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Laminar-turbulent pattern formation is a distinctive feature of the intermittency regime in subcritical
plane shear flows. By performing extensive numerical simulations of the plane channel flow, we show that
the pattern emerges from a spatial modulation of the turbulent flow, due to a linear instability. We sample
over many realizations the linear response of the fluctuating turbulent field to a temporal impulse, in the
regime where the turbulent flow is stable, just before the onset of the instability. The dispersion relation is
constructed from the ensemble-averaged relaxation rates. As the instability threshold is approached, the
relaxation rate of the least damped modes eventually reaches zero. The method allows, despite the presence
of turbulent fluctuations and without any closure model, for an accurate estimation of the wave vector of the
modulation at onset.
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Turbulent channel flow is one of the most studied
prototypes of inhomogeneous anisotropic turbulence. It
has been evidenced, both experimentally and numerically,
that at moderate flow rates—quantified by the Reynolds
number Re—it exhibits a spatiotemporally intermittent
regime featuring robust large-scale turbulent structures
amid a laminar background [1–3]. The dynamical origin
of such patterned turbulence in channel flow, as well as
in other shear flows, remains however actively debated
[4–15].
On the lower end in Re of the coexistence regime,

turbulent patches grow and split, or decay, resulting in
strongly fluctuating dynamics. It was suggested that the
stochastic nature of these processes, which decides whether
turbulence will either spread or recede and eventually
decay, could be described in the framework of nonequili-
brium critical phenomena and specifically of directed
percolation (DP), with the laminar state acting as the
absorbing phase [16]. A major achievement of the past
two decades has been to provide strong experimental and
numerical evidence in favor of this scenario in a few shear
flows [14,17,18]. On the theoretical side, this regime has
been described by an effective one-dimensional model of
fronts in an excitable medium [19,20]. Quite remarkably,
and yet not theoretically understood, numerical simulations
of the stochastic version of that model reproduce the DP
scenario.
Increasing Re, individual turbulent patches leave place to

a well organized periodic pattern of alternating laminar and
turbulent bands, inclined at a well-defined angle to the
mean flow [4–6]. Considering the proliferation of turbu-
lence as a problem of front propagation, it is tempting to
view this pattern as packed arrays of individual localized

structures. Yet, periodic pattern solutions have not been
identified as solutions to the effective excitable dynamics
[19,20]. An alternative viewpoint is to consider the pattern
as emerging from the featureless turbulence found at larger
Re. Pioneering studies have demonstrated experimentally
that the pattern developing in plane and circular Couette
flows, characterized by two competing orientations of
alternate sign, is fully captured by the dynamics of two
coupled Ginburg-Landau equations with noise [6,7].
Recent visualizations, obtained in well-resolved numerical
simulations of large domain channel flows, unveil small-
amplitude harmonic modulations of the turbulent flow for
values of Re larger than those at which genuine laminar-
turbulent coexistence is reported [3]. Statistical signatures
of low-wall-shear-rate intermittency have been found, at
Re-values usually associated with featureless turbulent
flows [21]. Altogether these results suggest the possibility
of a large-wavelength instability of the turbulent flow itself,
as already proposed in Ref. [6]. As recently suggested on
the basis of a spatiotemporal extension of a classical self-
sustained turbulence model [22,23], the instability could be
of Turing type [10]. However, there is no theoretical
evidence for such a linear instability of the turbulent mean
flow obtained from one-point closure models [24]. These
different viewpoints reflect global doubts regarding the
origins of the patterned state and ambiguity as to whether
the starting point for modeling the periodic pattern should
be the spatial organization of the isolated turbulent patches
when increasing Re, or the linear instability of the turbulent
flow, including its fluctuations, when decreasing Re.
Here we bring direct evidence in favor of the linear

instability scenario in the case of the channel flow. To do so,
we perform extensive numerical simulations and sample
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the linear response of the turbulent flow to a temporal
impulse, in the regime where the large wavelength modu-
lations are damped. The dispersion relation is then con-
structed from the ensemble-averaged relaxation rates,
for decreasing values of Re. The smallest relaxation rate
approaches zero for some critical value Rec, pointing at the
spatial structure of the modes which grow at the instability
onset. The method can be seen as the temporal counterpart
of the spatial linear response considered in Ref. [25]. It is
intrinsically statistical in the sense that it establishes an
average dispersion relation for the instability modes, from
which the quantitative onset for the spatial modulation can
be identified.
The incompressible flow considered in this study is

driven in the streamwise direction x by a constant pressure
gradient. The other Cartesian coordinates y and z are
respectively wall normal and spanwise. All length scales
are nondimensionalized by the channel half gap h, and
velocities u ¼ ðux; uy; uzÞ by Ucl, the centerline velocity of
the classical laminar plane Poiseuille flow UðyÞ ¼ 1 − y2

driven by the same pressure gradient. Time is reported
in units of h=Ucl. The velocity field is decomposed as
u ¼ UðyÞex þ u0 where u0 denotes the perturbation to the
laminar base flow. Spatial average of a field f are indicated
with hfix;y;z where the subscript indicates the direction over
which the average is computed. Time averages are indi-
cated by f̄. Ensemble averages are indicated as hfie.
Fourier amplitudes are denoted with f̂. The selected control
parameter is the friction Reynolds number Reτ ¼ uτh=ν,
where ν is the kinematic viscosity of the fluid, uτ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffihτ̄ixz=ρ
p

is the friction velocity, with hτ̄ixz the mean shear
rate fixed by the pressure gradient, and ρ the fluid density.
Turbulent simulations were performed with the spectral
solver CHANNELFLOW2.0 [26] in a domain of Lx ¼ 2Lz ¼
250 for times up to t ¼ 4000. These simulations are
resolved with a resolution of Nx ¼ Nz ¼ 1024 (including
dealiasing with the 2=3 rule) and Ny ¼ 65 comparable to
Ref. [3]. The most recent investigations have reported
laminar-turbulent patterns for 50≲ Reτ ≲ 90, and indepen-
dent turbulent bands for lower values of Reτ down to ≈36
[3,21,27,28].
Large-scale modulations close to Reτ ≈ 90, as well as

genuine laminar-turbulent patterning for Reτ ≲ 90, are
unambiguous from Fig. 1, which displays the instantaneous
kinetic energy in the wall-normal direction

Evðx; z; tÞ ¼
�
1

2
u02y

�
y
; ð1Þ

both at full spatial resolution and after application of a low-
pass filter. It was checked that the modulations and the
pattern are robust with respect to the doubling and quad-
rupling of the numerical domain in both x and z (see
Appendix A of the Supplemental Material [29]). The exact

range of existence of the modulations, and notably their
onset, are difficult to judge from visualizations alone
because of the turbulent fluctuations, whose standard
deviation can exceed the amplitude of the modulation. It
is also sensitive to the choice of the visualized quantity.
Conversely, the emergence of large-scale patterns, as Reτ
decreases, appears clearly as a low-wave-number signature
in the time-averaged two-dimensional energy spectrum of
the y-averaged fluctuating streamwise component hu0xiy
[Fig. 2(a)]. Apart from the small-scale modes, correspond-
ing to the turbulent fluctuations, one clearly observes a set
of large-scale modes excited at Reτ ¼ 92 (but absent at
Reτ ¼ 110). We also note an increase of the energy
contained in the small-scale modes, and in the modes
separating them from the large-scale ones, as Reτ
decreases. The detailed mechanisms of such energy transfer
in the spectral space have been analyzed recently in
turbulent shear flows at a low [30], moderate [31], and
high [32] Reynolds number. They rely on the combined
nonlinear action of direct, inverse, and especially transverse
cascades [33], in contrast to the classical cascade picture.
Our contribution deals with the cause for the sudden
strengthening-activation (upon lowering Re) of these
energy transfers toward large scales and to the methodo-
logy for identifying the associated critical threshold in Re.
Two maxima are readily identified in Fig. 2(a).

Exploiting this scale separation, we define ELSFðReτÞ,

FIG. 1. Onset of modulated turbulent channel flow. Left
column: turbulent kinetic energy Evðx; z; tÞ. Right column:
instantaneous streamwise profile of Evðx; z ¼ cst; tÞ, (black:
raw instantaneous values; red: low-pass filtered values).
From top to bottom: (a), (e) Reτ ¼ 100, (b), (f) Reτ ¼ 90,
(c), (g) Reτ ¼ 85, (d), (h) Reτ ¼ 80.
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and ESSFðReτÞ, the dimensionless amplitude of the
large-scale and small-scale flows, as the energy content
of the spectral subdomains SLSF ¼ f0 < kz < 1g and
SSSF ¼ f1≲ kzg, respectively:

ELSF=SSFðReτÞ ¼
ZZ

SLSF=SSF

jh ¯̂u0xiyj2dkxdkz: ð2Þ

ELSF is dominated by the low-k modes inside the spectral
subdomain S highlighted in Fig. 2(a) (left). We checked
that this scale separation, based solely on kz, appropriately
delineates the two energy peaks observed in the spectra
of all the turbulent fields we analyzed. ELSF and ESSF are
shown as functions of Reτ in Fig. 2(c) obtained from
random initial conditions (RIC) or during slow ascent,
respectively descent, annealing in Reτ. One observes a
clear increase of ELSF in contrast with the marginal increase
of ESSF as Reτ decreases from the featureless turbulent
regime (Reτ ≳ 110) to the well-defined pattern one
(50≲ Reτ ≲ 90), with no sign of hysteresis. We note that
ELSF is never strictly zero even at high Reτ. Whether the
above observations result from a true bifurcation or are
simply a mere crossover cannot be decided by simply

looking at Fig. 2. This is what motivates the following
analysis where we show that the rise of ELSF is due to a
linear instability of the turbulent flow.
Establishing the linear instability of a flow with arbitrary

time dependence can be addressed in different ways. One
possibility is to study the linear stability of the mean flow
using the Orr-Sommerfeld formalism. This strategy,
whether conducted at high [34] or transitional [35] Re,
predicts linear stability. At the opposite end, taking into
account all temporal fluctuations is in principle possible
using Lyapunov analysis. However for turbulent flows the
number of positive Lyapunov exponents is prohibitively
huge [36] because of the chaoticity at small scales down to
the Kolmogorov scale. The turbulent scales where these
instabilities dominate are however not the emerging large
scales visible in Fig. 2, which suggests the computation of
alternative quantities.
The general idea is to study the linear response of the

flow to a temporal impulse. If the flow is linearly stable, the
disturbance should relax; otherwise it should grow and lead
to a bifurcated flow. However, the reference flow being
turbulent, the analysis must be conducted at a statistical
level. Besides the spatial structure of the temporal impulse
should be agnostic to the turbulent spectrum. We therefore
proceed as follows. A representative turbulent state in the
statistically steady regime at the required value of Reτ,
simulated for t < 0, is perturbed at t ¼ 0 using a diver-
gence-free noise field, before the simulations run further
without noise, for t > 0, and we monitor the temporal
evolution of the modulus of the Fourier amplitudes of
large-scale modes, jτ̂jðReτ; kx; kz; tÞ, with ðkx; kzÞ ∈ S ¼
f0.075≲ kx ≲ 0.22; 0.2≲ kz ≲ 0.5g [the highlighted
square area in Fig. 2(a), part of SLSF]. For large enough
Reτ, the disturbed flow relaxes back toward the steady
turbulent state. The individual time series jτ̂j however
showcase a strongly fluctuating decay. This computational
decay experiment is therefore repeated over 40 different
realizations of the noise field and the modulus of the
spectral amplitude of each large-scale Fourier mode jτ̂j is
ensemble averaged over all realizations to yield hjτ̂jie, as
illustrated in Fig. 3(a) for Reτ ¼ 120 and ðkx; kzÞ ¼
ð0.12; 0.3Þ. Ensemble averaging brings clarity into the
system’s response: past an initially nonlinear decrease of
hjτ̂jie, a clear exponential decay toward a finite value As is
observed. This late stage exponential decay captures the
averaged linear response of the turbulent state with respect
to a temporal impulse, and as such does not depend on the
amplitude of the initial noise field. It is our central object
of interest, as it gives access to the dispersion relation. The
corresponding growth rate σ is evaluated by estimating first
the saturation level As and then fitting an exponential decay
to ðhjτ̂jie − AsÞ, using a straight line fit in logarithmic scale,
as portrayed in Fig. 3(b) (See Appendix B of the
Supplemental Material [29] for a detailed step by step
description of the procedure). As a first step, the analysis is

FIG. 2. Premultiplied power spectrum for the y-averaged
streamwise velocity fluctuation hu0xiy at (a) Reτ ¼ 92 and
(b) Reτ ¼ 110 (right). (c) Energies ELSF of the large-scale modes
(defined according to Eq. (2) and ESSF of the small-scale modes
vs Reτ. The black arrow points at the linear instability threshold
corresponding to the onset of the turbulent modulated flow
determined here at Reτ ¼ 95� 1. ELSF (filled symbols) and
ESSF (empty symbols) are computed for different simulation
strategies: red cross, RIC, divergence free random velocity field as
initial condition; blue square, descending annealing; green circle,
ascending annealing.
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carried out along the diagonal of the spectral window S.
Figures 3(c) and 3(d) show the strong dependence of the
growth rate on both k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
and Reτ. More specifi-

cally, one observes that, for Reτ ¼ 96, the growth rate of the
mode corresponding to k ¼ 0.38 is close to vanishing,
suggesting the proximity of a linear instability. In principle
one could expect monitoring the average exponential
growth of such a large-scale mode beyond the instability
threshold. However, not only would the growth rate be hard
to measure accurately near onset, one would also need to
isolate the featureless turbulent state in a regime where it is
unstable.
We therefore concentrate on the decay rates and extract

the mean dispersion relation for the linear response of the
turbulent flow (Fig. 4). The data are fit with a paraboloid
surface [Fig. 4(a)] of the form

σ ¼ αðkx− kxcÞ2þ βðkz− kzcÞ2þ γðkx− kxcÞðkz− kzcÞþ δ;

ð3Þ
where ðkxc; kzcÞ is the critical wave vector. The coefficients
of Eq. (3) obtained for different values of Reτ are reported
in the Supplemental Material [29], Appendix B. The
dispersion curves approach the neutral axis as the value
of Reτ is decreased and eventually cross it for Reτ ¼ 94.
The estimated critical value for the instability is
Reτ ¼ 95� 1. The critical wave vector ðkxc ¼
0.18� 0.025; kzc ¼ 0.42� 0.05Þ is obtained from the

above parabolic fit of the decay rates, estimated for all
ðkx; kzÞ ∈ S, as illustrated in Fig. 4(a) for Reτ ¼ 110 and
Reτ ¼ 96. It perfectly matches the one measured directly at
onset and leads to an inclination of the pattern with the
streamwise direction of 23� 0.5°, consistently with the
measurements reported in Ref. [21]. This quantitative
agreement validates the proposed methodology, i.e., the
statistical analysis of the temporal impulse response can be
considered as a new experimental-numerical method to
address the linear stability analysis of a steady, but
fluctuating dynamics. We emphasize again that the base
flow for the analysis is the turbulent flow itself, including
all fluctuations [37], not the mean flow.
Altogether our results provide direct evidence for a linear

instability of the turbulent state itself, as first conjectured in
Ref. [6]. This linear instability leads to a spatial modulation
of the turbulent flow, the amplitude of which grows and
saturates according to weakly nonlinear contributions [7].
For low enough Reτ, the modulation breaks into a pattern of
alternated turbulent and laminar bands. Further decreasing
Reτ these bands gain in independence, and a proper
stochastic front dynamics sets in.
Our Letter paves the way for future works in two main

directions. First, one would like to identify the instability
mechanism. A possible candidate, commonly encountered
across diverse noisy chemical and biological systems [38]

FIG. 3. (a) Temporal evolution of the amplitude of the Fourier
mode jτ̂jðReτ; kx; kz; tÞ with ðkx; kzÞ ¼ ð0.12; 0.3Þ, (k ¼ 0.32)
and Reτ ¼ 120; blue (t < 0); black, individual realizations for
t > 0; and red, ensemble average hjτ̂jieðtÞ. (b) hjτ̂jieðtÞ − As,
same ðkx; kzÞ, same Reτ; black, exponential fit. (c) hjτ̂jieðtÞ for
three different values of k, Reτ ¼ 100. (d) hjτ̂jieðtÞ for three
different values of Reτ, k ¼ 0.27.

FIG. 4. Dispersion relation. (a) Growth rate σ versus both kx
and kz for two values of Reτ ¼ 96 and 110. (b) Growth rate σ
versus Reτ parametrized by the wave number modulus
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2x

p
. (c) Growth rate σ versus the wave number

modulus k parametrized by Reτ [The data in (a) is fitted with
a paraboloid surface while in (b) and (c) the continuous curves are
guides to the eye].
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relies on the Turing instability [10,39]. It is based on the
competition between an inhibitor and an activator field with
different diffusivities [40]. However this approach requires
modeling of the turbulent diffusivity using, e.g., simple
first-moment closures [41,42]. Another possible approach
is to consider a generalized stability analysis taking into
account higher-order moments of the fluctuations [43].
Both approaches are based on closure assumptions. The
instability unveiled in the present Letter represents an ideal
and simple case to test these assumptions. The second
future direction of research consists in identifying the
strongly nonlinear scenario along which the pattern loses
its spatial coherence. It remains a formidable challenge.
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