therefore, the kernel for the normalizable

mode K1 and the non-normalizable mode K2 are as follows (using (2π)dC = Γ(1+ν)
π
d
2 Γ(ν− d2 +1)

)

K1(z,x, t;z′, t+t′,x+iy′) =
Γ(1+∆− d

2)
π
d
2 Γ(∆−d+1)

lim
z′→0

(2z′σ(t,x,z; t+t′,x+iy′,z′))∆−d (E.24)

K2(z,x, t;z′, t+t′,x+iy′) =
Γ(1−∆+ d

2)
π
d
2 Γ(1−∆)

lim
z′→0

(2z′σ(t,x,z; t+t′,x+iy′,z′))−∆ (E.25)

F Non-normalizable mode for integer ν

The kernel integral for integer ν ≡ p is given by

K2(z,x;x′) =−
∫ |q|pπ

2pΓ(p)e
iq.(x−x′)z

d
2

{−γ+ψ(p+1)−2ln(|q|/2)
π

Jp(|q|z)+Yp(|q|z)
} ddq

(2π)d
(F.1)

This can be broken into three integrals, each of which we will evaluate separately:

Ĩ1 = −(−γ + ψ(p+ 1) + 2 ln(2))
2p(2π)dΓ(p)

∫
|q|peiq.(x−x′)zd/2Jp(|q|z)ddq (F.2)

Ĩ2 = 2
2pΓ(p)(2π)d

∫
|q|p ln(|q|)eiq.(x−x′)zd/2Jp(|q|z)ddq (F.3)

Ĩ3 = − π

2p(2π)dΓ(p)

∫
|q|peiq.(x−x′)zd/2Yp(|q|z)ddq (F.4)

We begin with the integral Ĩ3.

F.1 Integral Ĩ3

To perform this integral, we write out q in terms of it’s components (ω,~k). For simplicity,
we ignore the prefactor − π

2p(2π)dΓ(p) for the moment. This factor will be included at the
end.

I3 =
∫
ω>|k|

(
√
ω2 − |k|2)pe−iω∆tei

~k.∆~xzd/2Yp(z
√
ω2 − |k|2)dωdd−1~k (F.5)

where we have used the notation ∆t = t− t′, ∆~x = ~x− ~x′. As before, this integral simplifies
to the following (where we denote |k| by k)

I3 =
∫
ω>k

∫ π

θ=0
(
√
ω2 − k2)pe−iω∆teik∆x cos θzd/2Yp(z

√
ω2 − k2)(sin θ)d−3kd−2dωdkdθ

(F.6)

We first evaluate the θ integral. As we have observed before

∫ π

0
sind−3 θeik∆x cos θdθ =

√
πΓ
(
d

2 − 1
)

2
d−3

2
J d−3

2
(k∆x)

(k∆x) d−3
2

(F.7)
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Using this expression in I3 gives us

I3 =
√
πΓ(d2 − 1)2

d−3
2

∫
ω>k

(
√
ω2 − k2)pe−iω∆tzd/2Yp(z

√
ω2 − k2)

J d−3
2

(k∆x)

(k∆) d−3
2

kd−2dωdk

(F.8)

The condition ω > k is easily parametrized by the variable choice ω = s cosh y. k = s sinh y
with 0 ≤ s, y ≤ ∞. This gives the following form of the integral

I3 =
√
πΓ(d2 − 1)2 d−3

2

(∆x) d−3
2

∫ ∞
0

spe−is∆t cosh yzd/2Yp(sz)J d−3
2

(s∆x sinh y)(s sinh y)
d−1

2 sdsdy

(F.9)

The y integral can be evaluated to give the following result∫ ∞
y=0

(sinhy)
d−1

2 e−is∆tcoshyJ d−3
2

(s∆xsinhy)dy=
√

2
π
s−

1
2 (∆x)

d−3
2 X

2−d
2 K d

2−1(sX) (F.10)

where X =
√

∆x2 −∆t2 and the usual iε light-cone regularization in t is implicit. The
integral I3 now becomes

I3 =
√

2Γ(d2 − 1)2
d−3

2 X1− d2 zd/2
∫ ∞

0
sp+

d
2Yp(sz)K d

2−1(aX)ds (F.11)

The non-trivial bit is doing this integral. To evaluate this integral, we resort to the
connection between Bessel Y and K.

Connecting Bessel Y and K. To arrive at a relation between the Bessel Y and K

functions, we turn to the following relations

Yα(x) = 1
2i
(
H(1)
α (x)−H(2)

α (x)
)

Kα(x) =


π
2 i
α+1H

(1)
α (ix) −π < Arg(x) ≤ π

2
π
2 (−i)α+1H

(2)
α (ix) −π

2 < Arg(x) ≤ π

The objective is to write H(1,2)
α in terms of Kα, while keeping in mind that the argument of

Yα has phase 0. Since we already know that the argument of Yα is sz > 0, we use the same
for the rest of the calculation. So, we can invert the relation between H(1,2) and K to write
the following

H(1)
α (sz) = 2

π
(−i)α+1Kα(−isz) −π < Arg(−isz) ≤ π

2 (F.12)

H(2)
α (sz) = 2

π
(i)α+1Kα(isz) −π2 < Arg(isz) ≤ π (F.13)

Note that both the conditions in the equations above hold, since Arg(−isz) = Arg(−i) +
Arg(sz) = −π

2 and Arg(isz) = Arg(i) + Arg(sz) = π
2 , which satisfy the corresponding

inequalities. Hence we can now use these to write

Yα(sz) = 1
2i

( 2
π

(−i)α+1Kα(−isz)− 2
π

(i)α+1Kα(isz)
)

(F.14)
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And this reduces to (setting α = p to keep up with the notation in the rest of the text)

Yp(sz) = − 1
π
epπi/2(Kp(isz) + (−1)pKp(−isz)) (F.15)

The relation in the box connecting Y and K Bessel functions is not directly available in the
tables we are aware of. But we have numerically double-checked our final result above for
various values of the parameters. This leads us to the following two integrals from (F.11)

I3, 1 =
∫ ∞

0
sp+

d
2Kp(−isz)K d

2−1(sX)ds

I3, 2 =
∫ ∞

0
sp+

d
2Kp(isz)K d

2−1(sX)ds

To evaluate these, we turn to the following integral identity∫ ∞
0

x−λKµ(ax)Kν(bx)dx = 2−2−λa−ν+λ−1bν

Γ(1− λ) Γ
(1− λ+ µ+ ν

2

)
Γ
(1− λ− µ+ ν

2

)
× Γ

(1− λ+ µ− ν
2

)
Γ
(1− λ− µ− ν

2

)
× 2F1

(
1− λ+ µ+ ν

2 ,
1− λ− µ+ ν

2 ; 1− λ; 1− b2

a2

)
∀ Re(a+ b) > 0, Re(λ) < 1− |Re(µ)| − |Re(ν)| (F.16)

The conditions for the identity are satisfied. The integrals become

I3,1 = 2p+ d
2−2(−iz)−p−dX d

2−1

Γ(1+p+ d
2)

Γ
(
p+ d

2

)
Γ
(
d

2

)
Γ(p+1) 2F1

(
p+ d

2 ,
d

2 ;1+p+ d

2 ;1+X2

z2

)
(F.17)

I3,2 = 2p+ d
2−2(iz)−p−dX d

2−1

Γ(1+p+ d
2)

Γ
(
p+ d

2

)
Γ
(
d

2

)
Γ(p+1) 2F1

(
p+ d

2 ,
d

2 ;1+p+ d

2 ;1+X2

z2

)
(F.18)

Therefore, we have the following integral result (by noting that I3, 1 = (−1)−p−dI3, 2∫ ∞
0

sp+
d
2Yp(sz)K d

2−1(sX)ds = −e
pπi
2

π
(1 + (−1)d)I3, 2

= −(1 + (−1)d)e
pπi
2

π

2p+ d
2−2(iz)−p−dX d

2−1

Γ(1 + p+ d
2)

× Γ
(
p+ d

2

)
Γ
(
d

2

)
Γ(p+ 1) 2F1

(
p+ d

2 ,
d

2 ; 1 + p+ d

2 ; 1 + X2

z2

)

= −(1 + (−1)d)2p+ d
2−2i−dz−p−dX

d
2−1

(p+ d
2)π

Γ(p+ 1)Γ
(
d

2

)
2F1

(
p+ d

2 ,
d

2 ; 1 + p+ d

2 ; 1 + X2

z2

)

= − cos
(
πd

2

) 2p+ d
2−1z−p−dX

d
2−1

(p+ d
2)π

Γ(p+ 1)Γ
(
d

2

)
2F1

(
p+ d

2 ,
d

2 ; 1 + p+ d

2 ; 1 + X2

z2

)
(F.19)
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Re-instating the omitted pre-factors, this expression therefore allows us to write Ĩ3 as

Ĩ3 = π

2p(2π)dΓ(p)
√

2Γ
(
d

2 − 1
)

2
d−3

2 X1− d2 cos
(
πd

2

) 2p+ d
2−1z−p−

d
2X

d
2−1

(p+ d
2)π

Γ(p+ 1)Γ
(
d

2

)

× 2F1

(
p+ d

2 ,
d

2 ; 1 + p+ d

2 ; 1 + X2

z2

)
(F.20)

This simplifies to

Ĩ3 =
π−dp cos

(
πd
2

)
Γ
(
d
2 − 1

)
Γ
(
d
2

)
4(p+ d

2)
z−p−

d
2 2F1

(
p+ d

2 ,
d

2 ; 1 + p+ d

2 ; 1 + X2

z2

)
(F.21)

F.2 Integral Ĩ2

In this sub-section, we will evaluate the integral Ĩ2, which we reiterate below

Ĩ2 = 2
2pΓ(p)(2π)d

∫
|q|p ln(|q|)eiq.(x−x′)zd/2Jp(|q|z)ddq (F.22)

Following the same process as for I3, this integral reduces to (again, leaving the original
prefactors for now)

I2 =
√

2Γ(d2 − 1)2
d−3

2 X1− d2 zd/2
∫ ∞

0
sp+

d
2 ln(s)Jp(sz)K d

2−1(sX)ds (F.23)

The integral that we have to evaluate is∫ ∞
0

sp+
d
2 ln(s)Jp(sz)K d

2−1(sX)ds (F.24)

This is an integral of the following form∫ ∞
0

x−λ ln(x)Kµ(ax)Jν(bx)dx = − ∂

∂λ

∫ ∞
0

x−λKµ(ax)Jν(bx)dx (F.25)

We use the integral∫ ∞
0

x−λKµ(ax)Jν(bx)dx = bν

2λ+1aν−λ+1Γ(1 + ν)Γ
(
ν − λ+ µ+ 1

2

)
Γ
(
ν − λ− µ+ 1

2

)
× 2F1

(
ν − λ+ µ+ 1

2 ,
ν − λ− µ+ 1

2 ; ν + 1;− b
2

a2

)
∀ Re(a± ib) > 0 & Re(ν − λ+ 1) > |Re(µ)| (F.26)

Taking the derivative of this gives us the following result∫ ∞
0

x−λ ln(x)Kµ(ax)Jν(bx)dx

= − 2−λ−2

Γ(ν + 1)b
νaλ−ν−1Γ(κ−)Γ(κ+)

(
G(1)
a

(
κ−, κ+, ν + 1,− b

2

a2

)

+G
(1)
b

(
κ−, κ+, ν + 1,− b

2

a2

)
+ 2F1

(
κ−, κ+, ν + 1,− b

2

a2

)(
ln
( 4
a2

)
+ ψ(κ−) + ψ(κ+)

))
(F.27)
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where we have used the shorthand κ± = −λ±µ+ν+1
2 . The functions G(1)

a,b indicate the
derivative of 2F1(a, b; c; z) with respect to the parameters a or b [51]. These functions are
represented by the following series

G(1)
a (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

(ψ(a+ n)− ψ(a)) zn

Γ(n+ 1) (F.28)

G
(1)
b (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

(ψ(b+ n)− ψ(b)) zn

Γ(n+ 1) (F.29)

Now we can plug in the values of λ, µ, ν, a&b. From these values we note that κ+ = p+ d
2

and κ− = p+ 1. Thus the integral becomes∫ ∞
0

sp+
d
2 ln(s)Jp(sz)K d

2−1(sX)ds

=−2p+
d
2−2zpX−2p− d2−1Γ

(
p+ d

2

)(
G(1)
a

(
p+1,p+ d

2 ,p+1,− z2

X2

)

+G(1)
b

(
p+1,p+ d

2 ,p+1,− z2

X2

)
+2F1

(
p+1,p+ d

2 ,p+1,− z2

X2

)

×
(

ln
( 4
X2

)
+ψ(p+1)+ψ

(
p+ d

2

)))
(F.30)

A bit of simplification happens, since two of the entries of the hypergeomtric functions and
their derivatives are the same. The sums in (F.28)–(F.29) can be explicitly evaluated to give

G(1)
a (a, b; a; z) =

∞∑
n=0

(b)n(ψ(a+ n)− ψ(a)) zn

Γ(n+ 1) (F.31)

G
(1)
b (a, b; a; z) = −(1− z)−b ln(1− z) (F.32)

2F1(a, b; a, z) = (1− z)−b (F.33)

We are not aware of a closed form expression for G(1)
a (a, b; a; z). Putting back the pre-factors,

the final form of Ĩ2 is

Ĩ2 = −
zp+

d
2π−dΓ

(
d
2 − 1

)
Γ
(
d
2 + p

)
4Γ(p)

G(1)
a

(
p+ 1, p+ d

2 , p+ 1,− z2

X2

)

−
(

1 + z2

X2

)−p− d2
ln
(

1 + z2

X2

)
+
(

1 + z2

X2

)−p− d2

×
(

ln
( 4
X2

)
+ ψ(p+ 1) + ψ

(
p+ d

2

))X−2p−d (F.34)

F.3 Integral Ĩ1

Finally we turn to the integral Ĩ1, which we repeat below

I1 = −(−γ + ψ(p+ 1) + 2 ln(2))
2p(2π)dΓ(p)

∫
|q|peiq.(x−x′)zd/2Jp(|q|z)ddq (F.35)
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Leaving the prefactors aside for the moment

I1 =
∫
|q|peiq.(x−x′)zd/2Jp(|q|z)ddq

=
√

2Γ
(
d

2 − 1
)

2
d−3

2 X1− d2 zd/2
∫ ∞

0
sp+

d
2Jp(sz)K d

2−1(sX)ds (F.36)

The s-integral is evaluated by considering (F.26). From there, we get∫ ∞
0

sp+
d
2Jp(sz)K d

2−1(sX)ds

= zp

2−p− d2 +1X2p+ d
2 +1

Γ
(
p+ d

2

)
Γ(p+ 1) 2F1

(
p+ 1, p+ d

2 ; p+ 1;− z2

X2

)

= zp

2−p− d2 +1X2p+ d
2 +1

Γ
(
p+ d

2

)
Γ(p+ 1)

(
1 + z2

X2

)−p− d2
(F.37)

Thus the full integral Ĩ1 becomes

Ĩ1 = 1
4π
−dpΓ

(
d

2 − 1
)

Γ
(
d

2 + p

)
(2γ − ψ(p+ 1)− log(4))

(
X2 + z2

z2

)−p− d2
. (F.38)

F.4 The final kernel

Finally, we put together the integrals Ĩ1, Ĩ2 and Ĩ3 to write the full kernel K2 for the
non-normalizable mode for integer ν = p. We also use the more familiar notation of ∆, d
by writing p = ∆− d

2 wherever it appears. We also introduce the σz′ notation wherever
possible.20 The three integrals were evaluated to the following forms

Ĩ1 = 1
8π
−d(d− 2∆)Γ

(
d

2 − 1
)

Γ(∆)
(

2γ − ψ
(

∆− d

2 + 1
)
− log(4)

) (
2σz′

)−∆ (F.39)

Ĩ2 = −
π−dΓ

(
d
2 − 1

)
Γ(∆)

4Γ
(
∆− d

2

) ( (
2σz′

)−∆
(

ln
( 2
z2

)
+ ψ

(
∆− d

2 + 1
)

+ ψ(∆)− ln(σz′)
)

+ z∆

X2∆G
(1)
a

(
∆− d

2 + 1,∆,∆− d

2 + 1,− z2

X2

))
(F.40)

Ĩ3 = −
π−d(d− 2∆) cos

(
πd
2

)
Γ
(
d
2 − 1

)
Γ
(
d
2

)
8∆ z−∆

2F1

(
∆, d2 ; 1 + ∆; 1 + X2

z2

)
(F.41)

The final kernel K2 is written simply as K2 = Ĩ1 + Ĩ2 + Ĩ3.

G Euclidean AdS wave equation in terms of chordal distance

We recall the PoincarPoincarée chordal distance as follows

σ(z, x; z′, x′) = z2 + z′2 + |x− x′|2
2zz′ (G.1)

20The limit limz′→0 is understood in the following expressions.
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We need to evaluate the partial derivatives, which are as follows

∂Φ
∂z

=
( 1
z′
− σ

z

)
∂Φ
∂σ

(G.2)

∂2Φ
∂z2 =

(2σ
z2 −

1
zz′

)
∂Φ
∂σ

+
( 1
z′
− σ

z

)2∂2Φ
∂σ2 (G.3)

∂2Φ
∂~x2 =

( 2σ
zz′
− 1
z2 −

1
z′2

)
∂2Φ
∂σ2 + d

zz′
∂Φ
∂σ

(G.4)

Plugging this into the Euclidean wave equation(
z2∂2

z − z(d− 1)∂z + z2∂2
~x −m2

)
Φ(x, t, z) = 0 (G.5)

we get(
2σ− z

z′

)
Φ′+

(
z

z′
−σ
)

Φ′′−(d−1)
(
z

z′
−σ
)

Φ′+
(

2σz
z′
−1− z

2

z′2

)
Φ′′+d z

z′
Φ′−∆(∆−d)Φ = 0

(G.6)

where we have used the notation

Φ′ = dΦ
dσ

Φ′′ = d2Φ
dσ2

m2 = ∆(∆− d)

And from this we get

(σ2 − 1)d
2Φ(σ)
dσ2 + (d+ 1)σdΦ(σ)

dσ
−∆(∆− d)Φ(σ) = 0 (G.7)
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