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Engineering Floquet topological phases using elliptically polarized light
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We study a two-dimensional topological system driven out of equilibrium by the application of elliptically
polarized light. In particular, we analyze the Bernevig-Hughes-Zhang model when it is perturbed using an ellipti-
cally polarized light of frequency � described in general by a vector potential A(t ) = (A0x cos(�t ), A0y cos(�t +
φ0)). Even for a fixed value of φ0, we can change the topological character of the system by changing the x and
y amplitudes of the drive. We therefore find a rich topological phase diagram as a function of A0x , A0y, and φ0.
In each of these phases, the topological invariant given by the Chern number is consistent with the number of
spin-polarized states present at the edges of a nanoribbon.
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Introduction. Topological insulators (TIs)—exotic phases
of matter characterized by a gapped bulk hosting robust, con-
ducting boundary modes—have been the talk of the town
for the last several years [1–6]. A defining feature of such
systems is the existence of a bulk-boundary correspondence;
that is, a topological invariant (for example, a Chern number
for two-dimensional TIs) derived from the bulk bands defines
the properties of the boundary modes. While such topological
systems are, by themselves, quite interesting to study, driving
them out of equilibrium using an external perturbation peri-
odic in time constitutes a rapidly evolving area of research
[7–24]. In particular, one can generate topological phases by
driving a system which was nontopological to begin with.
The underlying reason for this is that while the instantaneous
Hamiltonian lies in a trivial phase, the unitary time-evolution
operator over one drive cycle is topological and has eigen-
states localized near the boundaries. Such systems are studied
using Floquet theory, which relies on perfect time periodicity
of the drive, and are termed Floquet topological phases.

Irradiating materials with polarized light is one way of
experimentally generating Floquet topological phases. Several
studies have demonstrated that using circularly polarized light
to drive materials can generate and/or modify topological
phases [25–33]. However, to the best of our knowledge, there
are relatively few works which have studied the effect of
the more general case of elliptically polarized light [17,34–
37]. While the effect of using elliptically polarized light may
seem to be qualitatively similar to that of circularly polarized
light in some aspects, some features are markedly different.
The deviation from perfect circular polarization introduces
an anisotropy into the time-dependent model, thereby signifi-
cantly modifying the topological properties.

This paper addresses the effect of tweaking the polar-
ization of light on the topological phase diagram of a
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two-dimensional Floquet topological system—the Bernevig-
Hughes-Zhang (BHZ) model—driven using an elliptically
polarized light. Such a drive can in general be created by
superposing two linear or circularly polarized beams having
a phase difference. We find that the topological invariant as-
sociated with this driven system, namely, the Floquet Chern
number, depends on the phase of the polarized light as well as
on the relative amplitudes in the two directions.

Equilibrium model. The half-BHZ system [2] with mass M
and spin-orbit coupling (SOC) � is governed by the Hamilto-
nian H = ψ

†
kh(k)ψk, where ψk is the spinor (ck,↑, ck,↓)† and

h(k) = d(k) · σ, (1)

with d(k) = (� sin kx,� sin ky, M + γ cos kx + γ cos ky).
Here, σ x,y,z are the 2 × 2 Pauli matrices, and γ is the
nearest-neighbor tight-binding hopping amplitude, which
we will generally set to unity (we will also set h̄ = 1).
Two obvious symmetries of the Hamiltonian in Eq. (1) are
the fourfold rotation C4 = {e−i(π/4)σ z |(kx, ky) → (ky,−kx )}
about the z axis, and the charge conjugation or particle-hole
symmetry P such that Ph(k)P−1 = −h∗(−k). Moreover,
while the standard time-reversal symmetry 	 is absent,
h(k) has a modified time-reversal symmetry defined as
T h(k)T −1 = h(k), where T = Mx	 and Mx is a reflection
about the kx = 0 line. This system falls under class D in the
Altland-Zirnbauer classification [38].

For a nonzero �, the spectrum is gapped, in general, except
when M = 0,±2. Calculating the Chern number C+ for the
top band using the method prescribed by Fukui et al. [39], we
obtain the phase diagram at equilibrium, shown in Fig. 1(a),
and see that

C+ =
⎧⎨
⎩

+1 for − 2 < M < 0
−1 for 0 < M < 2
0 for |M| > 2.

(2)

According to the bulk-boundary correspondence an infinitely
long nanoribbon running parallel to the x axis and having a
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FIG. 1. (a) The phase diagram of a half-BHZ system with trivial
and topological phases. (b) Edge state spectrum for a nanoribbon 100
sites wide. We have chosen M = √

3 and D = √
2 corresponding to

the white dot in (a). The bulk states (blue) are gapped with the edge
modes residing in the gap. The right-pointing (left-pointing) triangles
denote spin pointing along the x̂ (−x̂) directions, while the color red
(green) corresponds to states localized at the bottom (top) edge of the
ribbon.

finite width of Ny sites in the ŷ direction should have edge
modes localized at the top and bottom edges with energies
lying in the bulk gap. To verify this, we diagonalize the fol-
lowing one-dimensional Hamiltonian obtained by setting the
good quantum number kx as a parameter:

H1D
kx

= hkx +
∑

ny

γ

2
(c†

ny,↑cny+1,↑ − c†
n,↓cny+1,↓)

−
∑

ny

�

2
(c†

ny,↑cny+1,↓ − c†
n,↓cny+1,↑), (3)

where hkx = INy ⊗ ((M + γ cos kx )σ z + � sin kxσ
x ) is a

2Ny × 2Ny matrix containing the kx-dependent terms.
Figure 1(b) shows the bulk and edge-state spectrum obtained
from Eq. (3). Edge states localized on the top and bottom
edges (green and red, respectively) have energies in the gap
between the bulk bands (shown in blue). These edge states
are also eigenstates of σ x with the right- and left-pointing
triangles corresponding to σ x = 1 and σ x = −1, respectively.
Clearly, all the right-moving modes with group velocity
vg = ∂E/∂kx > 0 are localized on the bottom edge and have
σ x = −1, whereas the left movers (i.e., vg < 0) lie on the top
edge and have σ x = 1.

Floquet topological phases. We now introduce a time de-
pendence into the problem by using a polarized light with a
vector potential A of the form

A(t ) = (A0x cos(�t ), A0y cos(�t + φ0)), (4)

where φ0 is the phase difference between the x and y com-
ponents. This is the most general form of A associated with
elliptically polarized light. The time-dependent electric field is
therefore E(t ) = −∂A/∂t = (E0x sin(�t ), E0y sin(�t + φ0)),
where E0x(y) = �A0x(y). The vector potential in Eq. (4) en-
ters the momentum-space Hamiltonian via minimal coupling,
k −→ k + A. Therefore the bulk Hamiltonian in Eq. (1)
is modified as h(k) −→ h(k + A). We note that linear po-
larization and circular polarization are special cases of
Eq. (4). When φ0 = ±π/2, we obtain elliptically polarized

FIG. 2. (a)–(h) Floquet Chern number C+ of the positive
quasienergy band, as a function of drive amplitudes A0x and A0y,
for different phases φ0 of the elliptically polarized light. We set the
equilibrium parameters M = √

3 and � = √
2 corresponding to the

white dot marked in Fig. 1(a). The A0x = A0y line in (c) and (g)
corresponds to circularly polarized light. We have used � = 5, which
is much higher than the band gap.

light with the axes of the ellipse aligned with the cardinal
axes. Furthermore, if A0x = A0y and φ0 = ±π/2, we obtain
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left- or right-circularly-polarized light. Since the drive is per-
fectly periodic, we employ Floquet theory and calculate the
quasienergy eigenvalues and eigenvectors by diagonalizing
the Floquet operator defined as the time-evolution operator
over one cycle, i.e., UT = T exp(−i

∫ T
0 dtH (t )),

UT ψα = e−iεαT ψα. (5)

The Floquet eigenvalues εα are unique modulo n�, where n is
an integer, with n = 0 corresponding to the primary Floquet
zone. (See Supplemental Material [40] and Refs. [41,42].)

The Floquet eigenstates ψα are then used to calculate the
Chern numbers. Figure 2 shows the rich topological phase
diagram as a function of the drive amplitudes for different
values of φ, for a fixed frequency � = 5, which is much
greater than the band gap.

We find that purely changing the ratio of the x and y
amplitudes of the elliptically polarized light takes us from
one phase to another which is topologically distinct. We have
chosen the parameters (M = √

3, � = √
2) such that in the

absence of a drive we are in a topologically nontrivial phase
with Chern number C+ = −1. This is marked as a white dot
in Fig. 1(a).

We note two symmetries in the plots in Fig. 2. First, for
each value of φ0, the plots are symmetric about the A0x = A0y

line. Second, the plots for φ0 and π − φ0 look identical.
We can understand these two symmetries as follows. Given
h(kx, ky, A0x, A0y, φ0, t ), the time-dependent periodic Hamil-
tonian with frequency �, the Floquet operator is given by

UT = Te−i
∫ T

0 dth(kx,ky,A0x,A0y,φ0,t ). (6)

Noting that cos(�t ) = cos (�(T − t )), that cos(�t + φ0) =
cos (�(T − t ) − φ0), and that σ x,z are real whereas σ y is
imaginary, we define an operator

U ′
T = (U−1

T )∗ (7)

= Te−i
∫ T

0 dth′(kx,ky,A0x,A0y,φ0,t ). (8)

This means that U ′
T is the Floquet operator corre-

sponding to a different time-dependent Hamiltonian
h′(kx, ky, A0x, A0y, φ0, t ) which can be transformed back
to h(kx, ky, A0x, A0y, φ0, t ) in one of two ways. We can keep
φ0 unchanged, interchange kx ↔ ky and A0x ↔ A0y, shift time
t → t + φ0/� (this does not change the Floquet eigenvalues),
and, finally, perform a rotation by π/2 about the z axis which
transforms σ y → −σ x and σ x → σ y. [Such a rotation which
is independent of kx, ky unitarily transforms both the Floquet
operator and its eigenstates but does not change the Chern
number defined in Eq. (11) below.] Alternatively, we can
change φ0 → π − φ0 and ky → −ky but keep kx, A0x, and A0y

unchanged. From Eqs. (5) and (7), we see that

U ′
T ψ∗

α = e−iεαT ψ∗
α . (9)

Hence UT and U ′
T have the same quasienergies; in particu-

lar, the positive quasienergy band of UT is also the positive
quasienergy band of U ′

T , and their eigenstates ψα and ψ ′
α are

related as

ψ ′
α = ψ∗

α . (10)

Finally, consider that the Chern number in the positive
quasienergy band is

C+(A0x, A0y, φ0) = i

2π

∫
d2k

[
∂ψ†

α

∂kx

∂ψα

∂ky
− ∂ψ†

α

∂ky

∂ψα

∂kx

]
.

(11)

We now see that this does not change if we complex conjugate
ψ [as dictated by Eq. (10)] and either interchange kx ↔ ky

or change ky → −ky but do not change kx. The discussion
above therefore shows that the Chern number C+(A0x, A0y, φ0)
must remain the same if either we keep φ0 unchanged and
interchange A0x ↔ A0y or we change φ0 → π − φ0 but keep
A0x and A0y unchanged. This explains the two symmetries
which are visible in Fig. 2. (See Supplemental Material [40].)

Figure 2 shows that the Chern numbers are not opposite for
φ and −φ, even though the vector potentials for φ and −φ are
time-reversal counterparts of each other [see Eq. (4)]. This is
because the time-independent part of the Hamiltonian breaks
time-reversal symmetry.

Floquet edge modes. In order to test the bulk-boundary
correspondence for this driven system, we consider an in-
finitely long nanoribbon as we did in the equilibrium case and
perturb it using polarized light described by a vector potential
in Eq. (4). This introduces a time dependence into the Hamil-
tonian in Eq. (3), which we incorporate by minimal coupling
and Peierls substitution, i.e., kx → kx + A0x cos(�t ), γ →
γ eiA0y cos(�t+φ0 ), and � → �eiA0y cos(�t+φ0 ). We then diagonal-
ize the Floquet operator constructed using this time-dependent
Hamiltonian to obtain the quasienergies which are shown as a
function of momentum kx in Fig. 3.

While we have fixed φ0 = −π/2, the four panels of
Fig. 3 correspond to four different pairs of drive amplitudes
(A0x, A0y). All these lie in four different phases of Fig. 2(c).
The continuum formed by the bulk states is shown in blue
with the brighter colors denoting the primary Floquet zone,
i.e., εT = −π to π . The muted colors show parts of the
secondary Floquet zones. These bands are separated by energy
gaps which host the modes localized along the edges of the
ribbon (green for the top edge and red for the bottom edge).
Depending upon the ratio of A0x and A0y, edge modes exist at
εT = 0 and/or εT = π . These edge states are also eigenstates
of σ x. The right-pointing (left-pointing) triangles correspond
to states with σ x = 1 (σ x = −1), respectively. The insets are
magnified views of the edge-state dispersion. In Fig. 3(a),
we see that there are two kinds of edge states: one per edge
at εT = 0 and two per edge at εT = ±π . This lies in the
C+ = −1 phase of Fig. 2(c). On the other hand, Fig. 3(b) has
only one set of edge states at εT = 0, which is consistent with
the C+ = 1 in this phase. Figure 3(c) depicts C+ = 0 phase
and therefore has no edge modes, while Fig. 3(d) lies in the
C+ = −2 phase and has two sets of edge modes, both close
to εT = ±π . From this we infer that a pair of edge states at
ε = 0 correspond to C+ = +1, whereas each pair of states at
εT = ±π corresponds to C+ = −1. These add up along with
the signs to give the total Chern number C+. We note that
if we start with an equilibrium system in a different region
of Fig. 1(a), we can access Floquet topological phases with
Chern number C+ ∈ [−1, 2],
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FIG. 3. Floquet edge modes on a ribbon along the x̂ direction
with a width Ny = 100 along the ŷ direction, with a drive frequency
� = 5. These correspond to four different regions in the phase dia-
gram shown in Fig. 2(c) for φ0 = −π/2 with Chern numbers C+ =
−1, 1, 0, and −2, respectively. The right-pointing (left-pointing)
triangles depict states with spin pointing along the x̂ (−x̂) directions,
while the color red (green) corresponds to the bottom (top) edge of
the nanoribbon. In all the panels, the bulk states are shown in blue.
The primary Floquet zone is shown in brighter colors and ranges
from εT = −π to εT = π , while the muted colors show parts of the
secondary Floquet zones. (b) corresponds to circular polarization,
while (a), (c), and (d) correspond to a more general elliptically
polarization.

Results and discussion. We discuss the effects of an optical
drive in the form of a general elliptically polarized light on a
half-BHZ system. A range of topological phases correspond-
ing to different Chern numbers can be generated purely by
varying the driving parameters, namely, the amplitudes of the
vector potential in the x̂ and ŷ directions and their phase dif-
ference φ0. We interpret this as an effect of the anisotropy that
elliptically polarized light introduces into the time-dependent
Hamiltonian.

Fixing the phase φ0 = π/2 and varying only the ratio
of A0x and A0y allow us to tune in and out of topological

phases even when we deviate away from the special case of
circular polarization. The Chern numbers are consistent with
the number of spin-polarized states localized at the two edges
of an infinitely long nanoribbon with the edge states having a
definite value of σ x.

A striking feature of the Floquet phase diagram is the
existence of multicritical points. This feature can be seen only
when one is away from the special cases of both linear and
circular polarization. At this point, four phases with distinct
Chern numbers intersect.

While the equilibrium model has phases with Chern
numbers 0,±1, the time-dependent system driven out of
equilibrium using an elliptically polarized light allows us
to generate Floquet topological phases with higher Chern
numbers as shown in Fig. 2. Similarly, choosing the drive
parameters appropriately, the topology can even be destroyed
using such an optical drive. Thus elliptically polarized light
allows us to engineer and/or modify topological phases in the
half-BHZ system.

As is well known, a BHZ-type system can be realized in an
HgTe/CdTe quantum well with a band gap �E ≈ 0.3 eV and
a lattice constant a ≈ 0.5 nm. All our parameters are defined
in units of �E and a. Choosing the parameters appropriately,
we can realize the desired Floquet topological phase. For
instance, if we choose A0x,y ≈ (0.3, 1.2) and φ0 = −π/2, we
would be close to a multicritical point in Fig. 2(c). The time
scale of observation should be large compared with the time
period T so that the concept of a Floquet Hamiltonian is valid.
Another possible realization is in the context of topological
bound states of photonic systems where a lattice of coupled
optical waveguides is used to emulate the behavior of time-
dependent condensed matter systems [43].

We have confined our discussion to the case of two-
dimensional topological insulators with one-dimensional
edge modes. However, the effect of elliptical polarization
could have more significance in the context of higher-order
topological systems [44]. For instance, since generating a
two-dimensional second-order TI with corner modes requires
a perturbation that breaks the C4 symmetry, one can expect
that using elliptically polarized light (away from the special
case of circular polarization) could also achieve the same
[45], since the incident light (and hence the effective Floquet
Hamiltonian) breaks the fourfold rotation symmetry. We note,
however, that a two-dimensional higher-order topological sys-
tem requires a model with at least four bands, while we have
only considered a two-band model here.
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