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a b s t r a c t

The incompressible Toner–Tu (ITT) partial differential equations (PDEs) are an important example
of a set of active-fluid PDEs. While they share certain properties with the Navier–Stokes equations
(NSEs), such as the same scaling invariance, there are also important differences. The NSEs are
usually considered in either the decaying or the additively forced cases, whereas the ITT equations
have no additive forcing. Instead, they include a linear, activity term αu (u is the velocity field)
which pumps energy into the system, but also a negative u|u|

2-term which provides a platform for
either frozen or statistically steady states. Taken together, these differences make the ITT equations
an intriguing candidate for study using a combination of PDE analysis and pseudo-spectral direct
numerical simulations (DNSs). In the d = 2 case, we have established global regularity of solutions, but
we have also shown the existence of bounded hierarchies of weighted, time-averaged norms of both
higher derivatives and higher moments of the velocity field. Similar bounded hierarchies for Leray-type
weak solutions have also been established in the d = 3 case. We present results for these norms from
our DNSs in both d = 2 and d = 3, and contrast them with their Navier–Stokes counterparts.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The field of active matter continues to grow rapidly [1–25]. The
term is generally used for systems that have bodies, e.g. birdoids
in computer animations [1], birds in a flock [2,4,5], or bacteria
in dense suspensions [4–17], all of which use some source of
energy, typically internal, to move or to apply forces. Such bodies,
referred to as active particles in the physics literature, mutually in-
teract and lead to non-equilibrium states, which may display rich
spatio-temporal evolution. The bird-flocking model of Vicsek [2],
a non-equilibrium version of a Heisenberg-spin model, is defined
in discrete time for an assembly of point particles which are
distributed randomly in space. These particles try to align with
their neighbours, but with some stochastically modelled error.

Soon after the publication of the Vicsek model [2], Toner and
Tu (TT) introduced a hydrodynamic stochastic partial differen-
tial equation (PDE) that models flocking phenomena [4,5]. The
TT velocity field obeys a generalized, compressible, stochasti-
cally forced set of Navier–Stokes equations (NSEs), which are
not Galilean invariant. Other hydrodynamic PDEs, related to the
NSEs, were then developed to study the spatio-temporal evolu-
tion of active fluids, such as dense bacterial suspensions [4–17],
or active nematics. In one of the simplest variants, called either
the mean-bacterial-velocity or the Toner–Tu–Swift–Hohenberg
(TTSH) model, a term consisting of the sum of a negative Lapla-
cian and a bi-Laplacian is added to an incompressible, determinis-
tic TT PDE (henceforth, ITT) [20]. For recent studies of the stochas-
tically forced and deterministic variants of the ITT equations we
refer the reader to Refs. [21–25].

Although these active-matter and active-fluid PDEs have been
studied intensively over the past two decades from a physi-
cal perspective, with the results of these investigations having
undergone wide experimental comparison, detailed methods of
Navier–Stokes analysis [26–32] have not generally been applied
directly to the ITT equations.1 However, models related to the
NSEs with an absorption term have been studied [34], including
the Brinkman–Forchheimer-extended Darcy model of porous me-
dia [34–46]. The major difference is that these models possess a
nonlinearity that breaks the Navier–Stokes invariance enjoyed by
the ITT equations.

The main aim of this paper is to consider the ITT PDEs in
d spatial dimensions (d = 2, 3) using the ideas developed in
efs. [47–50] in which a combination of analysis and direct nu-
erical simulations (DNSs) on the d = 3 NSEs were used to
atch the results of the former against those of the latter. For

he NSEs in dimension d = 3, only weak solutions (in the
ense of Leray [26]) are known to exist. To elevate these to the
tatus of strong solutions, a uniqueness property would need
o be proved, but this proof remains elusive [26–32]. The first
ask is to show that the ITT equations in dimension d = 3
ave equivalent weak solution properties to their Navier–Stokes
ounterpart. The second task is to study the d = 2 case, keeping in
ind that the NSEs are known to be regular, i.e. global existence

1 An exception is the work of Zanger, Löwen, and Saal on the regularity of
olutions of the TTSH equations [33].
2

and uniqueness of solutions have been proved [27]. It will be
shown that the ITT equations also turn out to be regular, although
the counterpart of bounds that remain fixed for the NSEs actually
grow exponentially in time. While numerical (pseudo-spectral)
methods and experiments are able to track a solution that evolves
from specified initial conditions, methods of analysis are unable
to do this; instead, in a complementary fashion, they provide us
with constraints on solutions that evolve from all smooth initial
conditions. Thus, one should not expect the estimated bounds to
be saturated, as these take into account all smooth initial con-
ditions, however large — see [47–50]. Methods of analysis also
provide upper bounds on average inverse length scales, which
can be interpreted as lower bounds on the grid sizes necessary
to resolve solutions.

In Section 2 we define the PDEs in dimensionless form and
the quantities that are required for our analysis. In Section 3 the
scaling properties of the Navier–Stokes and the ITT equations
are discussed and how their similarity acts as a guide to our
choice of moments of higher derivatives of the velocity field. In
Section 4 we discuss energy estimates. In Section 5 we describe
the pseudo-spectral DNS that has been used to solve the ITT equa-
tions. Section 6 deals solely with the d = 2 case: in Section 6.1
we present a summary of our results, the proofs of which can
be found in Appendix B, while Section 6.2 and Section 6.4 are
devoted to global regularity and numerical results respectively.
Likewise in Section 7 we summarize our results for d = 3, with
the proofs found in Appendix C. In Section 8 we discuss the
significance of our results and compare them with similar results
for related PDEs.

2. Dimensionless equations

The standard form of the incompressible Toner–Tu (ITT) equa-
tions is given by [4,5,22]:

(∂t + λu · ∇) u + ∇p = αu + ν∆u − βu|u|
2 . (2.1)

he fixed parameters α, β are positive and the velocity field u
atisfies the incompressibility condition div u = 0. β has the
imension TL−2

≡ [ν−1
], α is a frequency and λ is a dimensionless

arameter. The domain is taken to be a periodic box [0, L]dper .
e leave remarks until Section 3 on the literature involving
eneralizations of this system to a u|u|

2δ nonlinear term.
The first step is to introduce a typical velocity field U0 for

hich we have two definitions:

0 =
√

α/β and U0 = ν/L . (2.2)

Then primed dimensionless variables are defined thus:

x′
= L−1x ; t ′ = U0L−1t ; u′

= λU−1
0 u ; p′

= λU−2
0 p .

(2.3)

his transforms (2.1) into the dimensionless ITT equations (drop-
ing the primes) which, from now on, will be the form used in
his paper:

∂ + u · ∇ u + ∇p = α u + Re−1∆u − Re u|u|
2 , (2.4)
( t ) 0 ν β
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ogether with the incompressibility condition div u = 0. These
perate on the unit periodic box Vd = [0, 1]d. The two Reynolds
umbers Reν and Reβ are defined as follows:

eν =
U0L
ν

, Reβ =
βU0L
λ2 , (2.5)

aken together with the dimensionless frequency α0 = LαU−1
0 .

he second choice of U0 corresponds to Reν = 1.

3. Invariant scaling, time averages and length scales

The incompressible NSEs possess the following well-known
and powerful invariant scaling property involving an arbitrary
parameter ℓ:

x′
= ℓ−1x; t ′ = ℓ−2t; u = ℓ−1u′

; (3.1)

which means that these equations are valid at every scale. The
effect of this invariance is to scale the norms ∥∇

nu∥2m defined
by

∥∇
nu∥2m =

(∫
Vd

|∇
nu|

2mdVd

)1/2m

(3.2)

n the following way:

∇
nu∥2m = ℓ−1/αm,n,d∥∇

′nu′
∥2m , (3.3)

here αn,m,d is defined by2

n,m,d =
2m

2m(n + 1) − d
. (3.4)

he αn,m,d are a product of the invariance property (3.1). A di-
mensionless version of the norms defined in (3.3) is given by

Fn,m,d := ν−1L1/αn,m,d∥∇
nu∥2m . (3.5)

t has been shown that, for d = 2, 3, and for n ≥ 1 and 1 ≤ m ≤

∞, weak solutions of the incompressible NSEs obey [31,32]⟨
F (4−d)αn,m,d
n,m,d

⟩
T

< ∞ . (3.6)

he angular brackets ⟨·⟩T represent the time average up to a time
, i.e.,

⟨·⟩T =
1
T

∫ T

0
· dτ . (3.7)

e emphasize that these brackets represent a time average, not a
statistical average. When n = 0 then m is restricted by 3 < m ≤

∞. An example familiar to the reader is the case n = m = 1, in
which case (4−d)α1,1,d = 2 with the cancellation of the factor of
4−d. Then (3.6) yields the3 familiar bound on the time-averaged
energy dissipation rate

ε = νL−d
⟨∫

V
|ω|

2dVd

⟩
T

≤ ν3L−4Re3. (3.8)

ith the inverse Kolmogorov length defined by λ−4
k = ε/ν3, we

btain the conventional bound

λ−1
k ≤ Re3/4 . (3.9)

q. (3.6) thus expresses an infinite hierarchy of such bounds
nd can be looked upon as weighted space–time averages of all

2 The possible confusion caused by the labelling of the dimensionless fre-
uency α0 and the exponents αn,m is unfortunate, but we continue to use it to
void the greater confusion of changing the notation from previous papers.
3 The vorticity ω and the velocity gradient tensor ∇u are synonymous in L2
hen div u = 0, but not in Lp for p > 2.
 Q

3

derivatives of the velocity field in every L2m-norm. There is an
nformal analogy with the concept of wavelets: higher derivatives
eflect the dynamics at small scales, while increasing the value of
magnifies the larger amplitudes at each scale.
In [31,32] it has also been shown how to define a set of

nverse length scales associated with (3.6). Consider the set of
-dependent length-scales {ℓn,m,d(t)} defined by(
Lℓ−1

n,m,d

)n+1
:= Fn,m,d . (3.10)

This definition takes into account the scaling of the domain
volume Ld which makes (3.10) at the level of n = m = 1
and d = 3 consistent with the correct definition of the energy
dissipation rate used to define the Kolmogorov length. Then we
easily find that for Navier–Stokes weak solutions, when n ≥ 1
and 1 ≤ m ≤ ∞,⟨
Lℓ−1

n,m,d

⟩
T

≤ cn,m,dRe
3

(4−d)(n+1)αn,m,d . (3.11)

hen d = 3 and n = m = 1, then the exponent in (3.11)
s 3

4 , which is consistent with estimates for the Kolmogorov
ength [31,32]. Also, note that (n + 1)αn,m,d → 1 as n, m → ∞ .

Of course, it has been known for many years that solutions of
he NSEs in d = 2 dimensions are regular [27,28], but expressing
(3.6) in integer d-dimensions d = 1, 2, 3 rolls together into one
line all the known two- and three-dimensional Navier–Stokes
solution results, such as the class of weak solution d = 3 time
averages found by Foias, Guillopé and Temam [30] in their pio-
neering paper in 1981. It has been explained in Ref. [31] that, for
a full existence and uniqueness proof in the d = 3 case, a factor
of 2αn,m,3 would be needed in the exponent in (3.6). However, no
evidence exists for the existence of bounds with this necessary
factor of 2. It is possible that the Leray–Hopf weak solutions are
all that exist.

By inspection it is clear that the ITT equations respect the
invariant scaling possessed by the NSEs equations, apart from the
linear-pumping term. However, there is a significant literature
on a more general class of equations where the u|u|

2-term is re-
placed by u|u|

2δ , which is the case in the Brinkman–Forchheimer
extended Darcy model arising in porous media. The paper by Titi
and Trabelsi [35] contains a wide literature survey, but we also
refer the reader to [34,36–46]. When δ > 1 , the invariant scaling
property of the NSEs is broken. This leads to the bounding of
time-averaged norms, higher than those available to ITT, which
eventually lead to the regularity of solutions in the d = 3 case.
The work in our paper is different in two important respects.
Firstly, we focus on the critical value δ = 1 and thus remain
faithful to the scaling property in (3.1). Secondly, the ITT equa-
tions in (2.4) have a linear term α0u which, while trivial in a
purely functional setting, is nevertheless physically important in
the creation of equilibrated or frozen states, which appear to
dominate the dynamics in our DNSs.

The parallel scaling properties of the ITT equations and the
NSEs suggest that the exponents αn,m,d in (3.4) should be the
same in both cases. Therefore, taking into account the factor of
4 − d in the exponent in the d = 2 case, we define

Pn,m = ∥∇
nu∥

2αn,m,2
2m , (d = 2) , (3.12)

where

αn,m,2 =
m

m(n + 1) − 1
(3.13)

nd a set of inverse length scales equivalent to (3.11)⟨
Lℓ−1

n,m,2

⟩
T

≤ cn,m,2
⟨
Pn,m

⟩ 1
2(n+1)αn,m,2
T . (3.14)

hen d = 3

= ∥∇
nu∥

αn,m,3
, (d = 3) , (3.15)
n,m 2m
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n,m,3 =
2m

2m(n + 1) − 3
(3.16)

and a set of inverse length scales equivalent to (3.11)⟨
Lℓ−1

n,m,3

⟩
T

≤ cn,m,3
⟨
Qn,m

⟩ 1
(n+1)αn,m,3
T . (3.17)

General bounds on
⟨
Pn,m

⟩
T , expressed as a function of α0, Reν and

A0, are estimated in Section 6. For d = 3, a narrower class of
bounds on

⟨
Qn,m

⟩
T has been given in Section 7.

4. Energy estimates

In keeping with standard Navier–Stokes notation, we define n
derivatives of u in L2(Vd) as

Hn =

∫
Vd

|∇
nu|

2dVd . (4.1)

Given the close relationship between the ITT equations and the
incompressible NSEs, a formal approach is taken following the
method used by [30]. In this notation the energy H0 and enstro-
phy H1 are

H0 =

∫
Vd

|u|
2dVd ; (4.2)

1 =

∫
Vd

|∇u|
2dVd =

∫
Vd

|ω|
2dVd . (4.3)

sing standard methods [26,27], a Leray-type energy inequality
s easily derived

1
2
Ḣ0 + Re−1

ν H1 + Reβ

∫
V

|u|
4dVd ≤ α0H0 (4.4)

rom which we drop the H1-term4 and apply a Hölder inequality
o the L4-term to produce a simple differential inequality for H0

1
2
Ḣ0 ≤ α0H0 − ReβH2

0 . (4.5)

hus, equilibration of the right hand side occurs at

0, equil = α0Re−1
β := A0 , (4.6)

here we designate A0 as the activity parameter. By using the
ime-average definition in (3.7), from (4.4) we find the following
stimates

⟨H0⟩T ≤ A0 , (4.7)
⟨H1⟩T ≤ α0A0Reν , (4.8)

ogether with the time average of both the L4-norm and the ratio
f H1 to H0⟨∫

V
|u|

4dVd

⟩
T

≤ A2
0 ,

⟨
H1

H0

⟩
T

≤ α0Reν . (4.9)

The inequalities (4.7)–(4.9) each have an O
(
T−1

)
correction term

hat will be dropped from now on. These results are true in every
imension. With respect to initial data on H0:

1. For initial data H0(0) > A0 , the sign of Ḣ0 in this region is
negative and thus H0 decreases to A0.

2. For initial data H0(0) < A0 , Ḣ0 can take either sign. If
Ḣ0(t) > 0 then H0 will grow to reach A0 (a frozen state)
but cannot pass through it. If Ḣ0(t) < 0 then H0 will decay.

4 Poincaré’s inequality cannot be applied because, unlike the NSEs, the spatial
verage of u is not zero.
 t

4

Table 1
The parameters for our DNSs: d is the dimension, Nd the number of collocation
points, and δ the time step. For all our runs, λ = 1. Given these parameters, the
Reynolds numbers follow from Eqs. (2.2) and (2.5). Parameters for other runs
are given in the Supplemental Material.
Run d N δt ν α β

A1 2 2048 2 × 10−4 2.87 × 10−1 10 × 101 5
A2 2 2048 2 × 10−4 1.41 × 10−1 10 × 101 5
A3 2 2048 2 × 10−4 7.07 × 10−2 10 × 101 5
A4 2 2048 2 × 10−4 3.53 × 10−2 10 × 101 5
A5 2 2048 2 × 10−4 2.36 × 10−2 10 × 101 5
A6 2 2048 2 × 10−4 1.77 × 10−2 10 × 101 5
A7 2 2048 2 × 10−4 1 × 10−2 10 × 101 5
A8 2 2048 2 × 10−4 8.8 × 10−2 10 × 101 5
F1 2 2048 2 × 10−4 6.2 × 10−1 1 1
F2 2 2048 2 × 10−4 1.2 × 10−1 1 1
F3 2 2048 2 × 10−4 6.0 × 10−2 1 1
F4 2 2048 2 × 10−4 3.0 × 10−2 1 1
F5 2 2048 2 × 10−4 1.5 × 10−2 1 1
F6 2 2048 2 × 10−4 7.0 × 10−3 1 1
F7 2 2048 2 × 10−4 3.1 × 10−3 1 1
B1 3 512 1 × 10−3 5 × 10−1 1 × 101 1 × 10−1

B2 3 512 1 × 10−3 5 × 10−2 1 × 101 1 × 10−1

B3 3 512 5 × 10−4 1 × 10−2 1 × 101 1 × 10−1

The choice of n = m = 1 makes (4−d)α1,1,d = 2, whereupon the
factor of 4 − d cancels. Thus⟨
P1,1

⟩
T ≤ α0A0Reν , (4.10)

and⟨
Q1,1

⟩
T ≤ α0A0Reν . (4.11)

5. Numerical methods

For our DNS of the d-dimensional ITT Eq. (2.1), we use a
Fourier pseudospectral method [51] on periodic domains (a square
in d = 2 and a cube in d = 3), with sides of length L = 2π , and
Nd collocation points. We employ the second-order exponential
time-difference scheme, ETDRK2, for time evolution in Fourier-
space [52]. We list the parameters for our DNS runs in Table 1.
Our simulations are numerically robust insofar as the Courant–
Friedrichs–Lewy number, C < Cmax, where C =

(∑i=d
i=1 Ui/hi

)
δt

ith Ui = supx ui(x, t) and hi the minimum grid spacing
etween two collocation points. Typically Cmax = 1 for our
xplicit numerical schemes and for all our simulations ( Table 1)
≃ 0.62 ± 0.04.
The dimensional version of the ITT Eqs. (2.1) has four param-

eters λ, α, ν and β which reduce to the three dimensionless
numbers Reν, Reβ and α0 in the non-dimensionalized version
(2.4). As explained in (2.2), we have found it convenient to define
the typical velocity field U0 in two particular ways: U0 =

√
α/β

and U0 = ν/L. The latter case restricts Reν to the value Reν = 1
ut allows us to explore a more diverse range of α0 and Reβ .

. Summary of results in the d = 2 case

The methods used in the analysis sections of this paper are
ased on the differential inequalities explained in Appendix A.
he proof of the results in the following subsections is given
n Appendix B. Within these estimates, various multiplicative
onstants c, cm and cn,m appear, which should be read as generic
onstants that may differ from line to line. These constants are
lgebraic in n,m but are not usually given explicitly: see Ap-
endix A. We remark that none of the bounds displayed in the
ollowing sections are saturated, although more drastic initial
onditions might get closer to this state. For simplicity, it is also
ssumed that Reν ≫ Reβ . In the choice U0 = ν/L where Reν = 1,
n which case estimates can be re-calculated from the material in
he Appendices.
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.1. Estimates for
⟨
Pn,m

⟩
T

By using the definition of Pn,m in (3.12) as our guide, form = 1,
e have αn,1,2 = 1/n , so⟨
Pn,1

⟩
T =

⟨
H1/n

n

⟩
T . (6.1)

he estimate for
⟨
P1,1

⟩
T in (4.10) can be used to compute a series

f other inequalities. The proofs can be found in Appendix B.
elow is a summary:
i) Firstly, we wish to estimate

⟨
Pn,1

⟩
T for n ≥ 1. In inequality (B.8)

n Appendix B.1, for n = 2 it is shown that⟨
P2,1

⟩
T ≤ c α0

(
α0A0Re3ν

)1/2
. (6.2)

ii) More generally, in inequality (B.22) Appendix B.4, it is shown
hat for n ≥ 2⟨
Pn,1

⟩
T ≤ cn,1α

2/n
0

(
α0A0Re3ν

) n−1
n . (6.3)

iii) In inequality (B.11) in Appendix B.2 it is shown that⟨
P1,m

⟩
T =

⟨
∥∇u∥

2m
2m−1
2m

⟩
T

, (6.4)

isplayed in row 3 of Fig. 4, satisfies⟨
P1,m

⟩
T ≤ cm (α0Reν)

3m−2
2m−1 A

m
2m−1
0 . (6.5)

B.12) shows that in the limit m → ∞, we also have

⟨∥∇u∥∞⟩T ≤ c (α0Reν)
3/2 A1/2

0 . (6.6)

iv) With the definition⟨
P0,m

⟩
T =

⟨
∥u∥

2m
m−1
2m

⟩
T

, (6.7)

rom (B.15) in Appendix B.3, it is shown that, for m > 2 ,⟨
P0,m

⟩
T ≤ c A

m
m−1
0 (α0Reν)

m−2
m−1 . (6.8)

B.16) shows that, in the limit m → ∞, we have⟨
P0,∞

⟩
T =

⟨
∥u∥

2
∞

⟩
T ≤ c α0A0Reν . (6.9)

v) In inequality (B.29) in Appendix B.5 it is shown that, for n ≥ 2,

⟨
Pn,m

⟩
T ≤ cn,mα

2m
m(n+1)−1
0

(
α0A0Re3ν

) mn−1
m(n+1)−1 . (6.10)

.2. Regularity: exponential bounds in d = 2 dimensions

The difference between the 2d and 3d NSEs lies in the absence
f the vortex stretching term ω · ∇u, which is zero when d = 2.
or the ITT Eqs. (2.4), the evolution equation for the vorticity is

(∂t + u · ∇) ω = α0ω + Re−1
ν ∆ω − Reβ curl

(
u|u|

2) (6.11)

n which the curl
(
u|u|

2)-term appears to create another form of
ortex stretching. Specifically we have

1
2
Ḣ1 = α0H1 − Re−1

ν H2 − Reβ

∫
V

ω · curl(u|u|
2)dV

≤ α0H1 −
1
2
Re−1

ν H2 +
1
2
Re2βReν

∫
V

|u|
6dV , (6.12)

here we have integrated by parts and have then used a Hölder
nequality. Then we use a Gagliardo–Nirenberg inequality

u∥ ≤ c ∥∇u∥

1
3
∥u∥

2
3 , (6.13)
6 2 4

5

which can be re-expressed as∫
V

|u|
6dV ≤ c H1

∫
V

|u|
4dV . (6.14)

Thus we can write
1
2
Ḣ1 ≤

(
α0 +

1
2
Re2βReν

∫
V

|u|
4 dV

)
H1 , (6.15)

hence we can use the extra piece of information afforded to us
y the bounded time integral expressed in (4.9). Thus (6.15) can
e integrated to become

1(T ) ≤ H1(0) exp
{∫ T

0

(
α0 + c Re2βReν∥u∥

4
4

)
dτ

}
≤ H1(0) exp

{
α0

(
1 + c Re2βReνA2

0

)
T
}

, (6.16)

hich is finite for every finite T . Control over the H1-norm estab-
ishes global regularity in this 2d case but not a global attractor,
hich requires a uniform bound for all t .

.3. Spectral energy budget

We discuss the role of contributions to the energy from the
onlinear terms in the ITT equations. The shell-averaged energy
pectrum is defined by

(k) =
1
2

k′=k+1/2∑
k′=k−1/2

⟨̃
u(k′) · ũ(−k′)

⟩
t , (6.17)

where a tilde denotes a spatial Fourier transform and the wave
vectors k and k′ have moduli k and k′, respectively. In Figs. 1 and
2 we give illustrative plots of the time series of the total kinetic
energy

Etot (t) ≡
1
2
L−d

∫
Vd

|u|
2 dVd (6.18)

together with E(k), filled contour plots of the vorticity (in d = 2)
and isosurfaces of the modulus of the vorticity (in d = 3). From
Fig. 1(a) we surmise the existence of temporally frozen states in
d = 2, because dEtot/dt ≃ 0 after the period of initial transients.
Both frozen and turbulent states can also be characterized by
the filled contour plots of the vorticity presented in column 3
of Fig. 1; these states depend on ν, α, and β , but not on the
initial conditions ; a change in the initial conditions changes the
time for which initial transients last. We also find statistically
steady states, with fluctuations in the total energy, in both d = 2
(Fig. 1(d)) and d = 3 (Fig. 2(a)), similar to those observed in
homogeneous isotropic fluid turbulence.

The k-dependent energy budget is given by

∂tE(k) = T (k) − Tβ (k) + Tα(k) − 2Γ0k2E(k) (6.19)

where Tα(k), the spectral energy contribution from the α term,
and T (k) and Tβ (k) are, respectively, the k-shell averaged contri-
butions from the advective and cubic terms in the ITT equations,
are:

T (k) = −λ

k′=k+1/2∑
k′=k−1/2

⟨̃
u(−k) · P

(
k′

)
· ˜(u · ∇u)(k′)

⟩
t
; (6.20)

Tβ (k) = β

k′=k+1/2∑
k′=k−1/2

⟨̃
u(−k) · P(k′) ·

˜(|u|
2u)(k′)

⟩
t
; (6.21)

Tα = −2αE(k) ; (6.22)

here,

Pij(k) = δij −
kikj (6.23)

k2
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Fig. 1. Plots for runs F7 (row 1) and A6 (row2): column (1) contains plots versus the time t of the total energy Etot (t); column (2) contains log–log plots versus k
of the energy spectrum E(k); the filled contour plots in column (3) are of ω at a representative time.
Fig. 2. For run B2; plot versus t of the total kinetic energy Etot (t) (column 1, row 1); log–log plot versus k of the energy spectrum E(k) (column 1, row2); iso-surfaces
f the modulus of the vorticity field (column 2).
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s the transverse projector and ⟨·⟩t the average over time t . The
lux of energy arising from the advective and the cubic terms are,
espectively:

Π (k) = −

k′=k∑
k′=0

T (k′) ; (6.24)

β (k) = −

k′=k∑
k′=0

Tβ (k′) . (6.25)

n Fig. 3(a), we plot versus k, Tβ (k) and Tα(k); we omit the points
α(1) and Tβ (1) as Tα(1) ≫ Tα(k) and Tβ (1) ≪ Tβ (k). We note
rom Tβ (k) that the cubic term is an energy sink and is dominant
t small-k modes; by contrast, the α term acts as an energy
ource.
In Figs. 3(b) and (c) we give plots versus k of the fluxes Π (k)

nd Πβ (k), respectively. The flux associated with the cubic term
β (k) < 0, as we expect from an energy sink. However, the
dvective term is neither a sink nor a source of energy. Therefore,
6

he total area under the curve in Fig. 3(a) is zero. We also note
hat there is no region of k for which Π (k) ≃ a constant. This
ndicates the absence of a conventional inertial range.

.4. Numerical results for Pn,m

We now present plots in Fig. 4 of Pn,m(t) versus time t for
he two values n = 0 and n = 1, with a sequence of values
f m = 1, . . . , 10. Hölder’s inequality insists that, for fixed n,
he norms ∥ · ∥2m must be ordered with increasing m, such that
· ∥2m ≤ ∥ · ∥2(m+1); but the αn,m,d=2 decrease as m increases.
hus, it is technically possible for the Pn,m to be ordered either
ay: i.e., an increasing regime Pn,m ≤ Pn,m+1 or a decreasing
egime Pn,m ≥ Pn,m+1. The latter regime was originally observed
umerically for the d = 3 NSEs [47,48] and was also discussed
n [49], although no obvious reason for this particular ordering
as deduced. Moreover, no crossing of curves that represented
ifferent values of m has been observed.
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Fig. 3. Semi-log plots versus k of (a) Tα(k) (blue) and Tβ (k) (red), (b) Π (k) (red), and (c) Πβ (k) (blue), for an illustrative simulation (A4) from Table 1.
W

a
t
M

Q

(

7

n
A
a
Q
i
d

U
i

For the d = 2 case, when U0 =
√

α/β (panel A), we have
bserved both regimes, but only the decreasing regime Pn,m ≥

n,m+1 when U0 = ν/L (panel B). This is illustrated in Fig. 4 for
un A6: In panel A (U0 =

√
α/β) the plots of P1,m can cross each

ther at different times, as we can see clearly in the expanded
lots in the second rows ; such crossings do not occur in panel B
U0 = ν/L). Furthermore, the plots versus m of

⟨
P1,m

⟩
T (third row)

ecreases monotonically with increasing m in panel B but not in
anel A.
In Fig. 5 we present plots for U0 =

√
α/β (panel A) and

U0 = ν/L (panel B), runs A1–A8, to illustrate whether the bound
in (4.10) is saturated: In the first row we plot

⟨
P1,1

⟩
T (solid black

ine) versus Reν (panel A) and α0 (panel B) ; the black dashed line
denotes Reν α0 A0, which is the right-hand side (RHS) of (4.10)
. In the second row we present plots versus Reν (panel A) and
α0 (panel B) of

⟨
P0,m

⟩
T and

⟨
P1,m

⟩
T , for m = 2, . . . , 10. Note that

urves for
⟨
P1,m

⟩
T can cross as Reν increases (panel A) ; by contrast,

hey do not cross as α0 increases (panel B). Similar plots for other
epresentative runs are given in the Supplemental Material.

. Summary of results in the d = 3 case

The proof of the results in the following subsections is given in
ppendix C. The methods used there are based on the differential
nequalities explained in Appendix A.

.1. Estimates for
⟨
Qn,m

⟩
T

Results in the d = 3 case are more restricted, which reflects
he open status of the regularity problem. Nevertheless, time av-
rages of various Qn,m of Navier–Stokes type can be found [31,32].
n addition to a bound on

⟨
Q1,1

⟩
T , as in (4.11), our results from

ppendix C are summarized thus: from (C.16) we have⟨
Q

⟩
≤ c α Re2. (7.1)
2,1 T 0 ν

7

e also find that for n ≥ 2 and m ≥ 1,⟨
Qn,m

⟩
T < ∞ (7.2)

lthough estimating the right hand side is a difficult calculation
hat we have omitted (see (C.23)).
oreover, with

0,m = ∥u∥

2m
2m−3
2m , (7.3)

for m > 2, (C.28) shows that⟨
Q0,m

⟩
T ≤ c A

2(m+3)
5(2m−3)
0

(
α0Re2ν

) 9(m−2)
5(2m−3) . (7.4)

C.29) also shows that, in the limit m → ∞,

⟨∥u∥∞⟩T ≤ c α
9/10
0 A1/5

0 Re9/5ν . (7.5)

.2. Numerical results for Qn,m

Fig. 6 shows plots of Qn,m(t) versus time t for the two values
= 0 and n = 1, with a sequence of values of m = 1, . . . , 10.
gain, as in the d = 2 case, there are two regimes, namely,
n increasing regime Qn,m ≤ Qn,m+1 and a decreasing regime
n,m ≥ Qn,m+1, because the norms ∥ · ∥2m must be ordered with
ncreasing m, such that ∥ · ∥2m ≤ ∥ · ∥2(m+1); but the αn,m,d=3
ecrease as m increases.
When U0 =

√
α/β (panel A) we have observed both these

regimes, but only the decreasing regime Qn,m ≥ Qn,m+1 when
0 = ν/L (panel B) has been used. We illustrate this with plots
n Fig. 6 for run B2: In panel A (U0 =

√
α/β) the plots of Q1,m

can cross each other at different times, as we can see clearly
in the expanded plots in the second row; such crossings do not
occur in panel B (U0 = ν/L). Furthermore, the plots versus m
of

⟨
Q1,m

⟩
T (third row) decrease monotonically with increasing m

in panel B but not in panel A. Note, in particular, that Q1,m is
almost equivalent to a non-dimensionalized version of the D =
m
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Fig. 4. Illustrative plots for U0 =
√

α/β (panel A) and U0 = ν/L (panel B) for run A6 (see Table 1): First and second rows: plots versus t of P0,m and P1,m ;
he plots in the second row are expanded versions of small segments of the plots in the first row. Third row: Plots versus m of

⟨
P0,m

⟩
T and

⟨
P1,m

⟩
T . Curves for

= 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively. Similar plots for other representative runs
re given in the Supplemental Material.
Fig. 5. Illustrative plots for U0 =
√

α/β (panel A) and U0 = ν/L (panel B) for d = 2, runs A1–A8 (see Table 1): First row: plots versus Reν (panel A) and α0
(panel B) of

⟨
P1,1

⟩
T (solid black line) and Reν α0 A0 (dashed black line). Second row: Plots versus Reν (panel A) and α0 (panel B) of

⟨
P0,m

⟩
T and

⟨
P1,m

⟩
T . Curves for

m = 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively. Similar plots for other representative runs
are given in the Supplemental Material.
∥ω∥
αn,m,d=3
2m introduced in [47] and plotted there for the d = 3

NSEs (see the Supplemental Material). The only difference here is
that we are plotting ∥∇u∥2m and not ∥ω∥2m: the two are identical
only when m = 1.

In Fig. 7 we present plots for U0 =
√

α/β (panel A) and
U0 = ν/L (panel B), runs B1–B3, to illustrate whether the bound
in (4.10) is saturated: In the first row we plot

⟨
Q1,1

⟩
T (panel

B) ; the black dashed line denotes Reν α0 A0, which is the RHS
of (4.10). In the second row we present plots versus Reν (panel
A) and α0 (panel B) of

⟨
Q0,m

⟩
T and

⟨
Q1,m

⟩
T , for m = 2, . . . , 10.

Note that curves for
⟨
Q1,m

⟩
T can cross as Reν increases (panel A) ;

by contrast, they do not cross as α0 increases (panel B). Similar
plots for other representative runs are given in the Supplemental
Material.
8

8. Conclusions

We have married the two approaches of the analysis of so-
lutions of the ITT equations through the estimation of weighted
time averages, together with the results of numerical simulations.
To achieve this we have invoked the similar scaling properties
between the ITT equations and the NSEs: see Section 3. There
are, however, two important differences. Usually the NSEs are
considered either in the decaying or the additively forced case,
whereas the ITT equations have no additive forcing but instead
possess a linear-activity term α0u which, in effect, pumps energy
into the system. Dynamically the effect of this term, together with
the negative cubic term, creates a platform for either temporally
frozen solutions or statistically steady states. Furthermore, it is
shown in Section 6.2 that the greatest contrast with the 2d NSEs
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Fig. 6. Illustrative plots for U0 =
√

α/β (panel A) and U0 = ν/L (panel B) for d = 3, run B2 (see Table 1): First and second rows: plots versus t of Q0,m and Q1,m;
the plots in the second row are expanded versions of small segments of the plots in the first row. Third row: Plots versus m of

⟨
Q0,m

⟩
T and

⟨
Q1,m

⟩
T . Curves for

m = 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively. Similar plots for other representative runs
re given in the Supplemental Material.
Fig. 7. Illustrative plots for U0 =
√

α/β (panel A) and U0 = ν/L (panel B) for d = 3, runs A1–A8 (see Table 1): First row: plots versus Reν (panel A) and α0
(panel B) of

⟨
Q1,1

⟩
T (solid black line) and Reνα0A0 (dashed black line). Second row: Plots versus Reν (panel A) and α0 (panel B) of

⟨
Q0,m

⟩
T and

⟨
Q1,m

⟩
T . Curves

for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in black, red, pink, violet, green, cyan, maroon, blue, orange, and yellow, respectively. Similar plots for other
representative runs are given in the Supplemental Material.
lies at the level of the vorticity equation. Whereas the absence of
vortex stretching in 2d NSEs lies at the root of the regularity of
its solutions, the curl

(
u|u|

2)-term in the ITT equations appears
to recreate another form of vortex stretching. However, the extra
piece of information afforded to us is the bounded time average
of the L4 norm of the velocity field expressed in (4.9), which is
just enough to recover regularity, but only to the degree that
bounds are exponential in time — see (6.11). Thus, we fall just
short of proving the existence of a global attractor. Results that
lie in parallel with those of the NSEs in both spatial dimensions
are the existence of bounded infinite hierarchies of time averages:
i.e., estimates of

⟨
Pn,m

⟩
T and

⟨
Qn,m

⟩
T , whose bounds are calculated

in Appendix B and Appendix C and summarized in Sections 6
and 7, together with the results of our numerical simulations.
When statistically steady solutions appear, the possibility of mul-
tifractality should be considered [21,22]. A future line of approach
9

might be to repeat the calculation in [53], where the correspon-
dence between the multifractal model of turbulence and the NSEs
was investigated.
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ppendix A. Differential inequalities

The most widely used class of differential inequalities that
eneralize the Sobolev inequalities are called Gagliardo–Nirenberg
nequalities [54]. In their most general form in integer d dimen-
ions (d = 1, 2, 3) they can be expressed as

∇
ju∥p ≤ c ∥∇

nu∥a
r∥u∥

1−a
q , (A.1)

here 0 ≤ j < n and 1 < p, r, q ≤ ∞. The exponent a can be
alculated by dimensional analysis and thus must satisfy

1
p

=
j
d

+ a
(
1
r

−
n
d

)
+

1 − a
q

, (A.2)

here j/n ≤ a < 1. (A.2) holds on the whole space Rd.
ith periodic boundary conditions, there are L2 additional terms

here are lower-order corrections to our estimates, which will be
gnored. In the following:

1. The standard Leray–Hopf weak-solution machinery has
been used, which has been derived for the NSEs in [30].

2. We will use the convention that the constants designated
as c , cm or cn,m are generic in the sense that they may differ
from line to line.

ppendix B. Proofs in the d = 2 case

.1. Estimates for
⟨
P2,1

⟩
T

Our first requirement is to bound P2,1, with Pn,1 defined in
3.12). Clearly αn,1,2 = 1/n, so⟨
P2,1

⟩
T =

⟨
H1/2

2

⟩
T

=

⟨(
H2

H1

)1/2

H1/2
1

⟩
T

≤

⟨
H2

H1

⟩1/2
T

⟨
P1,1

⟩1/2
T . (B.1)

o achieve a bound on ⟨H2/H1⟩T , we take the curl of the ITT
quation:

(∂t + u · ∇) ω = α0ω + Re−1
ν ∆ω − Reβ curl(u|u|

2) . (B.2)

he key point is that, while the vortex-stretching term ω · ∇u
s missing because of the orthogonality of ω with the gradient
perator, there is an additional negative Reβ curl(u|u|

2)-term. To
eal with this we write
1
2
Ḣ1 = α0H1 − Re−1

ν H2 − Reβ

∫
V

ω · curl(u|u|
2)dV

≤ α0H1 −
1
2
Re−1

ν H2 +
1
2
Re2βReν

∫
V

|u|
6dV , (B.3)

here we have integrated by parts and have then used a Hölder
nequality. Now divide by H1 to obtain

1
2

⟨
H2

H

⟩
≤ Reνα0 +

1
2
Re2βRe

2
ν

⟨∫
V |u|

6dV
H

⟩
. (B.4)
1 T 1
T

10
As in (6.13), we use the Gagliardo–Nirenberg inequality

∥u∥6 ≤ c ∥∇u∥
a
2∥u∥

1−a
4 , a =

1
3

, (B.5)

to find⟨
∥u∥

6
6

H1

⟩
T

≤ c
⟨
∥u∥

4
4

⟩
T . (B.6)

Inserting this into (B.4) and using (B.5) and the definition of A0
in (4.9), we find that

1
2

⟨
H2

H1

⟩
T

≤ α0Reν + c Re2βRe
2
ν

⟨
∥u∥

4
4

⟩
T

≤ c α0Reν (1 + α0Reν) . (B.7)

Thus, to leading order in Reν , (B.1) becomes⟨
P2,1

⟩
T ⪅ c A1/2

0 (α0Reν)
3/2 , (B.8)

s advertised in (6.2).
For the second option in which U0 is chosen to be U0 = ν/L,

hus making Reν = 1, a re-working of the bounds above gives⟨
P2,1

⟩
T ≤ c α

3/2
0 (1 + α0)

1/2 Re−1/2
β . (B.9)

We leave the remaining members of this second class of estimates
to be calculated by the reader.

B.2. An estimate for P1,m =

⟨
∥∇u∥

2m
2m−1
2m

⟩
T

A Gagliardo–Nirenberg inequality shows that, for some func-
tion A, for m ≥ 1

∥A∥2m ≤ cm∥∇A∥
m−1
m

2 ∥A∥
1
m
2 . (B.10)

We choose A = ∇u and, noting from (3.4) that α1,m,2 = m/(2m−

1), we write⟨
∥∇u∥

2m
2m−1
2m

⟩
T

≤ cm

⟨
∥∇

2u∥

2(m−1)
2m−1

2 ∥∇u∥

2
2m−1
2

⟩
T

≤ cm
⟨
∥∇

2u∥2
⟩ 2(m−1)

2m−1
T

⟨
∥∇u∥

2
2

⟩ 1
2m−1
T

= cm
⟨
P2,1

⟩ 2(m−1)
2m−1

T ⟨H1⟩
1

2m−1
T

≤ cmA
m

2m−1
0 (α0Reν)

3m−2
2m−1 , (B.11)

as advertised in (6.5). In the limit m → ∞ ,

⟨∥∇u∥∞⟩T ≤ c A1/2
0 (α0Reν)

3/2 . (B.12)

B.3. Estimates for
⟨
P0,m

⟩
T =

⟨
∥u∥

2m
m−1
2m

⟩
T
and

⟨
∥u∥

2
∞

⟩
T

We now turn to estimating u in L2m(V ) form > 2. A Gagliardo–
Nirenberg inequality shows that

∥u∥2m ≤ cm∥∇
2u∥

a
2∥u∥

1−a
4 , (B.13)

here a =
m−2
3m . When n = 0 and d = 2 we have (4 − d)α0,m,2 =

2m
m−1 . Thus,⟨
∥u∥

2m
m−1
2m

⟩
T

≤ cm

⟨
∥∇

2u∥

2(m−2)
3(m−1)
2 ∥u∥

4(m+1)
3(m−1)
4

⟩
T

≤
⟨
P2,1

⟩ 2(m−2)
3(m−1)
T

⟨
∥u∥

4
4

⟩ (m+1)
3(m−1)
T , (B.14)

in which case, for m > 2, using (4.9) and (B.8),⟨
∥u∥

2m
m−1
2m

⟩
≤ c A

m
m−1
0 (α0Reν)

m−2
m−1 , (B.15)
T
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a

T

G
(

w

B

∥

f

a

=

I
e⟨

w
i

∥

w

T
p
t

I
e

s advertised in (6.8). In the limit m → ∞ , this reduces to⟨
∥u∥

2
∞

⟩
T ≤ c α0A0Reν , (B.16)

as advertised in (6.9).

B.4. Estimates for
⟨
Pn,1

⟩
T for n > 2

Using the methods in [28], a full ‘ladder’ for Hn takes the form
1
2
Ḣn ≤ α0Hn − Re−1

ν Hn+1 + cn,1H
1/2
n+1H

1/2
n ∥u∥∞

+ cn,2ReβHn∥u∥
2
∞

; (B.17)

therefore, after a Hölder inequality and re-arrangement, we have

1
2
Ḣn ≤ α0Hn −

1
2
Re−1

ν Hn+1 + cn
(
Reβ + Reν

)
Hn∥u∥

2
∞

. (B.18)

hus,⟨
Hn+1

Hn

⟩
T

≤ 2α0Reν + cnReν

(
Reβ + Reν

) ⟨
∥u∥

2
∞

⟩
T . (B.19)

From this and (B.16) we deduce that⟨
Hn+1

Hn

⟩
T
⪅ cnα0A0Re3ν . (B.20)

Moreover, for n ≥ 2⟨
Pn+1,1

⟩
T =

⟨(
Hn+1

Hn

) 1
n+1

H
1

n+1
n

⟩
T

≤

⟨
Hn+1

Hn

⟩ 1
n+1

T

⟨
Pn,1

⟩ n
n+1
T . (B.21)

iven that
⟨
P2,1

⟩
T is bounded above as in (B.8), then together with

B.20), we can now generate upper bounds on every
⟨
Pn,1

⟩
T . For

n ≥ 2, these are⟨
Pn,1

⟩
T ≤ cn,1α

n+1
n

0 A
n−1
n

0 Re
3(n−1)

n
ν , (B.22)

hich can be transformed into the form advertised in (6.3).

.5. Estimates for
⟨
Pn,m

⟩
T

We can write down an inequality for B = ∇
2u such that

∇
n−2B∥2m ≤ c ∥∇

N−2B∥a
2∥B∥

1−a
2 , (B.23)

or some N > n + 1 − 1/m , with

=
m(n − 1) − 1
m(n + 1) − 1

. (B.24)

Thus, we can write⟨
∥∇

nu∥
2αn,m
2m

⟩
T

≤ c
⟨
∥∇

Nu∥
2aαn,m
2 ∥∇

2u∥
2(1−a)αn,m
2

⟩
T

. (B.25)

Re-arranging and then using Hölder’s inequality, we have⟨
∥∇

nu∥
2αn,m
2m

⟩
T

≤ c
⟨(

∥∇
Nu∥

2/N
2

)aNαn,m (
∥∇

2u∥2
)2(1−a)αn,m

⟩
T

(B.26)

≤ cN,n,m

⟨
∥∇

Nu∥
2/N
2

⟩aNαn,m

T

⟨
∥∇

2u∥

2(1−a)αn,m
1−aNαn,m
2

⟩1−aNαn,m

T

(B.27)

cN,n,m
⟨
PN,1

⟩aNαn,m
T

⟨
P

2(1−a)αn,m
1−aNαn,m

2,1

⟩1−aNαn,m

. (B.28)

T

11
t can be checked through the definition of a in (B.24) that the
xponent of P2,1 inside the time-average is unity. Estimates for
PN,1

⟩
T and

⟨
P2,1

⟩
T are available from (6.2) and (6.3): one can then

choose the lowest value of N , constrained by N > n + 1 − 1/m.
After some algebra, this leads to the result⟨
Pn,m

⟩
T ≤ cn,mα

2m
m(n+1)−1
0

(
α0A0Re3ν

) mn−1
m(n+1)−1 , (B.29)

as advertised in (6.10).

Appendix C. Proofs in the d = 3 case

Step 1: Qn,m is defined in (3.15). In simplified form Qn,1 can be
written as

Qn,1 = H
1

2n−1
n . (C.1)

Moreover, because
⟨
Q1,1

⟩
T = ⟨H1⟩T , we have an estimate for this

in (4.8). We begin this section by estimating
⟨
Q2,1

⟩
T from the

vorticity Eq. (B.2), with the 3d vortex stretching term restored:

(∂t + u · ∇) ω = α0ω+Re−1
ν ∆ω+ω ·∇u−Reβ curl(u|u|

2) . (C.2)

The equivalent of (B.3) is

1
2
Ḣ1 ≤ α0H1 − Re−1

ν H2 + c H1/2
2 H1/2

1 ∥u∥∞

−Reβ

∫
V

ω · curl(u|u|
2)dV

≤ α0H1 −
3
4
Re−1

ν H2 + c H1/2
2 H1/2

1 ∥u∥∞

+Re2βReν

∫
V

|u|
6dV , (C.3)

here we have integrated by parts and have then used a Hölder
nequality. The 3-dimensional Agmon inequality for ∥u∥∞ is

u∥
2
∞

≤ cnHa
nH

1−a
1 n ≥ 2 , (C.4)

ith a =
1

2(n−1) . Thus, for n = 2 ,

∥u∥∞ ≤ c H1/4
2 H1/4

1 (C.5)

and so

H1/2
2 H1/2

1 ∥u∥∞ ≤ c H3/4
2 H3/4

1 (C.6)

≤
1
4
Re−1

ν H2 +
3
4
c Re3νH

3
1 . (C.7)

Moreover, Sobolev’s inequality for d = 3 shows that

∥u∥6 ≤ c ∥∇u∥2 . (C.8)

Therefore, in total, (C.3) becomes

1
2
Ḣ1 ≤ α0H1 −

1
2
Re−1

ν H2 + c Reν

(
Re2β + Re2ν

)
H3

1 . (C.9)

hus, the ultimate contribution to (C.10) from the u|u|
2-term is

roportional to that from the vortex-stretching term, in the sense
hat they are both proportional to H3

1 . Dividing by H2
1 gives

1
2
Re−1

ν

⟨
H2

H2
1

⟩
T

≤ α0
⟨
H−1

1

⟩
T + c Reν

(
Re2β + Re2ν

) ⟨
Q1,1

⟩
T . (C.10)

gnoring the first term on the right hand side with the negative
xponent, we can write⟨
H2

2

⟩
≤ c α0Re2ν

(
Re2β + Re2ν

)
. (C.11)
H1 T
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o
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hus, we finally have⟨
Q2,1

⟩
T =

⟨(
H2

H2
1

)1/3

H2/3
1

⟩
T

(C.12)

≤

⟨
H2

H2
1

⟩1/3
T

⟨H1⟩
2/3
T (C.13)

≤ c
(
α0Re2ν

(
Re2β + Re2ν

))1/3
(α0Reν)2/3 (C.14)

= c α0Re4/3ν

(
Re2β + Re2ν

)1/3
. (C.15)

f Reν is dominant, the bound scales like⟨
Q2,1

⟩
T ⪅ α0Re2ν + O

(
Re4/3ν

)
. (C.16)

Step 2: Let us repeat (B.18) by writing

1
2
Ḣn ≤ α0Hn −

1
2
Re−1

ν Hn+1 + cn
(
Reβ + Reν

)
Hn∥u∥

2
∞

. (C.17)

fter re-arrangement and the use of Agmon’s inequality, (C.17)
ecomes
1
2
Ḣn ≤ α0Hn −

1
2
Re−1

ν Hn+1 + cn
(
Reβ + Reν

)
H1+a

n H1−a
1 . (C.18)

Dividing by H2n/(2n−1)
n and time averaging gives

1
2
Re−1

ν

⟨
Hn+1

H
2n

2n−1
n

⟩
T

≤ α0

⟨
H

1− 2n
2n−1

n

⟩
T

+cn
(
Reβ + Reν

) ⟨
H

2n−1
2(n−1) −

2n
2n−1

n H
2n−3
2(n−1)
1

⟩
T

≤ α0

⟨
H

−
1

2n−1
n

⟩
T

+cn
(
Reβ + Reν

)
⟨Qn⟩

1
2(n−1)
T ⟨Q1⟩

2n−3
2(n−1) . (C.19)

The next step is to ignore the first term.5 Given that Reν is the
ominant term, we write (C.19) in the simplified form⟨
Hn+1

H
2n

2n−1
n

⟩
T

≤ cnRe2ν
⟨
Qn,1

⟩ 1
2(n−1)
T

⟨
Q1,1

⟩ 2n−3
2(n−1)
T . (C.20)

We then study

⟨
Qn+1,1

⟩
T =

⟨
H

1
2n+1
n+1

⟩
T

=

⟨⎛⎝ Hn+1

H
2n

2n−1
n

⎞⎠ 1
2n+1

H
2n

(2n+1)(2n−1)
n

⟩
T

≤

⟨
Hn+1

H
2n

2n−1
n

⟩ 1
2n+1

T

⟨
Qn,1

⟩ 2n
2n+1
T , (C.21)

in which case⟨
Qn+1,1

⟩
T ≤ cnRe

2
2n+1
ν

⟨
Qn,1

⟩ 2n
2n+1 +

1
2(2n+1)(n−1)

T

⟨
Q1,1

⟩ 2n−3
2(n−1)(2n+1)
T

= cnRe
2

2n+1
ν

⟨
Qn,1

⟩ (2n−1)2
2(2n+1)(n−1)
T

⟨
Q1,1

⟩ 2n−3
2(n−1)(2n+1)
T . (C.22)

iven that we have estimates for both
⟨
Q1,1

⟩
T and

⟨
Q2,1

⟩
T , we can

enerate estimates for all
⟨
Qn,1

⟩
T for n ≥ 3. Thus, we deduce that

⟨
Qn,1

⟩
T < ∞ n ≥ 3 . (C.23)

5 The term with the negative exponent of Hn on the RHS of (C.19) is only
ut of control if Hn temporarily becomes very small. In principle, this could be
ealt with by adding a constant term to Hn to provide the platform of a lower
ound. We omit the details.
12
The bound is messy so we simply register that the right hand side
is finite. Finally, the method used in Appendix B.5 can be used to
show that

⟨
Qn,m

⟩
T < ∞ for m ≥ 1.

Step 3: Now let us consider

∥u∥2m ≤ c ∥∇
2u∥

a
2∥u∥

1−a
4 , (C.24)

where a = 3(m − 2)/5m with m > 2. Because α2,1,3 =
2
3 we can

write⟨
∥u∥

α0,m
2m

⟩
T ≤ c

⟨
∥∇

2u∥
aα0,m
2 ∥u∥

(1−a)α0,m
4

⟩
T

= c
⟨
Q 3aα0,m/2
2,1

(
∥u∥

4
4

) 1
4 (1−a)α0,m

⟩
T

, (C.25)

where α0,m =
2m

2m−3 . Then

⟨
∥u∥

α0,m
2m

⟩
T ≤ c

⟨
Q2,1

⟩3aα0,m/2
T

⟨(
∥u∥

4
4

) 1
4 (1−a)α0,m
1−3aα0,m/2

⟩1−3aα0,m/2

T

. (C.26)

Given a and α0,m, it can easily be checked that the exponent of
∥u∥

4
4 inside the average is unity. Thus, because

⟨
∥u∥

4
4

⟩
T ≤ c A2

0
and with the help of (C.16), (C.26) becomes⟨
∥u∥

α0,m
2m

⟩
T ≤ c (α0Re2ν)

3aα0,m/2A
2−3aα0,m
0

= α
3aα0,m/2
0 A

2−3aα0,m
0 Re3aα0,m

ν . (C.27)

In fact 3aα0,m/2 =
9(m−2)
5(2m−3) and so 1−3aα0,m/2 =

m+3
5(2m−3) , whence

⟨
∥u∥

α0,m
2m

⟩
T ≤ c A

2(m+3)
5(2m−3)
0

(
α0Re2ν

) 9(m−2)
5(2m−3) m > 2 , (C.28)

as advertised in (7.4). In the limit m → ∞ , we find that

⟨∥u∥∞⟩T ≤ c A1/5
0

(
α0Re2ν

)9/10
, (C.29)

as advertised in (7.5).

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.physd.2022.133594.
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