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Abstract: A simple procedure to estimate series capacitance of a uniform transformer winding from its measured frequency
response analysis (FRA) and shunt capacitance is presented. Unlike previously published approaches, this method does not
involve any cumbersome and time-consuming curve-fitting nor running optimisation/search algorithms, and neither does it
require data of winding geometry. The procedure relies on a property that is observable in the impedance function of a lossless
winding, viz., the ratio of the product of squares of open circuit natural frequencies to the product of squares of short circuit
natural frequencies bears a special relation to impedance function coefficients. Its feasibility was initially verified by simulation,
and then by experiments on small-sized continuous-disk and interleaved-disc windings, followed by a large-sized 33 kV, 3.5 
MVA continuous-disc winding, and finally on a 315 kVA 11/13.8 kV transformer. After measuring FRA, the process involves just
finding roots of a polynomial, from which the initial impulse voltage distribution constant and series capacitance can directly be
determined. Given these attractive features, authors believe that this method is implementable on existing FRA instruments, so
that, along with routinely measured FRA, these two important constants of a winding can be displayed.

1௑Introduction
Series capacitance (Cs) of transformer winding is a vital design
parameter which along with the shunt capacitance governs the
initial impulse voltage distribution when a surge impinges on it. Its
value essentially conveys the net capacitive coupling offered by
different disks/double-disks of the winding. Designers employ the
well-established method of interleaving of individual turns to
increase series capacitance and consequently achieve a more
uniform initial impulse voltage distribution. Hence, knowledge of
series capacitance is paramount for ascertaining or predetermining
the winding's transient behaviour [1–4]. Although shunt
capacitance is readily measurable, the same is not the case for
series capacitance. Also, there exists no simple method to cross-
check how closely was the intended design value of Cs actually
realised after manufacture of the winding. Ideally speaking, it
would be desirable to perform this cross-check on every
manufactured winding, and preferably this check is based on
measurements.

The other additional benefits that arise from Cs estimation are:

(a) Foremost, it acts as a cross-verification of the design data and
proves how closely was the design value of Cs reproduced by the
manufacturing process. Unfortunately, this cannot be determined
by any other measurement-based method, other than by doing an
initial impulse voltage distribution measurement which would
require a sacrificial winding.
(b) Permits construction of a lumped-parameter ladder network
equivalent circuit.
(c) Estimating Cs of existing windings can be now rendered
possible by the proposed method when geometry and other
winding data are unavailable, which is often the scenario.
(d) And more importantly, based on the recent work from the
authors’ research group [5], it is expected that Cs would also
possess diagnostic capabilities similar to the quantity called
equivalent air-core inductance of a winding.

These are the important reasons for estimating Cs, and in that
context, the objective of this contribution is to devise a simple
method to indirectly measure the series capacitance of a winding
via the frequency response analysis (FRA) measurement.

2௑Literature review
A brief summary of previous efforts directed towards estimation of
series capacitance is given as follows:

1. Predetermination of the series capacitance of winding during
its design stages was a much-discussed topic in the early
1950s–1960s, and all these efforts essentially pursued an
analytical or semi-analytical approach, and required complete
data on winding geometry, insulation data, clearances etc. [6–
9]; a requirement not easily available to end-users. Many
formulae were developed during that time period, but
interestingly each one yielded a different result even for a
given winding, and so it was arguable which one of them was
more appropriate to use. In other words, there was no
consensus amongst the developed methods. Moreover, each of
these formulae was specific for a given type or structure of
winding, and so needed to be entirely reworked when the
design changed; which is not a trivial task.

2. In later years (1990s) researchers in [10–12] reported the use
of finite element method (FEM) and charge simulation method
(CSM) based approaches to predetermine Cs, but, as in early
efforts, these also required data about winding geometry.
Usually, this information is hard to get, and only available with
manufacturers/designers. Even though in both these
approaches series capacitance can be estimated, but there was
no simple way to cross-verify them.

3. In the past decade or so, FRA has become a de facto
monitoring tool of the power utilities to assess the mechanical
integrity of the winding [13–16]. Keeping this in mind, the
authors’ research group successfully demonstrated the
possibility of indirectly estimating Cs from measured FRA
data, for both single and three-phase transformers [17, 18].
This was a major step forward. However, fitting an accurate
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curve for measured FRA was a crucial and time-consuming
step that needed special skills requiring some background
knowledge and experience. This was its drawback that
prevented its immediate deployment in industry. Some
simplifications were suggested by authors in [19], but this
approach was non-FRA-based, required additional instruments
etc. Specifically, it was a time-domain approach that required
exciting the winding by a nearly step-like waveform using a
recurrent surge generator.

So, analysis of the published literature on the estimation of Cs leads
to the following observation:

1. A direct measurement to estimate Cs is ruled out.
2. Also, there exists no simple approach for determining Cs from

measured FRA that can be used by unskilled operators.
3. Consequently, it is imperative to explore alternative methods

that would possess the following features:

• be simple and easily implementable in software;
• be implementable on existing FRA instruments as an add-

on;
• be based on FRA and any other terminal measurement;
• avoid complexities like optimisation, curve-fitting etc.;
• involve minimum post-processing after acquiring FRA data;
• be applicable to all types of uniform windings.

Consequently, developing a method that possesses ALL the
aforementioned features is the main objective of this paper.

3௑Methodology
The underlying principle is initially presented for a lossless case.
The losses in the winding are neglected [20] while formulating the
method and later a method is suggested to overcome its effect. It
was possible to put together a simple procedure by a deft
manipulation and combination of a few well-known properties that
correlate the roots of a polynomial to its coefficients. One special
case of the Vieta's theorem [21] is exploited in its formulation.
Details are discussed under the following subheadings.

3.1 Background

Consider an N-section, lossless, lumped-parameter, mutually
coupled ladder-network model (as shown in Fig. 1) of a uniform
transformer winding [3]. The model consists of per section series
capacitance (Cs), per section shunt capacitance (Cg), per section
self inductance (Lii) and mutual inductance (Li j) between any two
sections. For representing frequency response, the driving point
impedance (DPI) function is considered, since it possesses some
unique properties like physical realisability, the alternating
arrangement of poles and zeros etc. which are very useful in this
work. In general, the DPI function for a lossless N-section ladder
network (with its neutral open) can be written as [22]

DPI(s) =
a0s

2N + a1s
2N − 2 + ⋯ + aN

b0s
2N + 1 + b1s

2N − 1 + ⋯ + bNs
(1)

Let the numerator and denominator of DPI(s) be defined as
follows:

P(s) = a0s
2N + a1s

2N − 2 + ⋯ + aN (2)

Q(s) = b0s
2N + 1 + b1s

2N − 1 + ⋯bNs (3)

Q(S) can be further rewritten as

Q(s)
s

= (b0s
2N + b1s

2N − 2 + ⋯ + bN) (4)

Polynomials on the RHS of (2) and (4) are similar in structure but
differ only in their coefficients. The following properties can be
easily observed from these two polynomials:

1. The powers of ‘s’ are always an even number, hence, they are
both even polynomials. The number of sign changes for P(s)
and P( − s) is zero. The same is true for Q(s)/s as well. Hence,
from Descartes’ rule-of-signs [21] there exist no positive or
negative real roots for these two expressions.

2. Since losses are neglected, all the roots of P(s) and Q(s)/s will
be purely imaginary and shall exist as complex conjugate pairs.
Let the roots of P(s) be ± jωi′ and all the non-zero roots of Q(s)
be ± jωi. Obviously from the definition, since ωi′s are the roots
of the numerator polynomial they correspond to the short
circuit natural frequencies (scnf), and likewise, ωis being roots
of denominator polynomial correspond to the non-zero open
circuit natural frequencies (ocnf) of the circuit under
consideration. Furthermore, these ocnf and scnf correspond to
the peaks and troughs in the DPI magnitude plot, respectively.

3.2 Linking roots of a polynomial to its coefficients

Next, some unique properties of such polynomials are invoked and
then used subsequently to formulate the proposed method.
 

Property 1: If a new polynomial is constructed from a given
polynomial by reversing the order of all the coefficients, then the
roots of the new polynomial will be the multiplicative inverse of
the roots of the original polynomial [21].
 

Property 2: Starting from an even polynomial, if a new
polynomial is constructed by halving the powers of its variable
without altering the coefficients, then the roots of the new
polynomial will be square of the roots of an original polynomial
[21].

Using these two properties, from P(s) construct a new
polynomial P1(s) such that the coefficients of P(s) are reversed and
the powers of ‘s’ are halved, and that leads to

P1(s) = aNsN + aN − 1s
N − 1 + ⋯ + a0 (5)

Due to Properties 1 and 2, the roots of the new polynomial P1(s)

will be 1/(jωi′)
2. Likewise, from (4), a new polynomial Q1(s)/s can

be constructed as

Q1(s)
s

= (bNsN + bN − 1s
N − 1 + ⋯ + b0) (6)

which would have its roots as 1/(jωi)
2.

 
Property 3: (Vieta's Theorem): The symmetric sum of the roots

of a polynomial is defined as those sums of roots which are
unchanged by any permutation of these roots. There will be N
symmetric sums for an Nth order polynomial and the pth
elementary symmetric sum of a set of N roots is the sum of all
products of p of those roots (1 ≤ p ≤ N). The symmetric sum of
roots of polynomial is related with to polynomial coefficients, by
the well-known Vieta's theorem [21], which states that, if we

Fig. 1௒ N-section mutually coupled ladder network
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denote Sp as the pth elementary symmetric sum for polynomial
P1(s), then we can write

Sp = ( − 1)p aN − p

aN
p ∈ {1, 2…N} (7)

Here, the value of p ranges from 1 to N. Hence, N such equations
can be derived which relates the roots and coefficients of a DPI
function. However, here we are considering a special case, wherein
p = N. For the polynomial P1(s), if we consider p = N, then the
Nth symmetric sum gives the product of all the roots of a
polynomial P1(s). As P1(s) is the numerator of DPI (whose roots are
the scnfs by definition), let this term be called Πscnf, and can be
written as:

Πscnf =
1

(jω1′)
2(jω2′)

2…(jωN′ )2 = ( − 1)N a0

aN
(8)

It is easy to observe that for both odd and even values of N, the
negative sign gets cancelled on both the sides of (8) and hence can
be simplified as

Πscnf =
1

(ω1′)
2(ω2′)

2…(ωN′ )2 =
a0

aN
(9)

And, similarly, for (6), we can write

Πocnf =
1

(jω1)
2(jω2)

2…(jωN)2 = ( − 1)N b0

bN
(10)

Employing the same logic as above, it can be simplified as

Πocnf =
1

(ω1)
2(ω2)

2…(ωN)2 =
b0

bN
(11)

Next, dividing (9) by (11), we get

Πscnf

Πocnf
⇒

ω1
2
ω2

2…ωN
2

ω1
′2ω2

′2…ωN
′2

=
a0

b0

⋅
bN

aN
(12)

Taking this ratio is a crucial step in the formulation of the method
that will become evident next. The LHS of (12) is a term that
consists of entirely measurable quantities extractable from DPI
magnitude plot. In other words, this quantity is nothing but a ratio
of the product of the squares of peak frequencies to the product of
the squares of the trough frequencies. On the other hand, the terms
a0, b0, aN and bN on the RHS of (12) (being functions of the circuit
elements) were computed for the network shown in Fig. 1, for
different values of N, say, N = 3, 4, 5, …, 20 using symbolic
computation facility in MAPLE. It emerges that all these four
terms are functions of Cg and/or Cs alone, for any N. The
expressions corresponding to RHS of (12) can be nicely combined
into a compact single expression in γ alone (viz., by substituting

γ = Cg/Cs). For brevity, these are shown in Table 1, only for N = 3–
7, as an example. From a study of these individual coefficients and
its ratios (for different values of N), the following salient features
can be observed:

1. For any value of N, the numerator and denominator of the ratio
a0/b0 can be individually represented as a product of two terms;
the first term is purely capacitive and the second term is purely
inductive. Most importantly, the inductive term is common to
both the numerator and denominator, and hence cancels out.

2. Writing DPI in normalised form bN is a function of Cg alone
and can be generalised as 4NCg, whereas, aN = 4, always.
Hence, bN /aN = NCg. Since a ratio of the coefficients are
taken, normalisation does not alter the final results.

3. Hence, the ratio (a0/b0) ⋅ (bN /aN) is always a function of Cg and
Cs alone.

4. In the neutral open condition, there will be an equal number of
non-zero peaks and troughs. So, LHS of (12) is a
dimensionless quantity.

5. Thus, in compact form, we can write:

f (γ) =
Πscnf

Πocnf
(13)

Which in turn can, in general, be written as

2N ∑
i = 0

N

δiγ
i ∑

i = 0

N

βiγ
i =

Πscnf

Πocnf
(14)

where δi and βi are the corresponding coefficients of numerator and
denominator polynomials of f (γ), respectively. For brevity, both
these coefficients are shown in Tables 2 and 3 up to N = 17. 
However, these can be computed and stored for any desirable
higher value of N if required. Once the numerical value of
Πscnf /Πocnf is computed from measured DPI, solving (14) directly
leads to the value of γ. Since the value of Cs and Cg cannot be
negative, so the value of γ should always be positive. So, before
solving (14), the existence of a positive real root can be ascertained
using Descartes’ rule-of-signs. The total shunt capacitance of a
transformer winding can be measured by an LCR meter. So, using
this measured value and computed γ, the value of Cs can be
estimated.

3.3 Existence of ONLY one positive real root of f (γ)

At this juncture, it might be worth mentioning that a proof to show
the existence of only one positive real root of the equation f (γ) was
undertaken (see Appendix 1). For brevity, only the important point
is mentioned here:

Substituting Πscnf /Πocnf = k, rearranging and simplifying (14)
yields

(2N − k)γN + (2NδN − 1 − kβN − 1)γ
N − 1

+⋯ + (2Nδ0 − β0k) = 0
(15)

Plugging in values of β0 and δ0 from Tables 2 and 3 results in

(2N − k)γN + βN − 1 2N
δN − 1

βN − 1

− k γN − 1

+⋯β0(1 − k) = 0

(16)

In DPI magnitude plot when neutral is open, for any pair of
ωi − ωi′, it is obvious that always ωi > ωi′. This arises from the
basic fact that an scnf always precedes an ocnf, as can be verified
in the DPI plot. This condition translates to the fact that ‘k’ will
always be greater than 1. So, the last term β0(1 − k) in (16) is
always negative. The sign of the first term in (16) depends on the
value of k. If the value of k lies between 1 and 2N, then first term
will be always positive. If k > 2N, the sign of first term will be

Table 1 Expressions ((a0/b0) ⋅ (bN /aN)) in terms of γ = Cg/Cs,
for different N
N ( a0

b0
⋅

bN

aN
)

3 2N(γ3 + 6γ2 + 9γ + 2)

γ3 + 8γ2 + 19γ + 12

4 2N(γ4 + 8γ3 + 20γ2 + 16γ + 2)

γ4 + 10γ3 + 34γ2 + 44γ + 16

5 2N(γ5 + 10γ4 + 35γ3 + 50γ2 + 25γ + 2)

γ5 + 12γ4 + 53γ3 + 104γ2 + 85γ + 20

6 2N(γ6 + 12γ5 + 54γ4 + 112γ3 + 105γ2 + 36γ + 2)

γ6 + 14γ5 + 76γ4 + 200γ3 + 259γ2 + 146γ + 24

7 2N(γ7 + 14γ6 + 77γ5 + 210γ4 + 294γ3 + 196γ2 + 49γ + 2)

γ7 + 16γ6 + 103γ5 + 340γ4 + 606γ3 + 560γ2 + 231γ + 28
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always negative. The existence of a single positive root for both
these conditions of k is discussed in Appendix 1. From the proof, it
emerges that ‘if the value of k is less than 2N, then there will
always exist a single positive root for (16)’. For each case, before
finding the roots, this check is made.

3.4 Salient features

This procedure for estimation of Cs has the following advantages
compared to all other previously published methods in the
literature:

1. The entire DPI data need not be processed, but, only data
points pertinent to the peaks and troughs are required. In
addition, the measured value of total shunt capacitance is the
only other data required.

2. No curve-fitting or optimisation exercise is required. In
practical DPI measurements, it is often observed that a
dominant pole tends to mask nearby non-dominant poles and
these have to be carefully considered during curve-fitting.
Hence, fitting DPI magnitude is invariably a task that calls for
mathematical skills and experience. This is completely avoided
in the proposed method.

3. From the point of implementation on an FRA instrument, the
proposed method is very simple and elegant. It only requires a
lookup table for storing the δi and βi coefficients (a one-time
exercise) and a simple algorithm for finding roots. Hence, the
proposed method is ideally suited for use in factories, as well
as, in laboratories.

4. The initial impulse voltage distribution constant, popularly
termed as α of the winding, is the ratio of the square root of the
total shunt to the total series capacitance, and can readily be
computed from γ using

α = N γ . (17)

Finally, it is important to highlight here that α can be calculated
without measuring either Cg or Cs explicitly. To the best of authors’
knowledge, this is the first time an indirect measurement-based
method is proposed for determining α without the explicit
knowledge of either Cg or Cs.

3.5 Limitation of method and means to overcome it

The analytical formulation of the proposed method was built
around the assumption that losses in a transformer winding are
small enough to be ignored. This is far from true, especially at the
higher frequencies, which makes its implementation questionable.
This issue arises from the fact that this method presumes peak-
trough pair values as extracted from the DPI magnitude are the true
value of pole-zero; this is true, if and only if, the losses are
negligible. However, when losses become significant at higher
frequencies, the peak-trough pairs as observed from the magnitude
plot WILL NO LONGER COINCIDE with the true value of pole-
zero, and hence they cannot be directly determined by extracting it
from the DPI magnitude plot. Thus, the method will begin to yield
erroneous results. To overcome this limitation, authors propose to
extract and use all peak-trough pairs that lie below a frequency

Table 2 Values of δi for different values of N, Note: δ0 = 2, and δN = 1 for all N
N γ

16
γ

15
γ

14
γ

13
γ

12
γ

11
γ

10
γ

9
γ

8
γ

7
γ

6
γ

5
γ

4
γ

3
γ

2
γ

1

3 1 6 9
4 1 8 20 16
5 1 10 35 50 25
6 1 12 54 112 105 36
7 1 14 77 210 294 196 49
8 1 16 104 352 660 672 336 64
9 1 18 135 546 1287 1782 1386 540 81
10 1 20 170 800 2275 4004 4290 2640 825 100
11 1 22 209 1122 3740 8008 11,011 9438 4719 1210 121
12 1 24 252 1520 5814 14,688 24,752 27,456 19,305 8008 1716 144
13 1 26 299 2002 8645 25,914 50,388 68,952 63,206 37,180 13,013 2366 169
14 1 28 350 2576 12,397 40,964 94,962 155,040 176,358 136,136 68,068 20,384 3185 196
15 1 30 405 3250 17,250 63,756 168,245 319,770 436,050 419,900 277,134 119,340 30,940 4200 225
16 1 32 464 4032 23,400 95,680 283,360 615,296 980,628 1,136,960 940,576 537,472 201,552 45,696 5440 256
17 34 527 4930 31,059 139,230 457,470 1,118,260 2,042,975 2,778,446 2,778,446 1,998,724 999,362 329,460 65,892 6936 289

 

Table 3 Values of βi for different values of N, Note: β0 = 4N, and βN = 1 for all N
N γ

16
γ

15
γ

14
γ

13
γ

12
γ

11
γ

10
γ

9
γ

8
γ

7
γ

6
γ

5
γ

4
γ

3
γ

2
γ

1

3 1 8 19
4 1 10 34 44
5 1 12 53 104 85
6 1 14 76 200 259 146
7 1 16 103 340 606 560 231
8 1 18 134 532 1210 1572 1092 344
9 1 20 169 784 2171 3652 3630 1968 489
10 1 22 208 1104 3605 7462 9724 7656 3333 670
11 1 24 251 1500 5644 13,888 22,477 23,452 15,015 5368 891
12 1 26 298 1980 8436 24,072 46,648 60,944 52,195 27,742 8294 1156
13 1 28 349 2552 12,145 39,444 89,148 140,352 151,606 108,680 48,763 12,376 1469
14 1 30 404 3224 16,951 61,754 159,600 294,576 385,662 350,948 213,928 82,160 17,927 1834
15 1 32 463 4004 23,050 93,104 270,963 574,332 885,666 981,920 764,218 401,336 133,484 25,312 2255
16 1 34 526 4900 30,654 135,980 440,220 1,054,504 1,874,730 2,458,676 2,342,396 1,578,824 722,228 210,120 34,952 2736
17 36 593 5920 39,991 193,284 689,130 1,841,840 3,712,775 5,633,804 6,374,082 5,281,696 3,115,658 1,253,240 321,708 47,328 3281
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limit of about 2–2.5 Mrad/s, wherein the presumption is still
largely applicable. The real part of the pole or zero is very small to
be safely ignored in this frequency interval, a fact which was
confirmed by curve-fitting exercise. Most importantly, the
imposition of this bound permits implementation of the method as
it is. Ignoring higher frequency peak-trough pairs does not
seriously affect end results (as will become evident later),
compared to the scenario of including all peak-trough pairs which
leads to unacceptable errors. This modified approach is used.

(Note: The method was initially developed for a lossless case
since it is easy to describe, explain and cross-check. Furthermore,
losses in a transformer winding are usually very small and can be
neglected for practical purposes at lower frequencies. However,
when frequency increases, they tend to become significant and
cannot be ignored. For this reason, the proposed method had to be
modified to consider the defined ratio of Πscnf /Πocnf ONLY up to a
certain frequency limit. The objective was to develop a simple, and
easily implementable method which can be deployed on existing
FRA measuring instrument. Hence, this simplification was
proposed so that the method is applicable without or with losses).

4௑Simulation
Initially, the proposed procedure was checked by simulation studies
using an eight-section (N = 8) mutually coupled ladder network, as
shown in Fig. 1. Since all the parameters of this network are
known, the capability of the proposed steps can be judged. The
elements of the network used were Cs = 0.444 nF and
Cg = 0.25 nF, which corresponds to α = 6. The self-inductance of

the first section and mutual inductances between 1st and ith section
are given in Table 4. Symmetry considerations are invoked for
determining the rest of them. Initially, a lossless case is considered,
followed by a lossy case modeled by a series resistance of 10 Ω/
section.

4.1 Without loss

After plugging in all these values into a circuit simulation software
(PSpice), the DPI magnitude was determined by performing AC-
analysis, and is shown in Fig. 2. The peak-trough pairs outputted
by Matlab program ‘findpeaks’ are marked on Fig. 2 and the same
is also tabulated in Table 5. Steps for computing Cs are as follows:

1. Number of peak-trough pairs were found to be eight, so N = 8.
2. Picking up all peak-trough pairs (shown in Table 5), yields

Πscnf /Πocnf = 5.6175.
3. The pertinent f (γ) is

10.4γ
8 + 154.9γ

7 + 911.3γ
6 + 2643.5γ

5 + 3762.8γ
4

+1921.3γ
3 − 758.3γ

2 − 908.4γ − 147.8 = 0
(18)

4. Solving (18) yields γ = 0.5624.
5. So, α = 5.9995. This corresponds to Cs = 0.4445 nF, which

closely matches its true value of 0.444 nF.

4.2 With loss

Loss was considered by inserting a resistance of 10 Ω/section in
series with the inductor. The above computations are repeated. The
DPI magnitude plot is shown in Fig. 3, along with the peak-trough
pairs in Table 6. Steps to compute Cs are as follows:

1. Number of peak-trough pairs were found to be eight, so N = 8.
2. Picking up all peak-trough pairs (shown highlighted) which are

below 2.5 Mrad/s, yields Πscnf /Πocnf = 5.6920.
3. The pertinent f (γ) is (see (19)) .

Table 4 Self and mutual inductance between first and ith
section
mH L11 L12 L13 L14 L15 L16

L 1.00 0.7408 0.5488 0.4066 0.3012 0.2231
 

 
mH L17 L18

L 0.1653 0.1225
 

Fig. 2௒ Computed DPI magnitude response of a mutually coupled ladder
network without losses

 

Table 5 Peak-trough pairs corresponding to Fig. 2
Mrad/s 1 2 3 4 5 6
ωi′ 0.1936 0.6995 1.3198 1.9453 2.5169 2.9923
ωi 0.3450 0.8426 1.4052 1.9911 2.5380 3.0018
 

 
Mrad/s 7 8
ωi′ 3.3473 3.5660
ωi 3.3508 3.5670
 

Fig. 3௒ Computed DPI magnitude response of a mutually coupled ladder
network with losses

 

Table 6 Peak-trough pairs corresponding to Fig. 3
Mrad/s 1 2 3 4 5 6
ωi′ 0.1936 0.6995 1.3194 1.9426 2.5072 2.9743
ωi 0.3450 0.8426 1.4057 1.9937 2.5476 3.0199
 

 
Mrad/s 7 8
ωi′ 3.3252 3.5529
ωi 3.3728 3.5805
 

10.3080γ
8 + 153.5440γ

7 + 901.2717γ
6 + 2603.9γ

5 + 3672.7γ
4

+1804.2γ
3 − 839.6668γ

2 − 934.0489γ − 150.1441 = 0
(19)
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4. Solving (19) yields γ = 0.5796, which corresponds to
α = 6.0905.

5. This implies Cs = 0.4313 which closely matches its true value.
6. Thus, even when losses are present, the procedure can be used.

5௑Implementation on uniform transformer
windings
Triggered by the success of the proposed method in simulation
studies, the next step was to examine its applicability on uniform
transformer windings. In all these experiments, DPI was measured
by manually sweeping the frequency and measuring the response
(viz., input current) at each discrete frequency step. The
instruments used for this were as follows:

• A 0–20 Vp − p, 0–60 MHz, function generator.
• A 2 mV/mA current probe with bandwidth 450 Hz–60 MHz.
• An 8-bit, 200 M samples/s digital oscilloscope.

During DPI measurement, as sine waves are being measured,
elimination of noise was achieved by using ‘averaging option’
available on the digital oscilloscope. Furthermore, at each
measurement the vertical amplitude of the channel measuring
current was dynamically adjusted so that the measured waveform
always occupies >90% of the full-scale amplitude of the channel;
this guarantees a high signal-to-noise ratio. (Note: The achievable
accuracy of the proposed method significantly depends on our
ability to accurately identify and extract the DPI magnitude peaks
and troughs. So, all the above-mentioned efforts were exercised to
attain the maximum possible signal-to-noise ratio and hence
achieve the highest possible accuracy.) Initially, experiments were
performed on single isolated continuous-disc and interleaved-disc
windings. Then, the method is examined on an actual two-winding
single-phase testing transformer. Details of each case is presented
below.

5.1 Case A: single, isolated, fully interleaved-disc winding

A uniform fully interleaved-disc winding was chosen which had 16
discs with 10 turns per disc. The paper insulated copper turn has a
cross-section area of 30 mm2. The winding had a height of 215 
mm, and inner and outer diameters of 260 and 350 mm,
respectively. The insulation thickness, duct spacing etc.
corresponded to an 11 kV rating. An aluminum sheet was
concentrically placed to simulate the ground plane. (Note: The DPI
of ONLY a linear system can be defined. In the frequency interval
of 10 kHz–1 MHz, the winding behaves as a linear element, since
the iron core repels almost all the flux due to eddy currents and in
turn, the winding offers a constant inductance value (equivalent to
an air-core inductance). Keeping this scenario in mind, the iron
core which acts as a magnetic shield in this frequency interval was
emulated by a grounded aluminium cylinder.) The measured DPI
plot is shown in Fig. 4. The peak-trough pairs were found by
‘findpeaks’ and they are marked on it for clarity. These frequencies
are also tabulated in Table 7. The steps for estimating Cs are as
follows:

1. Peak-trough pairs in DPI magnitude were four, hence N = 4.
2. Picking up the first two peak-trough pairs (which are below

2.5 Mrads/s) in Table 7, compute Πscnf /Πocnf = 1.6313.
3. Using coefficients in Tables 2 and 3 for N = 4, f (γ) is

constructed and equated to Πscnf /Πocnf. The simplified
expression is

6.3686γ
4 + 47.6861γ

3 + 104.5329γ
2 + 56.2190γ

− 10.1022 = 0
(20)

4. Since Πscnf /Πocnf < 2N, there will exist ONLY one positive
real root for (20).

5. Using the positive root of γ = 0.1406, the value of α was
computed as 1.4996. This low value of α is a characteristic
feature of a fully interleaved-disc winding.

6. The measured value of total shunt capacitance was 0.410 nF at
1 kHz, so shunt capacitance per section is Cg = 0.1025 nF.
Estimated series capacitance per section was Cs = 0.7290 nF.

5.2 Case B: 2.2 kV continuous-disc winding in presence of a
shorted LV winding

One healthy phase of an HV winding (along with an inner LV
winding) was scavenged from an old discarded transformer. It was
one of the phases of a Δ − Y  transformer of rating 70 kVA,
2200/220 V, 25 Hz. (Note: It is well-known that the measured DPI
would be modified due to the presence of a shorted secondary
winding, in addition to other surrounding conditions, other
neighbouring windings, terminal condition of all non-tested
windings etc. However, the value of Cs of the excited winding,
which would be extracted from the measured DPI, will remain

unchanged. This fact has been previously examined in [18] and
proved.) An aluminium sheet was concentrically placed inside the
LV winding which emulates the presence of core. The non-tested
LV winding is shorted and connected to the aluminium sheet. The
DPI magnitude was measured and the peak-trough pairs are
extracted and tabulated in Table 8. The DPI magnitude plot is
shown in Fig. 5, and also contains markings of each peak-trough
pair.

1. DPI magnitude plot has eight peak-trough pairs, so, N = 8.
2. From the first three peak-trough pairs which are below 2.5 

Mrads/s, Πscnf /Πocnf = 5.9172.
3. Using coefficients in Tables 2 and 3 corresponding to N = 8,

the polynomial f (γ) was constructed and equated to
Πscnf /Πocnf. The simplified expression is

10.1γ
8 + 149.5γ

7 + 871.1γ
6 + 2484γ

5 + 3400.1γ
4

+1450.1γ
3 − 1085.6γ

2 − 1011.5γ − 157.4 = 0
(21)

Fig. 4௒ Measured DPI magnitude response of a single isolated fully
interleaved-disc winding

 

Table 7 Peak-trough pairs corresponding to Fig. 4
Mrad/s 1 2 3 4
ωi′ 0.8225 2.2563 3.0159 3.9207
ωi 0.9896 2.3952 3.0788 4.0338
 

Table 8 Peak-trough pairs corresponding to Fig. 5
Mrad/s 1 2 3 4 5
ωi′ 0.4511 1.1592 1.8341 2.5258 3.1994
ωi 0.8394 1.3628 2.0395 2.7219 3.3879
 

 
Mrad/s 6 7 8
ωi′ 3.9333 4.5302 5.3533
ωi 4.1532 4.7375 5.5543
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4. Since Πscnf /Πocnf < 2Nhence there exists ONLY one positive
real root for (21).

5. After solving (21), the only positive root of γ = 0.6338.
6. The corresponding value of α = 6.3687.
7. The measured total shunt capacitance was 0.6904 nF at 1 kHz,

so shunt capacitance per section is Cg = 0.0863 nF. Hence, the
estimated series of capacitance per section is Cs = 0.1362 nF.

5.3 Case C: 33 kV, 3.5 MVA, continuous-disc winding

Next, experiments were done on another uniform single isolated
continuous-disc winding manufactured specifically for this
purpose. This was one of the HV windings of a new 3-Φ, 33 kV,
3.5 MVA transformer. The winding had 24 number of double-discs
with 22 turns per disc. Its total height was 570 mm. Spacing
between each disc is 3 mm, and the inner and outer diameters of
each disc is 395 and 486 mm, respectively. An aluminium sheet
was concentrically placed to simulate the ground plane. Measured
DPI magnitude is shown in Fig. 6. The peak-trough pairs outputted
by ‘findpeaks’ are tabulated in Table 9. 

1. From DPI magnitude plot, the number of peak-trough pairs are
14. Hence N = 14.

2. From the first four peak-trough pairs that are below 2.0 
Mrads/s, Πscnf /Πocnf = 10.8246.

3. Using the coefficients in Tables 2 and 3 corresponding to N = 
14, the polynomial f (γ) was constructed and equated to
Πscnf /Πocnf. The simplified expression is

17.1754γ
14 + 459.261γ

13 + 5426.9γ
12 + 3.7229 × 104

γ
11

+1.6363 × 105
γ

10 + 4.7853 × 105
γ

9 + 9.3133 × 105
γ

8

+1.1524 × 106
γ

7 + 7.6338 × 105
γ

6 + 1.2928 × 104
γ

5

−4.0979 × 105
γ

4 − 3.1860 × 105
γ

3 − 1.0487 × 105
γ

2

−1.4364 × 104
γ − 550.1790 = 0

(22)

4. Since Πscnf /Πocnf < 2N, there exist ONLY one positive real
root for (22).

5. The only positive root of γ is 0.7029.
6. This corresponds to an estimated value of α = 11.7375. This is

a typical value of α that corresponds to continuous disc
winding.

7. The measured total shunt capacitance is 1.15 nF at 1 kHz,
hence shunt capacitance per section Cg = 0.0821 nF. The
estimated series capacitance per section is Cs = 0.1169 nF. So,
the total series capacitance is 0.0083 nF.

5.3.1 Verification by initial impulse voltage distribution: As it is
well-known that there is no direct method to verify the correctness
of the estimated Cs, the authors measured the initial impulse
voltage distribution and compare it with the one computed using
the above-estimated value of Cs. This measurement was carried out
by exciting the winding by a near-step-like (70 V, 0.27/36 µs)
impulse voltage waveform produced using Haefely's repetitive
surge generator (RS482). The voltage magnitude at each double-
disk junction was measured corresponding to the time instant at
which the input excitation is maximum. Plotting these voltages
leads to the initial impulse voltage distribution, which is shown in
Fig. 7, along with that computed using estimated Cs = 0.1169 nF. 
The close match of estimated and measured distributions goes to
show that the proposed method has satisfactorily estimated the
value of Cs.

5.3.2 Verification by CSM: One more way of verifying the
estimated Cs was explored. Since, in this particular case, the
authors had access to design data (physical dimensions of the
winding are given in Fig. 8) this gave an opportunity to compute Cs

using CSM, and it in-turn can be used to cross-verify the results
gotten from the proposed method. The computation procedure and
algorithm described in [12] was followed. As per this procedure,

initially, the turn-to-turn capacitance matrix of the winding is
computed. Then, capacitance between neighbouring discs (inter-
disc capacitances) is obtained by adding the capacitances existing
between all the turns in neighbouring discs. Finally, the series
combination of all the disc capacitances provides the net series

Fig. 5௒ Measured DPI magnitude response of a 2.2 kV, continuous-disc
winding in the presence of a shorted LV

 

Fig. 6௒ Measured DPI magnitude response of a single, isolated, 33 kV, 3.5 
MVA, continuous-disc winding

 
Table 9 Peak-trough pairs corresponding to Fig. 6
Mrad/s 1 2 3 4 5 6
ωi′ 0.1923 0.6447 1.0795 1.4941 1.9151 2.3292
ωi 0.3889 0.8237 1.2428 1.6518 2.0546 2.4844
 

 
Mrad/s 7 8 9 10 11 12
ωi′ 2.7426 3.1542 3.5770 3.9747 4.4045 4.8255
ωi 2.8840 3.2899 3.7096 4.1281 4.5553 4.9763
 

 
Mrad/s 13 14
ωi′ 5.3093 5.7931
ωi 5.4601 5.9313
 

Fig. 7௒ Measured and calculated initial impulse voltage distribution of 33 
kV, 3.5 MVA, continuous disc winding
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capacitance of the winding. The results obtained from CSM are
enumerated as follows:

1. The net series capacitance is Cs = 0.0099 nF.
2. The net shunt capacitance is Cg = 1.4478 nF.
3. Thus, α is 12.0841, and is reasonably close to 11.7375 which

was estimated by the proposed method.

Hence, the accuracy of the proposed method was cross-verified by
two independent indirect methods and found to be satisfactory.

5.4 Case D: experiment on 1 − Φ, two-winding transformer

Owing to the encouraging performance of the proposed method on
single isolated windings, the next objective was to validate the
proposed method on an actual two-winding transformer. For this
purpose, a 1 − Φ, two-winding transformer of rating 11/13.8 kV,
315 kVA, used for testing surge-arrester blocks, was selected.
When measuring DPI of one winding, the untested winding is kept
open-circuited and floating. A photo of the experimental setup is
shown in Fig. 9. (Note: In this particular case, the DPI was
measured using a commercial impedance analyser (model
PSM3750). The excitation signal was connected to line-terminal of
the 13.8 kV winding and the neutral end was kept floating.
Likewise, the secondary was kept open and floating. The input was
fed with respect to the tank. The input voltage and source current
are automatically measured at each frequency point and outputted.)
The measured DPI is shown Fig. 10. The peak-trough pairs are
extracted and the same are also tabulated in Table 10. The steps for
estimating Cs are as follows:

1. After zooming DPI magnitude plot, a number of peak-trough
pairs were counted to be 17. Hence, N = 17.

2. From first 9 peak-trough pairs (which are below 2.0 Mrads/s),
Πscnf /Πocnf = 4.6991.

3. Using the coefficients in Tables 2 and 3 corresponding to N = 
17, the polynomial f (γ) was constructed and equated to
Πscnf /Πocnf. The simplified expression is (see (23)) .

4. Since Πscnf /Πocnf < 2N, hence there exists ONLY one positive
real root for (23).

5. After solving (23), the only positive root of γ = 0.0779
6. The corresponding value of α = 4.7439.
7. The measured shunt capacitance is 1.3 nF at 1 kHz, shunt

capacitance per section Cg = 0.0765 nF. The estimated series
capacitance per section is Cs = 0.9820 nF.

6௑Implementability on existing FRA instruments
Given the simplicity of the proposed method, the authors foresee
its portability on commercial FRA instrument to be
straightforward. The expected major steps/aspects in that regard are
listed as follows:

• The DPI magnitude data is acquired in a normal fashion.
• The peak-trough detection algorithm used in this work can be

converted and ported into the instrument software. This
algorithm always detected the peak-trough pairs accurately,
except in one case, wherein peak-trough 7–7′ in Fig. 10 was not
detected. Thus, this algorithm is robust and can be used.

Fig. 8௒ Dimensions of 33 kV, 3.5 MVA continuous-disc winding. All
dimensions are in mm, and figure is not to scale. (Disc inner radius = 
197.5, Disc outer radius = 243)

 

Fig. 9௒ Experimental set up to measure DPI on 13.8 kV winding of 11/13.8 
kV, two-winding transformer with a center-tap

 

Fig. 10௒ Measured DPI magnitude of the 13.8 kV winding of the 11/13.8 
kV, two-winding transformer

 

Table 10 Peak-trough pairs corresponding to Fig. 10
Mrad/s 1 2 3 4 5 6
ωi′ 0.2043 0.3176 0.5383 0.7534 0.9572 1.3251
ωi 0.2100 0.3968 0.6062 0.8440 1.0534 1.4100
 

 
Mrad/s 7 8 9 10 11 12
ωi′ 1.614 1.8516 2.0044 2.2704 2.6497 3.1082
ωi 1.6590 1.9534 2.1120 2.3667 2.8648 3.2327
 

 
Mrad/s 13 14 15 16 17
ωi′ 3.6006 3.9176 4.5969 4.8347 5.2252
ωi 3.6629 4.1837 4.6422 5.0045 5.3951
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• Once all peak-trough pairs are identified, N is determined.
• Then, Πscnf /Πocnf can be determined using all peak-trough pairs

that are below the upper bound of 2–2.5 Mrads/s.
• From the stored lookup table, pertinent δi and βi for a given N

are used to construct the polynomial f (γ).
• A check whether Πscnf /Πocnf < 2N is necessary to ensure the

presence of a single positive real root.
• To find roots, the bisection method is a good option to use. An

initial guess for the root has to be set. For this purpose, as only
the positive root is required, the initial interval for γ can be set
as 0–5.

• The convergence criterion can be set as 0.001.
• Note: This bisection algorithm was implemented and run on all

the cases discussed in the previous section. In all runs, the
positive root was estimated accurately in less than a few
seconds. Thus, this method of finding roots is a satisfactory
choice.

• Authors expect instrument manufacturers to implement this
feature as an add-on option. This being a software addition, it
can be retro-fitted.

7௑Conclusions
A simple and elegant procedure for estimating series capacitance of
a uniform transformer winding from measured frequency response
data was presented. The theoretical aspects of the proposed method
were derived by exploiting properties that correlate the roots of a
polynomial to its coefficients. Invoking these properties on driving-
point-impedance function of a winding (modelled as a N-section
mutually coupled ladder network) led to the establishment of the
proposed procedure. The method was implemented on a variety of
uniform transformer windings to check its feasibility. Finally, it
was also successfully implemented on an actual single-phase, two-
winding transformer. All these experimental results prove its
feasibility. The proposed method is free from mathematical
complexities, is straightforward to implement, is time-efficient and
therefore ideally suited to be deployed on existing commercial
FRA instruments, as a software add-on option. This feature is
expected to add a new dimension to the FRA instruments.
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9௑Appendix 1
௑
To verify the existence of a single positive root for (16), two
conditions for k are examined:

9.1 Case A: 1 < k < 2N

In case k < 2N, the coefficient of γN is always positive. Since k is
always greater than 1, the constant term β0(1 − k) in (16) is always
negative. Since the first term is positive and the last term is
negative, following are the conditions for the existence of a single
positive root by Descartes’ rule-of-signs.

1. There should not be any sign change observable in any of the
powers of γN − 1 to γ. This is a trivial condition.

2. If there is sign change (from positive to negative) in the
coefficients of any power of γ, all the coefficients succeeding it
should also be negative. This is examined next.

 
Theorem 1: If any of the coefficients of (16) become negative,

then all the other coefficients succeeding it will also be negative.
 

Proof: Let cj be each coefficient of (16). Assume that one of the
coefficients of f (γ) is negative. Let that coefficient be ci. We have
to prove that cj < 0, ∀ j < i. The jth coefficient can be represented
as

cj = β j 2N
δj

β j
− k (24)

Since ci < 0

29.3009γ
17 + 986.8319γ

16 + 1.5131 × 104
γ

15

+1.3980 × 105
γ

14 + 8.6808 × 105
γ

13 + 3.8256 × 106
γ

12

+1.2316 × 107
γ

11 + 2.9366 × 107
γ

10 + 5.2014 × 107
γ

9

+6.7993 × 107
γ

8 + 6.4515 × 107
γ

7 + 4.3137 × 107
γ

6

+1.9337 × 107
γ

5 + 5.3125 × 106
γ

4 + 7.2859 × 105
γ

3

+1.3424 × 104
γ

2 − 5.5918 × 103
γ − 251.5397 = 0

(23)
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⇒
δi

βi
<

k

2N
(25)

However, from Tables 2 and 3 it can be observed that for any value
of N

δN

βN
>

δN − 1

βN − 1

> …
δ0

β0

(26)

From (25) and (26)

δi − 1

βi − 1

<
k

2N

δi − 2

βi − 2

<
k

2N

⋮

δ1

β1

<
k

2N

(27)

From (24) and (27), all the coefficients cj are negative ∀ j < i.
Hence, the theorem is proved.

Therefore, if the value of Πscnf /Πocnf lies between 1 and 2N,
there will always be only one positive real root for (16).

9.2 Case B: k > 2N

In case k > 2N, the first term in (16) becomes negative. The last
term is also negative. Hence, there will be NO single positive real
root for (16), irrespective of the sign of other coefficients.
However, such a situation has not been encountered, neither during
simulation nor in any of the practical measurements. Thus, this
option can safely be ruled out. □
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