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Sangeeta Paul,
Indian Agricultural Research Institute
(ICAR), India
Walaa K. Mousa,
Mansoura University, Egypt

*CORRESPONDENCE

Ajay Kumar
ajaykumar_bhu@yahoo.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Plant Symbiotic Interactions,
a section of the journal
Frontiers in Plant Science

RECEIVED 24 August 2022

ACCEPTED 13 October 2022

PUBLISHED 17 November 2022

CITATION

Kumari M, Qureshi KA,
Jaremko M, White J,
Singh SK, Sharma VK,
Singh KK, Santoyo G, Puopolo G
and Kumar A (2022) Deciphering the
role of endophytic microbiome in
postharvest diseases management of
fruits: Opportunity areas in
commercial up-scale production.
Front. Plant Sci. 13:1026575.
doi: 10.3389/fpls.2022.1026575

COPYRIGHT

© 2022 Kumari, Qureshi, Jaremko,
White, Singh, Sharma, Singh, Santoyo,
Puopolo and Kumar. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 17 November 2022

DOI 10.3389/fpls.2022.1026575
Deciphering the role of
endophytic microbiome in
postharvest diseases
management of fruits:
Opportunity areas in
commercial up-scale
production

Madhuree Kumari1†, Kamal A. Qureshi2†, Mariusz Jaremko3,
James White4, Sandeep Kumar Singh5, Vijay Kumar Sharma6,
Kshitij Kumar Singh7, Gustavo Santoyo8, Gerardo Puopolo9

and Ajay Kumar6*

1Department of Biochemistry, Indian Institute of Science, Bengaluru, India, 2Department of
Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia,
3Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and
Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and
Technology (K.A.U.S.T.), Thuwal, Saudi Arabia, 4Department of Plant Biology, Rutgers University, The
State University of New Jersey, New Brunswick, NJ, United States, 5Division of Microbiology, Indian
Council of Agricultural Research (ICAR), New Delhi, India, 6Centre of Advanced Study in Botany,
Banaras Hindu University, Varanasi, India, 7Campus Law Centre, Faculty of Law, University of Delhi,
New Delhi, India, 8Instituto de Investigaciones Quı́mico Biológicas, Universidad Michoacana de San
Nicolás de Hidalgo, Morelia, Mexico, 9Center Agriculture Food Environment, University of Trento,
Trentino, TN, Italy
As endophytes are widely distributed in the plant’s internal compartments and

despite having enormous potential as a biocontrol agent against postharvest

diseases of fruits, the fruit–endophyte–pathogen interactions have not been

studied detail. Therefore, this review aims to briefly discuss the colonization

patterns of endophytes and pathogens in the host tissue, the diversity and

distribution patterns of endophytes in the carposphere of fruits, and host–

endophyte–pathogen interactions and the molecular mechanism of the

endophytic microbiome in postharvest disease management in fruits.

Postharvest loss management is one of the major concerns of the current

century. It is considered a critical challenge to food security for the rising global

population. However, to manage the postharvest loss, still, a large population

relies on chemical fungicides, which affect food quality and are hazardous to

health and the surrounding environment. However, the scientific community

has searched for alternatives for the last two decades. In this context,

endophytic microorganisms have emerged as an economical, sustainable,

and viable option to manage postharvest pathogens with integral
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colonization properties and eliciting a defense response against pathogens.

This review extensively summarizes recent developments in endophytic

interactions with harvested fruits and pathogens—the multiple biocontrol

traits of endophytes and colonization and diversity patterns of endophytes. In

addition, the upscale commercial production of endophytes for postharvest

disease treatment is discussed.
KEYWORDS

endophytes, molecular interactions, biocontrol screening, commercial hurdles,
postharvest management, fruits
Introduction

In the recent era of climate change and the rising global

population, food security is one of the most critical issues

worldwide. At the same time, postharvest losses of fresh

products, including fruits, vegetables, or horticultural crops,

accelerate food security challenges. Currently, it has been

estimated that approximately 50%–60% of the total

agricultural production (Kumar and Kalita, 2017) and 30%–

50% of the total fruit production are lost after harvesting due to

improper storage, attack of pathogens, or the incidence of

diseases (Zhang et al., 2017). However, on the broad industrial

scale or even a laboratory scale, various chemical pesticides or

fungicides have been broadly employed to prevent postharvest

loss caused by phytopathogens or diseases. Nevertheless, the

undistributed use of chemical pesticides adversely affects the

nutrient constituents, texture, flavor, and quality of the fruits and

negatively impacts consumer health. Furthermore, the

emergence of resistant pathogen varieties against existing

pesticides is a severe problem (Hahn, 2014; Nicolopoulou-

Stamati et al., 2016). Therefore, the negative consequences of

chemical pesticides on fruit quality, human health, and the

environment urgently need the development of a reliable and

sustainable approach to replace toxic agrochemicals with

suitable microbial antagonists.

Utilizing the endophytic microbiome as a biocontrol agent

(BCA) during preharvest or postharvest storage conditions has

emerged as a suitable alternative to chemical pesticides in the last

few years (Singh et al., 2019; Kumar et al., 2021; Ahmad et al.,

2022). Endophytes are the microbes that colonize intercellular/

intracellular spaces of plants without causing any apparent sign

of infection (Bacon and White, 2016; Pathak et al., 2022).

Endophytes are well known for inducing plant growth-

promoting traits and ameliorating biotic and abiotic stresses

(Glassner et al., 2015). In addition, it synthesizes a plethora of

bioactive compounds that enhance the host’s immune response

and protect the plant from pathogen attacks or disease incidence

(Nair and Padmavathy, 2014; Singh et al., 2017). For practical
02
biocontrol efficacy, the most challenging task is the

administration and establishment of microorganisms inside

the host plant. An endophytic microbiome is a suitable option

in this context due to better colonization and proliferation

efficacy (Busby et al., 2016; O’Brien, 2017). Nevertheless, there

is still a need to explore the endophytic microbiome for its

practical application as microbial antagonistic agents against

various phytopathogens or plant diseases during postharvest

storage conditions.

Furthermore, the diversity of endophytic microbiome in the

fruits, its role in biotic stress amelioration, and an insight into

the mechanistic aspects are still under investigation (Aiello et al.,

2019; Chaouachi et al., 2021). Therefore, research on the

endophytic microbiome and its role in minimizing postharvest

loss of horticultural crops, including fruits, needs special

attention with an in-depth discussion regarding their prospects

and their transition from lab to field or industry. This review

summarizes the molecular interaction of plant endophytes, the

diversity of endophytic microbiome, the screening of BCAs, and

the technological aspect of endophytic microbiome postharvest

management. This review also focuses on the literature and

discussion on the modes of application, the future aspects, and

the hurdles to be overcome for converting endophytes into the

success stories of postharvest management of fruits in a

sustainable manner.
An overview of microbial endophytes

Plants host diverse communities of microorganisms as

epiphytes (on the surface) or endophytes (inside the plant

tissue) and share a complex relationship. These host–microbe

interactions play significant roles in maintaining the plant

normal physiology under biotic and abiotic stress conditions

(Khalaf and Raizada, 2018; Verma et al., 2021). The term

endophyte was firstly introduced by De Bary (1866) as the

fungal species living inside the host tissue. However, Petrini

(1991) considered endophytes, of either fungal or bacterial
frontiersin.org
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strains, as those that reside in the host tissue or plant for at least

some part of their life cycle without causing any disease or

apparent sign of infection. With technological advancement or

next-generation sequencing (NGS), it has been estimated that

each plant species harbors multiple endophytic microbes during

its life cycle (Senthilkumar et al., 2011; Verma et al., 2021). The

latest NGS revealed that Proteobacteria is the most prominent

endophytic bacterial phylum, followed by Actinobacteria,

Firmicutes, and Bacteroidetes. In contrast, Glomeromycota is

the major fungal phylum followed by Ascomycota and

Basidiomycota; however, Pseudomonas, Pantoea, Acinetobacter,

and Enterobacter members of Gamma-Proteobacteria are the

commonly found bacterial genera. Arbuscular mycorrhizal fungi

(AMF) are the most prominent fungal taxa among endophytic

fungi in plant tissues (Hardoim et al., 2015; Kumar et al., 2020;

Verma et al., 2021).

The endophytic microbes within plant tissue interact with

plants and modulate the plant’s growth, fitness, and physiology.

The mutualistic endophytes live inside the host and mutually

benefit each other; for example, endophytes produce

phytohormones, solubilize nutrients, and modulate bioactive

compounds of the host, all resulting in the growth and

development of the plant, and in return, the plant provides

shelter and nutrients to the endophytes (Papik et al., 2020;

Khalaf and Raizada, 2020).
Colonization by microbial endophytes

The host–endophyte share a complex relationship that is

driven by various intrinsic and extrinsic factors (White et al.,

2019; White et al., 2021). However, the entry or establishment of

microorganisms in the host tissue is the primary step for any

strain to be an endophyte (White et al., 2019; Micci et al., 2022).

According to Kandel et al. (2017), endophytic colonization refers

to the entry, growth, and multiplication of endophytes within

the internal compartments of the plant host. However,

colonization is a complex process regulated by different

signaling molecules in several consecutive steps (Kumar et al.,

2020). Firstly, the plant species attract the microbes by the

specific components of their exudates, which are generally

composed of sugars , organic ac ids , amino ac ids ,

lipopolysaccharides (LPSs), flavonoids, and proteins and may

be specific for each microbial strain (White et al., 2019). The

microbes showed a chemotactic response toward the specific

components of the exudates and facilitated effective colonization

(Oku et al., 2012). The motility of the microbial strain/s toward

the host surface is facilitated by appendages that protrude from

the cell surface, such as flagella, or through type IV pili (Knights

et al., 2021). Several reports reinforce the importance of lateral

appendages during this movement (Sauer and Camper, 2001;

Zheng et al., 2015). For instance, flagella were reported to have

direct involvement in adhering to Azospirillum brasilense with
Frontiers in Plant Science 03
wheat roots (Pinski et al., 2019). Böhm et al. (2007) reported type

IV pili and their direct role in the colonization of Azoarcus sp.

BH72 to the surface and root interior of rice. However,

attachment of the endophyte on the host surface is facilitated

through secretory products such as exopolysaccharides (EPSs),

LPSs, cell surface saccharides, and cellulase of the microbial

strain. For example, Meneses et al. (2011) reported that the

inactivation of gene gumD, which is responsible for EPS

synthesis, decreased the colonization rate of the endophytic

strain Gluconacetobacter diazotrophicus in rice roots.

Similarly, Monteiro et al. (2012) observed that inactivation

of gene wssD, bcsZ, which are responsible for the synthesis of

beta-1,4, glucanase (cellulose), decreased the colonization rate of

Herbaspirillum rubrisubalbicans M1 in Zea mays. The

endophytic microorganism, before its entry or colonization,

confronts the challenges of oxidative environments of the host

tissue. This situation is similar to the one the pathogens face

during infection of the host. The host plant provides a barrier to

oxidative burst, resulting in only a few microorganisms that can

enter plant cells (White et al., 2019; White et al., 2021).

Experiments have shown that this initial oxidative burst can

be reduced by treating seedlings with low concentrations of

humic substances, resulting in increased entry of bacteria into

root cells at root tips (White et al., 2021). To be an endophyte,

microbial strains must be able to survive in the oxidative

environment within plant cells (Di Pietro and Talbot, 2017;

White et al., 2019). In this context, several authors reported the

successful acclimation potential of endophytic strains; for

example, Enterobacter spp. encodes antioxidant enzymes

during the colonization of poplar plants (Balsanelli et al., 2016).

Additionally, Malfanova et al. (2013) reported genes

responsible for antioxidative enzymes used by Klebsiella to

protect the host plant from reactive oxygen species (ROS).

Similarly, strain G. diazotrophicus showed the expression of

antioxidant enzyme genes during the early stage of

colonization in rice plants (Meneses et al., 2017). In addition,

the colonization efficacy of the endophyte depends upon several

factors; host genotype, nutrient status, and specificity of

microbial strain are the prime factors (Hardoim et al., 2015).
Colonization patterns of endophytes and
pathogens in the host tissue

The colonization patterns of the pathogens and endophytes

are similar to some extent. However, the response of plant

defense systems differs and depends upon the nature of the

microorganisms. Similarly, the expression patterns against

oxidative stress are also different. Chen et al. (2020a) reported

the colonization patterns of endophytic strain Azoarcus olearius

and the pathogen Xanthomonas oryzae in rice plants and

observed differential expression patterns of genes. The

pathogen followed the salicylate pathway; however, the
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Azoarcus used the jasmonate signaling pathway during

colonization. The colonization patterns of symbiotic

endophytes and pathogenic strains are also dissimilar

regarding secretions. Pathogenic strains secrete comparatively

higher amounts of cell wall-degrading enzymes at the infection

sites. In contrast, a lower amount of cell wall-degrading enzymes

was reported during endophyte colonization, which could not

elicit the plant immune system and make easy access to

endophytes inside the host tissue (Elbeltagy et al., 2000;

Reinhold-Hurek et al., 2006; Naveed et al., 2014). The

overview of endophytic dynamics, entry, colonization,

transmission, and interacted factors is presented in Figure 1.
Diversity of endophytic microbiota in
the fruit

The physiology and biochemistry of the plant depend upon

the surrounding biotic and abiotic factors, which ultimately

affect the diversity and composition of the microbiota, either

epiphytes or endophytes. For instance, seasonal variations affect

the number of plant exudates, which are a determining factor in

rhizospheric microbial population and endophytic colonization

(Wang et al., 2009; Kuffner et al., 2012). The genotype (Mocali

et al., 2003), cultivars (Pettersson and Bååth, 2003), and host

plant’s age influence endophytic microbial compositions.

Recently published reports reinforce the variation in the

endophytic populations among the plant organs. For example,

Ren et al. (2019a) reported variations in the endophytic bacterial

microbiome among the different organs of the same Jingbai pear

(Pyrus ussuriensi Maxim.) plant. Maximum richness and

diversity were observed in the root tissue, followed by flower,

stem, and fruit, and the lowest were in the leaf tissue. This report

illustrates that each plant organ has a specific richness

or diversity.

Furthermore, in another study, Ren et al. (2019b) reported

variations in fungal richness or diversity in the different plant

organs of the Jingbai pear forest. They observed that the root

tissue had maximum fungal richness and diversity, followed by

stem, fruit, and leaf, and the lowest were observed in the flower

tissue. Thus, the diversity patterns of both bacteria and fungi are

different in the same plants. Finally, Dong et al. (2019) reported a

similar observation of bacterial distribution patterns among the

root zone, rhizosphere, phyllosphere, and endosphere of roots,

stems, leaves, fruits, and seeds of tomatoes under greenhouse

conditions. They observed that the root zone and rhizospheric

soil had the highest diversity and richness, followed by stem,

flowers, and fruits; however, the lowest diversity and richness

were observed in the phyllosphere tissue.

Abdelfattah et al. (2015) also reported that leaves contain

higher diversity than flowers or olive fruits (Olea europaea), and

the fungal diversity consequentially decreased from fruitlets to

mature stages of the olive. However, the trends of the fungal
Frontiers in Plant Science 04
community were very similar from fruitlets to the flowering

stage, which later changed. However, the microbial diversity in

the flower or fruit section is similar to the diversity of some other

parts. Therefore, the uniqueness and diversity of endophytic

microbiota may vary among the different compartments of the

fruits (Ottesen et al., 2013). The uniqueness may be due to the

ovaries, which turn into flesh and create a new environment that

harbors specific microbiota or microbial strains (Tadych et al.,

2012; Aleklett et al., 2014).
Host–endophyte interaction in
terms of biocontrol agents

It is well known that during plant–microbe interactions,

microbial strains showed neutral, commensalism, mutualistic, or

pathogenic interaction with the host plants. The establishment

depends upon several factors, including the genotype of

microorganisms or host plants and the surrounding

environment (Brader et al., 2017). Plants rely on their

sophisticated defense systems to counteract attacks of

phytopathogens (Jones and Dangl, 2006), as the pathogenic

strains secrete numerous biomolecules inside the host during

infection. The host plant responds accordingly after recognizing

conserved structure and elicits its immune behavior as the first

line of defense to control the pathogen by the present pattern

recognition receptors (PRRs). The PRRs sense the nature of

microbes through the perception of microbe-associated

molecular patterns (MAMPs) or pathogen-associated

molecular patterns (PAMPs) (Plett and Martin, 2018).

Bacterial flagellin, elongation factor Tu (EF-Tu), fungal chitin,

and yeast mannans are the most commonly reported PAMPs/

MAMPs (Newman et al., 2013).

During co-evolution with the host plant, pathogenic strains

improved the strategies to suppress the MAMP/PAMP-

triggered immunity. In response, the host plant developed a

second line of defense known as effector-triggered immunity.

The plant system develops receptors that sense or recognize the

pathogen’s constituents. For instance, for the pathogenic

microbes (biotrophic) that depend upon the nutrient uptake

of living cells, a hypersensitive response may be activated,

which leads to the programmed cell death of plants under

attack (de Wit, 2007). However, this response must be

suppressed in the case of necrotrophic pathogens or

endophytes or symbiotic microorganisms (Liu et al., 2017).

However, to cope with the plant immune system, the

endophytic microorganisms produce their MAMPs, which do

not significantly elicit the host immune or defense system.

However, there is significant variation between the cell surface

components (flagellin proteins in the endophytic microbes) of

endophytic/symbiotic or pathogenic microbial strains (Trdá

et al., 2014), which show differential patterns at the time of

recognition by the receptors (Figure 2).
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Endophytes as biocontrol agents

To explore endophytes as biological control agents, several

factors have been considered relevant, including survival,

stability, storage, application, and marketability. Despite the

massive exploration of various microbial strains as BCAs in

vivo or in vitro, only a limited number of strain/s, bacteria, fungi,
Frontiers in Plant Science 05
or yeast, have been commercialized, and the possible reason is

the survivability or stability of BCAs. The endospore formation

of Bacillus subtilis or chlamydospore structure of Trichoderma

makes them most suitable compared to other microbial strains

because of stability or survivability under unfavorable conditions

to fulfill the requirement of commercial exploitation. However,

the endophytic microbiome can easily be administered,
FIGURE 1

Endophytes and their interaction with the host plants. The figure describes the detailed role and approach of root exudates, communication,
mobility, attachment, penetration, and target region (entry site) during endophyte colonization.
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penetrating and colonizing the host tissue, unlike other

microorganisms where colonization is a complex process.

However, the effectiveness of BCAs against the pathogen may

also depend upon various factors, including the growth or

physiological state of the plant, genotype, colonization pattern,

population dynamics, and the surrounding environmental

conditions (Card et al., 2016; Bolı́ var-Anillo et al., 2020).

Recent studies have reported the antagonistic activities of a

diverse range of endophytes, which is present on the fruit

surface. A number of bacterial, actinomycetes, and fungal

species are present on the fruit surface that can impact the

growth of postharvest pathogens (Huang et al., 2021). Similar to

field conditions, Pseudomonas, Citrobacter, Paenibacillus,

Burkholderia, and Bacillus sp. are some of the most prevalent

biocontrol bacteria found on fruit surfaces (Shi et al., 2013;

Huang et al., 2021). The use of endophytic yeast Metschnikowia

pulcherrima along with chitosan prevented the growth of

Alternaria alternata in table grapes (Stocco et al., 2019).

Aureobasidium pullulans prevented the growth of Botrytis

cinerea and Monilinia laxa in sweet cherries and table grapes,

decreasing the decomposition rate of fruits between 10% and

100% (Schena et al., 2003). Pantoea dispersa controlled the black

rot of sweet potato by exhibiting antibiosis (Jiang et al., 2019).

Trichoderma and Nodulisporium are some of the most found

fungal BCAs on the carposphere. Recently, mycofumigation

with the fungal volatile organic compounds (VOCs) has also

gained attention to inhibit the growth of postharvest pathogens

(Zhi-Lin et al., 2012). Suwannarach et al. (2013) reported on

biofumigation with the Nodulisporium spp. CMU-UPE34, an

endophytic fungus, to prevent the postharvest decay of citrus

fruits. The endophytic fungal stain Nodulisporium sp. strain
Frontiers in Plant Science 06
GS4d2II1 produced six different VOCs, which inhibited

Fusarium oxysporum growth in cherry tomato fruits after their

harvest (Medina-Romero et al., 2017). Details of endophytic

microbial strains and their utilization in postharvest disease or

pathogen control of fruits have been discussed in Table 1.
Screening of endophytic
biocontrol agents

The search for endophyte agents with biocontrol capacities is

imperative in detecting those agents with excellent antagonistic

capacities against potential pathogens. Detecting these

characteristics depends on having better chances of generating

microbial endophyte-based biocontrols with good chances of

being successful in open field application and not just showing

good actions in the laboratory. Next, we detail some tools for

detecting and selecting endophytic BCAs. Screening microbial

antagonists against various phytopathogens is one of the most

crucial steps. The BCAs are generally screened on the basis of

some specific characteristics such as parasitism, in which BCAs

live together with the host plant, resulting in antagonistic effects

(Mukherjee et al., 2012). Furthermore, strains having the

capability to synthesize antimicrobial or volatiles compounds

and enzymes such as pectinases and cutinases, which can

interfere with pathogenicity factors or reduce the virulence of

pathogens, are preferred for BCA screening (Zimand et al., 1996;

Kapat et al., 1998).

However, other direct or indirect mechanisms have been

employed to screen suitable BCAs for particular or broad-scale

phytopathogens causing plant diseases. Dual-culture assay is one
FIGURE 2

The figure illustrates the mechanism by which plants sense to differentiate symbiotic and pathogenic microorganisms.
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of the standard phenotype-based direct screening methods for

identifying microbial antagonists during in vitro identification.

In this assay, BCAs and pathogens were cocultivated on

semisolid media. The pathogen’s antagonistic behavior toward

BCAs and pathogenicity are evaluated by measuring the lesion

diameter (Shi et al., 2014). During the evaluation, both the BCAs

and the pathogen were grown together on the plates at different

locations, and a significant decrease in mycelium growth and

fungal spores was observed (Comby et al., 2017). In another case,

the pathogen has been evenly spread over the plate, and BCA

was spotted over the medium. The clear zone around the spotted

BCA was measured to evaluate biocontrol activity. The larger the

clear zone, the higher the biocontrol potential (Shehata

et al., 2016).

Synthesis of antimicrobial compunds, either diffusible or

volatile, by the microbial endophytic strain is also one of the

parameters for biocontrol screening. During in vitro volatile

analysis, the BCA and the pathogen grow on an agar base plate,

which is grown under physically separated conditions and sealed

with parafilm or tape to avoid VOC escape (Stinson et al., 2003).

However, screening of BCAs in liquid media has also been done

under which both the BCAs and pathogen were grown either

simultaneously or consecutively, and their impact has been

evaluated either by measuring the optical density or by the

microscopic evaluation of pathogen spore or germination tube of

mycelia tube (Omar and Abd-Alla, 1998).

However, in vivo screening is the standard method for

evaluating potential BCAs under natural or greenhouse

conditions through several parameters such as measuring

lesion diameter, disease severity, or defined disease index

(Lecomte et al., 2016). In vivo screening not only is based on
Frontiers in Plant Science 07
antagonistic activity but also includes the physiological status of

the plant by measuring water status (e.g., transpiration, stomatal

conductance), variation in antioxidant activity (e.g., enzymatic

activity levels), production of plant defense molecules (e.g.,

phytoalexins), morphological growth parameters such as plant

height, the dry or fresh weight of certain plant parts, or the

flowering date (Lecomte et al., 2016). The antagonistic potential

of the BCAs varies with plant genotype or species; differences in

host genotypes differentially regulate the physiological functions

that may modulate the rate of infections and response of host

immune systems. Similarly, the colonization potential of the

endophytes, which depends upon the various physiochemical

nature of plant exudates, also impacts the biocontrol potential

against the pathogen more efficiently and effectively (Martin

et al., 2015).
Postharvest factors that affect the
quality of food and disease incidence

Postharvest diseases can result from incorrect postharvest

practices and faulty preharvest management. The significant

postharvest factors that affect the storage of food are as follows.
Fruit storage conditions

Fruits are generally transported to supermarkets and cold

chains before reaching customers’ hands. Temperature, pH, and

humidity conditions in cold chains significantly affect the growth

of pathogens and endophytes (Carmona-Hernandez et al., 2019).
TABLE 1 Endophytic microbial strains used for the postharvest disease or pathogen management in fruits.

Endophytic strains Domain Disease/Pathogens Plants/Fruits References

Bacillus velezensis QSE-21 Bacteria Postharvest gray mold of fruit Tomato Xu et al., 2021

Paenibacillus polymyxa Bacteria Penicillium digitatum Citrus Lai et al., 2012

Bacillus subtilis L1-21 Bacteria Penicillium digitatum Citrus Fruits Li et al., 2022

Endophytic bacteria Bacteria Monilinia laxa and Rhizopus stolonifer Stone fruits Pratella et al., 1993

Bacillus amyloliquefacies Bacteria Botryosphaeria dothidea Kiwi fruit Pang et al., 2021

Pseudomonas synxantha Bacteria Monilinia fructicola and
Monilinia fructigena,

Stone fruit Aiello et al., 2019

Lactobacillus plantarum CM-3 Bacteria Botrytis cinerea Strawberry fruit Chen et al., 2020b

Bacillus subtilis L1-21 Bacteria Botrytis cinerea Tomato Bu et al., 2021

Penicillium sp. Fungi Botrytis cinerea Grapes fruits Noumeur et al., 2015

Daldinia eschscholtzii Fungi Colletotrichum acutatum Strawberry fruits Khruengsai et al., 2021

Saccharomycopsis fibuligera Yeast Botrytis cinerea Guava fruits Abdel-Rahim and Abo-Elyousr,
2017

Muscodor suthepensis CMU-
Cib462

Fungi Penicillium digitatum Tangerine fruit Suwannarach et al., 2016

Fusarium sp. Fungi Fusarium oxysporum, Aspergillus niger and Rhizopus
stolonife

Postharvest pathogens of
vegetables

Tayung et al., 2010
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Low pH due to fruit metabolism and high humidity support the

growth of fungal pathogens (Arah et al., 2015). In addition,

temperature and pH conditions also influence the production of

volatile secondary metabolites (VOCs) from the microbes

(Lazazzara et al., 2017; Fadiji and Babalola, 2020). In a study, a

lower pH condition of the fermentation medium significantly

influenced the production of phloroglucinol and gallic acid from

isolated endophytic fungus Colletotrichum gloeosporioides

(Gasong and Tjandrawinata, 2016).
Physical handling and gaseous treatments

The rough handling of already ripened fruits invites the

attack of pathogens on soft and brushed surfaces. In addition,

mechanical injuries to the fruits due to improper handling can

increase the metabolism and ethylene production, which can

cause adverse biotic stresses on the stored fruits (Miller, 2003).

The stored fruit’s carbon monoxide (CO) treatment increases

ripening and decreases pathogen infestation. The Alternaria rot

in jujube fruits was effectively controlled by CO application in

fruit storage conditions (Zhang et al., 2020). High carbon dioxide

concentration around fruits also reduced the respiratory activities

and consumption of soluble solids, which results in a reduction in

pathogen infection (Huyskens-Keil and Herppich 2013). Apart

from the growth of pathogens, physical handling and food

storage conditions can also play a significant role in the growth

and secondary metabolite production of endophytes.
Postharvest management strategies
by endophytes: Action mechanisms

Endophytes are known to show a myriad of mechanisms

against pathogens ranging from direct competition to change in

the molecular architecture of the host plants. Endophytes against

postharvest pathogens, being a relatively new field, require an in-

depth literature review to understand the possible mechanisms

employed against postharvest pathogens. Following are the

possible mechanisms that endophytes employ to combat

pathogenic attacks on the harvested fruits.
Direct competition for space and nutrients

In the tripartite system of fruit–pathogen–endophyte

interaction, the nutrition and space of the host are limited.

Nitrogen, carbon, macronutrients, and micronutrients are

essential for the survival of both endophytes and pathogens

(Kumari et al., 2020a, b). Endophytes, being fast in growth and

colonization, quickly occupy the exposed fruit surface and
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outnumber pathogens in the space competition and utilization

of nutritional resources (Adame-Álvarez et al., 2014; Spadaro

and Droby, 2016). Different studies have demonstrated the

utilization of carbon resources by endophytic Bacillus spp.,

inhibiting spore germination of the pathogens; however,

bacterial dosage needs to be optimized according to the fruit

(Carmona-Hernandez et al., 2019). A phenotypic and gene

transcription study revealed the increased expression of genes

involved in nutrition uptake by the bacterium Lactobacillus

plantarum when cocultivated with the pathogen Aspergillus

carbonarius isolated from grape berries (Lappa et al., 2018).

The L. plantarum culture effectively inhibited the growth of four

fungal pathogens isolated from the grape berries. A 32%–90%

inhibition in mycotoxin produced by A. carbonarius was also

observed after coculturing with L. plantarum. Successful in vivo

application of this bacterium not only may help in controlling

postharvest pathogens but also will act as a source of probiotics

for modulating gut microflora.
Production of siderophores (iron-
chelating compounds)

Iron is one of the essential minerals required for the growth,

survival, and virulence of pathogens. Siderophores are the

secondary microbial metabolites produced by many

endophytes, which can form a tight and stable octahedral Fe

(H2O6)3+ complex with available iron (Miethke and Marahiel,

2007). The exposed fruit surface is an adverse niche, where the

bioavailability of nutrients, especially iron, is relatively low. In

the competition for survival, endophytes are known to colonize

faster than pathogens, chelating the available iron by producing

several types of siderophores and thus depriving the postharvest

pathogen of any iron source (Chowdappa et al., 2020). Genome

mining of the endophytic Pseudomonas fluorescens BRZ63 has

revealed siderophore production by the bacterium, protecting

against several postharvest pathogens, including Colletotrichum

dematium K, Sclerotinia sclerotiorum K2291, and Fusarium

avenaceum (Chlebek et al., 2020). Many endophytic Bacillus

sp. produce bacilibactin type of siderophore-protecting bacterial

wilt in banana (Carmona-Hernandez et al., 2019). Trichoderma

spp. has been known to produce hydroxamate siderophore,

which can deplete iron and inhibit the growth of postharvest

pathogens in apples and citrus fruits (Sood et al., 2020). Though

the endophytic Trichoderma spp. is still in the nascent stage for

controlling postharvest diseases of fruits, it can pave a new and

sustainable path for the disease control of fruits after harvest.

However, optimizing the concentration of endophytes and

factors affecting siderophore production should not be

neglected to increase endophytic efficiency against

postharvest pathogens.
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Production of bioactive antimicrobial
compounds and antibiosis

Endophytic microbiomes have recently emerged as potent and

novel sources of secondary metabolites, many of which are

antimicrobial. They are known to produce alkaloids, flavonoids,

phenolics, terpenoids, steroids, non-ribosomal peptides, and VOCs

(Kumari et al., 2018). For example, endophytic Trichoderma sp.

produced antifungal epipolythiodioxopiperazines, peptaibols,

koninginins, and pyrenes, which combat postharvest diseases in

kiwi fruit, apple, and banana (Khan et al., 2020). The recently

published review article by Huang et al. (2021) briefly covered the

bioactive compounds produced by endophytes and how they

enhance the resistance against postharvest diseases of fruit and

vegetables. Similarly, Carmona-Hernandez et al. (2019) also covered

the bioactive compounds, volatiles produced by the endophytic

strains, and their role in postharvest disease management. The

details of bioactive metabolites produced by endophytes, which can

potentially be used against postharvest pathogens of fruits, are

described in Table 2.

Though the potential of bioactive secondary metabolites is

enormous in postharvest disease control of fruits, the low quantity

produced, in planta pressure, and influence of the culture

conditions are some of the factors that need optimization.
Mycoparasitism and production of
lytic enzymes

One of the essential mechanisms employed by endophytic

fungi against pathogenic fungi is mycoparasitism by the

production of cell wall-degrading enzymes and direct

parasitism. The lytic enzymes, including glucanase, chitinase,

and cellulose produced by endophytes, can degrade the

pathogenic cell wall. For example, Talaromyces acidophilus a

fungal strain AUN-1 emerged as a novel mycoparasite of

postharvest pathogen B. cinerea by producing lytic enzyme

chitinase, lipase, and protease (Abdel-Rahim and Abo-Elyousr,

2018). Endophytic fungus Choiromyces aboriginum inhibited

postharvest pathogen Pythium sp. by producing b-1,3-
glucanases and degraded the pathogenic cytoplasm coiling

around the hyphae (Cao et al., 2009). In the same sense, plant

beneficial fungus Trichoderma spp. can inhibit the growth of

several pathogens through parasitism, for example, a

Trichoderma sp. strain inhibited the fungal pathogen F.

oxysporum by producing a lytic enzyme and coiling around

the pathogenic fungal hyphae (Rajani et al., 2021).

Some bacterial strains are also prolific producers of lytic

enzymes, making them suitable candidates for postharvest

disease management, though endophytes specifically have not

been explored much. For example, endophytic Bacillus sp. are
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known to produce b-1,3-glucanase, chitinase, and protease, which
can disrupt fungal cell walls (Carmona-Hernandez et al., 2019).

The hydrolytic enzymes produced by B. subtilis 739 caused the

lysis of phytopathogenic fungi A. alternata, B. sorokiniana, F.

culmorum, and R. solani. The cocktail of cold-adapted lytic

enzymes produced by archaea and cold-adapted bacteria has

also shown their potential against antagonistic fungal pathogens

(de Oliveira et al., 2020), which provides an excellent opportunity

to explore endophytes from extreme conditions.
Production of endotoxins and
lipopolysaccharides

Endophytes are being developed as prolific producers of LPSs

of several lengths of fatty acids. For example, phengicines and

iturins produced by B. subtilis GA1 inhibited the growth of B.

cinerea in apple fruits (Toure et al., 2004). Thus, the optimized

media conditions for synthesizing LPSs from endophytes can pave

a sustainable path for the biological control of postharvest fruit

diseases. The toxin Leu7-surfactin was produced from the

endophytic bacterium Bacillus mojavensis RRC 101 against

antagonistic fungus Fusarium verticillioides (Snook et al., 2009).

Several mycotoxins produced by endophytic fungi can also be

explored for their efficacy against the antagonistic pathogens to

control postharvest disease, though their safety also needs to be

analyzed thoroughly (Lacava and Azevedo, 2013).
Modulating the redox homeostasis of
harvested fruits and pathogens

Many postharvest pathogens overcome the fruit defense

system by manipulating their redox potential. For example,

Penicillium digitatum, the causative agent of green mold in

citrus fruits, produces catalase that decomposes hydrogen

peroxide to establish an infection (Macarisin et al., 2007).

Endophytes provide oxidative stress protection to plants

(Hamilton et al., 2012; White et al., 2019). However, their role

in modulating stress in postharvest disease management is not

much explored. Endophytes help plants combat biotic stress by

lowering lipid peroxidation and accumulation of proline

(Spadaro and Droby, 2016). As an example, endophytic fungus

Paraburkholderia phytofirmans strain PsJN increased the

expression of genes involved in reactive oxygen species (ROS)-

scavenging pathways, resulting in detoxification of ROS and

modulating the signaling pathways (Pacifico et al., 2019). The

plant–pathogen and endophytic relation has been documented

well in literature, but the research on the role of endophytes in

modulating redox homeostasis of stored fruits needs

special attention.
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Quorum sensing and biofilm formation
and disruption by endophytes

Bacterial endophytes, including Bacillus spp. and

Pseudomonas spp., are known to colonize exposed fruit areas

by quorum sensing (QS) and biofilm formation. The ability of

endophytic bacteria to secrete small molecules such as tyrosol,

farnesol, and phenethyl alcohol to regulate colonization helps

them outnumber the pathogenic microbes in the competition for

space and nutrients (Carmona-Hernandez et al., 2019). Recently,

endophytes were also found to produce anti-QS molecules, which

can help combat the biofilm established by pathogenic bacteria

on fruit surfaces. For example, endophytic fungi Fusarium

graminearum and Lasiodiplodia sp. isolated from the plant

Ventilago madraspatana produced secondary metabolites with

anti-QS potential (Mookherjee et al., 2017). Furthermore, the

isolated fungi produced QS inhibitors that were quantified

spectrophotometrically by their ability to inhibit the production

of violacein in wild and mutants of Chromobacterim violaceum

(Rajesh and Rai, 2013). Whether it is biofilm formation or the

production of anti-QS molecules by endophytes, both properties

can be exploited in postharvest disease management in fruits, as

this field of research remains unexplored.
Modulation and synthesis of phytohormones

Endophytic microbes can synthesize phytohormones,

including auxin, gibberellins, cytokines, ethylene, nitric oxide,
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and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase,

which provide additional immunity to postharvested plants to

cope up with biotic and abiotic stresses (Ali et al., 2017). The

increased phytohormone synthesis helps to overcome the stress-

induced wilting. Not only are the endophytes capable of

synthesizing plant hormones themselves, but they can also

modulate the plant–hormone metabolic pathways for

enhanced stress tolerance. For example, the interaction of

endophytic fungus Piriformospora indica in the synthesis of

auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic

acid (SA), jasmonates, and brassinosteroids resulted in better

efficiency of stress tolerance in higher plants (Xu et al., 2018).
Induction of disease resistance in fruits

In response to a pathogenic attack, plants develop two kinds

of disease resistance mechanisms: 1) systemic acquired response

(SAR) and 2) induced systemic resistance (ISR). Many

endophytic microbes have been known to elicit ISR, thereby

providing solid immunity against biotic stress (Pacifico et al.,

2019). Endophytes activate ISR pathways by synthesizing

pathogen-related proteins, enhancing the synthesis of phenolic

compounds, and activating signaling pathways by jasmonate/SA

and ethylene (Jacob et al., 2020) (Figure 3).

The endophytic bacterial strain Pseudomonas putida MGY2

was able to control anthracnose caused by C. gloeosporioides in

harvested papaya fruit (Shi et al., 2011). It was found that the

endophyte induced ISR by increasing the gene expression of
TABLE 2 Bioactive compounds produced by endophytic microbes used in the management of postharvest diseases of fruits.

Endophytic microbes Production of bioactive com-
pound

Putative role against postharvest pathogens References

Bacillus subtilis Iturin A, lipopolysaccharide Antifungal activity against F. oxysporum, Pythium ultimum, and
Phytophthora sp.

Ek-Ramos et al., 2019

Bacillus sp. Surfactin, fengycin Used against bacterial diseases Jasim et al., 2016

Pseudomonas aeruginosa Phenyltetradeca-2,5-dienoate Used against bacterial diseases Pratiwi et al., 2017

Bacillus amyloliquefaciens CEIZ-
11

lipopolysaccharide Antifungal activity against Botrytis cinerea and Alternaria alternata Zouari et al., 2016

Pseudomonas putida BP25 VOCs Antifungal activities against Phytophthora capsici and Radopholus
similis

Sheoran et al., 2015

Chaetomium globosum Chaetomugilin A and D Antifungal activity against Fusarium sp. and Verticillium sp. Pimentel et al., 2011

Trichoderma lixii (IIIM-B4) Peptaibol Shows antibacterial activities Katoch et al., 2019

Trichoderma sp. VOCs Antifungal activities against Sclerotium rolfsii and Fusarium
oxysporum

Rajani et al., 2021

Aspergillus fumigatus Alkaloids Shows antifungal activities against postharvest pathogens Li et al., 2012

Trichoderma polyalthiae Violaceol I and Violaceol II Showed antimicrobial activities Nuankeaw et al., 2020

Streptomyces sp. Enduspeptide B,
neomaclafungins A-I

Strong antifungal activities Jakubiec-Krzesniak et al.,
2018

Streptosporangium oxazolinicum
K07-0460

Polyketides Antibacterial activities against Xanthomonas sp. Matsumoto and
Takahashi, 2017

Xylariales sp. a-pyrone derivatives Antifungal activities against Botrytis cinerea, Fusarium oxysporum
and Alternaria sp.

Rustamova et al., 2020

Alternaria sp. Alternarilactone-A Antifungal activities against Verticillium cinnabarium and
Gaeumannomyces graminis

Rustamova et al., 2020
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phenylalanine ammonia-lyase (PAL), catalase (CAT), and

peroxidase (POD), increasing the phenolic content and

decreasing the production of ethylene. The same group

demonstrated the control of Phytophthora nicotianae disease

in papaya fruits by induction of the pathogenesis-related protein

1 gene (PR1) and non-expression of PR1 gene (NPR1) after

inoculation of P. putida MGP1 strain (Shi et al., 2013). Louarn

et al. (2013) demonstrated a significant change in the endophytic

community in organically and conventionally grown carrots.

Endophytic Bacillus amyloliquefaciens YTB1407 strain elicited

ISR by activating the expression of SA-responsive PR1 gene, thus

inhibiting pathogenic fungus Fusarium solani. The literature is

insufficient regarding the elicitation of molecular responses of

fruits in postharvest conditions. Furthermore, in-depth

mechanistic studies are required to understand the disease

resistance of fruits after endophytic microbe application.
Modulating the native microbiota and
ecological effects

The endophytic microbial population modulates the native

microbiota of fruits, roots, leaves, and soil, promoting a

sustainable crop production system. Therefore, it is of great

economic relevance (Sturz et al., 2010; Baghel et al., 2020).

However, its interference with the native population of

harvested fruit microbiota is still waiting to be explored.
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Endophytes bear the potential to shift the native bacterial

population toward favorable conditions for plant growth and

stress amelioration (Baghel et al., 2020). It has been found that

healthy fruits tend to have a diverse microbial community,

whereas diseased fruits have a limited microbial growth

dominated by pathogen microorganisms (Huang et al., 2021).

In their study, Diskin et al. (2017) found that colonization of

endophytic communities was much less prevalent in mango

fruits suffering from stem-end rot disease than that in their

healthier counterpart. By utilizing multiple mechanisms,

including parasitism, production of bioactive compounds, lytic

enzymes, and siderophores against postharvest pathogens,

endophytes can modulate the native microbiota of the

harvested fruits to increase their resistance against biotic stresses.
Controlling mycotoxins

Mycotoxins are a major cause of qualitative and quantitative

loss in stored fruits. Deoxynivalenol, alternariol, aflatoxin, and

patulin, produced by antagonistic fungi, can impact fruit and

human health negatively (Bartholomew et al., 2021). Many

endophytes and their secondary metabolites have shown the

effectiveness of controlling mycotoxins in vitro and in planta

(Abdallah et al., 2018) in maize and other crops, although studies

on their impact on postharvested fruits are limited. Sarrocco and

Vannacci (2018) emphasized preharvest application of
FIGURE 3

Activation of induced systemic resistance (ISR) signaling pathway and production of bioactive secondary metabolites after colonization of
endophytes in the host (postharvested fruits).
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endophytes for controlling postharvest damage caused by

mycotoxins. The VOCs produced by endophytic fungi can be

incorporated in edible biofilms or can be an ingredient during

packaging to effectively control mycotoxins in store fruits (Mari

et al., 2016).

As biocontrol strategies usually rely on a single or mixture

of antagonists, endophytic microbial strains have been suggested

as antagonistic microorganisms against various diseases in

various crops. The additional effect of endophytic microbiota

as BCAs is the phytohormone synthesis, metabolites, and

nutrients util ized for growth promotion and stress

management in host plants (Lodewyckx et al., 2002;

Suhandono et al., 2016).

In the recent past, various BCAs, including bacteria, yeast,

and fungi, have been frequently applied for effective management

of postharvest pathogens, while practices with endophytes are

very limited. Endophytes’ properties appear superior to those of

epiphytic microorganisms due to their better colonization and

tolerance potential against various biotic and abiotic stresses (Shi

et al., 2010). In recent years, several pieces of literature regarding

utilizing the endophytic microbiome for screening BCAs against

postharvest pathogens have been reported. Shimizu et al. (2009)

reported on the endophytic actinomycete Streptomyces sp., which

showed effective biocontrol potential against the pathogen

Colletotrichum orbiculare, the causal agent of anthracnose

disease in cucumber. Similarly, Shi et al. (2010) reported on P.

putida biovar isolated from the pericarp of papaya with strong

colonization potential and showed potent inhibition against

several pathogens.

Additionally, the strain effectively inhibits the growth of P.

nicotianae just after a short period of treatment. Lai et al. (2012)

screened the endophytic strain Paenibacillus polymyxa isolated

from the root tissue of Sophora tonkinensis and showed

antagonistic potential against P. digitatum, one of the most

devastating pathogens causing postharvest diseases in

citrus fruit. The application of endophytic strains effectively

reduces postharvest decay by inhibiting conidia germination in

a fungal cell suspension. Additionally, the unwashed cell

suspension of the strain was found to be more effective than

the washed cell suspension and culture filtrate in the in

vivo trials.

Ji et al. (2008) isolated 45 endophytic bacterial strains from

the mulberry leaves (Morus alba L.) and reported the strong

inhibitory potential of B. subtilis Lu144 against Ralstonia

solanacearum, the causal agent of bacterial wilt of mulberry

fruits. Furthermore, Furuya et al. (2011) utilized the strain B.

subtilis KS1 isolated from the skin part of grape berry and

applied it as a potential antagonistic agent against fungal

grapevine diseases. In vitro screening showed that the strain

effectively suppressed the growth of B. cinerea and C.

gloeosporioides. Furthermore, after applications in the

vineyards, the strains significantly reduce the incidence of
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downy mildew from the leaves and skin of the berry. Chen

et al. (2016) screened the B. amyloliquefaciens PG12 strain

isolated from apple fruits as a potential BCA against apple

ring rot disease. The strain significantly suppressed the

Botryosphaeria dothidea growth during in vivo and in vitro

screening and showed a potent antagonistic effect against

different fungal pathogens. Madbouly et al. (2020) evaluated

the biocontrol potential of endophytic yeast strains

Schwanniomyces vanrijiae, Galactomyces geotrichum, Pichia

kudriavzevii, isolated from apple fruits, against the pathogen

Monilinia fructigena, the causal agent of apple fruit brown rot of

golden delicious apples. During in vitro test analysis, all three

endophytic yeast strains showed inhibitory potential against M.

fructigena and significantly inhibited conidial germination by

67.6%–89.2%. In the last few years, rapid enhancement can be

seen in the use of endophytic microorganisms in postharvest

disease management in fruits. However, still, most of the

experiments are limited to the laboratory scale. Furthermore,

we need to study how the fruit microbiome affects the fruit’s

physiology and disease resistance and how the fruit-associated

microbial communities shifted during the postharvest stages and

after applying BCAs.
Commercial upscale production and
hurdles ahead

Antagonistic endophytic application against postharvest

diseases, especially in fruits, has emerged as a new generation

of pesticides. Though the mechanisms are still to be deciphered

completely, many endophytes have paved their path to

commercial applications. B. subtilis strain B-3 has been

patented, and pilot experiments have been conducted against

the peach brown rot disease. It was observed that after the

application of the endophyte in either powder or paste form, it

was as effective as traditional pesticide benomyl in Clemson, SC,

USA (Pusey et al., 1988). Products based on B. subtilis QST713

with the trade name Serenade™ are produced commercially by

AgraQuest Inc., USA, against powdery mildew, brown rot, and

late blight of apple, pear, and grapes (Punjia et al., 2016).

Multiple formulations in many countries with trade

names, including Candifruit™, Shemer™, and Boni-protect™,

have been successfully used against postharvest pathogens

(Fenta et al., 2019). The endophytes, a new concept, have

to face many hurdles for their successful commercialization.

In addition to the agricultural giants such as Dupont,

Monsanto, and Bayer, many small startup companies such as

Indigo and NewLeaf Symbiotics have entered the microbial

domain with promising contributions. The following hurdles

need to be overcome to achieve economically and sustained

commercial-scale production of antagonistic endophytes or

their products.
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Increased shelf life and multiple stress-
tolerant endophytic microbes

In the niche of postharvest fruits, endophytes have to

overcome several biotic and abiotic stresses (Diskin et al.,

2017). For the successful application and upscale production

of antagonistic endophytes against postharvest diseases of fruits,

the endophytes must be stress-tolerant to prolong their shelf life

and sustain antipathogenic activities. Many stress-tolerant

endophytic microbes are already studied for plant growth

promotion in adverse conditions (Giauque et al., 2019; Singh

et al., 2022). Furthermore, the synergistic application

of endophytes can also help increase the shelf life of

endophytes in their battle against postharvest pathogens

(Huang et al., 2021). Therefore, exhaustive screening of stress-

tolerant endophytes and their in vitro and in vivo stress

amelioration potential should be conducted for the endophytes

to go from lab to field.

Some endophytes are deeply associated with their host for

stress tolerance and the production of the desired natural

products (Khare et al., 2018). Therefore, their ability to cope

up with the stress condition in the absence of their host plants

and the niche of postharvest fruits should also be assessed before

their commercialization.
Optimizing the modes of
endophyte application

The modes of application of endophytes to the surface of

postharvest fruits also play a crucial role in plant disease

management and increasing the shelf life of the endophytes.

Therefore, the application of endophytes on fruit surfaces should

be optimized on a case-by-case basis. Generally, the

formulations are applied as liquid or powder/paste

formulations. Though the dry form provides a longer shelf life,

it can cause a loss of viability of microbes through repeated

rehydration-dehydration processes (Kumari et al., 2020a, b).

Many rehydration agents, including whey proteins and

maltodextrins, have been suggested to coat dry formulations

(Martin et al., 2017). For sustained release of endophytes, their

secondary metabolites, and VOCs, nanoencapsulation of the

products and nanoemulsions can also be studied (Pandey et al.,

2020). Recently, Ghazy et al. (2021) studied the role of anise

extract oil nanoemulsion against different postharvest

antagonistic bacteria for their sustained release. A combination

of SA with endophytic B. subtilis was used to treat postharvest

diseases by F. oxysporum and P. infestans (Lastochkina et al.,

2020). Preharvest and postharvest modes of endophytic

application should also be considered for their antagonistic

application. For the upscale production of endophytes as

postharvest disease management in fruits, the mode of
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application is an important parameter, whose optimization

should be carried out in detail.
Sustained release and cost-effective
production of microbial metabolites

The commercialization of secondary metabolites and

VOCs derived from endophytes faces hurdles in sustainable

release and economic upscale production. Media optimization,

selection of potent microbial strains, and metabolic

engineering are some of the parameters that can be employed

(Sah et al., 2020; Kamat et al., 2020; Taritla et al., 2021) for the

sustained production of desired antimicrobial secondary

metabolites from endophytes. The addition of some of the

precursors from the host system has also been studied during

media optimization for continuous upscale production of the

antimicrobial metabolites from endophytes during the

fermentation process.

The second hurdle faced during their commercialization

includes the hydrophobicity of natural products. To overcome

the solubility issue, several solutions, including their

encapsulation in non-toxic and biodegradable polymers, have

been proposed (Soh and Lee, 2019), which provide solubility and

the slow release of the active ingredient. Chitosan, carrageenan,

starch, and alginate nanopolymers have been used to encapsulate

natural products, including polyphenols, alkaloids, and

terpenoids with increased water solubility and bioactivity

(Detsi et al., 2020).
Overcoming the in planta pressure for
survival and stress amelioration

The biggest hurdle in successfully applying endophytic

microbes in the fruit microbiome is overcoming their host

pressure. Endophytes have always lived as symbionts with

their host, sharing many physical and chemical attributes with

their host plants (Spadaro and Droby, 2016). Several hypotheses,

including the defensive mutualism hypothesis, xenohormesis

hypothesis, and trait-specific endophytic infallibility (TSEI)

hypothesis, have been shared among the research community

to describe the co-evolution of the host and the endophytes

(Kusari et al., 2015; Pathak et al., 2022). Their isolation and

survival without their hosts may alter their growth cycle and

physiological performance in the competition of the new fruit

microbiome. The question of replacement dynamics with the

preexisting microbiome of fruits is always relevant while

introducing a new endophytic strain. The mode of application

and the growth and production of secondary metabolites in vitro

should be monitored before their in vivo application in

postharvested fruit microbiomes.
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Genome mining and metagenomics

Getting the superior strains of endophytes required digging

deep into the unexplored wealth of endophytes and exploring

the biosynthetic pathways to synthesize beneficial secondary

metabolites, siderophores, and phytohormones. To bypass the

tedious process of endophyte isolation and screening for

postharvest disease management, genome mining and

metagenomic studies can be performed to select the right

strain economically (Kusari et al., 2015). For example, genome

mining of the endophytic fungus Penicillium dangeardii revealed

a cluster of 43 biosynthetic genes demonstrating their strong

ability to synthesize secondary metabolites (Wei et al., 2021)

exploited in postharvest disease management. Thus, genome

mining and metagenomics can provide better endophytic strains

that can be commercially produced for the desired

secondary metabolites.
Change in policymaking and
awareness regarding the use
of antagonistic endophytes

The most critical parameter for introducing endophytes as

substitutes for conventional pesticides in postharvest disease

management is to increase the awareness of the end-users and

people involved in the distribution chain. Therefore, outreach

programs and workshops related to these new ideas should

constantly be organized to bring awareness and benefits of

using endophyte-based biopesticides.

Any effort is not fruitful without governments, policymaking,

and funding agencies to implement new technologies in agri-

business sectors. Earlier, the Department of Biotechnology

(DBT), India, launched the National Biocontrol Network

Programme (NBNP) to popularize and commercialize more

than 30 biopesticides (Kumari et al., 2020a, b). Similar

programs should be launched and funded to popularize

financial, most effective, and eco-friendly products for managing

postharvest diseases of fruits.
Safety of endophytes and their
secondary metabolites for consumers
and the environment

Endophytes, a new aspect of BCAs in postharvest disease

management in fruits, need thorough scrutiny regarding their

safety for consumers and the environment. Endophytes

themselves or their products should not be opportunistic

pathogens or should not pose any harm to the environment.

Unfortunately, many of the earlier studied rhizobacteria or their

secondary metabolites have acted as opportunistic human
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pathogens or environmental contaminants in certain

conditions (Keswani et al., 2019). To avoid similar conditions

with the endophytes, their safety in animal models and their

effect on the environment due to higher dosage should also

be assessed.
Conclusion

Endophytic microorganisms can colonize different organ

tissues of the host plant and interact in multiple ways to

regulate physiological and metabolic pathways, which can

further be utilized in the effective management of postharvest

diseases. Endophytic bacterial, actinomycetes, and fungal strains

have been broadly utilized as BCAs against various plant

pathogens during preharvest and postharvest stages. Currently,

it is estimated that approximately 30% of the total fruit

production is lost annually due to various diseases. Therefore,

the potential colonization efficacy of endophytes is a crucial

characteristic for disease management.

In addition, next-generation omics may be applied to identify

the gene(s) responsible for disease management. Thus, during the

application, consortia of mixed microbial agents (bacteria-bacteria;

bacteria-fungus; fungus-fungus) showed a practical approach in

disease management, but the survival and better adaptability of

both strains together are reasons for further investigation,

particularly under diverse environmental conditions. Endophytes

have reported multiple mechanisms that are used to inhibit

pathogenic growth and increase fruit health. Though there are

numerous examples of successful bioformulations of microbial

endophytic strains capable of controlling the pathogenicity of the

pest or pathogens during preharvest conditions, their application

in postharvest pathogen control is in the nascent stage. Further

application of endophytic microbiome can further reduce, or at

some point will eliminate, the harmful dependence on chemical

pesticides and fungicides in postharvest disease management.
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