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ABSTRACT

The present work aims to identify the best hydrological model structure suitable for the Lower Godavari River Basin, India, that forecasts

streamflows. An extended version of the Framework for Understanding Structural Errors (FUSE), termed E-FUSE, is developed for this pur-

pose. It consists of 1248 model structures. K means cluster analysis (KCA), and Davies Bouldin Cluster Validation Index (DBCVI) are used

for identifying optimal clusters, whereas Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is employed for the

best model structure. Correlation coefficient (r), normalized root mean square error (NRMSE), and mean bias error (MBE) are employed as

evaluation criteria. The best model structure obtained exhibits r, NRMSE and MBE of 0.734, 0.74 and -0.09 respectively during calibration

and 0.69, 0.802 and -0.28 respectively during validation. The best model structure is then used to forecast discharges for a global climate

model, EC-Earth3, and four Shared Socioeconomic Pathways, SSP126, SSP245, SSP370, and SSP585 scenarios. Analysis was made for

three time horizons, namely, the near-future scenario (2021–2046), mid-future scenario (2047–2072), and far future scenario (2073–2099).

It is observed that the July–September months contribute greatly to total runoff for four SSPs and three time horizons.
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HIGHLIGHTS

• FUSE is extended by combining with K-means cluster analysis and multi-criteria decision-making technique, TOPSIS, to identify the best

hydrologic model structure and applied to Lower Godavari River Basin, India.

• Runoff is forecasted using EC-Earth3 and four SSPs, namely SSP126, SSP245, SSP370, and SSP585 for near (2021–2046), mid (2047–2072),

and far future (2073–2099) time horizons.
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INTRODUCTION

Runoff response to meteorological variables in a catchment in a climate change scenario is always a research question and
can be aided by effective hydrological modelling. However, reliable runoff assessment is governed by hydrologic model
approximations, catchment data availability, and the quality of hydrologic measurements. Also, it requires holistic under-

standing of the architecture and flux parameterization of the individual hydrological model(s) to formulate one
generalized framework that could perform effectively for any study area. Li et al. (2015) opined that suitable model structures
with increased complexity are expected to yield realistic runoff simulations. This process enables policy-makers to decide on

water security-related planning and management initiatives in data-rich and data-scarce catchments. Therefore, reliable
runoff estimation is found to be essential.

Many studies utilized individual hydrological models, which worked effectively in a few catchments and showed no

promise in others. As a result, a better framework must be built that can generate several models, increasing the likelihood
of getting a suitable model within the framework. Such a structure would have the possibility of providing a better prediction
across multiple catchments. In this context, Clark et al. (2008) initiated a Framework for Understanding Structural Errors

(FUSE). It is the outcome of aggregating various components of four hydrologic models, namely, the National Weather Ser-
vice Sacramento, Precipitation Runoff Modelling System (PRMS), TOPology MODEL (TOPMODEL), and Variable
Infiltration Capacity (VIC). They formed 79 model structures based on the four mentioned hydrological models. These
model structures were used for streamflow simulation of the French Broad and Guadalupe Rivers. They have concluded

that FUSE simulated better for the French Broad River with a Nash Sutcliffe Efficiency (NSE) of 0.8 in comparison with Gua-
dalupe River, with an NSE value ranging from 0.4 to 0.65.

Other researchers who explored FUSE are as follows: Staudinger et al. (2011) employed FUSE using 79 model structures to

examine the influence of each model structure on low flows over the Narsjo catchment of the Norway region. They have con-
cluded that lower soil architecture primarily influences low winter flows, whereas low summer flows are affected by a
combination of model structures. The model structures were found satisfactory, having NSE greater than 0.8. Coxon et al.
(2014) generated 78 modelling structures considering 10,000 parameter variations using uniform prior distribution over 24
UK catchments using FUSE. Performance metrics are the time step evaluation point, water balance signatures, and flow dur-
ation curve, and corresponding information is available from Littlewood & Croke (2008), Thoma et al. (2020), and Luan et al.
(2021). They have concluded that the evaluation point metric is more dominant in evaluating the model performance than the
other two, with an average precision of 60% and reliability of about 96%. Vitolo (2015) developed FUSE for generating 1248
model structures based on model building decisions, 10 state equations, 18 internal fluxes, and 24 model-specific and study-
specific parameters over Plynlimon catchment, UK. FUSE performed satisfactorily in simulating low flow and medium flow

events but lacked in capturing high flow events showing an NSE of 0.54. Lane et al. (2019) deployed FUSE for analyzing 1013
UK catchments. Model performance was assessed with NSE for daily flows and skill score for parameter uncertainty. It is
concluded that over 80% of catchments have shown a satisfactory performance with an NSE value greater than 0.5 in simu-

lating discharge. Newman et al. (2021) examined the model structure, model parameterization, and initial conditions for two
USA watersheds having return periods ranging from 2 to 100,000 years. FUSE was employed to develop stochastic event-
based hydrologic modelling. Kling Gupta Efficiency, NSE & Root Mean Square Error were employed to ascertain model per-

formance. They have concluded that high rainfall significantly influences the variability of rare events, whereas initial
conditions substantially impact the variance of more regular events. This study also revealed that Kling Gupta Efficiency
is a better evaluation metric than the other two for the calibration of extreme events.

Quantifying the runoff under the influence of climate change is equally important as runoff dynamics are predominantly

influenced by climate change (Herman et al. 2020) and is a challenging task. As a note, no studies on FUSE in Indian con-
ditions or elsewhere are reported from a climate change perspective.

In this context, E-FUSE, an extended version of the FUSE in association with K-means cluster analysis (KCA), Davies-Boul-

din cluster validation index (DBCVI) (Mahata et al. 2021), and the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) (Farajpanah et al. 2020) is developed to determine the best hydrological model structure and related par-
ameter variations for Lower Godavari River Basin (LGRB), India. LGRB is chosen for runoff simulation and forecasting

purposes in the context of E-FUSE mainly due to the flexibility of diverse modelling options, which facilitates deriving rea-
listic runoff simulations under drainage congestion, backwater effect, high evapotranspiration, and canopy losses (Amarnath
& Thatikonda 2020). Accordingly, the objectives chosen are to:
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i. Generate model structures in the E-FUSE environment

ii. Cluster the generated model structures using KCA and identify optimum cluster size using DBCVI
iii. Select suitable model structure (s) using TOPSIS.
iv. Forecast future runoff using a suitable model structure (obtained from iii) using Global Climate Model, EC-Earth3 in

association with Shared Socioeconomic Pathways, SSP126, SSP245, SSP370, and SSP585, respectively.

A brief narrative of the case study is part of section 2. Section 3 describes FUSE, K-Means, DBCVI, TOPSIS, Evaluation

metrics, EC-Earth3, and SSPs.

CASE STUDY

LGRB lies between the latitude of 16° 190 to 22° 340 N and the longitude of 73° 240 to 83° 40 E. The basin shares boundaries
with Andhra Pradesh, Chhattisgarh, Odisha, Maharashtra, and Telangana. It has a basin length of 462 km and a total catch-

ment area of 39,180 km2. The catchment is dominated by red and black cotton soils. The majority of rainfall occurs during the
southwest monsoon. Temperature ranges from 26° to 44° C. Demands that are expected to be met from LGRB are 664 Million
Cubic Metres for drinking and industrial needs of Visakhapatnam, water diversion of approximately 2,265.35 Million Cubic
Metres into Krishna river at Vijayawada. In addition, 226.54 Million Cubic Metres for stabilization of the Samarlakota branch

canal, 141 Million Cubic Metres, and 42 Million Cubic Metres for water requirements for Odisha and Chhattisgarh states,
respectively (Ministry of Water Resources GoI 2017). Table S1 (presented in the supplementary section) presents future rain-
fall and evapotranspiration (mm/day) under four SSPs.

These growing requirements necessitate accurate estimation of runoff which ensures water security. The upper cofferdam is
2.480 km long and 42.5 metres high. It is built to detain the natural watercourse to enable the construction of the Earth-cum
Rockfill dam. A lower cofferdam, 1.616 km long and 30.50 m high, is built downstream of the spillway to ensure that the

water does not flow back to the Earth-cum Rockfill dam site. The Ogee spillway with 48 vents is constructed to control
the flow of water released during the flooding.

Perur is the inlet of the study area. Polavaram is considered an outlet instead of Dowleswaram, which is downstream

of Polavaram. Dowleswaram was not considered an outlet as flow is influenced by left and right main canals, lower and
upper cofferdams, and Earth-cum Rockfill dam. Figure 1 presents the map of LGRB describing the mentioned locations.
Various studies have projected temperature rise over the study area, which intensifies the climate processes and has
Figure 1 | Lower Godavari River Basin showing the location of cofferdams, spillway & Earth-cum Rockfill dam.
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significant impacts on runoff of the catchment (Hengade et al. 2018). Therefore, it becomes essential to forecast the

runoff from a climate change perspective and help policy-makers to formulate effective planning and management
initiatives.

DESCRIPTION OF METHODS

FUSE is a modular modelling framework. The workflow of E-FUSE to identify the best hydrological model structure and
parameter variation is presented in Figure 2. It is developed with PRMS (Leavesley et al. 1983), the National Weather
Figure 2 | Workflow of E-FUSE.
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Service Sacramento (Burnash et al. 1973), VIC (Liang et al. 1994), and TOPMODEL (Beven & Freer 2001), terming them

parent models. Each model differs in the design of the upper and lower soil layers and the parameterization of processes.
FUSE could integrate components from various models to produce a variety of structures called daughter models (Clark
et al. 2008).

The E-FUSE (refer to Figure 2) consists of three primary sections, namely, (A) generation of model structures/alternatives
using FUSE, (B) application of the KCA on the alternatives and DBCVI to identify optimal clusters, and (C) TOPSIS to ident-
ify the best alternative. E-FUSE decision support system is developed in R-Platform. These are explained in brief as follows,
along with evaluation metrics. Notations 1, 2, 3, 4, 5, 6, and 7 presented in Figure 2 represent Upper Layer, Lower Layer,

Surface runoff, Percolation, Evaporation, Interflow, and Time delay in the runoff, respectively.
As part of B, KCA clusters data sets into relatively homogeneous sub-sets (Rao & Srinivas 2006). The mathematical back-

ground of KCA is presented in Figure S1 (provided in the supplementary material section). The number of clusters is an

essential input for KCA. The present study uses DBCVI to determine the optimal number of clusters (Davies & Bouldin
1979). As part of C, TOPSIS is used for ranking alternatives (Opricovic & Tzeng 2004), and the mathematical background
is presented in Table 1.

Performance metrics

Indicators are used simultaneously to judge the simulating ability of E-FUSE (Refer to Table 2). These are the correlation coef-
ficient (r), the Normalized Root Mean Square Error (NRMSE), and the Mean Bias Error (MBE) (Moriasi et al. 2015), and are

explained in Table 2.

Description of global climate model and SSPs

The present study uses EC-Earth3 (Mishra et al. 2020; Döscher et al. 2021). The change in the patterns of global society, econ-
omics, and demographics are being studied thoroughly by climate experts by exploring new pathways known as SSPs. The
SSPs are based on socioeconomic trends and are intended to span the range of plausible futures (Riahi et al. 2017).

DATA COLLECTION AND PROCESSING

The application of E-FUSE requires considerable data and parameters. Daily rainfall, evapotranspiration, and discharge are
the main inputs in E-FUSE, in addition to the parameters described in Figure 2. Daily rainfall of 0.25° grid resolution and
temperature of 1° grid resolution are collected from India Meteorological Department for 1982–2020 over 52 grid locations

resulting in 14,245 records. The nearest neighbourhood approach is used to interpolate temperature data to 0.25° grid. Temp-
erature is used to compute evapotranspiration using the Penman-Monteith method. Daily discharge data over the Polavaram
and Perur are obtained from Central Water Commission from 1982–2020. The Perur daily discharge deducted from Pola-

varam is considered as the observed discharge of LGRB for calibration purposes.
Future climate variables, namely, rainfall, maximum and minimum temperatures for 2021–2099, are obtained over LGRB

(Mishra et al. 2020). These climate variables over 52 grid locations covering the LGRB are interpolated using the bilinear

interpolation technique for four SSPs.
In addition to data collected in historical and future periods, the study also requires parameters and their corresponding

ranges to address the effects of a hydrological system that influences the streamflow. Here, parameter refers to the values,
Table 1 | Mathematical background of TOPSIS

Mathematical expressions Remarks

k�
j , k

��
j j ¼ 1,2,…..J ; J is the number of indicators Ideal and anti-ideal solutions for each indicator j

DSþa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

(kj(a)� k�
j )

2

s
Distance measure of alternative a (DSþa ) from ideal solution

DS�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

(kj(a)� k��
j )2

s Distance measure (DS�a ) of a from the anti-ideal solution

CRa ¼ DS�a
(DS�a þDSþa )

Relative closeness CRa. Higher CRa indicates a suitable alternative
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Table 2 | Mathematical background of metrics

Mathematical expressions Remarks

r ¼

Pn
i¼1

(Oi � �O)(Si � �S)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Oi � �O)
2

s Pn
i¼1

(Si � �S)
2

The higher r is preferred. Its range is �1 to þ1. r of over 0.7 is considered satisfactory in the context of
hydrological modelling
Oi ¼Observed discharge (mm/day), �O¼Mean of the observed discharge (mm/day), s¼ Standard
deviation of the observed discharge (mm/day), Si ¼ Simulated discharge (mm/day), �S¼Mean of the
simulated discharge (mm/day) & n¼ size of the sample considered

NRMSE ¼ 1
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

( Oi � Si)
2

n

vuuut
The lower value of NRMSE is preferred. Its range is –∞ to þ∞. NRMSE less than 0.7 is considered
satisfactory in hydrological modelling

MBE ¼

Pn
i¼1

(Oi � Si)

Pn
i¼1

(Oi)
The lower value of MBE is preferred. Its range is �1 to þ1. MBE range of �0.20 and 0.20 is considered
satisfactory in hydrological modelling
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which are model-dependent and study-specific, that influence the streamflow. There are 24 parameters suggested by Clark
et al. (2008) whose ranges are required for this purpose (refer to Table 3). The drainage congestion is considered using par-
ameters 12, 14, 18, 20, 21, and 24 and is amplified by higher base flow rates, percolation rates, interflow rates, and maximum

saturated areas. Higher time delay values reflect more drainage congestion. The mean topographic index measures the surface
flow accumulation at a given location, which will rise with an increase in area and a decrease in slope gradient. This will lead
to drainage congestion and backwater effects. Thus, incorporating the parameters in runoff simulation enables a realistic
amount of accounting for these challenges experienced in the study area. After identifying the study-specific and model-

specific parameter thresholds, the next step is to generate numerous parameter variations. The higher parameter variations
will provide more accurate results but will take a longer time for computation. Thus, depending on accuracy and time, the
user can choose the number of parameter variations that can be selected. The Latin Hypercube Sampling (LHS) method

(Devak & Dhanya 2017) generates the number of parameter variations. The total parameter threshold space is divided
into equal (p) intervals with a probability of 1/p. Random parameter values are generated using stratified sampling only
once for each interval for 24 hydrologic parameters. In this study, 20 parameter variations are considered as this would

enable obtaining a behavioral threshold. The index of alternatives can be computed for the parameter variations from the
generalized Equation (1).

The generalized equation formulated for computing the index of alternatives is as follows:

NI ¼ (NMR � 1)� (NT )þ (NR) (1)

Here,NI, NMR are the indices of alternative and model structure,NT is the maximum number of parameter variations poss-

ible (20 in this case). NR is the parameter variation at which index of alternative is required.
For example, if the given index model structure is 312, and the index of parameter variation is 6 (among 20 possible), then

the resulting alternative index is (312-1)� 20þ 6¼ 6,226. It means that index model structure 311 completed all 20 parameter

variations, and index model structure 312 completed only six parameter variations as specified. If NT¼NR, the equation
would be modified as NI ¼ NMR �NT .

After entering the number of runs in the decision support system, the user must decide which models can be used for runoff
computation. Users can analyze four parent models, i.e., TOPMODEL, PRMS, VIC, SACRAMENTO, or resulting structures

based on model-building decisions (refer to Figure 2).
Total model structures formed based on options available for model building decisions are rainfall error (2 levels), upper

soil layer architecture (3 levels), lower soil layer architecture (4 levels), surface runoff (3 levels), percolation schemes (3

levels), evaporation (2 levels), interflow (2 levels) and routing schemes (2 levels) resulting in 1,728 combinations. Out of
these, 480 model structures are incompatible. This incompatibility is caused by the interdependence of one model-building
decision with the other (Clark et al. 2008). These are subtracted from the total of 1,728, yielding 1,248 model structures.
://iwaponline.com/jwcc/article-pdf/13/11/3934/1141518/jwc0133934.pdf



Table 3 | Model-specific and study-specific E-FUSE parameters

Parameter
(1) Functionality of Parameter (2)

Parameter abbreviation
(3) Units (4) Ranges (5)

Optimum value
(6)

1 Additive rainfall error rferr_add no units (0,0) 0

2 Multiplicative rainfall error rferr_mlt no units (1,1) 1

3 Fraction tension storage in the recharge zone frchzne no units (0.05,0.95) 0.11

4 Fraction total storage in tension storage fracten no units (0.05,0.95) 0.79

5 Depth of the upper soil layer maxwatr_1 mm (25,200) 166.69

6 Fraction of percolation to tension storage percfrac no units (0.05,0.95) 0.16

7 Fraction storage in 1st base flow reservoir fprimqb no units (0.05,0.95) 0.34

8 Base flow depletion rate 1st reservoir qbrate_2a day�1 (0.001,0.25) 0.17

9 Base flow depletion rate 2nd reservoir qbrate_2b day�1 (0.001,0.25) 0.11

10 Base flow depletion rate qb_prms day�1 (0.001,0.25) 0.21

11 Depth of the lower soil layer maxwatr_2 mm (75,1200) 977.42

12 Base flow rate baserte mm/day (0.865,865) 707.53

13 Fraction of roots in the upper layer rtfrac1 no units (0.05,0.95) 0.57

14 Percolation rate percrte mm/day (185,8350) 3,507.23

15 Percolation exponent percexp no units (1,20) 2.14

16 Sacramento model percolation multiplier for dry soil
layer

sacpmlt no units (1,250) 11.43

17 Sacramento model percolation exponent for dry soil
layer

sacpexp no units (1,5) 3.25

18 Interflow rate iflwrte mm/day (0.865,865) 422.00

19 ARNO/VIC b exponent axv_bexp no units (0.001,3) 2.39

20 Maximum saturated area sareamax no units (0.05,0.95) 0.35

21 Mean value of the topographic index loglamb m (5,10) 6.30

22 Shape parameter for the topo index Gamma
distribution

tishape no units (2,5) 4.46

23 Base flow exponent qb_powr no units (1,10) 4.55

24 Time delay in runoff timedelay days (0.01,5) 4.93
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Hence, these are used further for simulation and runoff forecasts. As a note, the historical and future climate variables are
averaged over the grid locations covering LGRB for runoff forecasting.
RESULTS AND DISCUSSION

Calibration & validation

Among 14,245 records, 11,688 records, i.e., 1982–2013, were used for calibration, and the remaining 2,557 records, i.e., 2014–
2020, for validation. The simulated outcomes obtained from each parameter variation (in this case 20) and corresponding
model structure (in this case 1248), i.e., 24,960, are evaluated for r, NRMSE, and MBE with the observed discharge. The

weights of the evaluation metrics are assumed to be equal.
It is quite challenging to evaluate 24,960 alternatives to select the appropriate one that can be used for forecasting. KCA

(refer to Figure S1 in the supplementary material section) is used to group these into a manageable set for further processing.

KCA is analyzed with 5 to 20 clusters. Figure S2 presents the squared error value for each cluster. It is observed that square
error is decreasing gradually up to cluster 12. After that, a small spike is observed, followed by fluctuations. In addition, the
DBCVI is computed for the chosen cluster range and presented in Figure S3. It varies from 0.5607 to 0.3484 and found that
om http://iwaponline.com/jwcc/article-pdf/13/11/3934/1141518/jwc0133934.pdf
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an optimum cluster size of 19 is preferred among the evaluated clusters. Thus, 24,960 alternatives are grouped into 19 clus-

ters. Table 4 displays relevant information. The highest number of alternatives is observed in sub-cluster 18, whereas the
lowest is in sub-cluster 16 (column 2). Columns 3 and 4 present model structure and parameter variation number. Columns
5, 6, and 7 present weighted evaluation metrics r, NRMSE & MBE, respectively.

Based on the optimal clusters, the 19 representative alternatives are identified, describing the sub-clusters. TOPSIS is used
to rank the representative alternatives based on the closeness measure and presented in Table 4. It is found that model
number 605 with parameter variation 13, i.e., sub-cluster 7, is the best due to its higher closeness measure (columns 8–9).
Table 3 (column 6) presents optimal values of parameters obtained corresponding to this best alternative. Upper soil layer

depth occupying a value nearer to the higher threshold infers the high rainfall experienced in the basin. Lower soil layer
depth occupying a value nearer to the higher threshold infers higher percolation, infiltration, and baseflow rates are contri-
buting factors. Fraction of total storage in the tension zone occupies a value nearer to the lower threshold, inferring lesser

total water storage found in the tension zone over the basin. Time delay in runoff occupying an optimal value closer to a
higher threshold infers that the fluctuations in observed elevations in the catchment lead to an increase.

A scatter plot of observed discharge and simulated discharge obtained based on the best alternative is presented in Figure 3.

Most of the discharge points are well within the 99% prediction interval for discharges less than 10 mm/day. The discharge
points ranging from 10 mm/day to 40 mm/day were satisfactory, with few points falling outside the 99% prediction interval. A
significant variation is observed in the discharge points having more than 40 mm/day, limiting the model’s overall perform-

ance to r of 0.734, NRMSE of 0.74 & MBE of �0.09, respectively.
Figure 4 presents observed and simulated discharges. It is noted from Figure 4 that the best model structure is able to mimic

the daily discharge records with observed records. Amplitude error is predominant over the phase and shape errors due to
fluctuation in observed peak discharges. The model underestimated almost 70% of the amplitudes (peak discharges) in 1983,

1988, 1990, 1994, 1995, 1999, 2000, 2002, 2010, and 2013 respectively. These underestimations in the peak discharges are not
due to large data usage. However, it may be attributed to the averaged inputs (Bárdossy & Anwar 2022). The model has
Table 4 | Clustering information and ranking of alternatives

Sub-Cluster
number (1)

Number of
Alternatives in each
sub-cluster (2)

Model ID/
Model
Structure (3)

Parameter
Variation
number (4)

Representative
Alternative (5)

Weighted r

(6)
Weighted
NRMSE (7)

Weighted
MBE (8)

Ca

values
(9)

Rank
(10)

1 1,988 163 11 3,251 0.237 � 0.253 � 0.100 0.944 4

2 1,842 969 13 19,373 0.111 � 0.333 � 0.046 0.884 10

3 3,332 1,029 8 20,568 0.107 � 0.332 � 0.084 0.874 12

4 138 227 18 4,538 0.112 � 1.053 � 0.156 0.510 18

5 1,906 1,033 20 20,660 0.154 � 0.314 � 0.085 0.904 8

6 1,790 117 7 2,327 0.196 � 0.287 � 0.092 0.931 5

7 1,300 605 13 12,093 0.244 � 0.248 � 0.031 0.997 1

8 272 813 12 16,252 0.183 � 0.563 � 0.153 0.743 16

9 516 701 12 14,012 0.223 � 0.397 � 0.058 0.884 9

10 1,804 1,075 14 21,494 0.231 � 0.263 � 0.066 0.966 2

11 402 657 15 13,135 0.126 � 0.390 � 0.045 0.864 14

12 1,436 697 5 13,925 0.172 � 0.310 � 0.038 0.928 6

13 142 217 11 4,331 0.182 � 0.593 � 0.480 0.554 17

14 1,050 915 20 18,300 0.221 � 0.292 � 0.027 0.962 3

15 1,054 855 18 17,098 0.176 � 0.309 � 0.148 0.883 11

16 28 775 20 15,500 0.141 � 0.880 � 1.017 0.130 19

17 1,540 839 2 16,762 0.113 � 0.327 � 0.149 0.853 15

18 2,942 631 20 12,620 0.109 � 0.329 � 0.112 0.866 13

19 1,478 259 20 5,180 0.223 � 0.267 � 0.148 0.905 7
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Figure 3 | Scatter plot during the calibration period (1982–2013).

Figure 4 | Discharge plot for 11688 records in the calibration period (1982–2013).
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shown the maximum deviation from the historical value in 1999 with a 78.2% decrease in amplitude. At the same time, the
rest of the amplitudes are found to be overestimated during the years 1982, 1987, and 2006 respectively. The model has shown

the maximum deviation from the historical value in 1987 with an 86.8% increase in amplitude.
Twenty-four calibrated parameters obtained from the best alternative (refer to column 6, Table 3; columns 9 and 10,

Table 4) are used for validation purposes. The best model structure 605 and the corresponding best parameter variation
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13 identified from E-FUSE for the calibration period is also used to validate the model. The daily records used for this are

2,557, i.e., 2014–2020. The relevant scatter plot is presented in Figure 5. It is found that most of the discharge points are
well within the 99% prediction interval for discharges less than 10 mm/day. The discharge points ranging from 10 mm/
day to 20 mm/day were satisfactory, with few points falling outside the 99% prediction interval. The overall model perform-

ance of the identified best model structure is limited to r of 0.69, NRMSE of 0.802, and MBE of �0.28, respectively, as the
model has underestimated when flows exceed 40 mm/day.

The corresponding discharge plot for the validation period is presented in Figure 6. It is observed that simulated discharge
is nearer to satisfactory performance when compared with the observed. It has been observed that the model has mostly

underestimated the amplitude in the validation period. Significant deviations were found in 2014, 2016, 2018, and 2020 in
peak values of about 65.6%, 58.25%, 41.36%, and 36.57%, respectively. However, in 2015, the model overestimated the
peak value by 29.4%.

Effect of changing calibration-validation ratios (82%, 18%; 75%, 25%) and without/with discarding (20 mm/day;
40 mm/day) discharge points on model performance are studied. It is noticed that the effect of calibration-validation
ratios & discarding discharge points greater than 20 mm/day and 40 mm/day have a minimal effect on model performance

It was found that the E-FUSE model has performed well, as observed from the metrics, despite forcing average data for a
large area of over 39,180 km2. Accordingly, E-FUSE is applied from a climate change perspective.

Forecasting runoff from a climate change perspective

Future runoff is based on rainfall and evapotranspiration related to EC-Earth 3-four SSPs and optimum parameters corre-
sponding to best model structure 605 and parameter variation 13 (refer to Table 3). The forecasted runoff for four SSPs in
three future time horizons is discussed under the following sub-sections.

Near future scenario (2021–2046)

Figures 7–10 represent the variation of future runoff for NFS for SSP126, SSP245, SSP370, and SSP585, and the relevant
discussion is as follows:
Figure 5 | Scatter plot during the validation period (2014–2020).
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Figure 6 | Discharge plot during the validation period (2014–2020).

Figure 7 | Forecasted runoff in NFS (2021–2046) under SSP126.
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• Maximum and minimum peak values of 47.15 mm/day and 16 mm/day may occur in 2038 and 2045 for SSP126;
39.74 mm/day and 11.03 mm/day may occur in 2042 and 2022 for SSP245; 46.47 mm/day and 14.37 mm/day may

occur in 2046 and 2030 for SSP370; and 36.81 mm/day and 13.72 mm/day may occur in 2024 and 2035 for SSP585. Fur-
thermore, SSP126, SSP245, SSP370, and SSP585 show an average increase of 27.78%, a decrease of 9.24%, a decrease of
4.12%, and an increase of 8.92% in peak annual runoffs in comparison to the baseline scenario.
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Figure 8 | Forecasted runoff in NFS (2021–2046) under SSP245.

Figure 9 | Forecasted runoff in NFS (2021–2046) under SSP370.
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• There is a significant increase in mean runoff in four SSPs compared to the mean runoff in the historical scenario. The maxi-
mum percentage increase in mean runoff is in the SSP370 scenario at 66.41%, and the minimum increase in mean runoff is

in the SSP585 scenario at 40.01%.

• The highest and lowest monthly runoffs are forecasted for all four SSPs in August and April. These values are 226 mm/day
and 2.65 mm/day for SSP126; 259.29 mm/day and 0.01 mm/day for SSP245; 277.58 mm/day and 0.02 mm/day for
://iwaponline.com/jwcc/article-pdf/13/11/3934/1141518/jwc0133934.pdf



Figure 10 | Forecasted runoff in NFS (2021–2046) under SSP585.
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SSP370; 247.16 mm/day and 0.01 mm/day for SSP585. In addition, July-September contributes 74.43%, 82.33%, 83.56%,
and 83.11% of total runoff for SSP126, SSP245, SSP370, and SSP585. The forecasted monthly mean runoff is presented

in Figure 11.

• Significant runoff occurrence events are decided based on the minimum value of the highest runoffs, 48.96 mm/day,
40.92 mm/day, 49.94 mm/day, and 71.63 mm/day observed in SSP126, SSP245, SSP370, and SSP585 respectively, i.e.,
40.92 mm/day. Here, the runoffs exceeding 40.92 mm/day are considered significant runoff events. The number of signifi-

cant runoffs, i.e., more than 40.92 mm/day for SSP126 and SSP370, are 11 and 3. In contrast, no significant runoff events
are observed in SSP585. Thus, the total number of significant runoff events observed in NFS is 14.
Figure 11 | Comparative analysis of mean runoff of four SSPs with the historical period in NFS (2021–2046).
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Mid future scenario (2047–2072)

Variation of future runoff for MFS for four SSPs and the relevant discussion is as follows:

• Maximum and minimum peak values of 48.96 mm/day and 18.23 mm/day may occur in 2070 and 2067 for SSP126;
32.65 mm/day and 13.6 mm/day may occur in 2067 and 2069 for SSP245; 41.98 mm/day and 11.01 mm/day may occur
in 2057 and 2054 for SSP370; and 43.54 mm/day and 14.75 mm/day may occur in 2072 and 2051 for SSP 585. Further-
more, SSP126, SSP245, SSP370, and SSP585 show an average increase of 32.94%, an increase of 1.42%, a decrease of

6.86%, and an increase of 9.62% in peak annual runoffs in comparison to the baseline scenario. An increase in mean
runoff of 87.86% and 65.37% is observed in SSP585 and SSP370 scenarios (refer to Figures S4-S7 in the supplementary
section).

• Figure 12 presents the highest and lowest monthly runoffs forecasted for various months. These are March and August in
the case of SSP126 (288.11 mm/day and 0.68 mm/day); May and September in the case of SSP245 (292.13 mm/day and
0.01 mm/day); April and September in the case of SSP370 (301.32 mm/day and 0.01 mm/day); April and August in the

case of SSP585 (296.47 mm/day and 0.01 mm/day). In addition, July-September contributes greatly 78.83%, 81.71%,
79.72%, and 78.10% of total runoff for SSP126, SSP245, SSP370, and SSP585.

• The number of significant runoff events (more than 40.92 mm/day) for SSP126, SSP370, and SSP585 are 12, 4, and 6,

respectively. Thus, the total number of significant runoff events observed in MFS is 22.

Far future scenario (2073–2099)

Variation of future runoff for FFS for SSP126, SSP245, SSP370, and SSP585, and the relevant discussion is as follows:

• Maximum and minimum peak values of 47.6 mm/day and 24.86 mm/day may occur in 2096 and 2080 for SSP126;

40.24 mm/day and 17.12 mm/day may occur in 2074 and 2086 for SSP245; 49.94 mm/day and 15.52 mm/day may
occur in 2094 and 2088 for SSP370; and 69.92 mm/day and 13.59 mm/day may occur in 2090 and 2080 for SSP585.
SSP126, SSP245, SSP370, and SSP585 show an average increase of 35.6%, 8.39%, 21.45%, and 23.896%, respectively in

peak annual runoffs in comparison to the baseline scenario. Percentage increases in the runoff for SSP585 and SSP126
are 111.56% and 55.22% (refer to Figures S8-S11 in the supplementary section).

• The plot for monthly mean runoff in FFS is presented in Figure 13. The highest and lowest monthly runoffs would occur in

August and April in SSP126, SSP370, and SSP585. It is September and April in the case of SSP245. These values are
288.69 mm/day and 0.71 mm/day for SSP126; 314.20 mm/day and 0.01 mm/day for SSP245; 370.50 mm/day and
0.02 mm/day for SSP370; 383.77 mm/day and 0.02 mm/day for SSP585. In addition, July-September contributes greatly
81.13%, 79.25%, 76.05%, and 73.17% of total runoff for SSP126, SSP245, SSP370, and SSP585.
Figure 12 | Comparative analysis of mean runoff of four SSPs with the historical period in MFS (2047–2072).
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Figure 13 | Comparative analysis of mean runoff of four SSPs with the historical period in FFS (2073–2099).
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• The number of significant runoffs, i.e., more than 40.92 mm/day for SSP126, SSP370, and SSP585, are 14, 15, and 16,

respectively. Thus, the total number of significant runoff events observed in FFS is 45. It is also observed that more signifi-
cant runoff events are found to be occurring in FFS as compared to NFS and MFS.
SUMMARY AND CONCLUSIONS

Streamflow forecasting in a given catchment area is a highly complex problem, especially under changing climate. In the past
few decades, multitudes of hydrological models have been developed, and their performance has been tested in real-world
case studies. However, no model is found to be suitable universally for all the catchments. Moreover, the model’s accuracy

largely depends on the availability of hydrological and meteorological data. This is in addition to the model structure and
calibration mechanism. However, most catchments in developing countries are constrained by limited data availability.
This restricts the hydrologists from focusing on hydrological models that use minimal data. They are expected to yield reason-
ably accurate outcomes. This promotes the need to obtain the best hydrological model that uses limited data and

simultaneously forecasts the streamflow satisfactorily. In this context, this work proposes E-FUSE, the outcome of aggregating
the components of four hydrologic models: the National Weather Service Sacramento, PRMS, TOPMODEL, and VIC.

E-FUSE was demonstrated in the LGRB. The 14,245 historical data sets comprise daily precipitation, evapotranspiration,

and discharge. Out of which, 11,688 are used for calibration and the remaining for validation. Twelve hundred and forty-eight
model structures based on the mentioned four hydrological models are formulated. Twenty-four parameters govern E-FUSE.
Also, KCA and DBCVI are used for identifying optimal clusters, whereas TOPSIS is employed for the best model structure.

This and the corresponding parameter set obtained from E-FUSE performed satisfactorily in both calibration and validation.
The best model structure index is 605 with the 13th parameter variation.

It is further used to forecast discharges from 2021 to 2099 for a global climate model, EC-Earth3, and four SSPs. A signifi-

cant increase in mean runoff is observed from SSP126 to SSP585. Variations of runoff in NFS are from 40.01% to 66.41%;
these are 65.37% to 87.86% in MFS and 55.22% to 111.56% in FFS. In MFS, an increase in mean peak runoff is observed in
SSP126 and SSP585, and vice-versa in the other two SSPs. An increase in mean peak runoff is observed in all four SSPs in
FFS. For three time horizons, the July-September months contribute greatly to total runoff for all four SSPs.

Increased runoff in NFS, MFS, and FFS may pose many challenges, including public and private property damage, aquatic
habitat damage, sediment clogging at the left and right main canals at Polavaram, obstructing interlinking pathways to Penna
and Krishna rivers, the possibility of eroding stream channels, and devastating inundation.

Slight deviations in the performance metrics in calibration and validation may be due to anthropogenic influence observed
during the validation period and an insufficient number of parameter variations. Accordingly, further study can be extended
to include additional conceptual parent model structure into E-FUSE, which may enhance flexibility in identifying better
om http://iwaponline.com/jwcc/article-pdf/13/11/3934/1141518/jwc0133934.pdf
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model structure. Incorporating an efficient calibration strategy may also aid in finding suitable calibrated parameter values for

the generated models. E-FUSE can be extended to multiple input formats instead of averaging to a single value, as employed
in the present study.

ACKNOWLEDGEMENTS

This work is supported by the Council of Scientific and Industrial Research, New Delhi, through Project no. 22(0782)/19/
EMR-II dated 24.7.19. The third author acknowledges the funding support by the Ministry of Earth Sciences, Govt. of

India, through project# MoES/PAMC/H&C/41/2013-PC-II. Special acknowledgments to Ms C. Vitolo, Scientist, European
Space Agency Centre for Earth Observations, for providing insights about FUSE; Dr RN Sankhua, Mr Shankar Rao, officials
of Godavari River basin, for providing time for brainstorming discussions; & Prof Vimal Mishra, IIT Gandhinagar for making

CMIP6 data available. Acknowledgments to India Meteorological Department and Central Water Commission for providing
necessary data.

DATA AVAILABILITY STATEMENT

Data cannot be made publicly available; readers should contact the corresponding author for details.

CONFLICT OF INTEREST STATEMENT

The authors declare there is no conflict.

REFERENCES

Amarnath, C. R. & Thatikonda, S. 2020 Study on backwater effect due to Polavaram Dam Project under different return periods.Water 12 (2),
576.

Bárdossy, A. & Anwar, F. 2022 Why our rainfall-runoff models keep underestimating the peak flows? Hydrol. Earth Syst. Sci. Discuss 1–30.
Beven, K. & Freer, J. 2001 A dynamic topmodel. Hydrol. Process. 15 (10), 1993–2011.
Burnash, R. J. C., Ferral, R. L. & McGuire, R. A. 1973 A Generalized Streamflow Simulation System: Conceptual Modeling for Digital

Computers. US Department of Commerce, National Weather Service, and State of California, Department of Water Resources,
Sacramento, CA.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T. & Hay, L. E. 2008 Framework for understanding
structural errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resour. Res. 44 (12),
W00B02.

Coxon, G., Freer, J., Wagener, T., Odoni, N. A. & Clark, M. 2014 Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a
limits-of-acceptability framework for 24 UK catchments. Hydrol. Process. 28 (25), 6135–6150.

Davies, D. L. & Bouldin, D. W. 1979 A cluster separation measure. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
ITPIDJ 0162-8828. PAMI-1, 2, pp. 224–227.

Devak, M. & Dhanya, C. T. 2017 Sensitivity analysis of hydrological models: review and way forward. J. Water Clim. Chang. 8 (4), 557–575.
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T., Bergmann, T., Bernadello, R., Bousetta, S., Caron, L. P. & Carver,

G. 2021 The EC-earth3 earth system model for the climate model intercomparison project 6. Geosci. Model Dev. Discuss. 1, 2021.
Farajpanah, H., Lotfirad, M., Adib, A., Esmaeili-Gisavandani, H., Kisi, Ö., Riyahi, M. M. & Salehpoor, J. 2020 Ranking of hybrid wavelet-AI

models by TOPSIS method for estimation of daily flow discharge. Wat. Supp. 20 (8), 3156–3171.
Hengade, N., Eldho, T. I. & Ghosh, S. 2018 Climate change impact assessment of a river basin using CMIP5 climate models and the VIC

hydrological model. Hydrol. Sci. J. 63 (4), 596–614.
Herman, J. D., Quinn, J. D., Steinschneider, S., Giuliani, M. & Fletcher, S. 2020 Climate adaptation as a control problem: review and

perspectives on dynamic water resources planning under uncertainty. Water Resour. Res. 56 (2), e24389.
Lane, R. A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P. J., Bloomfield, J. P., Greene, S., Macleod, C. J. & Reaney, S. M. 2019 Benchmarking

the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain.
Hydrol. Earth Syst. Sci. 23 (10), 4011–4032.

Leavesley, G. H., Lichty, R. W., Troutman, B. M. & Saindon, L. G. 1983 Precipitation-runoff modeling system: user’s manual. Water Resour.
Investig. Rep. 83, 4238.

Li, H., Xu, C. Y. & Beldring, S. 2015 Howmuch can we gain with increasing model complexity with the same model concepts? J. Hydrol. 527,
858–871.

Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. 1994 A simple hydrologically based model of land surface water and energy fluxes
for general circulation models. J. Geophys. Res. Atmos. 99 (D7), 14415–14428.

Littlewood, I. G. & Croke, B. F. 2008 Data time-step dependency of conceptual rainfall – streamflow model parameters: an empirical study
with implications for regionalization. Hydrol. Sci. J. 53 (4), 685–695.
://iwaponline.com/jwcc/article-pdf/13/11/3934/1141518/jwc0133934.pdf

http://dx.doi.org/10.3390/w12020576
http://dx.doi.org/10.5194/hess-2022-281
http://dx.doi.org/10.1002/hyp.252
http://dx.doi.org/10.1029/2007WR006735
http://dx.doi.org/10.1029/2007WR006735
http://dx.doi.org/10.1002/hyp.10096
http://dx.doi.org/10.1002/hyp.10096
http://dx.doi.org/10.2166/wcc.2017.149
http://dx.doi.org/10.2166/ws.2020.211
http://dx.doi.org/10.2166/ws.2020.211
http://dx.doi.org/10.1080/02626667.2018.1441531
http://dx.doi.org/10.1080/02626667.2018.1441531
http://dx.doi.org/10.1029/2019WR025502
http://dx.doi.org/10.1029/2019WR025502
http://dx.doi.org/10.5194/hess-23-4011-2019
http://dx.doi.org/10.5194/hess-23-4011-2019
http://dx.doi.org/10.1016/j.jhydrol.2015.05.044
http://dx.doi.org/10.1029/94JD00483
http://dx.doi.org/10.1029/94JD00483
http://dx.doi.org/10.1623/hysj.53.4.685
http://dx.doi.org/10.1623/hysj.53.4.685


Journal of Water and Climate Change Vol 13 No 11, 3950

Downloaded fr
by guest
on 03 January
Luan, J., Liu, D., Lin, M. & Huang, Q. 2021 The construction of the flow duration curve and the regionalization parameters analysis in the
northwest of China. J. Water Clim. Chang. 12 (6), 2639–2653.

Mahata, K., Das, R., Das, S. & Sarkar, A. 2021 Land use land cover map segmentation using remote sensing: a case study of Ajoy river
watershed, India. Intell. Syst. 30 (1), 273–286.

Ministry of Water Resources, GoI 2017 Polavaram Project Authority.
Mishra, V., Bhatia, U. & Tiwari, A. D. 2020 Bias-corrected climate projections for South Asia from coupled model intercomparison project-6.

Sci. Data. 7 (1), 1–13.
Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. 2015 Hydrologic and water quality models: performance measures and evaluation

criteria. Trans. ASABE. 58 (6), 1763–1785.
Newman, A. J., Stone, A. G., Saharia, M., Holman, K. D., Addor, N. & Clark, M. P. 2021 Identifying sensitivities in flood frequency analyses

using a stochastic hydrologic modeling system. Hydrol. Earth Syst. Sci. 25 (10), 5603–5621.
Opricovic, S. & Tzeng, G. H. 2004 Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper.

Res. 156 (2), 445–455.
Rao, A. R. & Srinivas, V. V. 2006 Regionalization of watersheds by fuzzy cluster analysis. J. Hydrol. 318 (1–4), 57–79.
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O. & Lutz, W.

2017 The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob.
Environ. Change. 42, 153–168.

Staudinger, M., Stahl, K., Seibert, J., Clark, M. P. & Tallaksen, L. M. 2011 Comparison of hydrological model structures based on recession
and low flow simulations. Hydrol. Earth Syst. Sci. 15 (11), 3447–3459.

Thoma, D. P., Tercek, M. T., Schweiger, E. W., Munson, S. M., Gross, J. E. & Olliff, S. T. 2020 Water balance as an indicator of natural
resource condition: case studies from great sand dunes national park and preserve. Glob. Ecol. Conserv. 24, e01300.

Vitolo, C. 2015 Exploring Data Mining for Hydrological Modelling. PhD Thesis, Imperial College, London, UK.

First received 6 July 2022; accepted in revised form 16 October 2022. Available online 26 October 2022
om http://iwaponline.com/jwcc/article-pdf/13/11/3934/1141518/jwc0133934.pdf

 2023

http://dx.doi.org/10.2166/wcc.2021.324
http://dx.doi.org/10.2166/wcc.2021.324
http://dx.doi.org/10.1515/jisys-2019-0155
http://dx.doi.org/10.1515/jisys-2019-0155
http://dx.doi.org/10.1038/s41597-020-00681-1
http://dx.doi.org/10.13031/trans.58.10715
http://dx.doi.org/10.13031/trans.58.10715
http://dx.doi.org/10.5194/hess-25-5603-2021
http://dx.doi.org/10.5194/hess-25-5603-2021
http://dx.doi.org/10.1016/S0377-2217(03)00020-1
http://dx.doi.org/10.1016/j.jhydrol.2005.06.004
http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009
http://dx.doi.org/10.5194/hess-15-3447-2011
http://dx.doi.org/10.5194/hess-15-3447-2011
http://dx.doi.org/10.1016/j.gecco.2020.e01300
http://dx.doi.org/10.1016/j.gecco.2020.e01300

	Streamflow forecasting in a climate change perspective using E-FUSE
	INTRODUCTION
	CASE STUDY
	DESCRIPTION OF METHODS
	Performance metrics
	Description of global climate model and SSPs

	DATA COLLECTION AND PROCESSING
	RESULTS AND DISCUSSION
	Calibration &'; validation
	Forecasting runoff from a climate change perspective
	Near future scenario (2021-2046)
	Mid future scenario (2047-2072)
	Far future scenario (2073-2099)


	SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST STATEMENT
	REFERENCES


