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First-passage-time problem for tracers in turbulent ows applied to virus spreading
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We study the spreading of viruses, such as SARS-CoV-2, by airborne aerosols, via a rst-passage-time

problem for Lagrangian tracers that are advected by a turbulent ow: By direct numerical simulations of the

three-dimensional (3D) incompressible Navier-Stokes equation, we obtain the time tR at which a tracer, initially

at the origin of a sphere of radius R, crosses the surface of the sphere for the rst time. We obtain the probability

distribution function P (R, tR ) and show that it displays two qualitatively different behaviors: (a) for R  LI,

P (R, tR ) has a power-law tail ∼t−α
R , with the exponent α = 4 and LI the integral scale of the turbulent ow; (b)

for LI . R, the tail of P (R, tR ) decays exponentially. We develop models that allow us to obtain these asymptotic

behaviors analytically. We show how to use P (R, tR ) to develop social-distancing guidelines for the mitigation

of the spreading of airborne aerosols with viruses such as SARS-CoV-2.

DOI: 10.1103/PhysRevResearch.2.033239

I. INTRODUCTION

By 1 June 2020 (14:31 GMT) the COVID-19 coronavirus

pandemic had affected 213 countries and territories and 2

international conveyances; the numbers of cases and deaths

were, respectively, 6 300 444 and 374 527 [1]. Social distanc-

ing has played an important role in mitigation strategies that

have been used in several countries to arrest the spread of

COVID-19 [2]. To optimize social-distancing guidelines we

must ask the following: How far, and how fast, do small res-

piratory droplets or virus-bearing aerosols spread in turbulent

ows? Given the ongoing COVID-19 pandemic, it is impor-

tant and extremely urgent to have at least a semiquantitative

answer to this question. SARS-CoV-2, the virus that causes

COVID-19, spreads, principally, in two different ways: (1)

First, respiratory droplets, ejected by the sneeze or cough

of a patient, fall on nearby surfaces or persons; in this case,

approximate estimates of the distance over which droplets are

likely to travel are available [3–5]. (2) Second, transmission of

this virus can occur because of airborne aerosols, such as (a)

a cloud of ne droplets, with diameters smaller than 5 μm,

emitted by an infected person while speaking loudly [6],

or (b) the SARS-CoV-2 RNA on ne, suspended particulate

matter [7]. These aerosols may remain suspended in the air

for a long time. Indeed, they have been reported in two
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hospitals in Wuhan [8], and there is growing evidence that

the SARS-CoV-2 virus could also spread via airborne aerosols

[6–10], typically indoors [11]. Other diseases can also spread

because of airborne aerosols; examples include measles [12],

chickenpox [13], tuberculosis [14], and avian u [15].

The typical sedimentation speed for such aerosols is com-

parable to their thermal speed. Therefore, at the simplest

level, it is natural to model these aerosol particles as neutrally

buoyant Lagrangian tracers, which are advected by the ow

but are passive, in the sense that they do not affect the ow

velocity. We can then study the spread of viruses, such as

SARS-CoV-2, via the airborne-aerosol route, by considering

the advection of such tracers by turbulent uid ows. There

have been extensive studies of such tracers in the uid-

dynamics literature [16,17], and models for such tracers have

been used, inter alia, to model the dispersion of pheromones

by lepidoptera [18].

We would like to determine the time that an aerosol particle

(one of the red particles in the schematic diagram of Fig. 1)

takes to travel a distance R from its source (the man at the

center of Fig. 1). In a turbulent ow, this time is random;

furthermore, a tracer particle can go past the distance R,

turn back, and reach R again. It is important, therefore, to

calculate the time it takes for an aerosol particle to reach the

distance R for the rst time and to calculate the probability

distribution function (PDF) of the rst-passage time of a tracer

in a turbulent ow. We carry out this calculation below.

Specically, we consider Lagrangian tracer particles that

emanate from a point source in a turbulent uid. If tR is the

time at which a tracer, initially at the origin of a sphere of ra-

dius R, crosses the surface of the sphere for the rst time, what

is the probability distribution function (PDF) P (R, tR)? The

answer to this question is of central importance in both fun-

damental nonequilibrium statistical mechanics [19–23] and in

understanding the dispersal of tracers by a turbulent ow, a

problem whose signicance cannot be overemphasized, for

it is of relevance to the advection of (a) airborne viruses, as
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FIG. 1. A schematic diagram illustrating how aerosols with

viruses (red points) may be advected by a turbulent ow, from

the person at the center (the source) to other persons at different

distances from the center.

we have noted above, and (b) pollutants in the atmosphere.

First-passage-time problems have been studied extensively

[20–23] and they have found applications in a variety of

areas in physics and astronomy, chemistry [24], biology [25],

and nance [26]. In the uid-turbulence context, different

groups have studied zero crossings of velocity uctuations

[27] or various statistical measures of two-particle dispersion,

including exit-time statistics for such dispersion in two- and

three-dimensional (2D and 3D) turbulent ows [28,29]. In

contrast to these earlier studies (e.g., Refs. [28–30]), the

rst-passage-time problem we pose considers one tracer in a

turbulent ow that is statistically homogeneous and isotropic.

For such a particle we show, via extensive direct numerical

simulations (DNSs), that P (R, tR) displays a crossover be-

tween two qualitatively different behaviors: (a) For R  LI,

P (R, tR) ∼ t−α
R , with LI the integral scale of the turbulent ow

and the exponent α = 4; and (b) for LI . R, P (R, tR) has an

exponentially decaying tail (Fig. 2). We develop models that

allow us to obtain these two asymptotic behaviors analytically.

Most important, we show how to use P (R, tR) to obtain

estimates of social-distancing guidelines for the mitigation

of the spreading of airborne aerosols with viruses such as

SARS-CoV-2.

II. MODELS, METHODS, AND RESULTS

The 3D incompressible Navier-Stokes equation is

∂tu+ (u ·∇)u = −∇p+ ν∇2u+ f , (1a)

and

∇ · u = 0. (1b)

Here, u(x, t ) is the Eulerian velocity at position x at time

t , p(x, t ) is the pressure eld, and ν is the kinematic viscosity

of the uid; the constant density is chosen to be unity. Our

direct numerical simulation (DNS) uses the pseudospectral

method [31], with the 2/3 rule for dealiasing, in a triply peri-

odic cubical domain with N3 collocation points; we employ

the second-order exponential Adams-Bashforth scheme for

time stepping [32]. We obtain a nonequilibrium statistically

stationary turbulent state via a forcing term f , which imposes

a constant rate of energy injection [33,34], in wave-number

shells k = 1 and k = 2 in Fourier space; this turbulent state is

statistically homogeneous and isotropic.

To obtain the statistical properties of Lagrangian tracers,

which are advected by this turbulent ow, we seed the ow

with Np independent identical tracer particles. If the La-

grangian displacement of a tracer, which was at position r0
at time t0, is r(t |r0, t0), then its temporal evolution is given by

d

dt
r = v(t |r0, t0) = u(r, t ), (2)

where v is its Lagrangian velocity. In Eq. (2), we need the

Eulerian ow velocity at off-grid points; we obtain this by

trilinear interpolation, and we use the rst-order Euler method

for time marching (see, e.g., Ref. [32]). We give important

parameters for our DNS runs in Table I. These include the

time step dt , the energy dissipation rate  = 2ν


k k
2E (k),

where E (k) =


k−1/2<k<k+1/2 u(k
) · u(−k) is the energy
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FIG. 2. Plots of the complementary cumulative probability distribution functions (CPDFs) Q vs the scaled rst-passage time tR (see text):

(a) Log-log plots of Q(
tR/Teddy

R/LI
) for R/LI = 0.06 (blue), R/LI = 0.10 (purple), R/LI = 0.14 (green), and (

tR/Teddy

R/LI
)
−3

(black dashed line); the

inset shows log-log plots of Q(tR/Teddy ) for the same values of R/LI. (b) Semilog plots of Q(tR/Teddy) for R/LI = 1.02 (pink), R/LI = 1.43

(blue), R/LI = 1.84 (purple), and R/LI = 2.04 (green).

033239-2



FIRST-PASSAGE-TIME PROBLEM FOR TRACERS IN … PHYSICAL REVIEW RESEARCH 2, 033239 (2020)

TABLE I. Parameters (see text for denitions) for our DNS runs: N3 is the total number of collocation points; ν is the kinematic viscosity;

dt is the time step; Reλ is the Taylor-microscale Reynolds number;  is the energy dissipation rate; η is the Kolmogorov dissipation length

scale; kmax is the maximum wave number that we use; LI is the integral length scale; Teddy is the integral-scale eddy-turnover time; τη = (ν/)1/2

is the Kolmogorov dissipation time scale; and Np is the number of tracer particles.

N ν dt Reλ  η kmaxη λ LI Teddy τη Np

512 1.2× 10−3 2× 10−4 82 0.67 7.12× 10−3 1.21 0.08 0.49 0.43 4.23× 10−2 100000

spectrum, the Taylor-microscale λ =



2νE

, where the total

energy E =


k E (k), the Taylor-microscale Reynolds num-

ber Reλ ≡ λurms/ν, where urms =
√
2E is the root-mean-

square velocity of the ow; LI =


k E (k)/k


k E (k)
is the integral

length scale and Teddy = LI/urms is the integral-scale eddy-

turnover time; η = (ν3/)1/4 and τη = (ν/)1/2 are, respec-

tively, the Kolmogorov dissipation length and timescale; and

kmax is the maximum wave number that we use in our DNS.

Clearly, tR is the rst time at which |r| becomes equal to

R. Instead of computing the PDF (or histogram) of tR numeri-

cally, we calculate the complementary cumulative probability

distribution function (CPDF) Q(tR) by using the rank-order

method [35] to circumvent binning errors. In Fig. 2, we

present log-log and semilog plots of Q(tR) vs tR/Teddy for

several values of R. From Fig. 2(a) we conclude that, for

R  LI,Q(tR/Teddy) ∼ (tR/Teddy)
−α+1, for large tR/Teddy, with

α  4; note that, in this power-law scaling regime, the com-

plementary CPDFs for different values of R/LI collapse onto

a universal scaling form, if we plot Q(
tR/Teddy
R/LI

). In contrast,

Fig. 2(b) shows that, for LI . R, the tail ofQ(tR/Teddy) decays

exponentially. For the rst-passage-time PDF, these results

imply that

P (R, tR/Teddy) ∼
{

(tR/Teddy)
−4 for R  LI,

exp[−(tR/Teddy)] for LI . R.

(3)

We now develop models that allow us to understand these two

asymptotic behaviors analytically.

For the power-law behavior of P (R, tR), in the range R 
LI, we construct the following natural ballistic model: Tracer

particles emanate from the origin with (a) a velocity whose

magnitude v is a random variable with a PDF p(v), and (b)

when it starts out from the origin, the tracer’s velocity vector

points in a random direction. Tracers move ballistically for

short times. Therefore, for R  LI, the rst-passage time tR =

R/v, and the rst-passage PDF is

P (R, tR) =

∫

δ(tR − R/v)p(v)dv. (4)

In statistically homogeneous and isotropic and

incompressible-uid turbulence, each component of the

Eulerian velocity has a PDF that is very close to Gaussian

[36], so p(v) has the Maxwellian [37] form

p(v) = Cdv
d−1 exp(−v

2/σ 2), (5)

where Cd depends on the spatial dimension d , and Cd = 4π

for d = 3, and σ =
√

v2 = urms. We substitute Eq. (5) in

Eq. (4); then, by integrating over v, we obtain

P (R, tR) = Cd

R3

t d+1
R

exp


−R2/


t2Rσ
2


. (6)

Therefore, in the limit of small R and large tR, the rst-

passage-time probability is

P (R, tR) ∼ R3/t4R, for d = 3; (7)

this power-law exponent is the same as the one we have

obtained from our DNSs above (Table I and Fig. 2).

We can obtain the tail P (R, tR/Teddy) ∼ exp[−(tR/Teddy)]

for LI . R as follows. At times that are larger than the

typical autocorrelation time of velocities in the Lagrangian

description, we follow Taylor [38] and assume that the motion

of a tracer particle is diffusive. Therefore, we consider a

Brownian particle in three dimensions (3D). To calculate

the rst-passage-time PDF, we must rst obtain the survival

probability S(t,R|0), i.e., the probability that the particle has

not reached the surface of the sphere of radius R up to time t ,

if it has started from the origin of this sphere. We start with

the forward Fokker-Planck equation [22,39] for the PDF of

nding the particle at a distance r from the origin at time t ,

∂P(r, t )

∂t
= K

(

∂2

∂r2
+

2

r

∂

∂r

)

P(r, t ), (8)

where K is the diffusion constant; this PDF satises the initial

condition P(r, 0) = δ(r)/(4πr2) and the absorbing boundary

condition P(R, t ) = 0 for all t at r = R. We obtain the follow-

ing solution,

P(r, t ) =
1

2R2

∞
∑

n=0

n

r
sin

(

nπr

R

)

exp(−Kn2π2t/R2), (9)

whence we get

S(R, tR) =

∫ R

0

P(r, t )4πr2dr

= 2

∞
∑

n=0

(−1)n+1 exp(−Kn2π2t/R2), (10)

where, in the last step, we have used Eq. (9). The rst-passage-

time probability is

P (R, tR) = −
∂

∂tR
S(R, tR)

=
2Kπ2

R2

∞
∑

n=0

(−1)n+1n2 exp(−Kn2π2tR/R
2). (11)
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FIG. 3. (a) Log-log plots of the complementary CPDFs Q(
γ tR
R/L

) of the scaled rst-passage time
γ tR
R/L

, for R  L and γ = 0.01; the

complementary CPDFs, for R/L = 0.0002 (green), R/L = 0.000 35 (blue), and R/L = 0.0005 (orange), collapse onto one curve; (b) semilog

plots of the complementary CPDFs of the scaled rst-passage time tR/R
2, for L . R and γ = 30. The complementary CPDF of tR/R

2, for

R/L = 10 (purple), R/L = 14 (green), R/L = 18 (blue), and R/L = 20 (orange), collapse onto one curve. Plots of the complementary CPDFs

Q(γ tR ) vs γ tR are shown in the insets.

At large times, the rst term (n = 1) is the dominant one;

therefore,

P (R, tR) ∼ (1/R2) exp(−Kπ2tR/R
2), (12)

the exponential form that we have obtained from our DNS

[Fig. 2(b)]; the 1/R2 prefactor cannot be extracted reliably

from our DNS data, because this requires much longer runs

than are possible with our computational resources.

We now show that both the small- and large-R/LI behaviors

ofP (R, tR)(R, tR) in Eq. (3) can be obtained from one stochas-

tic model for the motion of a particle. The simplest such model

uses a particle that obeys the following Ornstein-Uhlenbeck

(OU) model,

dxi

dt
= vi, (13a)

dvi

dt
= −γ vi +

√


m
ζi. (13b)

Here, γ and  are positive constants; xi and vi are the Carte-

sian components of the position and velocity of the particle; in

three dimensions, i = 1, 2, and 3; ζi(t ) is a zero-mean Gaus-

sian white noise with ζi = 0 and ζi(t )ζ j (t ) = δi jδ(t − t );
this noise is such that the uctuation-dissipation theorem

(FDT) holds. Note that there is no FDT for turbulence.

However, for the one-particle statistics that we consider, the

simple OU model is adequate. We use Np = 50 000 particles;

for each particle, the initial-position components xi(t = 0) are

distributed randomly and uniformly on the interval [0, 2π ],

and the velocity components vi(t = 0) are chosen from a

Gaussian distribution. For each particle, we obtain numeri-

cally the time tR at which it reaches a distance R from the

origin for the rst time. We then obtain the rst-passage-time

complementary CPDF Q(tR), which we plot in Fig. 3, for

R  L and L . R, where L =




γ 3 , the natural length scale

for Eq. (13), plays the role of LI in our DNSs above (Table I

and Fig. 2). We nd

P (R, tR) ∼
[

γ tR

(R/L)

]−4

, for R  L,

P (R, tR) ∼ exp

(

−
γ tR

(R/L)2

)

, for L . R; (14)

these are the OU-model analogs of our DNS results Eq. (3).

We have carried out two OU-model simulations: (a) We have

designed the rst, with γ = 0.01, to explore the form of

P (R, tR) in the ballistic regime R  L; (b) the second, with

γ = 30, allows us to uncover the form of P (R, tR) in the

diffusive regime L . R. [From a numerical perspective, it

is expensive to obtain the precise form of P (R, tR) in both

ballistic and diffusive regimes, with one value of γ .] We

now explore in detail the forms of P (R, tR) in these two

regimes. In Fig. 3(a), we present log-log plots of the com-

plementary CPDFs of the scaled rst-passage time tR/R, for

R  L and γ = 0.01. The complementary CPDFs of tR/R, for

R/L = 0.0002, R/L = 0.000 35, and R/L = 0.0005, collapse

onto one curve, i.e., in this regime, tR scales as R, which

is a clear manifestation of ballistic motion. In Fig. 3(b), we

present semilog plots of the complementary CPDFs of the

scaled rst-passage time tR/R
2, for L . R and γ = 30. The

complementary CPDFs of tR/R
2, for R/L = 10, R/L = 14,

R/L = 18, and R/L = 20, collapse onto one curve; from this

we conclude that, in this regime, tR scales as R2, which is a

clear signature of diffusive motion.

III. CONCLUSIONS AND DISCUSSION

We have dened and studied a rst-passage-time problem

for Lagrangian tracers that are advected by a 3D turbulent ow

that is statistically steady, homogeneous, and isotropic. Our

work shows that the rst-passage-time PDF P (R, tR) has tails

that cross over from a power-law form to an exponentially

decaying form as we move from the regime R  LI to LI . R

[Eq. (3)]. We develop ballistic-transport and diffusive models,
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FIG. 4. Surface plots of W (R, t ), the probability of virus-laden aerosol particles not reaching a person (at a distance R from an infected

person), up until time t (the rst-passage time) in (a) vs R and t , and (b) vs R/LI and t/T , in the diffusive region, for the representative values

K = 0.1 m2/s, urms = 0.05 m/s, and LI = 2 m.

for which we can obtain these limiting asymptotic behaviors

of P (R, tR) analytically. We also demonstrate that an OU

model, with Gaussian white noise, which mimics the effects

of turbulence, sufces to obtain the crossover between these

limiting forms. Of course, such a simple stochastic model

cannot be used for more complicated multifractal properties

of turbulent ows [29,36,40].

Earlier studies have concentrated on two-particle relative

dispersion by using doubling-time statistics, in 2D uid tur-

bulence; in particular, they have shown that the PDF of this

doubling time has an exponential tail [28]. Studies of velocity

zero crossings [27], in a turbulent boundary layer, have shown

that PDFs of the zero-crossing times have exponential tails.

The single-particle rst-passage-time statistics that we

study still needs to be explored. Furthermore, P (R, tR) can be

used to develop social-distancing guidelines for the mitigation

of the spreading of airborne aerosols with viruses such as

SARS-CoV-2 as we show below.

Given a pseudospectral DNS of the type we have carried

out, we can obtain the integral scale LI and urms from the

energy spectrum E (k), as we have noted above. A recent

study of COVID-19 in 320 municipalities in China suggests

that a very large fraction of COVID-19 infections occur be-

cause of indoor transmission of the SARS-CoV-2 virus [11].

Therefore, it is important to study such transmission in rooms

and ofces; a comprehensive DNS study of the Navier-Stokes

equation, with the correct boundary conditions enforced at

every wall and surface in the room and accurate forcing

functions (dictated, e.g., by fans and vents), is a considerable

challenge. Furthermore, it is not possible to carry out such a

DNS for every room with a different arrangement of furniture

in it. Hence, it is important to come up with semiquantitative

criteria that help us to understand and mitigate the indoor

transmission of such viruses. Turbulence models have been

used to study the ow of air in rooms and ofces [41,42]; from

these models and related experiments we obtain the estimate

urms  0.05 m/s in a typical ofce. We must also estimate LI,

for it is an important crossover length scale in our analysis of

P (R, tR). In our DNS, LI is 0.1L, where L is the linear size

of our simulation domain. In a typical ofce or a train, with

xed forcing, via fans or vents, we use LI to be approximately

a few meters; of course, LI must depend on the degree of

crowding on a train or the number of cubicles in a large ofce

room. Now consider one infected person who is at a distance

R from another person. The probability of virus-laden aerosol

particles not reaching the second person, up until time t , is

related to P (R, tR) as follows,

W (R, t ) = 1−
P (R, tR = t )

tRP (R, tR)
, (15)

which we calculate, by using Eq. (11), and depict in Figs. 4(a)

and 4(b), in the diffusive regime; Fig. 4(a) is a surface plot of

TABLE II. Table of values of W (R, t ), the probability of virus-laden aerosol particles not reaching a person (at a distance R from an

infected person), up until time t (the rst-passage time) in the diffusive region, for the representative values K = 0.1 m2/s, urms = 0.05 m/s,

and LI = 2 m.

t = 10 s t = 30 s t = 60 s t = 100 s t = 120 s t = 150 s t = 180 s t = 240 s

R = 2 m 0.169 0.001 0.000 0.000 0.000 0.000 0.000 0.000

R = 3 m 0.642 0.074 0.003 0.000 0.000 0.000 0.000 0.000

R = 4 m 0.917 0.313 0.049 0.004 0.001 0.000 0.000 0.000

R = 5 m 0.989 0.594 0.187 0.039 0.018 0.005 0.001 0.000

R = 6 m 0.999 0.805 0.383 0.129 0.074 0.032 0.014 0.002

R = 7 m 1.000 0.923 0.579 0.263 0.174 0.093 0.049 0.011

R = 8 m 1.000 0.097 0.739 0.412 0.299 0.182 0.107 0.030

R = 9 m 1.000 0.099 0.850 0.553 0.428 0.283 0.180 0.059

R = 10 m 1.000 0.998 0.920 0.673 0.547 0.386 0.260 0.093
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W (R, t ) vs R and t , for the representative values LI = 2 m

and urms = 0.05 m/s; Fig. 4(b) gives a surface plot of W

versus the dimensionless parameters R/LI and t/T , where

T = LI/urms. (We give similar plots for the ballistic regime in

the Supplemental Material [43].) In Table II we give the values

of W (R, t ) for different values of R and t . These gures and

Table II lead to three clear observations:

(1) If the separation R  LI, i.e., we have to consider

the ballistic regime (see the Supplemental Material [43]),

then W (R, t ) goes very rapidly to 0 (i.e., the aerosol particle

reaches the second person), even if t is very small.

(2) The smaller the separation R between two persons, the

shorter the time t in whichW (R, t ) becomes very small, i.e.,

the aerosol particles reach from one person to the other.

(3) Our calculation leads to quantitative predictions, e.g.,

if the separation LI . R, i.e., we have to consider the dif-

fusive regime, then W (R, t ) goes to 0 in tens of seconds,

if R = 2 m, and in hundreds of seconds, if R− 10 m, for

the representative parameters that we use to obtain Table II.

A recent study [44] has suggested that the SARS-CoV-2

virus remains viable in aerosols for nearly 3 h. Therefore, if

the concentration of virus-laden aerosols is high in a poorly

ventilated room, then we must employ more stringent social-

distancing norms than are in place now, even if people spend

only tens of minutes together in such a room. The methods

that we have developed can be applied, mutatis mutandis, (a)

in sophisticated models for virus particles or droplets, e.g.,

those that use inertial particles [45,46] or multiphase ows

[47,48], and (b) in turbulent ows that are not statistically

homogeneous and isotropic. We will examine these in future

work. At the moment, during this Covid-19 pandemic, it is

important to use our minimal model to obtain semiquantitative

criteria for social-distancing guidelines, as we have done

above.
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