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Abstract
With the growth of cars and car-sharing applications, commuters in many cities, par-
ticularly developing countries, are shifting away from public transport. These shifts have 
affected two key stakeholders: transit operators and first- and last-mile (FLM) services. 
Although most cities continue to invest heavily in bus and metro projects to make pub-
lic transit attractive, ridership in these systems has often failed to reach targeted levels. 
FLM service providers also experience lower demand and revenues in the wake of shifts to 
other means of transport. Effective FLM options are required to prevent this phenomenon 
and make public transport attractive for commuters. One possible solution is to forge part-
nerships between public transport and FLM providers that offer competitive joint mobility 
options. Such solutions require prudent allocation of supply and optimised strategies for 
FLM operations and ride-sharing. To this end, we build an agent- and event-based sim-
ulation model which captures interactions between passengers and FLM services using 
statecharts, vehicle routing models, and other trip matching rules. An optimisation model 
for allocating FLM vehicles at different transit stations is proposed to reduce unserved 
requests. Using real-world metro transit demand data from Bengaluru, India, the effective-
ness of our approach in improving FLM connectivity and quantifying the benefits of shar-
ing trips is demonstrated.
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Introduction

Despite the growth of mass rapid transit systems, a large segment of commuters contin-
ues to travel by personal vehicles in many metropolitan cities. According to a study by 
World Resources Institute and Toyota Mobility Foundation—STation Access and Mobility 
Program (STAMP)—one of the significant challenges commuters face while using transit, 
such as metro trains, is the lack of first- and last-mile (FLM) connectivity (STAMP 2017). 
Moreover, due to ride-hailing alternatives such as Uber, DiDi, and Ola, there has been a 
significant mode shift from public transportation to personalised door-to-door services. 
These shifts have not only resulted in an increase in the usage of motorised vehicles but 
have also reduced revenue streams for FLM services and have led to the under-utilisation 
of public transport. Therefore, to improve transit ridership and make it more accessible to 
users, seamless integration with efficient FLM services is paramount.

While extensive work has been carried out to evaluate on-demand autonomous vehicle 
(AV) services as an alternative to public transit (Winter et  al. 2018; Berrada and Poul-
hès 2021), work on FLM connectivity between public transport and on-demand services is 
relatively limited. Network- and agent-based simulation studies by Mueller and Sgouridis 
(2011), Martinez et  al. (2015), and Fagnant and Kockelman (2018) propose models for 
personal rapid transit systems and ride-sharing but do not offer insights on improving the 
efficiency of integrated public transport and FLM mobility services. Our current work aims 
to bridge this gap.

This research aims to build a multimodal simulation system that addresses critical plan-
ning and operational questions related to FLM connectivity. We demonstrate the benefits of 
this simulator using a detailed case study of metro networks and on-demand taxi-like FLM 
services such as auto-rickshaws that are popular in many developing countries, including 
India. The city of Bengaluru, for instance, had nearly 220,000 registered auto-rickshaws 
as of May 2020 (GoK 2020). Many private companies such as Cab4You, Tummoc, and 
Rapido offer app-based on-demand services in Bengaluru, which can be used for FLM 
connectivity (Cab4u 2021; Jha 2021). Our proposed approach, however, is not specific to 
the type of FLM vehicles and can also be used for cars and vans. A commercial software 
AnyLogic is employed with an additional customised codebase written for the fleet man-
agement problem and is tested using real-world data. The proposed simulation platform 
has the following features:

• We fuse entry and exit hourly-ridership data from stations of Bengaluru metro, arrival 
schedules of trains, OpenStreetMaps (OSM), and population characteristics to approxi-
mate potential origins and destinations of travellers.

• The simulator uses a combination of agent- and event-based modelling. Event-based 
models replicate train and passenger arrivals. On the other hand, agent-based models 
help create passenger and FLM agents and simulate their behaviour using statecharts. 
Statecharts codify rules that allow the system and the agents to transition from one state 
to another.

• The simulator is designed to provide various performance metrics such as lost demand 
and utilisation rates at fine spatio-temporal scales that can be used to find planning and 
operational strategies that improve the system’s efficiency.

Our simulation platform addresses FLM connectivity problems by answering two main 
questions.
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• Planning Problem—How can the FLM fleet be optimally allocated across the network 
to improve system performance, such as lost demand? At the planning stage, we sup-
pose that a fixed number of FLM vehicles, pre-assigned to a particular station, serve 
only those customers who board and deboard at that station and travel from/to nearby 
locations. Imposing such operational restrictions on FLM services avoids supply imbal-
ances created due to the accumulation of FLM vehicles at metro stations with higher 
footfall and limits the empty miles travelled. Figuring out how many such vehicles to 
assign at each station is of interest to service providers and transit operators to mini-
mise lost demand and consequently improve ridership and revenue. We estimate the 
lost demand based on the number of passengers who have to wait beyond a certain 
threshold due to the unavailability of an FLM vehicle. Additionally, the solution to this 
stage also helps to set aside parking spaces. To solve this problem, one could use opti-
misation engines that are integrated with simulation software (e.g., OptQuest in Any-
Logic). However, such off-the-shelf tools would take several hours to evaluate the per-
formance of a single feasible solution, especially when ride-sharing is allowed. Instead, 
we exploit the fact that the problem can be decomposed by stations and propose a 
simple but effective knapsack-like formulation with an approximate piecewise linear 
objective. The computational tractability of the optimisation formulation was improved 
using an iterative scheme which adaptively refines the feasible region. In addition, we 
also estimate the FLM service provider’s revenue under different trip- and distance-
based pricing schemes and comment on the parking needs at different stations.

• Operational Problem—How do operational strategies pertaining to sharing FLM rides 
impact key performance metrics? Sharing rides, in theory, can improve vehicle utilisa-
tion and the number of requests served. To quantify these benefits, we also simulate 
scenarios where FLM trips are shared and compare the lost demand with the no-sharing 
case. For the last-mile setting, FLM vehicles are assumed to pick up passengers from 
metro stations and drop them off at their respective destinations. Since passenger arriv-
als occur in batches, we formulate this scenario as a capacitated vehicle routing prob-
lem (CVRP) where each FLM vehicle is assumed to have a capacity of three. On the 
other hand, sharing of first-mile trips is more dynamic and is assumed to occur in a 
First-In-First-Out (FIFO) manner where a new request is inserted only after the pickup 
of the current request and if a detour time threshold is not exceeded.

The rest of the paper is structured as follows. Section  Literature review summarises 
related literature on multimodal transport and FLM connectivity. In Sect.  Methodology, 
we describe the proposed architecture. An agent-based approach is presented with differ-
ent modelling constructs for passenger and FLM agents and the optimisation model for 
resource allocation. We carry out a thorough evaluation of various performance indica-
tors to measure the effectiveness of our approach in Sect. Experiments and results. Sec-
tion Conclusions concludes this paper and provides directions for building on this research.

Literature review

Shared transport services can be broadly categorised into Fixed Transit (FT) and Demand 
Responsive Transport (DRT). FT uses high-capacity public transport services that follow 
fixed schedules and routes. They are, therefore, known to be cost-effective. However, in 
many cases, they are less convenient from a passenger’s standpoint as the FLM legs of the 
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main-haul trip need to be undertaken by other modes, such as bicycles, walking, or other 
personal vehicles. DRT, on the other hand, provides door-to-door services to individual 
passengers and has a flexible schedule and route.

The third kind of hybrid transport system that integrates FT with DRT has the potential 
to offer advantages of both services Lucken et al. (2019). In such systems, the main part of 
the journey is carried out via a bus or a high-speed train, while the FLM part of the trip is 
done using demand-responsive vehicles. An assessment framework to evaluate the increase 
in accessibility when DRT is used in the first/last leg of an FT journey was provided by 
Alonso-González et al. (2018). For feeder transit services, Li and Quadrifoglio (2010) pro-
posed simulation and analytical models that planners can use to decide when FT and DRT 
policies should be used. The policy choice is based on service quality that includes pas-
senger waiting, walking, and ride time. Edwards and Watkins (2013) developed compari-
son techniques to determine scenarios in which demand-responsive feeder services can be 
utilised effectively to lower operating costs and increase customer satisfaction. Analytical 
methods have also been proposed by Chang and Schonfeld (1991), Aldaihani et al. (2004), 
and Goswami et al. (2021) to integrate fixed route services with flexible demand-respon-
sive services.

Several studies have also been conducted on multimodal transport systems. Shaheen 
and Chan (2016) provided a detailed analysis of different shared mobility modes, includ-
ing on-demand rides, and their potential impact on vehicle miles travelled. Kanuri et  al. 
(2019) demonstrated significant time savings and modal shift from personal vehicles by 
integrating public transport with feeder services that improve last-mile connectivity. A 
study comparing the competing and complementing nature of taxi trips and public transit 
was done by Wang and Ross (2019). Their findings suggest that taxis compete with transit 
in areas with good public transportation, whereas a complementary effect can be observed 
in peripheral areas with low population density.

A few studies have also explored how emerging mobility modes such as electric and 
AVs can enhance multimodal travel. Shen et al. (2018) proposed a system that integrates 
AVs and public transport based on the demand characteristics of Singapore. They use an 
agent-based model for first-mile service simulation and evaluate the effectiveness of their 
approach by varying fleet size and sharing preferences. Key performance measures in their 
work include out-of-vehicle travel time, passenger car unit kilometres, operating cost, and 
revenue. Their findings indicate that such a system could be beneficial for low-demand 
bus routes, and as the demand increases, the system performance could worsen. Another 
related research was conducted by Scheltes and de Almeida Correia (2017), where they 
designed a system called automated last-mile transport, consisting of electric vehicles that 
cater to last-mile connectivity of train trips. Their results show a reduction in travel time 
and waiting time with strategies such as intermediate charging of electric vehicles, short-
term pre-booking, and relocating empty vehicles. Leffler et al. (2021) described a simula-
tion framework for autonomous vehicles that integrates DRT with FT. They proposed a 
heuristic to rank trip plans based on cumulative passenger waiting times and the number 
of requests assigned. The operational cost and the level of service for passengers were also 
evaluated. Another study by Stiglic et al. (2018) showed a reduction in total vehicle kilo-
metres travelled when ride-sharing services are used in conjunction with mass transit.

A related problem to FLM routing is that of taxi dispatching and management of on-
demand vehicle fleets. For shared taxi services, Martinez et al. (2015) proposed an agent-
based simulation model where a central dispatching algorithm matches incoming requests 
with available taxis to minimise extra travel time and waiting time, and maximise the rev-
enue of taxis per kilometre travelled. Mueller and Sgouridis (2011) analysed the impact 
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of different demand profiles and operational strategies for improving energy consumption, 
fleet utilisation, and system costs using a discrete-event personal rapid transport simulation 
model. Fagnant and Kockelman (2018) extended agent- and network-based simulations to 
include dynamic ride-sharing in shared AVs and studied its role in reducing average ser-
vice time and travel costs. Hartleb et  al. (2021) proposed efficient heuristics for a fleet-
sizing problem that serves demand estimated from a macroscopic model.

Grahn et al. (2021) proposed a heuristic-based approach for demand matching and vehi-
cle routing to cater to on-demand FLM requests. They evaluated their model using dif-
ferent operational policies and performance measures such as travel time and reliability. 
Kumar and Khani (2021) proposed a rolling horizon-based optimisation method to solve 
the ride-sharing matching problem in multimodal network settings. They maximised the 
number of matches between riders and drivers and the savings in the total vehicle hours. 
An FLM connectivity case study for Austin light rail with shared AVs was proposed by 
Huang et al. (2021). A simulation toolkit was developed along with an implementation of a 
nested logit model for different mode choices such as walking, private cars, and walk-and-
ride. Other related work includes simulation-based studies by Costa et al. (2021) and Lau 
and Susilawati (2021) that focus on improving FLM connectivity of public transit systems 
by integrating them with DRT. A simulation-based decision support tool was also pro-
posed by Segui-Gasco et al. (2019), which combines demand generation models and a fleet 
simulator. The impact of various operational factors, such as vehicle fleet size, occupancy, 
and service levels, including passenger wait time and detour time, were studied.

Many of these agent-based studies do not consider the complete integration of public 
transport, particularly the schedules, for improving FLM connectivity. Moreover, they eval-
uate various scenarios to answer what-if questions but do not use optimisation to improve 
performance measures. In this study, we use real-world metro transit and census data of 
Bengaluru city and capture time-of-day variations in schedules and ridership. Our model 
also incorporates stochasticity in the number of passengers arriving at every station (based 
on historical data), passenger origins, and destinations. We also formulate an optimisation 
model to determine the optimal allocation of vehicles at different metro stations such that 
the number of unserved passenger trip requests is minimised under different ride-sharing 
scenarios.

Methodology

Dataset and network structure

The data used in this study is from the Bengaluru city metro transit network that consists 
of 40 stations on the East-West corridor (Purple Line) and the North-South corridor (Green 
Line). The East-West corridor extends from Baiyappanahalli in the East to Mysore Road 
terminal in the West, while the North-South corridor extends from Nagasandra in the 
North to Yelachenahalli in the South as shown in Figure 1. The data includes train start 
times at these four reference stations and headway that varies by the time of the day. Using 
this information and the time taken for a train to travel from one station to the next, we 
estimate the train arrival times at every station. During peak hours, the frequency of metro 
trains is in the range of 3–6 minutes, while the off-peak frequency is 15–30 minutes. The 
average ridership per day is approximately 726,000 (pre-COVID).
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The transit demand data consists of monthly count of passengers entering and exiting 
these 40 stations for different hours of the day, from 5 AM to 11 PM. We first compute 
the number of passengers alighting at a station from each train by dividing the demand 
data by the number of days in the month. We assume that 10% of this demand equals the 
mean value of the last-mile passenger count. The actual number of last-mile passengers 
arriving at different stations is simulated according to a Poisson distribution. For the 
first-mile scenario, we use 10% of the hourly count of passengers entering the metro 
stations (as obtained from historical data) and generate their departure times within 
each hour using a uniform distribution. For passenger origins and destinations, we use 
census data of Bengaluru consisting of enumeration blocks (EBs) and their population. 
The centroids of these EBs serve as proxies for locations of first- and last-mile trips, 
respectively. The probability of choosing a location (centroid) is assumed to be propor-
tional to the population of the EB to which it belongs. Currently, there are no central-
ised FLM providers, and hence we did not have data on the exact percentage of riders 
who might be interested in such services. We also could not simulate different trip types 
(e.g., work-based, recreational), which produce different patterns for FLM demand and 

Fig. 1  Metro transit network and Voronoi regions. The EBs and the Bengaluru city boundary are shown in 
the background
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their origin/destination locations. In the future, this kind of data could be sourced from 
surveys to get more realistic estimates.

Only those EBs in Voronoi regions within a radius of 500 m to 5 km from the metro 
stations are considered. The Voronoi polygon of a particular station contains points closest 
to it (measured using the haversine distance) compared to any other station. If the roadway 
network is sparse, the shortest path lengths along the network could be used instead of 
haversine distances while constructing the Voronoi regions. For distances less than 500 m, 
we assume that passengers prefer walking, and for locations farther than 5 km, passengers 
are assumed to use other direct modes of travel. FLM vehicles assigned to a metro station 
are only assumed to serve locations in the corresponding Voronoi polygon.

We extract the metro network, i.e., the two transit lines and 40 metro stations, using the 
Overpass API of OpenStreetMap, and convert it into GeoJSON and shapefiles. Figure 1 
shows a QGIS snapshot of the Bengaluru metro transit network and the Voronoi regions 
along the Purple and Green Line. The enumeration blocks are shown in grey colour. The 
outer boundary on the map indicates the city planning limits. The Nagasandra station, 
located at the end of the North-South corridor, can serve more demand from the city’s sub-
urbs, but the EB data was available only within the city limits.

Figure 2 shows a screenshot of the AnyLogic simulator. The FLM vehicles are routed 
using the shortest paths from the OSM server. The travel times on the road network are 
assumed constant based on the average speed of vehicles in Bengaluru and the length of 
the links.

We currently do not assume time-of-day variations in network travel times. The waiting 
time calculation begins when a passenger makes an FLM request until a vehicle is avail-
able for boarding. Walking time to the parking lot is ignored. However, extending the simu-
lator to capture these features using more realistic data is straightforward.

Fig. 2  AnyLogic simulator showing the OSM network and Voronoi regions. Purple and green lines are the 
metro routes, and red dots represent centroids of EBs, which are potential origins/destinations. The circles 
indicate regions which are within 500 m
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Modelling framework

This section describes the model components of the proposed simulator. We use a com-
bination of agent-based and discrete-event modelling paradigms. Agent-based model-
ling involves multiple decentralised entities (called agents) who interact with each other 
within a simulation environment (Crooks and Heppenstall 2012). These agents represent 
real-world entities and can either be fixed in position (such as metro stations) or exhibit 
movement (such as people and vehicles). Agent behaviour is modelled using statecharts 
where each state represents a situation during the life cycle of an agent (Greenlaw and 
Liang 2003). When an agent is in a specific state, it can perform a certain action(s) or 
wait for an event or timeout. The properties of agents can be specified using parameters 
and variables. Any action agents take within a state can be modelled using functions. A 
state change occurs at the onset of a certain event or when a certain condition holds and 
is modelled using transitions. Transitions can be triggered by a timeout, rate, message, 
agent arrival, or when a certain user-defined condition is true. Communication between 
agents is modelled using messages. The message object and destination agent to whom 
the message is to be sent must be provided while designing the state chart. As soon as 
the destination agent receives the message, a set of necessary actions can also be speci-
fied. Additional details specific to AnyLogic are provided in Appendix 6.

Figure  3 shows an overview of the simulation architecture, including the differ-
ent data sources used and the flow of execution for both first- and last-mile scenarios. 
Table 1 gives a brief summary of agents used in the proposed model. All agents reside 
in Main, which can be viewed as the top-level agent. For the last-mile scenario, we 
define the timestamps at which trains arrive at the reference stations. At each of these 
timestamps, an event eventTrainArrival is triggered, which creates an instance of 
the agent type MetroTrain. This event can occur at an absolute model time or a spe-
cific date and time, as in our case. Next, an event eventPassengerArrival gets 
triggered at each subsequent metro station at the specified arrival time. For the first-mile 
case, the eventPassengerArrival is triggered randomly on an hourly basis.

Fig. 3  Process Overview
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We now describe the Vehicle and LastMilePassenger agents in detail, along 
with their statecharts. The statechart for first-mile passengers is modelled similarly.

Vehicle agent: Figure 4 describes the statechart of a Vehicle agent. Initially, all FLM 
vehicle agents are positioned at the metro stations. We first describe the last-mile scenario. 
A state transition from AtMetroStation state to MovingToDestination happens 
when the FLM vehicle agent receives a message of the type LastMileTrip that stores 
information on the last-mile passenger, including their origin station and destination. After 
receiving this information, the FLM vehicle agent moves to the corresponding destination 
along the OSM road network, and the vehicle is in the MovingToDestination state. 

Table 1  Model agents

Agent Description

Main Top-level agent where other agents reside
Vehicle Contains information on vehicle fleet

such as origin station and Voronoi region
LastMilePassengers Contains properties of last-mile passengers

such as their last-mile origin station and destination
FirstMilePassengers Contains properties of first-mile passengers

such as their origin and first-mile destination station
MetroStation Stores metro station information including latitude and longitude
MetroTrain Contains code to trigger events eventTrainArrival

and eventPassengerArrival
PassengerDestination Stores latitude and longitude of last-mile passenger destinations
FirstMileOrigin Stores latitude and longitude of first-mile passenger origins
LastMileTrip Contains last-mile trip information such as

passenger’s last-mile origin station and destination
FirstMileTrip Contains first-mile trip information such as

passenger’s origin and first-mile destination station

Fig. 4  FLM vehicle statechart for the no-sharing scenario
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A transition to the Offboarding state occurs by the transition type agent_arrival, 
which signifies that the FLM vehicle agent has reached the passenger’s last-mile destina-
tion. Following a timeout, the FLM vehicle agent moves back to the station in the Mov-
ingToStation state. State transition from MovingToStation to AtMetroSta-
tion occurs via agent_arrival transition type.

For the first-mile scenario, state transitions take place from AtMetroStation state 
to MovingToOrigin when a FLM vehicle receives a message of the type FirstMi-
leTrip. On arriving at the origin of a first-mile passenger, the FLM vehicle goes into the 
Pickup state. Once the first-mile passenger has been picked up, the FLM vehicle agent 
transitions to the MovingToStationFull state and then back to the AtMetroSta-
tion state.

Passenger agent: Last-mile passengers alighting at metro stations are modelled as 
LastMilePassenger agents. Their behaviour is captured using the passenger stat-
echart shown in Figure 5. After alighting from the train, each last-mile passenger requests 
an FLM vehicle in the GenerateVehicleRequest state, and the associated times-
tamp is recorded. We also maintain a station-wise FIFO queue of passengers containing 
those who request an FLM service. A decision branch checks the availability of FLM vehi-
cles at the metro station.

If a vehicle is available, the passenger enters the TripRequestAccepted state. In 
this state, the passenger is removed from the request queue, and the event eventTrip 
gets triggered. eventTrip creates an instance of a LastMileTrip agent, assigns vehi-
cles to passengers in a FIFO manner, and sends a message containing the passenger origin 
station and destination information to the Vehicle agent. The Vehicle agent receives 
this message through its connections, and the message is then forwarded to its statechart. 
The passenger then goes into the Travelling state until their destination is reached.

Fig. 5  Last-mile passenger statechart
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If an FLM vehicle is unavailable, the passenger goes into the WaitForAssignment 
state. If the total waiting time exceeds a threshold parameter maxWaitingTime, it is 
marked as lost demand, and the passenger is removed from the request queue. Otherwise, 
they retry requesting a vehicle and go to the GenerateVehicleRequest state again, 
and the process is repeated.

Simulating shared rides

The scenario described thus far where rides are not shared is considered the base case. 
Additionally, we model and simulate situations where passenger requests can be pooled 
together, and an FLM vehicle can serve multiple passengers in a single trip. The following 
subsections describe these scenarios in detail.

Last‑mile shareability case

For the last-mile shareability problem, we pool passengers offboarding at a station. Since 
multiple passengers arrive at the station simultaneously, we have a sufficient lead time for 
optimisation and can batch-process their requests. To determine which passengers are to 
be served in a single trip and the order in which they should be dropped off, we formulate 
a Capacitated Vehicle Routing Problem (CVRP) (Toth and Vigo 2002) and solve it using 
Google’s OR-Tools (OR-Tools 2022). The capacity of each FLM vehicle is set to three. The 
left panel of Figure 6 shows the FLM vehicle statechart used. After a last-mile passenger 
has been offboarded, the control goes from the Offboarding state to the decision branch 
can_serve_another_LM_request. Based on the CVRP solution, if there are more 
passengers to be offboarded, the FLM vehicle goes to the MovingToDestination 
state of the next passenger. Else, the vehicle goes to the MovingToStation state. In this 
scenario, we disallow sharing of first-mile trips. In other words, FLM vehicles making a 
first-mile trip start from the station, pick up a first-mile passenger, and drop them off back 
at the station.

First‑mile shareability case

In the first-mile shareability scenario, we allow multiple first-mile passengers to be served 
by the same FLM vehicle in a single trip, while last-mile requests are served one at a time. 
The right panel of Figure 6 shows the FLM vehicle statechart. After a first-mile passenger 

Fig. 6  FLM vehicle statechart for the shareability scenario
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is picked up by the FLM vehicle in the state Pickup, the control goes to a decision branch 
can_serve_another_FM_request. Here, we check the first-mile request queue and 
pick the passenger whose waiting time is within a threshold. We also ensure that the detour 
time incurred by the passengers currently on board due to picking up subsequent passen-
gers does not exceed a pre-defined parameter called maxDetourTime threshold. If such 
a request exists, the FLM vehicle goes to the MovingToOrigin state; else it goes to the 
MovingToStationFull state. In our experiments, an FLM vehicle is assumed to serve 
up to three first-mile passengers in a single trip.

Joint FLM shareability case

The joint FLM shareability case combines the scenarios mentioned in Sects. 3.3 and 3.3. 
The FLM vehicle statechart shown in Figure  7 describes this case. After all last-mile 
requests are served, the FLM vehicle goes to the LMRequestsServed state. Instead 
of heading back to the station empty, we introduce a decision branch can_serve_FM_
request that checks for first-mile requests that can be served, provided the waiting time 
is within the threshold. If such a request exists, the vehicle goes to the MovingToOrigin 
state; else it heads to the MovingToStation state.

Integer linear programming model

We develop an optimisation model for the no-sharing case using the Custom Experiment 
functionality in AnyLogic and implement it using its Java API and the OptQuest optimisa-
tion engine. Custom Experiment offers flexibility for setting up model parameters, seed 
value, solver run time, and simulation run properties such as start and stop time. During 
a simulation-based optimisation experiment, multiple simulation runs are carried out by 
varying the values of decision variables while respecting the specified constraints. For 

Fig. 7  Joint FLM shareability vehicle statechart
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reproducible model runs, it is necessary to reset the seed to a fixed value at the beginning 
of every iteration.

The objective in our model was to minimise the total expected lost demand ls as shown 
in Equation (1). Here, S denotes the set of metro stations, and s represents the index of 
a station. The decision variables are the number of FLM vehicles assigned to each sta-
tion, represented by xs . We assume a fixed fleet size, and hence the total number of FLM 
vehicles cannot exceed atotal as shown in (2). Equation (3) specifies the upper and lower 
bounds on the number of vehicles positioned at individual stations, denoted by amin

s
 and 

amax
s

 , respectively. Such bounds could be imposed for reasons associated with parking and 
equity.

We observed that the time taken by OptQuest to complete a single iteration increases sub-
stantially in the last-mile and joint shareability case due to function calls to OR-Tools for 
solving the CVRP. However, note that the objective function can be decomposed by sta-
tions, and only Constraint (2) binds the decision variables. It is expected that as the number 
of FLM vehicles assigned to a station increases, the lost demand will decrease. Thus, this 
relationship is likely to be decreasing (and in most cases convex, with diminishing returns 
for every extra vehicle).

At each station, we interpolate the expected lost demand using simulation runs per-
formed at uniformly discretised supply values (or break points) as shown in Figure 8. With 

(1)min
∑

s∈S

ls(xs)

(2)s.t.
∑

s∈S

xs ≤ atotal

(3)amin
s

≤ xs ≤ amax
s

∀ s ∈ S

(4)xs ∈ ℤ+ ∀ s ∈ S

Fig. 8  Approximation of the lost demand curve for a metro station s 
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such lost demand curves for each station as problem input, we propose a piecewise linear 
cost approximation for the objective and formulate it as an Integer Linear Program (ILP), 
which is solved using CPLEX. The ILP model uses auxiliary variables and has an objective 
that is separable with respect to the supply at stations.

Let the piecewise linear function of station s be described using function values ls(ais) , 
where ais is the ith break point at which the simulation is performed. Let the number of 
pieces in the lost demand curve for station s be ks − 1 . Define �is as the weight placed on 
the break point ais . Let yis be one if the optimal solution for station s lies in piece i.

The number of FLM vehicles assigned to a station s is represented as 
∑ks

i=1
�isais and hence 

Constraint (6) ensures that the total supply is not exceeded. The optimal supply for a sta-
tion s must lie in one of the pieces, which is enforced by (7). The actual supply value is 
determined by a convex combination of the � s using (8). If the y variable is 1, only the � s 
associated with its endpoints must take non-negative values. This constraint is enforced 
by (9)–(11). Finally, (12) and (13) impose bounds and integrality constraints. We do not 
require constraints to model (3) in this formulation because they are implicitly set by a1s 
and aks ,s.

The proposed ILP can be solved reasonably quickly using off-the-shelf solvers. How-
ever, the major bottleneck is in estimating the lost demand at the break points using simu-
lation. This problem can be addressed by starting with a coarse set of break points and 
iteratively generating new ones. To illustrate this idea, consider the example in Figure 9. 
Suppose that for a station s, the lost demand was estimated at two break points a1s and 

(5)min
∑

s∈S

ks
∑

i=1

�islis(ais)

(6)s.t.
∑

s∈S

ks
∑

i=1

�isais ≤ atotal

(7)
ks−1
∑

i=1

yis = 1 ∀s ∈ S

(8)
ks
∑

i=1

�i = 1 ∀s ∈ S

(9)�1s ≤ y1s ∀s ∈ S

(10)�is ≤ yi−1,s + yis ∀s ∈ S, i = 2,… , ks − 1

(11)�ks ,s ≤ yks−1,s ∀s ∈ S

(12)�is ≥ 0 ∀s ∈ S, i = 1,… , ks

(13)yis ∈ {0, 1} ∀s ∈ S, i = 1,… , ks − 1
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a6s . We approximate the lost demand curve as shown by the thick line segments in the 
left panel. Suppose the resulting optimal ILP solution lies in the interval [a3s, a4s] . Addi-
tional simulations are then run to estimate the lost demand at the endpoints a3s and a4s , 
and the lost demand curve is updated with more pieces as shown in the right panel. If both 
endpoints of the optimal solution are already explored, we stop. If not, we perform new 
simulations at new break points, update lost demand curves, and repeat. If the ILP solution 
coincides with the break point, say a3s , we explore its neighbours a2s and a4s . This adaptive 
procedure was found to reduce the number of break points and simulations by nearly 50%.

Experiments and results

One day of Bengaluru metro operations was simulated using train schedules, which 
included trips starting between 5 AM–11 PM and passenger boarding and alighting infor-
mation from January 2018. Based on data on ride-sharing trips in Bengaluru, the thresh-
old for maximum waiting time and detour time was set to 7 minutes (Philip 2020). If trip 
requests are not served within this time, they are counted as lost demand. FLM vehicles are 
assumed to maintain a uniform speed of 21.2 kmph, the average speed of motorised vehi-
cles in Bengaluru (AutoCarReport 2019). The total number of FLM vehicles atotal is fixed 
at 1200, and the lower and upper bounds at each station s, amin

s
 and amax

s
 , are set to 5 and 60, 

respectively. The Java code from AnyLogic and the CVRP Python functions can be found 
at http:// www. github. com/ trans netlab/ agent- based- fleet- manag ement. com for reference.

Lost demand

We benchmark our proposed method for fleet allocation by comparing it with two baseline 
strategies and the OptQuest solver.

Baseline Strategies: Two simple strategies that could be used by an operator in the 
absence of an optimisation model were simulated. In the first strategy (proportional to 
demand), we try to achieve a supply allocation proportional to the total first- and last-
mile demand. However, since the number of vehicles allowed at each station is capped 
at 60, vehicles in excess of this value are again redistributed among the remaining sta-
tions, proportional to their corresponding demand and the process is repeated until all 
1200 vehicles are assigned. In the second case (equal supply), we simply allocate an 

Fig. 9  Adaptive refinement of the feasible region

http://www.github.com/transnetlab/agent-based-fleet-management.com
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equal number of FLM vehicles (i.e., 1200/40 = 30) at each metro station. The results for 
all four shareability scenarios are shown in the first two columns of Table 2. The values 
in brackets show percentage benefit compared with the proportional to demand strategy. 
Assigning an equal number of vehicles across stations resulted in higher lost demand in 
all shareability scenarios.

OptQuest: The optimal fleet allocation problem was also solved using AnyLogic’s 
in-built OptQuest solver with a time budget of 24 hours. The solver was initialised with 
30 vehicles at each station. For the no sharing case, a total of 1235 iterations were simu-
lated, but the best-found solution’s objective was 17,854, which was 19.4% worse com-
pared to the proportional to demand case. The quality of solutions discovered for the 
shareability scenarios was also poorer compared with the proportional to demand case, 
mainly because each of these iterations runs slower when sharing is involved. Hence, 
only a limited portion of the feasible region is explored.

ILP Model: As described in Secti. 3.4, we discretised the feasible region and ran 
simulations by varying the number of vehicles at each station from 5 to 60 in increments 
of 5 and estimated the expected lost demand. For the adaptive piecewise approxima-
tion method, only 247 out of 480 simulations (40 stations with 12 break points at each 
station) were needed to find the optimum supply values. Figure  10 compares the lost 
demand for different shareability scenarios for one of the metro stations – Indiranagar. 
The joint FLM shareability case results in significantly lower lost demand for all supply 

Table 2  Comparison of objective values for no-sharing versus shareability scenarios

Scenario Proportional to 
demand

Equal supply OptQuest ILP Model

No sharing 14,957 21,785 (– 45.7%) 17,854 (– 19.4%) 14,379 (3.9%)
Last-mile shareability 11,539 17,265 (– 49.6%) 17,109 (– 48.3%) 10,903 (5.5%)
First-mile shareability 9597 16,783 (– 74.9%) 16,375 (– 70.6%) 8821 (8.1%)
Joint FLM shareability 3655 7738 (– 111.7%) 7779 (– 112.8%) 2714 (25.7%)

Fig. 10  Lost demand comparison for a metro station – Indiranagar – under different shareability scenarios
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values. Similar trends were observed at other stations. The average number of simulated 
first- and last-mile passengers in this scenario was 36,664 and 36,994, respectively.

These curves were used as input to the ILP formulation (5)–(13), which was solved 
using CPLEX. The optimal decision variables, i.e., the number of FLM vehicles at every 
station, were passed to the AnyLogic simulation, the results of which are shown in the last 
column of Table 2. The CPLEX runtimes in all four shareability scenarios were less than 
a minute. The estimated lost demand for the baseline strategies and ILP model are average 
values from five simulation runs. Overall, the ILP model solution consistently resulted in 
lower lost demand and outperformed the other allocation methods for all shareability sce-
narios. Specifically, for the joint FLM shareability case, improvements of 65% and 26% 
were observed over the baseline strategies, showcasing the potential of our work in improv-
ing FLM connectivity. The rest of this section analyses the solutions from the proposed 
ILP method for the joint FLM shareability scenario in greater detail.

The optimal number of vehicles at each station and the lost demand percentage, cal-
culated with respect to the total demand on an hourly and station-wise basis, are shown 
in Figure 11. The bar plots on the top and right indicate the cumulative lost demand per-
centages for each hour and each station, respectively. Lost demand is highest in the time 

Fig. 11  Spatio-temporal distribution of lost demand
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window 7 PM–8 PM, followed by 9 AM–10 AM. As expected, the off-peak morning 
hours 5 AM–8 AM record the lowest lost demand percentage. For most metro stations, the 
percentage of lost demand is less than 5%. Three out of four ends of the metro lines are 
assigned the maximum number of FLM vehicles allowed because of their large Voronoi 
regions. Among them, Baiyyappanahalli (label #17), one of the endpoints on the East-West 
line, has the highest lost demand (see Figure  12, which shows the locations of the lost 
demand). As mentioned earlier, Nagasandra station in the North also has a sizeable Voro-
noi region, but the complete EB data was unavailable. The lost demand at the other two 
terminal stations – Mysore Road and Yelachenahalli – is relatively much lower because 
the passenger demand at these stations is nearly half that at Baiyyappanahalli. The overall 
difference between the number of last- and first-mile lost demand across all stations for this 
instance was found to be 413.

Table 3 shows the top five metro stations with the highest lost demand, their LM and 
FM demand, the number of FLM vehicles in the optimal solution, and LM and FM lost 
demand. Their rank based on the total lost demand is also indicated in Figure 12. Despite 
having a significant share of lost demand, the stations Majestic and Dr. BR Ambedkar 
Station (labels # 8 and #10) are not assigned more FLM vehicles because the marginal 
effect of adding an extra vehicle at these stations was found to be very low. The num-
ber of unserved first-mile requests in the case of Baiyyappanahalli is higher because the 

Fig. 12  Locations of lost demand 
for a single simulation run. Last-
mile lost demand locations are 
shown in orange, while blue dots 
denote first-mile lost demand 
locations

Table 3  Top five stations with highest lost demand

S.no. Station LM demand FM demand # Vehicles LM lost demand FM lost demand

1 Baiyyappanahalli 2888 2750 60 724 1025
2 Majestic 3153 3083 40 350 2
3 Dr. BR Ambedkar Stn 897 881 30 182 2
4 Sir MV Central Clg 1173 1133 30 48 0
5 Mahatma Gandhi Rd 1642 1587 55 35 1
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detour times are longer compared with other stations with a high passenger volume, such 
as Majestic.

To test the sensitivity of the optimal solution with respect to the total number of vehi-
cles, we ran a few additional scenarios. Specifically, we set the number of vehicles to 800, 
1200, and 1600. The percentage of lost demand in these instances was 10.7%, 3.7%, and 
3.5%, respectively.

Vehicle utilisation

We also compared utilisation statistics of FLM vehicles in the system. The line chart asso-
ciated with the secondary axis in Figure 13 shows the average unit utilisation of vehicles 
assigned to different stations. Unit utilisation values indicate the percentage of time the 
vehicle was busy. The highest (82%) and lowest (44%) utilisation percentages were found 
to correspond to stations Baiyyappanahalli (label #17) and Mahakavi Kuvempu Road 
(label #28), respectively, and are correlated with the supply and demand at these stations. 
Knowing utilisation percentages can help reserve downtime of the vehicle fleet if needed 
(e.g., for maintenance, refuelling, and recharging/battery swapping in the case of an elec-
tric fleet).

Vehicle utilisation statistics are also a measure of the number of idle vehicles that 
require parking at stations. Figure  13 shows a box plot in which the number of vehi-
cles parked at different stations estimated at a one-minute frequency makes up the data 
points. As expected, stations with high utilisation, such as Baiyyappanahalli, Majestic, and 
Yeshwantpura, have low median values. These percentile measures can be used to design 
appropriate parking infrastructure.

Parking requirements are not usually uniform and mirror the demand distribution. Fig-
ure  14 shows temporal variations in the number of idle FLM vehicles for two stations 

Fig. 13  Box plot showing the number of vehicles parked at different stations. The line chart shows the per-
centage vehicle utilisation
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– Indiranagar and Majestic. The parking requirements are lowest during the morning (9 
AM–11 AM) and evening peak hours (6 PM–8 PM), but the off-peak requirements can be 
significantly different across stations, as seen from the figure.

Shareability

Figure 15 shows the percentage of trips that involve transporting a single passenger and 
ride-sharing with two or three passengers on board. The superimposed line plot indi-
cates the total number of trips. Recall that in the joint shareability model (see Figure 7), 
FLM vehicles first serve last-mile demand and switch to picking up first-mile passengers 
(if available and if waiting/detour time thresholds are met). The FLM vehicle can serve 
multiple passengers on the last-mile leg but may pick up only one passenger on its way 
back. Hence, classifying a trip based on the number of passengers served can lead to some 

(a) (b)

Fig. 14  Time series plots showing the number of vehicles parked at the metro stations at different hours of 
the day

Fig. 15  Percentage of trips with 1, 2, and 3 passengers. Single-passenger, 2-sharing, and 3-sharing trips are 
represented by blue, yellow, and green bars, respectively. The line plot shows the average number of trips 
for each station
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ambiguity. We, therefore, do not define trips as segments that start and end at the metro sta-
tion but count them separately for the first- and last-mile legs. In other words, trips are pas-
senger-serving segments between instances where the FLM vehicles are empty. The aver-
age number of trips serving one, two, and three passengers across all stations was found to 
be 777, 175, and 215, respectively.

FLM vehicles at stations such as Baiyyappanahalli, Majestic, and Indiranagar make 
a greater fraction of shared trips than the others. These stations have a high demand for 
boarding and alighting passengers, making it easier to pool rides. On the other hand, sta-
tions such as Peenya, Peenya Industry, and Goraguntepalya witness a lower fraction of 
shared trips because of their elongated Voronoi regions, which makes it difficult to pool 
rides. Sharing rides leads to lower lost demand, as demonstrated in Table 2. In addition, 
they also result in fewer vehicle kilometres travelled. Serving the passenger demand met in 
the joint FLM scenario using only single rides would have resulted in 406,434 vehicle km 
but allowing sharing reduces this to 295,036 vehicle km, a 27% decrease, which decreases 
both congestion and emissions.

Pricing models

The simulation framework proposed in this paper can also help analyse different pricing 
models, such as distance- and trip-based pricing schemes. In the following discussion, 
we compare revenue, assuming that the demand is captive and insensitive to the fare. The 
numbers used in this section are representative of auto-rickshaw operations in India. All 
calculations are estimated on a per-day basis.

Distance-based pricing model: To calculate the revenues, we first add up the fares paid 
by the set of passengers served at station i, P(i). Passenger p is assumed to be charged an 
amount Dip that depends on the direct distance between their origin/destination and the 
metro station. Metered auto-rickshaw fares in Bengaluru are of threshold type with a fixed 
base rate � up to 2 km and a distance-based price � for subsequent kilometres travelled. 
Thus, the revenue from a passenger p can be expressed as Rip = � + �max(Dip − 2, 0) , 
where � and � were set to ₹30 and ₹15, respectively (IndianExpress 2021).

Let Div be the distance travelled during an entire day by a vehicle v assigned to station i. 
The operating cost is defined as Div(�∕�) + Cf  , where � denotes vehicle mileage and � is 
fuel price, set to 25 km per litre and ₹100 per litre, respectively. Operators are also assumed 
to incur a fixed cost Cf  set to ₹102 per vehicle per day (GoM 2022), which includes depre-
ciation and maintenance. For simplicity, Cf  is kept constant but may, in practice, depend 
on vehicle utilisation and age. Thus, the overall profit for FLM vehicles at station i can be 
expressed as Pi =

∑

p∈P(i) Rip −
∑xi

v=1

�

Div(�∕�) + Cf

�

.
The top panel in Figure  16 shows the profit per vehicle at different metro stations 

under this pricing scheme. The average profit across all vehicles was found to be ₹1623. 
The line plot corresponding to the secondary axis shows the average distance travelled 
by the FLM vehicles. Compared to the daily earnings of ₹800–1200 reported in pre-
vious studies on auto-rickshaw drivers in Bengaluru city (Ramachander et  al. 2015), 
we observe that serving metro passengers through a centralised service provider can 
yield higher profits. The estimated profits per vehicle at metro stations Baiyyappanahalli 
and Majestic are the highest as expected due to high passenger demand, vehicle utilisa-
tion, and degree of ride-sharing. Among all stations, Majestic has the smallest Voronoi 
region and, consequently, shorter average distances. However, since the pricing scheme 
has a base fare (independent of distance) for trips shorter than 2 km, the overall profits 
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are considerably higher. On the other hand, Peenya Industry has the lowest profit per 
vehicle despite serving passengers with longer distances to the metro station. This result 
is possibly because Peenya Industry has the least passenger demand among all stations 
and a high share of single-passenger trips (see Figure15).

Trip-based pricing model: We also estimated the profits from a trip-based pricing 
model where passengers are charged a flat fee of Rip = ₹30, irrespective of the distance 
they travel. The operating costs are assumed to be the same as before. As seen from the 
bottom panel of Figure 16, the profit values are lower compared to the distance-based 
model. The average profit per vehicle was found to be ₹766, which is less than half of 
that in the distance-based case. At a fixed price of ₹44, the trip-based profits per vehicle 
become nearly equal to the estimates from the distance-based pricing model. Two metro 
stations – Jalahalli and Peenya Industry – have negative revenues due to a lower number 
of trips (see the line plot on the secondary axis). Setting a higher fixed fare for FLM 
vehicles at such stations could resolve this issue.

Policy implications

Based on the above analysis, the following list summarises a few possible policy 
implications.

• The marginal benefit of adding FLM vehicles to a station drops beyond a threshold. 
This threshold is different for each station and depends on the size and demand of 
the region it serves. Hence, service operators must determine an optimal number 
based on the trade-off between operating costs and net revenue.

Fig. 16  Revenues under distance- and trip-based pricing
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• Since vehicle utilisation rates and profits vary significantly across stations, a policy of 
rotating vehicle assignments to stations may be required to provide equitable earnings 
to all drivers.

• There are temporal variations in lost demand, with peak hours witnessing three to 
four-times higher percentage of lost demand than off-peak hours. Considering the 
importance of public transit in reducing congestion, especially during peak periods, 
it is imperative to manage peak-period lost demand more efficiently. Ensuring maxi-
mum vehicle availability, augmenting the fleet size, and operating larger vehicles could 
reduce the demand lost during peak hours.

Conclusions

The first- and last-mile parts of a trip are often inconvenient to commuters, which in turn 
results in low utilisation of public transport. One could develop a multimodal simulation 
for FLM connectivity to address this problem and test various improvement strategies 
before implementing such systems in the field. These simulations involve modelling the 
behaviour and interaction of agents such as passengers and FLM vehicles, arrival of metro 
trains, movement of vehicles on the road network, and pooling multiple passenger requests 
when shareability is allowed.

We proposed a combination of agent- and event-based modelling and simulation 
approach to study a planning and an operational problem. At a planning level, we tried 
to improve the resource allocation of FLM services at different metro stations. We mod-
elled the FLM vehicles and passengers as agents and described their behaviour using stat-
echarts. Vehicles are assumed to be initially parked at metro stations, and routing is done 
using deterministic shortest paths. We developed an optimisation model that minimises the 
number of unserved trip requests (lost demand) by decomposing the problem by stations 
and formulating a knapsack-like problem with an approximate piecewise linear objective. 
We applied our model to the Bengaluru city metro transit network and carried out a day’s 
simulation using real-world train schedules and passenger demand data.

For the planning problem, our proposed method could allocate resources more effi-
ciently, leading to a 26% improvement in the objective compared to the best benchmark 
strategy. At an operational level, we tested different shareability scenarios and were able 
to quantify the benefits of sharing rides. For instance, an integrated FLM shareability sce-
nario could reduce the lost demand by nearly 81% and the vehicle km travelled by 27%. 
Several other key performance indicators, such as percentage of lost demands on hourly 
and station-wise basis and fleet utilisation were explored, and suggestions for setting FLM 
fares were also made.

While this research focuses on supply aspects and provides a framework for manag-
ing FLM fleet, many extensions that relax some assumptions can be conceived. First, the 
quality of FLM demand estimates and their origins/destinations can be improved with data 
on land use and employment characteristics; and trip types and their distribution during 
peak and off-peak periods. Second, modelling the effects of pricing and waiting times on 
multimodal demand is critical. In the context of pricing, many cities are exploring new 
forms of payment mechanisms, such as bundle pricing and revenue sharing, which can 
make multimodal journeys attractive. In addition, passengers could be given discounts for 
sharing rides; setting these fares at profitable levels is worthy of study. Capturing heteroge-
neity in waiting time depending on the alternate options available to passengers in different 
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geographical areas of a city can also improve model fidelity. Third, while zonal restrictions 
for FLM vehicles alleviate the need for rebalancing, a certain degree of optimality is lost 
when there are opportunities to share trips by passengers close to the boundaries. Under-
standing these trade-offs without making the simulation unmanageable is another promis-
ing direction for future research. Fourth, incorporating time-of-day changes in traffic and 
congestion effects can improve the estimates of ride-sharing benefits. Since our results 
indicate significant differences in vehicle utilisation across the day, one could also explore 
dynamic supply allocation strategies to optimise expenditure. Finally, anticipating the elec-
trification of shared vehicle fleets, adjusting FLM operations to accommodate recharging 
or battery swapping can broaden the applicability of this decision support simulator.

AnyLogic specifics

For the purpose of reproducibility, this subsection provides a few implementation details 
that are specific to AnyLogic. These details are not critical for simulation platforms built 
using other tools, and hence the reader can skip this material without any loss of continuity.

The discrete-event model that triggers the occurrence of certain time-ordered pro-
cesses (Borshchev and Filippov 2004) is executed in AnyLogic using its process mod-
elling library blocks. Individual events can also have a timestamp associated with them 
and can be scheduled in advance. To create vehicle agents for every metro station, we use 
the resource pool functionality of AnyLogic’s process modelling library. The number of 
resource units in each pool can be specified along with other properties such as vehicle 
speed and initial location. An advantage of using resource pools is that it captures utilisa-
tion statistics, such as the time for which FLM vehicles are idle or busy during the simula-
tion. These can be computed using a set of process modelling library blocks as shown in 
Figure 17. When an instance trip (agent type LastMileTrip or FirstMileTrip) 
is generated, the function ProcessTrip.take(trip) is called. ProcessTrip is an 
Enter block at which the FLM vehicle agents are inserted into the process modelling 
library blocks. TakeVehicle is a Seize block that captures units of the FLM vehicle 
resource pool. The control then goes to the Travelling block, which is a Delay block, 
until the stopDelay() function is called after an FLM vehicle serves the passenger trip 
request and reaches the station. After this step, the control flow goes to the ReleaseVe-
hicle block that releases the seized FLM vehicle unit. The agents are then taken out of 
this process flow by the Sink block.

For simulating first-mile passenger arrivals, the dynamic event functionality of Any-
Logic was used (since it allows the creation of multiple concurrent instances, each of which 
is independent) and initialised with the specified parameters (such as the name of the metro 
station where passengers arrive). For the shareability scenarios, communication of inputs 
and outputs between the CVRP codes and AnyLogic is established through additional cus-
tom code using PypeLine (a Python connector library for AnyLogic).

Fig. 17  Process modelling library blocks
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