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Constellation Design for Media-Based Modulation

Using Block Codes and Squaring Construction

Bharath Shamasundar, Student Member, IEEE, and A. Chockalingam , Senior Member, IEEE

Abstract—Efcient constellation design is important for
improving performance in communication systems. The prob-
lem of multidimensional constellation design has been studied
extensively in the literature in the context of multidimensional
coded modulation and space-time coded MIMO systems. Such
constellations are formally called as lattice codes, where a nite
set of points from a certain high dimensional lattice is chosen
based on some criteria. In this paper, we consider the problem
of constellation/signal set design for media-based modulation
(MBM), a recent MIMO channel modulation scheme with
promising theoretical and practical benets. Constellation design
for MBM is fundamentally different from those for multidi-
mensional coded modulation and conventional MIMO systems
mainly because of the inherent sparse structure of the MBM
signal vectors. Specically, we need a structured sparse lattice
code with good distance properties. In this work, we show that
using an (N,K) non-binary block code in conjunction with
the lattice based multilevel squaring construction, it is possible
to systematically construct a signal set for MBM with certain
guaranteed minimum distance. The MBM signal set obtained
using the proposed construction is shown to achieve signicantly
improved bit error performance compared to conventional MBM
signal set. In particular, the proposed signal set is found to achieve
higher diversity slopes in the low-to-moderate SNR regime.

Index Terms—Media-based modulation, mirror activation
pattern, MAP-index coding, squaring construction.

I. INTRODUCTION

M
EDIA-BASED modulation (MBM) is a recent MIMO

transmission technique which uses a single trans-

mit radio frequency (RF) chain and multiple RF radiation

elements. It has compact overall structure compared to the

conventional MIMO systems and achieves superior rate and

performance [1]–[11]. Specically, MBM uses digitally con-

trolled parasitic elements called RF mirrors, which act as

signal scatterers in the near eld of the transmit antenna

(see Fig. 1). Each of these RF mirrors can be in one of the

two states, namely, ON or OFF, based on the control inputs

which depend on the information bits. An RF mirror reects

the transmit signal in the ON state, and allows the signal to

pass through in the OFF state. If there are mrf RF mirrors,
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Fig. 1. Schematic representation of MBM transmitter.

then there are Nm , 2mrf different ON/OFF combinations,

called ‘mirror activation patterns’ (MAP). Each of these MAPs

creates a different near eld geometry for the transmit signals.

In a rich scattering environment, even a small perturbation

in the near eld will be augmented by random reections,

and hence results in a different end-to-end channel. Therefore,

in MBM, using mrf RF mirrors, Nm independent channels

can be created corresponding to Nm different MAPs. These

different MAPs can be represented by the Nm MAP indices,

M = {0, 1, · · · , Nm − 1}. The transmitter activates one of

these MAPs (equivalently, selects one of the indices from M)

based on mrf information bits and transmits a symbol from

a conventional modulation alphabet A (say, QAM), which

conveys log2 |A| bits. The achieved rate in MBM is, therefore,

given by η MBM = mrf + log2 |A| bits per channel use

(bpcu). It has been shown that MBM can achieve good bit

error performance in the point-to-point setting compared to

conventional SIMO/MIMO systems [1]–[5]. In [6], MBM is

studied in the context of space-time coding and signicant

performance gains are reported. Inspired by the notion of

quadrature spatial modulation, quadrature channel modulation

schemes using MBM are proposed in [7], [8]. In [9], MBM

is used for the uplink in massive MIMO systems, and the

possible gains in terms of reduction in the required number

of base station receive antennas are highlighted. Recently,

practical implementation of MBM using recongurable meta-

surfaces to alter the near-eld radiation characteristics have

been proposed in [10], [11]. Our new contribution in the

present work is on designing efcient signal sets for MBM

that can achieve signicantly improved system performance.

Constellation design is one of the important means

to improve performance in wireless communication

systems. In early literature on constellation design, several

two-dimensional constellations are conceived based on
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different criteria [12]–[14]. Recognizing the limited SNR gains

achievable by two-dimensional constellations and the possibil-

ity of higher SNR efciency by going for higher dimensions,

efcient multidimensional constellations are proposed in the

literature [15]–[17]. The general framework of constellation

design is formalized by dening the notion of a lattice code,

and several efcient methods for constructing lattice codes are

presented in the literature in the context of multidimensional

coded modulation and MIMO systems [15]–[22]. In the

present work, we consider the problem of constellation design

for MBM, which is a recently proposed MIMO channel

modulation scheme, described briey in the earlier part of this

section. The constellation design for MBM is fundamentally

different from those described above mainly because of the

sparse nature of the MBM signal vectors. Although some

techniques can be borrowed from the previous literature, only

marginal gains are possible if sparsity is not explicitly taken

into account while designing the constellation. Specically,

we need good structured sparse lattice codes in higher dimen-

sions to achieve high SNR efciency in MBM. To this end,

the contributions of this paper can be summarized as follows.

• The problem of constellation design with constraints on

the sparsity of signal vectors has not been addressed in the

conventional MIMO literature. Since the sparsity arises

naturally in MBM, we formulate the constellation design

problem for MBM by explicitly considering the spar-

sity constraints to achieve improved distance properties.

Specically, we consider the design of structured sparse

multidimensional constellation, where the elements of the

constellation are the joint MBM vectors to be transmitted

in N channel uses, i.e., MBM blocks formed by concate-

nating N MBM vectors.

• Next, we show that using non-binary block codes [23]

in conjunction with the lattice based constructions [18],

[19], it is possible to design constellation (signal set1) for

MBM with superior distance properties. We give one such

construction of the MBM signal set using the notions of

MAP-index coding and multilevel squaring construction.

• We derive upper bound on the bit error rate (BER) and

the asymptotic diversity gain achieved by MBM using

the proposed signal set, both of which are veried by

simulations.

• Finally, we present simulation results that demonstrate

the SNR gain achieved by the proposed signal set. For

example, an MBM system of rate 3 bpcu using the

proposed signal set achieves a BER of 10−4 at an

SNR of 6 dB, while the conventional MBM signal set

requires 12 dB to achieve the same BER performance.

The improved distance properties of the proposed signal

set are also numerically demonstrated.

The rest of the paper is organized as follows. Section II pro-

vides the necessary preliminaries for the squaring construction,

which is used in the latter section for MBM signal set design.

The formulation of the signal set design problem, the proposed

signal set, and its distance properties are presented in Sec. III.

The BER upper bound and the diversity analysis of MBM

1The terms constellation and signal set are interchangeably used in the paper.

using the proposed signal set are presented in Sec. IV. Results

and discussions are presented in V, and conclusions are

presented in Sec. VI.

II. PRELIMINARIES

In this section, we present the notions of partitions, partition

chains, partition distance lemma, and the squaring construction

[18], [19]. These notions will be used in the next section for

the MBM constellation design.

Consider a discrete, nite set S. An M -way partition of

the set S is specied by M disjoint sets T (b), such that their

union is the set S. Here, b is the label for the subset T (b),
which uniquely identies the subset. This can be an integer

labeling, in which case b can take values 0, 1, · · · ,M − 1.
If M = 2K , for some K ∈ Z+, then we can use binary

labelings of K bits. The partition of S into T (b) is denoted

by S/T , with the order of partition |S/T | = M . For example,

consider the set S = {−4,−3, · · · , 0, · · · , 3, 4, 5}, which is

a subset of integers. A two way partition of this set into odd

and even integers is T (0) = {−3,−1, 1, 3, 5} and T (1) =
{−4,−2, 0, 2, 4}. The order of partition here is |S/T | = 2.
An m-level partition is denoted by S0/S1/ · · · /Sm

and is obtained by rst partitioning S0 into S1(b0),
b0 = 0, · · · ,M1 − 1, then partitioning each S1(b0) into

S2(b1), b1 = 1, · · · ,M2 − 1, and so on. Here, M1 is the

order of the partition S0/S1, M2 is the order of the partition

S1/S2, and so on. An m-level partition is generally labeled

using m-part label b = (b0, b1, · · · , bm), where bj is the label

for the partition Sj/Sj+1. In other words, specifying the m-

level partition b uniquely identies a set from the partition

S0/S1/ · · · /Sm. Further, the subsets at jth level are identied

by the rst j parts of the label (b0, · · · , bj). If |S0/S1| = M1,

|S1/S2| = M2, · · · , |Sm−1/Sm| = Mm, then the order of

partition S0/Sm is the product of the orders at each level,

i.e., |S0/Sm| = M1 M2 · · ·Mm. For example, if |S0/S1| = 2
and |S1/S2| = 3, then |S0/S2| = 2 · 3 = 6.
Another important notion is that of a distancemetric dened

on a discrete set. If s and s are two elements of S, then the

distance between them is denoted by d(s, s), which is equal

to zero only if s = s and greater than zero otherwise. The

minimum distance of the set, denoted by d(S), is the minimum

d(s, s) for s �= s. For a partition S/T , the distance metric

of S carries over to its subsets T (b). The minimum distance

of the partitioned sets T (b) is dened as the least minimum

distance among d(T (b)). In the present work, we are interested
in the partition S/T such that d(T ) > d(S). If T (b) and T (b)
are subsets of S, then the minimum subset distance d(b, b) is
equal to d(T (b)) if b = b, otherwise, d(b, b) is the minimum

distance between the distinct elements of the subsets T (b) and
T (b). We now state an important result known as the partition

distance lemma, which gives the lower bound on the distance

between any two subsets in an m-level partition chain.

Lemma 1: If S0/S1/ · · · /Sm is an m-level partition chain

with distances d(S0)/d(S1)/ · · · /d(Sm), and Sm(b) and

Sm(b) are subsets with multipart labels b and b, respec-

tively, then the subset distance d(b,b) is lower bounded by

d(Sj), where if b �= b, j is the smallest index such that

bj �= bj , while if b = b, j is equal to m.
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This result can be visualized in the form of a binary

tree, where the multipart labels are associated with different

branches of the tree and the distance between any two subsets

depends on which stage the two subsets diverge in the binary

tree.

In general, a distance measure is useful if it has additivity

property. Specically, if S is a set of N -dimensional vectors

s ∈ S, then the additive property of the distance requires that

the distance between any two vectors s and s in S is equal to

the sum of distances between each of their components si and
si, i = 1, · · · , N . It is well known that the squared Euclidean

distance naturally has the additive property.

We now present the idea of squaring construction, which

gives a method of constructing new sets from a given set such

that the constructed sets ensure a certain minimum distance

greater than that of the set we start with. The squaring

construction can be described as follows.

If S is a disjoint union of M subsets T (b), b = 0, · · · ,
M − 1, then the squaring construction is dened as the

union of the Cartesian product sets T (b) × T (b) = T 2(b),
b = 0, · · · ,M − 1, i.e., U =

M−1
b=0 T 2(b), which is denoted

by |S/T |2. For example, if S = {0, 1, 2, 3}, T (0) = {0, 2},
and T (1) = {1, 3}, then the squaring construction is the union

of sets

U1 = T (0)× T (0) = {(0, 0), (0, 2), (2, 0), (2, 2)}

U2 = T (1)× T (1) = {(1, 1), (1, 3), (3, 1), (3, 3)} ,

and the union is

U = U1 ∪ U2

= {(0, 0), (0, 2), (2, 0), (2, 2), (1, 1), (1, 3), (3, 1), (3, 3)} .

Note that the set U is a subset of the Cartesian product of S
with itself, i.e., U ⊂ S × S. The following lemma gives an

important property of such a construction. Specically, it says

that the squaring construction ensures an increased minimum

distance [19].

Lemma 2: If S/T is a partition with minimum distances

d(S)/d(T ), then U = |S/T |2 has a minimum distance of

d(U) = min [d(T ), 2d(S)] . (1)

Proof: Case 1: If two distinct elements of U belong to

the same set T 2(b), then they differ in at least one coordinate,

and hence have a distance of d(T ).
Case 2: If two distinct elements of U belong to different

T 2(b)s, then the two elements differ in both the coordinates,

and hence have a minimum distance of d(S) in each coordinate
and 2d(S) in total.

Consider the previous example with squared Euclidean

distance as the distance measure on S. With this distance

measure, the minimum distance of S, d(S) = 1. The minimum

distances d(T (0)) and d(T (1)) are both equal to 4. Further,

the minimum distance of the set U obtained by squaring

construction, d(U) = 2 = 2d(S). Thus, using squaring

construction, the minimum distance is increased from one to

two. In the process, the dimension of the elements of the set S,
which is one, is also increased in U to two.

The squaring construction can be continued iteratively on

the resulting sets to construct new sets with their elements in

TABLE I

MAPPING OF MIRROR ACTIVATION PATTERNS TO INDICES

higher dimensions having higher minimum distance. Such a

construction is called as the multilevel squaring construction

or iterated squaring construction. It is interesting to note that

the idea of squaring construction can be used to construct

many good codes and lattices, specically, Reed-Muller codes

and the Barnes-Wall lattices, owing to its elegant way of

increasing the distances iteratively. We use this idea of multi-

level squaring construction in the next section in conjunction

with non-binary block codes to construct an MBM signal

set/constellation with very good distance properties.

III. MBM SIGNAL SET DESIGN

In this section, we briey review MBM system and con-

ventional MBM signal set. We formulate the MBM signal set

design problem by imposing certain conditions, which when

satised can lead to improved distance properties. We propose

the technique of MAP-index coding using non-binary block

codes in conjunction with multilevel squaring construction

(discussed in the previous section) to meet the imposed

conditions.

A. Conventional MBM Signal Set

Consider an MBM system with a single transmit antenna

and mrf RF mirrors placed near the transmit antenna. Then,

Nm = 2mrf MAPs are possible. Each of these MAPs create

different end-to-end channel between the transmitter and the

receiver. Let the Nm different MAPs be assigned indices from

the set M = {0, 1, 2, · · · , Nm − 1}. An example mapping

between the elements in M and the MAPs for mrf = 2
(i.e., Nm = 4) is shown in Table I.

In a given channel use, one of the MAPs is selected based

on mrf information bits and a symbol from a conventional

modulation alphabet A is transmitted using the selected MAP.

Let A0 , A ∪ {0}. Then, the conventional MBM signal set,

S MBM, is the set of Nm × 1-sized signal vectors given by

S MBM =

sk ∈ A

Nm

0 , ∀k ∈ M,

s.t. sk = [0 · · · 0 x
(k + 1)th index

0 · · · 0]T , x ∈ A

.

(2)

Consider two MBM signal vectors

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

s1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
s2
...

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)
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The squared Euclidean distance between these two MBM

signal vectors is |s1|2 + |s2|2 if the positions of the non-zeros

s1 and s2 are different, i.e., if x1 and x2 have different MAP

indices. On the other hand, if the positions of the non-zeros

s1 and s2 are the same, i.e., if x1 and x2 have the same

MAP-index, then the distance is |s1 − s2|2. The minimum

(squared Euclidean) distance of the conventional MBM signal

set, d(SMBM ) is then given by

d(SMBM ) = min
s1,s2∈A

{|s1|
2 + |s2|

2, |s1 − s2|
2}. (4)

For example, with the BPSK modulation, the minimum dis-

tance d(SMBM ) = 2, irrespective of the number of RF mirrors

used.

B. Efcient Signal Set Design for MBM

As just illustrated, the minimum distance between the

MBM signal vectors is decided by the modulation alphabet,

irrespective of the number of RF mirrors used. Therefore,

as such, the distance properties of MBM can not be improved

much except for possible marginal improvements achievable

by the constellation shaping to make the alphabet A near-

circular [14]. Therefore, we now take a different approach

where we form a new constellation with its points being the

joint MBM vectors to be transmitted in N channel uses. That

is, we consider block transmission of MBM, where a block

of N MBM vectors is considered as the constellation point to

be transmitted in N channel uses. This is the approach taken

in [15]–[17] to construct good constellations in the case of

conventional modulation. As we show in the sequel, this allows

us to design improved signal sets for MBM with excellent

distance properties. Consider two MBM blocks x and x, with

each block formed by concatenating N MBM signal vectors,

as shown below:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

s1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

s2
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

...⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

sN
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
s1
...

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
s2
...

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

...⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sN
...

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is an obvious but important fact that any two sparse

vectors are different if they either differ in the position of

the non-zeros or in the value of the non-zeros even in one

coordinate. If N MBM vectors are appended to form a trans-

mission block as in x above, and if we consider the collection

of all such blocks as the signal set, then the minimum distance

is governed by those blocks which either differ in only one

position or the blocks having the same support (non-zero

positions) but differing in only one non-zero value, resulting

in the same minimum distance as in (4). Therefore, it should

be noted that, just the block transmission does not result

in improved distance properties. However, imposing certain

conditions on the MAP indices and the non-zeros can lead to

better distance properties as we show next.

Consider the two MBM blocks x and x as shown above.

It is easy to see that the following constraints ensure higher

distance between x and x:
1) The MBM blocks x and x have higher distance

between them when their supports differ in more num-

ber of positions. That is, if l = (l1, l2, · · · , lN) and

l = (l1, l

2, · · · , l


N ) are the MAP indices of the N

MBM vectors of x and x, respectively, then the dis-

tance between x and x is increased by increasing the

Hamming distance between l and l.

2) If the MBM blocks x and x have the same support

(i.e., same MAP indices), then the distance between

x and x can be increased by increasing the distance

between the non-zeros of x and x. That is, if s =
[s1 s2 · · · sN ]T and s = [s1s


2 · · · s


N ]T denote the

vectors containing the non-zeros of x and x, then

the distance between x and x can be increased by

increasing the distance between s and s, in the case

when x and x have the same support.
Note that the rst condition is the result of the sparse nature of

the MBM signal vectors, while the second condition is the one

that is conventionally considered in the constellation design of

the multidimensional coded modulation and space-time MIMO

systems. In the next subsections, we show that MAP-index

coding can be used to achieve the rst condition and the mul-

tilevel squaring construction can be used to achieve the second

condition.

C. MAP-Index Coding

As noted earlier, the MAP indices are the unique indices

assigned to different MAPs created by the different ON/OFF

combinations of RF mirrors. For an MBM system with mrf

RF mirrors, there are Nm = 2mrf different MAPs and

hence Nm MAP indices, which we denoted by the set M =
{0, 1, · · · , Nm − 1}. The MAP index decides the position of

the non-zero entry in each MBM vector. Therefore, the set of

MAP indices (l1, l2, · · · , lN) corresponding to the N MBM

vectors of the MBM transmission block decides the positions

of N non-zeros in the MBM block. If l = (l1, l2, · · · , lN ) and
l = (l1, l


2, · · · , l


N ) are the MAP index vectors of the MBM

blocks x and x, respectively, then, as mentioned in the condi-

tion 1 above, the distance between x and x can be increased

by increasing the Hamming distance between l and l. There-

fore, if block codes with good Hamming distance properties
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Fig. 2. Illustration of multilevel squaring construction.

TABLE II

LABELING OF MAP INDICES TO ELEMENTS OF GF(2mrf )

can be suitably adopted for selecting the N MAP indices in an

MBM block, it is possible to achieve good distance properties

between the MBM blocks. To this end, we present the notion

of MAP-index coding [26], which can be explained as follows.

First, the elements of the MAP index set M =
{0, 1, · · · , Nm−1} are used as labels for the Nm elements of

Galois eld GF(Nm). This establishes an one-to-one mapping

between the MAP indices and the elements of GF(Nm).
An example mapping is shown in Table II for the case when

mrf = 3, and hence Nm = 8.
Then, consider an (N,K) non-binary block code on

GF(Nm) with certain Hamming distance properties. The set

of all N -length codewords of this (N,K) block code forms a

codebook on GF(Nm) with NK
m = 2Kmrf codewords. Since

there is one-to-one mapping between the elements of GF(Nm)
and M, the codebook of the considered (N,K) block code on

GF(Nm) induces an equivalent codebook onM, with the same

Hamming distance properties as that of the original block code

on GF(Nm). Let S map denote such an (N,K) codebook

on M. Also, let dH be the minimum Hamming distance

of S map. Then, any two codewords l = (l1, l2, · · · , lN )
and l = (l1, l


2, · · · , l


N ) will differ in at least dH positions.

Therefore, if the codebook S map is used as the alphabet for

N MAP indices of the MBM block, then any two blocks x and

x having different supports will differ in at least dH positions,

resulting in a distance of

d(x,x) =

dH

i=1

(|si|
2 + |si|

2). (5)

This distance is clearly greater than the minimum distance of

the conventional MBM signal set in (4) when dH > 1.
Although MAP-index coding is able to increase the

distances between MBM blocks with different support,

in order to increase the minimum distance of the signal

set, the distance between the signal vectors having the same

support but differing only in non-zero values should also be

increased. Therefore, for MBM blocks x and x with the same

support, the non-zero symbol vectors s and s corresponding

to x and x should be designed such that they have certain

guaranteed minimum distance between them. This leads us to

multilevel squaring construction, which we present next.

D. Multilevel Squaring Construction

As seen in the previous subsection, when the supports of

the MBM blocks x and x overlap, the non-zeros of the two

blocks s and s should have higher distance (�s−s�2) between
them to ensure higher distance between x and x. As seen in

Sec. II, the squaring construction allows us to construct a set of

vectors with certain assured minimum distance, starting from

a set of scalars. Therefore, the squaring construction is ideally

suited to construct signal constellations with good distance

properties. In the present work, we use the multilevel squaring

construction starting from an M -PAM alphabet and construct

an N dimensional signal set A with good distance properties.

Figure 2 shows the tree representation of a two

stage squaring construction starting from 4-PAM alphabet

A = {−3,−1, 1, 3}. Each stage of the squaring construction

consists of two steps, viz., the set partition step followed by

the Cartesian product (which we have indicated as ‘squaring’

in Fig. 2). In each stage of the construction, we have shown

the minimum distance between the vectors of that stage. The

minimum distance of the original PAM signal set is dmin = 4.
Then, the squaring construction as described in Sec. II is

applied on this set to get a two dimensional signal set with a

minimum distance of d min = 16. The dimension of the signal

set is increased from one to two after the rst stage of squaring

construction. Now, the squaring construction is repeated on

the resulting two dimensional signal set to obtain a four
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dimensional signal set with minimum distance of d min = 32.
Now, if we stop the squaring construction at this stage, we have

a constellation in four real dimensions. In order to make this

signal set compatible with the QAM modems, we convert this

four dimensional real vectors into two dimensional complex

vectors by forming complex symbols using two consecutive

real symbols. For example, the two dimensional complex vec-

tors formed using the four dimensional real vectors in Fig. 2

are given by

A =


−3− 3i
−3− 3i


,


−3− 3i
1 + 1i


,


1 + 1i
1 + 1i


,


1 + 1i
−3− 3i


,


−3 + 1i
−3 + 1i


,


−3 + 1i
1− 3i


,


1− 3i
1− 3i


,


1− 3i
−3 + 1i


,


−1− 1i
−1− 1i


,


−1− 1i
3 + 3i


,


3 + 3i
3 + 3i


,


3 + 3i
−1− 1i


,


−1− 3i
−1− 3i


,


−1− 3i
−3− 1i


,


3− 1i
3− 1i


,


3− 1i
−1− 3i


.

It should be noted that the distance properties of this set of

two dimensional complex vectors is same as that of the set of

four dimensional real vectors in Fig. 2. In the present work,

the vectors of the complex constellation A obtained from the

squaring construction are used for the non-zero parts of the

MBM blocks. This makes sure that, whenever the supports

of the MBM blocks overlap, the distance between the MBM

blocks is high. By counting across the branches of the tree

representation of the squaring construction, the number of

vectors at the end of Lth stage, starting from an M -PAM

alphabet, is given by

|A| =

⎧
⎪⎨
⎪⎩
2L


M2L

22(2L−1)


if M ≥ 4

2 if M = 2.

(6)

Therefore, with M = 2P , P ≥ 2, the number of vectors in A
is given by

|A| = 22
L(P−2)+L+2. (7)

It should be further noted that the L level squaring construction

results in 2L dimensional real vectors and hence N = 2L/2 =
2L−1 dimensional equivalent complex vectors.

E. Proposed Signal Set

In this subsection, we present the proposed signal set for

MBM by putting together the ideas discussed so far. As seen

from the previous subsections, the MAP-index coding results

in a codebook, which we denote by Cb, consisting of N -length

codewords on M. This codebook can be thought of as the sig-

nal set from which the MAP-index vectors l = (l1, l2, · · · , lN )
for MBM blocks are selected. Further, the multilevel squaring

construction results in a multidimensional signal set A, whose

elements are used for the non-zero part of the MBM blocks.

The proposed signal set for MBM is the combination of the

two signal sets Cb and A, and is given by

S={x=[xT
1 x

T
2 · · ·xT

N ]T s.t (l1, · · · , lN ) ∈ Cb, s ∈ A},

(8)

where x1, · · · ,xN are the N MBM vectors which form

the MBM block x, (l1, · · · , lN) are the MAP indices of

x1, · · · ,xN , respectively, and s = [s1, · · · , sN ] ∈ A is such

that si is the non-zero symbol (the source symbol) of xi (the

ith MBM vector of the MBM block).

Example: For a system with N = 4, K = 2, mrf = 3, and
M = 2, the signal set A consisting of 2 vectors generated by

squaring construction is

A =

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−1− 1i
−1− 1i
−1− 1i
−1− 1i

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 + 1i
1 + 1i
1 + 1i
1 + 1i

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

, (9)

and the MAP-index codebook Cb generated by (4, 2) shortened
Reed-Solomon code on GF(8), consisting of 2Kmrf = 26 =
64 codewords, is given by

Cb =

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
6
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
2
7
6

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
3
1
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
4
5
7

⎤
⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣

7
7
3
5

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

. (10)

Each vector in Cb is a MAP-index vector, whose entries are

used as the MAP-indices for the 4 MBM sub-vectors which

constitute the MBM block. The MBM block is then formed

by transmitting one of the vectors from A using one of the

MAP-index vectors from Cb. For example, if the rst vector of

Cb is used as the MAP-index vector and the rst vector in A is

to be transmitted, then the MBM transmit block corresponding

to this combination is a NNm = 32-length signal vector given
by

x = [(−1− i) 0 0 0 0 0 0 0 (−1− i) 0 0 0 0 0 0 0

(−1− i) 0 0 0 0 0 0 0 (−1− i) 0 0 0 0 0 0 0]T . (11)

Likewise, if the second vector of Cb is used as the MAP-

index vector and the second vector in A is to be transmitted,

then the signal vector is given by

x = [(1 + i) 0 0 0 0 0 0 0 0 (1 + i) 0 0 0 0 0 0

0 0 0 0 0 0 (1 + i) 0 0 0 0 (1 + i) 0 0 0 0]T . (12)

The proposed MBM constellation S is the set of all such MBM

blocks obtained by different combinations of MAP-index

vectors from Cb and symbol vectors from A.

The number of MBM blocks in S (i.e., the number of signal

points in the proposed constellation) is |S| = |Cb||A|. As seen
before, |Cb| = NK

m = 2Kmrf and |A| = 22
L(P−2)+L+2 for

P ≥ 2, and |A| = 2 for P = 1. Therefore, the rate achieved

by transmitting an MBM block from the proposed signal set

S for P ≥ 2 is given by

η=
1

N


log2


2Kmrf · 22

L(P−2)+L+2


=
1

N


Kmrf + 2L(P − 2) + L+ 2



=
1

N


Kmrf + 2N(log2 M − 2) + log2(2N) + 2


. (13)
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For the case when P = 1, the rate is given by

η =
1

N


log2


2Kmrf · 2



=
1

N
[Kmrf + 1] . (14)

For example, if N = 4, K = 2, mrf = 2, M = 4,
the achieved rate is

η =
1

4


2 · 2 + 2 · 4(log2 4− 2) + log2 8 + 2



=
9

4
= 2.25 bpcu.

Further, the minimum distance of the signal set in (8) is given

by

d(S) = min
s,s′∈A


dH

i=1

(s2i + s2i ), �s− s�2


, (15)

where the rst term inside the brackets is the distance between

the blocks when the supports are non-overlapping and the sec-

ond term corresponds to the case when the supports are

overlapping.

F. The Received Signal

In this subsection, we present the expression for the received

signal when an MBM block from the proposed signal set (8)

is transmitted. We assume a frequency at Rayleigh fading

channel which remains constant for the duration of N channel

uses. An MBM block transmitted in N channel uses can

be written in the matrix form as an Nm × N matrix X =
[x1 · · ·xN ], such that vec(X) = x ∈ S. The received nr ×N
matrix in N channel uses is then given by

Y = HX+N, (16)

where H ∈ Cnr×Nm is the MBM channel matrix, whose

entries are assumed i.i.d CN (0, 1) and N ∈ Cnr×N is the

additive white Gaussian noise matrix with its entries being

i.i.d CN (0,σ2). The received signal in (16) can be written in

vector form as

y = (I⊗H)x+ n, (17)

where y = vec(Y), x = vec(X) ∈ S, and n = vec(N). The
maximum-likelihood (ML) detection rule for signal detection

with the proposed signal set is

x = argmin
x∈S

�y − (I⊗H)x�2. (18)

IV. BER AND ASYMPTOTIC DIVERSITY ANALYSES

From (8) and (16), it can be seen that there is certain

dependence in time among the transmit MBM vectors of an

MBM block and that the transmit block can be written in the

form of an Nm × N space time codeword. Therefore, it is

of interest to study if the proposed signal set can provide any

diversity gain apart from improved distance properties. To this

end, in this section, we carry out the BER and asymptotic

diversity analyses of MBM using the proposed signal set.

Consider two MBM blocks X(i) and X(j), such that

vec(X(i)), vec(X(j)) ∈ S. The pairwise error probabil-

ity (PEP) between X(i) and X(j), given the channel H, is the

probability that X(i) is transmitted and it is detected as X(j) at

the receiver, with the channel being known to the receiver. This

probability is given by

PEP|H(X(i),X(j))

= Pr{X(i) → X(j)|H}

= Pr{�Y −HX(i)�2F ≤ �Y −HX(j)�2F }, (19)

where � ·�2F denotes the Frobinius norm of a matrix. The PEP

in (19) can be simplied as [24], [25]

PEP|H(X(i),X(j)) = Q(

ρDij/2), (20)

where Q(·) denotes the Q-function, Dij , �H(X(i) −
X(j))�2F , and ρ is the signal-to-noise ratio (SNR) per receive

branch at the receiver. The PEP in (20) can be upper bounded

as

PEP|H(X(i),X(j)) ≤
1

2
e−ρDij/4, (21)

where we have used the inequality Q(x) ≤ 1
2e

−x2/2. For i.i.d

Gaussian channels, unconditioning the PEP over the channel

results in the following inequality [24], [25]

PEP(X(i),X(j))

≤
1

2


1

det

INm

+ ρ

4 (X
(i)−X(j))(X(i)−X(j))H


nr

=
1

2


1

Rij

rij=1(1 + σ2
rijρ/4)

nr

, (22)

where INm
is the Nm ×Nm identity matrix, σrij is the rij th

singular value of (X(i)−X(j)), and Rij is its rank. The union

bound based BER upper bound for the proposed signal set is

then given by

BER

≤
1

|S|

|S|

i=1

|S|

j=1,j =i

PEP(X(i),X(j))
d(X(i),X(j))

κ

=
1

|S|

|S|

i=1

|S|

j=1,j =i

1

2


1

Rij

rij=1(1 + σ2
rijρ/4)

nr

d(X(i),X(j))

κ
,

(23)

where d(X(i),X(j)) is the Hamming distance between the bit

mappings of X(i) and X(j), and κ = log2 |S|.
Theorem 3: The asymptotic diversity order of MBM using

the proposed signal set is nr.

Proof: At high SNR values, the PEP in (22) can be

simplied as

PEP(X(i),X(j)) ≤
ρ
4

−nrRij

⎛
⎜⎝

⎛
⎝

Rij

rij=1

σ2
rij

⎞
⎠
1/Rij

⎞
⎟⎠

−nrRij

.

(24)
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From (22), the asymptotic diversity order of MBM using the

proposed signal set is given by [24]

gd = nr min
i,j =i

Rij , (25)

where Rij is the rank of the difference matrix

∆
ij = X(i) − X(j), where vec(X(i)), vec(X(j)) ∈ S.

The matrices X(i) and X(j) are Nm × N matrices with a

single non-zero entry per column. The positions of the N
non-zero entries are together determined by the MAP-index

codeword, as discussed before. From (25), the diversity

order is determined by the minimum Rij among all i, j �= i.
Therefore, if we nd two matrices X(i) and X(j) such that

their difference ∆
ij = X(i) − X(j) has the minimum rank

among all pairs of matrices, then that pair determines the

asymptotic diversity order. To nd such a pair, we note that

any (N,K) codebook will contain an all-zero codeword.

If the zero element of GF(2mrf ) is mapped to the MAP

index ‘0’, then the MAP-index codeword corresponding to

the all-zero codeword is also all-zeros. This means that same

MAP is used in all the N channel uses. Consider two such

transmission blocks

X(i)=

⎡
⎢⎢⎢⎣

si1 si2 · · · siN
0 0 · · · 0
... · · ·

...

0 0 · · · 0

⎤
⎥⎥⎥⎦ , X(j)=

⎡
⎢⎢⎢⎣

sj1 sj2 · · · sjN
0 0 · · · 0
... · · ·

...

0 0 · · · 0

⎤
⎥⎥⎥⎦.

Then, their difference matrix

∆
ij =

⎡
⎢⎢⎢⎣

δ
ij
1 δ

ij
2 · · · δ

ij
N

0 0 · · · 0
... · · ·

...

0 0 · · · 0

⎤
⎥⎥⎥⎦ , (26)

where δ
ij
k = sik − sjk, clearly has rank one. Therefore,

mini,j =i Rij = 1, and hence the asymptotic diversity order

of MBM with the proposed signal set is nr.

The above result says that, although there is certain coding

across time, the proposed signal set does not achieve transmit

diversity. However, as we will see in the next section, MBM

with the proposed signal set exhibits a diversity slope higher

than nr in the medium SNR regime and the asymptotic

diversity order of nr is observed only at extremely low BER

values.

V. RESULTS AND DISCUSSIONS

In this section, we present numerical and simulation results

that illustrate that MBM with the proposed signal set achieves

improved distance properties resulting in good bit error per-

formance. We also show that the BER upper bound derived

in the previous section closely matches the simulated BER at

high SNR values. We use this bound to verify the analytical

diversity order derived in the previous section.

Figure 3 shows the BER performance of MBM with the

proposed signal set based on MAP-index coding (MIC) and

squaring construction (SQ), which is abbreviated in the gure

as MIC-SQ-MBM. The system considered in the gure uses

N = 4, K = 2, mrf = 4, nr = 4, and achieves a

Fig. 3. BER performance of MIC-SQ-MBM (prop.) signal set with rate
2.25 bpcu and conventional MBM signal set with rate 2 bpcu. Simulation
and analysis.

Fig. 4. BER performance of MIC-SQ-MBM (prop.) signal set with rate
3.25 bpcu and conventional MBM signal set with rate 3 bpcu. Simulation
and analysis.

rate of 2.25 bpcu. For MAP-index coding, the codebook

of (4, 2) shortened Reed-Solomon code on GF(24) is used

and eight level (2N = 8) squaring construction is achieved

starting from M = 2-PAM alphabet. The gure also shows

the performance of conventional MBM signal set with rate

2 bpcu. The upper bounds on the BER for both the systems

are also shown. From the gure it can be seen that the

derived BER upper bound is close to the simulated BER

at high SNR values. This is because the bound on the

Q-function used for deriving the upper bound on the BER is

tight for higher values of SNR. Further, it can be seen that the

proposed signal set achieves superior bit error performance

compared to conventional MBM signal set. For example,

the proposed signal set has an SNR gain of about 7 dB

at a BER of 10−5 compared conventional MBM signal set.

A similar performance gain in favor of the proposed signal set

is observed in Fig. 4 for another set of parameters. In Fig. 4,

the proposed signal set uses N = 4, K = 2, mrf = 6, nr = 4
and achieves a rate of 3.25 bpcu. For MAP-index coding, the

codebook of (4, 2) shortened Reed-Solomon code on GF(26)
is used and eight level squaring construction is achieved

starting from M = 2-PAM alphabet. The performance of this
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TABLE III

DISTANCE DISTRIBUTION OF MIC-SQ-MBM (PROP.) SIGNAL SET OF

RATE 2.25 BPCU AND CONVENTIONAL MBM SIGNAL SET OF

RATE 2 bpcu, CONSIDERED IN FIG. 3

TABLE IV

DISTANCE DISTRIBUTION OF MIC-SQ-MBM (PROP.) SIGNAL SET OF

RATE 3.25 BPCU AND CONVENTIONAL MBM SIGNAL SET OF

RATE 3 bpcu, CONSIDERED IN FIG. 4

MIC-SQ-MBM signal set is compared with that of conven-

tional MBM signal set with rate 3 bpcu.

The superior BER performance of the MBM system with

the proposed signal set is the result of the good distance

properties achieved by the proposed signal set. The distance

distributions of the proposed signal sets and conventional

MBM signal sets considered in Figs. 3 and 4 are shown

in Tables III and IV, respectively. From Table III, it can be

seen that, the minimum distance of the conventional MBM

signal set is 2, while that of MIC-SQ-MBM (proposed) signal

set is 12, which is signicantly higher. Further, the dominant

distance in MIC-SQ-MBM signal set is 16, with 76.32 % of

the signal pairs having this distance. A similar observation can

be made from the Table IV where the distance distributions of

conventional MBM signal set of 3 bpcu and MIC-SQ-MBM

signal set of 3.25 bpcu are shown. This explains the superior

performance of the proposed signal set. At this point, we make

few remarks below.

Remark 1: In Theorem 3 in the previous section, we showed

that the asymptotic diversity order of MBM with the proposed

signal set is nr, which is same as that of MBM using

conventional MBM signal set. However, in Figs. 3 and 4, even

at BERs as low as 10−6, the slopes of the BER curves for the

proposed signal set and conventional signal set are different.

Specically, MBM with the proposed signal set is seen to

exhibit a diversity slope higher than nr. To gain more insight

into this behavior, we plot the BER upper bounds of MBM

using the proposed signal set for much lower BER values.

The BER upper bounds for the previously considered systems

in Figs. 3 and 4 are shown in Figs. 5 and 6, respectively.

In Figs. 5 and 6, the bounds are plotted up to a BER of

10−20. From these plots, it is evident that, although MBM

using the proposed signal set initially shows a higher diversity

slope, eventually the diversity slope becomes the same as that

of MBM using conventional MBM signal set. For example,

in Fig. 5, the curve of MBM with the proposed signal set

Fig. 5. BER upper bound plots of MBM using MIC-SQ-MBM (prop.) signal
set and conventional MBM signal set.

Fig. 6. BER upper bound plots of MBM using MIC-SQ-MBM (prop.) signal
set and conventional MBM signal set.

changes the slope at about 10−12 BER and becomes parallel

to the corresponding curve for MBM using conventional

MBM signal set. This behavior can be explained as follows.

As shown in the diversity analysis in Sec. IV, the slope of the

BER curve in the asymptotic high SNR regime depends on the

minimum rank of the difference matrices, Δijs. The diversity

analysis also showed that the minimum rank is always equal

to one for the proposed signal set, which resulted in the

conclusion that the asymptotic diversity order is nr. The

proposed signal set reduces the number of rank one difference

matrices relative to the total number of possible difference

matrices, which makes the effect of the minimum rank to show

up only at much higher SNRs. For example, for the considered

system in Fig. 5, there are 29 possible signal matrices X and

hence there are

29

2


= 130816 possible difference matrices.

Numerical computation of the difference matrices and their

ranks reveal that there is only one difference matrix which

has rank one and all other difference matrices have higher

ranks. This results in the BER curve to have a slope higher

than nr in the low-to-medium SNRs and a change of slope to

nr in the high SNR regime (where the diversity slope of nr

manifests due to the effect of the presence of one difference
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Fig. 7. BER performance of MIC-SQ-MBM (prop.) signal set with N = 6,
K = 4. Performance of conventional MBM signal set is also shown for
comparison.

matrix of rank one). Likewise, out of the

213

2


= 33550336

possible difference matrices in the system considered in Fig. 6,

only one difference matrix has rank one. Therefore, the slope

change in Fig. 6 occurs at a much lower probability of error of

10−15 compared to the slope change at a probability of error

of 10−12 in Fig. 5. The observations in Figs. 5 and 6 convey

the following points: i) the numerical plots of the BER upper

bound validate asymptotic diversity order of nr predicted by

analysis in the previous section, and ii) the proposed signal

set achieves higher than nr diversity slope in the practical

low-to-moderate SNRs of interest.

Remark 2 (Shortening of RS Codes): In the discussion of

the results of Figs. 3 and 4, we mentioned that a shortened RS

code is used for MAP-index coding. In this remark, we give

a brief account of the shortening of RS codes. An RS code

on GF(2mrf ) will have a codeword length of N = 2mrf − 1
(which is not the case in Figs. 3 and 4). A shortened RS code

is one in which the codeword length is less than 2mrf − 1.
The shortened (N,K) RS code actually uses an (N ,K ) RS
code with N  = 2mrf − 1 and K  = K + (N  − N). The
shortening is done by initially padding each message of length

K with N −N prepending zeros. RS encoding is done for this

zero padded message to obtain a codeword with the allowed

codeword length of N . Finally, the padded zeros are removed

from the codeword along with puncturing some of the parity

symbols.

In the rest of this section, we further illustrate the advan-

tage of the proposed signal set. Figure 7 shows the BER

performance of the proposed MBM signal set for N = 6,
K = 4, mrf = 4, M = 2, 2.6 bpcu, nr = 4, and ML

detection. The performance of conventional MBM signal set

with mrf = 1, BPSK, 2 bpcu, nr = 4, and ML detection is

also shown for comparison. From the gure, it can be seen that

the proposed signal set achieves better performance compared

to conventional MBM signal set by about 5 dB at 10−4 BER.

We show the BER performance of the proposed signal set as

a function of the number of receive antennas in Fig. 8. The

considered system uses N = 4, K = 2, mrf = 6, M = 2, and
achieves a rate of 3.25 bpcu. The performance of this system

Fig. 8. BER performance of MBM using MIC-SQ-MBM (prop.) signal set
as a function of number of receive antennas.

Fig. 9. SNR required to achieve a BER of 10−3 as a function of number
of receive antennas for MBM using MIC-SQ-MBM (prop.) signal set and
conventional MBM signal set.

is plotted as a function of the number of receive antennas at

two SNR values, namely, 0 dB and 2 dB. The performance of

conventional MBM signal set is also shown for comparison.

From Fig. 8, it can be seen that the proposed signal set requires

fewer number of receive antennas compared to conventional

MBM signal set to achieve the same bit error performance.

For example, to achieve a BER of 10−4 at an SNR of 2 dB,

the proposed signal set requires about 7 receive antennas,

while the conventional MBM signal set requires 15 receive

antennas. It can further be seen that this gap in the required

number of receive antennas widens as the required BER goes

down.

In Fig. 9, the SNR required to achieve a BER of 10−3 for

different number of receive antennas is shown for MBM with

the proposed signal set (3.25 bpcu) and conventional MBM

signal set (3 bpcu). It is evident from the gure that, for a given

number of receive antennas, the proposed signal set achieves a

BER of 10−3 at lesser SNR values compared to conventional

MBM signal set. Figure 10 shows the BER performance of

the proposed MBM constellation for nr = 4 and nr = 16.
The performance of the conventional MBM constellation is

also shown for comparison. It can be seen that the MBM
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Fig. 10. BER performance of MIC-SQ-MBM (prop.) signal set and
conventional MBM signal set with nr = 4, 16.

Fig. 11. BER performance comparison as a function of Eb/N0 between the
MBM systems using MIC-SQ-MBM (prop.) constellation and conventional
MBM constellation, when both the systems use mrf = 4 RF mirrors.

performance (with proposed constellation and conventional

constellation) gets signicantly better for nr = 16 compared

to that with nr = 4. This is in line with the observation

in [3] where the benets of MBM are reported to be more

pronounced for a large number of receive antennas and,

in many cases, the conventional constellation itself (without

any channel coding) offers an acceptably low probability of

error. This can be seen in Fig. 10, where the conventional

constellation achieves a BER of 10−5 at SNRs of about

13.5 dB for nr = 4 and 2.5 dB for nr = 16. Figure 10

further shows that with the proposed constellation the same

BER of 10−5 is achieved at SNRs of about 6.3 dB for nr = 4
and −2.2 dB for nr = 16.
In Fig. 11, we consider two MBM systems using the

same number of RF mirrors (mrf = 4) and show their

BER performance as a function of Eb/N0. The rst system

uses the proposed constellation with N = 4, K = 2,
M = 2, and achieves 2.25 bpcu. The second system uses

conventional MBM constellation with BPSK modulation and

achieves 5 bpcu. The gure shows that the system using

the proposed constellation achieves a BER of 10−5 at an

Eb/N0 of about 2.2 dB, whereas the system with conventional

Fig. 12. BER performance comparison between MBM systems using the
proposed constellation and STBC systems.

MBM constellation achieves the same BER at an Eb/N0 of

about 9.6 dB.

Figures 12a and 12b show a BER performance compari-

son between MBM systems using the proposed constellation

and STBC systems. The MBM and STBC systems consid-

ered in the gures are closely matched in terms of their

achieved rates. The considered system parameters are shown

in Figs. 12a and 12b. In Fig. 12a, the MBM system has a rate

of 1.75 bpcu and the STBC system has a rate of 1.5 bpcu.

In Fig. 12b, the rates of both MBM and STBC systems are

2.25 bpcu. From the gures it can be seen that the MBM

systems using the proposed constellation achieve better BER

performance compared to the STBC systems. For example,

in Fig. 12a, even with a slightly higher rate of 1.75 bpcu,

the MBM system performs better by about 1 dB at 10−5

BER compared to the STBC system with a rate of 1.5 bpcu.

In Fig. 12b, for the same rate of 2.25 bpcu, the MBM system

performs better by about 5.5 dB at 10−5 BER. It is noted that

while the considered STBC systems require nt = 4 RF chains,

the MBM systems require only a single RF chain.

VI. CONCLUSION

We considered the problem of efcient constellation/signal

set design for media-based modulation, and showed that block

codes and squaring construction can be effectively used to
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design MBM signal sets with good distance properties. The

proposed design approach was shown to result in MBM signal

sets with good distance properties and bit error performance.

Numerical and simulation results showed that the proposed

MBM signal set can lead to signicant advantages in terms

of SNR and number of receive antennas compared to con-

ventional MBM signal set. Through analysis and validating

simulations we established that the asymptotic diversity order

of the proposed signal set is the same as that of conventional

MBM signal set. However, an interesting observation is that

in the low-to-medium SNR regime, the proposed signal set

was found to achieve a much higher diversity slope compared

to that of conventional MBM signal set. This has resulted

in signicant SNR gains (e.g., 7 dB gain at 10−5 BER)

compared to conventional MBM signal set. We note that

the ML detection complexity grows exponentially with the

block size N and hence exhaustive search becomes infeasible

for large block sizes. The structured sparsity in the proposed

constellation and the trellis structure of the non-zero symbols

obtained by squaring construction can be exploited to design

low-complexity signal detection algorithms, which can be a

potential topic future work.
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