Observation of inter-layer charge transmission resonance at optically excited graphene–TMDC interfaces

Cite as: APL Mater. **8**, 091114 (2020); https://doi.org/10.1063/5.0020396 Submitted: 01 July 2020 • Accepted: 31 August 2020 • Published Online: 22 September 2020

🔟 Ranjit Kashid, Jayanta Kumar Mishra, ២ Avradip Pradhan, et al.

COLLECTIONS

Paper published as part of the special topic on Moire Materials

ARTICLES YOU MAY BE INTERESTED IN

Giant excitation induced bandgap renormalization in TMDC monolayers Applied Physics Letters **112**, 061104 (2018); https://doi.org/10.1063/1.5017069

Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems

Journal of Vacuum Science & Technology B **35**, 030803 (2017); https://doi.org/10.1116/1.4982736

Band offsets and heterostructures of two-dimensional semiconductors Applied Physics Letters **102**, 012111 (2013); https://doi.org/10.1063/1.4774090

Download the Technical Note

APL Mater. 8, 091114 (2020); https://doi.org/10.1063/5.0020396 © 2020 Author(s). **8**, 091114

Observation of inter-layer charge transmission resonance at optically excited graphene-TMDC interfaces

Cite as: APL Mater. 8, 091114 (2020); doi: 10.1063/5.0020396 Submitted: 1 July 2020 • Accepted: 31 August 2020 • Published Online: 22 September 2020

Ranjit Kashid,¹ D Jayanta Kumar Mishra,¹ Avradip Pradhan,¹ D Tanweer Ahmed,^{1,a)} Saloni Kakkar,¹ Pranav Mundada,¹ Preeti Deshpande,² Kallol Roy,¹ Ambarish Ghosh,² and Arindam Ghosh^{1,2,b)}

AFFILIATIONS

¹Department of Physics, Indian Institute of Science, Bangalore 560012, India ²Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India

^{a)}Author to whom correspondence should be addressed: tanweer@iisc.ac.in ^{b)}Electronic mail: arindam@iisc.ac.in

ABSTRACT

The transfer of charge carriers across the optically excited hetero-interface of graphene and semiconducting transition metal dichalcogenides (TMDCs) is the key to convert light to electricity, although the intermediate steps from the creation of excitons in TMDC to the collection of free carriers in the graphene layer are not fully understood. Here, we investigate photo-induced charge transport across graphene–MOS₂ and graphene–WSe₂ hetero-interfaces using time-dependent photoresistance relaxation with varying temperature, wavelength, and gate voltage. In both types of heterostructures, we observe an unprecedented resonance in the inter-layer charge transfer rate as the Fermi energy (E_F) of the graphene layer is tuned externally with a global back gate. We attribute this to a resonant quantum tunneling from the excitonic state of the TMDC to E_F of the graphene layer and outline a new method to estimate the excitonic binding energies (E_b) in the TMDCs, which are found to be 400 meV and 460 meV in MOS₂ and WSe₂ layers, respectively. The gate tunability of the inter-layer charge transfer timescales may allow precise engineering and readout of the optically excited electronic states at graphene–TMDC interfaces.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020396

The van der Waals (vdW) heterostructures of graphene and transition metal dichalcogenides (TMDCs) are not only outstanding optoelectronic elements^{1–22} but also represent atomic scale prototypes of donor–acceptor (DA) complexes,^{23–25} where the conversion of photons to free charge carriers can be manipulated with excellent control. In optically excited bulk DA complexes, the excitons dissociate quasi-adiabatically via the transfer of either the electron (*e*) or the hole (*h*) across the interface and form a transient charge transfer state, which directly impacts the quantum efficiency. In the type-II TMDC–TMDC heterostructures, the charge transfer states manifest as inter-layer excitons, resulting in quenching of the intra-layer photoluminescence spectrum.^{26–28} In the graphene–TMDC heterostructures, the formation of such inter-layer bound states could not be observed,^{19–21} possibly due to strong screening by the graphene layer.²⁹ The ultra-fast cross-interface selective

transfer of the photo-excited delocalized charge carriers has been demonstrated in graphene–TMDC^{19–22} heterostructures, occurring with picosecond timescales. However, significant debate persists regarding the directionality of the charge transfer,²² as well as the role of Förster type energy transfer²⁰ across the hetero-interface when the excitons are excited in the TMDC layer. An insight into the exciton dissociation process in the graphene–TMDC heterostructures can be obtained by tuning the Fermi energy (*E_F*) of graphene, which is also expected to affect the rate of charge transfer. However, most ultra-fast pump–probe experiments probing the charge transfer kinetics are limited in the tunability of *E_F*, especially those without field-effect transistor (FET) geometry. Here, we have explored the *e*–*h* separation process at graphene– TMDC hetero-interfaces in the FET geometry using time (*t*)dependent photoresistance relaxation. We quantitatively link the photoresistance relaxation to an inter-laver electron transfer process in which the photo-excited electron undergoes a phononassisted transfer from the excitonic state (EX) of the TMDC to the Fermi surface of the graphene layer. The rate (τ_i^{-1}) of this TMDC \rightarrow graphene electron transfer process is observed to be sharply peaked around a characteristic value of E_F (measured with respect to the Dirac point of graphene) in both graphene-MoS2 and graphene-WSe₂ heterostructures. We attribute this to a resonance-like phenomenon when E_F in graphene aligns with the EX state in the TMDC layer. We also obtain estimations of excitonic binding energies $(E_b) \approx 400$ meV and 460 meV for the monolayers of MoS₂ and WSe2, respectively, which closely match with the previous studies.³⁰⁻³³ Our time-dependent photoresistance measurements may not only be relevant to ultra-fast photodetection and thermalization³⁴ in graphene-TMDC vdW heterostructures but also form a new and unique spectroscopic tool to probe the optical states in TMDCs.

The graphene-TMDC vdW heterostructures were created using the layer-by-layer transfer of individual mechanically exfoliated graphene and TMDC flakes to form the vertical heterostructures^{35,36} [Fig. 1(a)], which were then transferred onto $SiO_2/p^{++}-Si$ substrates, where the heavily doped Si acts as the global backgate. We have performed experiments on one graphene-WSe2 and two graphene-MoS₂ heterostructures (devices 1 and 2), where single molecular layers of both graphene and TMDC were used. Figure 1(b) shows an optical micrograph of a graphene-MoS₂ heterostructure (device 1) turned FET. The Raman spectra of individual flakes, device fabrication and details, and optical source calibration are shown in Figs. S1-S3 of the supplementary material, respectively. Thermally evaporated Cr/Au contacts on the top surface are used to measure the electrical resistance of the graphene layer. For wavelength dependent optical illumination, we used a tungsten-halogen lamp (Horiba, LSH-T250), which acts as a continuous optical source over the wavelength (λ) of interest (\approx 550 nm–800 nm).

The band alignment at the graphene-TMDC interface, which is similar for both graphene-MoS₂⁹ and graphene-WSe₂³⁷ heterostructures, suggests energy offset of ≈0.30 eV and ≈0.50 eV, respectively, between the Dirac point of graphene and the minimum (E_C) of the quasi-particle conduction band of the TMDC layer [in Fig. 1(c)]. The photoluminescence (PL) spectra from our devices were obtained using a HORIBA LabRam HR tool under high vacuum condition (pressure $\sim 10^{-5}$ mbar). The PL from the TMDC layer underneath graphene is quenched compared to that from the bare TMDC region [Fig. 1(d) for the graphene-WSe₂ heterostructure], confirming the significant decay of TMDC's excitons in nonradiative pathways such as TMDC \rightarrow graphene electron transfer.^{2,5,8,12,20,22} While the stronger quenching at room temperature than at 40 K can indicate a competition between TMDC \rightarrow graphene electron transfer timescale (τ_i) and radiative lifetimes (τ_r),^{38,39} the PL quenching may also be due to the Förster-type energy transfer across the vdW interface in the graphene-TMDC heterostructures²⁰ (see Fig. S4 of the supplementary material for PL quenching in the graphene–MoS₂ heterostructure). The direct evidence of the charge transfer was established earlier when such heterostructures were implemented in the FET architecture.^{1,4,18}

The transfer of charge following the dissociation of the excitons changes the resistance (*R*) of the graphene layer. Figure 2(a) illustrates the *R* vs back gate voltage (*V_G*) characteristic of a graphene–WSe₂ heterostructure, which is close to that of the pristine graphene because the WSe₂ layer itself is highly resistive (>MΩ) [see Fig. S5(a) of the supplementary material for the graphene– MoS₂ heterostructure]. When the optical illumination is turned on, *R* decreases (increases) from R_{off} to R_{on} in the electron (hole)-doped regime, indicating the transfer of electrons from the TMDC layer to graphene [Fig. 2(b) and Fig. S5(b) of the supplementary material for the graphene–MoS₂ heterostructure]. Here, R_{off} and R_{on} are the steady state resistances of the graphene layer without and with the optical illumination, respectively. This observation is consistent with

FIG. 1. (a) Schematic of the graphene–TMDC heterostructure along with the circuit diagram for opto-electronic measurement. (b) Optical micrograph of a typical graphene–TMDC heterostructure device. (c) Relative band alignment showing the relevant energy scales for generic graphene–TMDC heterostructures. Here, W, χ , E_D , E_F , E_X , E_g , and E_b are the work function of undoped graphene, electron affinity of the TMDC layer, energy at the Dirac point, Fermi energy of graphene, excitonic energy level inside the TMDC layer, optical band gap of TMDC, and the binding energy of the excitons, respectively. τ_i and τ_b are the timescales of photogenerated electron transfer in the TMDC \rightarrow graphene and graphene \rightarrow TMDC directions, respectively. (d) Photoluminescence (PL) spectra of graphene–WSe₂ heterostructures showing the quenching of the PL signal in the heterostructure region in comparison to bare WSe₂. A, B, and A⁻¹ indicate the excitonic and negatively charged trionic transitions, respectively.

FIG. 2. (a) Resistance (*R*)–gate voltage (*V*_G) characteristics of a graphene–WSe₂ heterostructure shown in Fig. 1(b). (b) Change in *R* for a 120 s optical pulse at illumination power *P* = 0.56 fW μ m⁻² and wavelength λ = 600 nm. The increase and decrease in *R* are observed for the hole-doped (*V*_G = -7 V) and electron-doped (*V*_G = -2 V) regimes, respectively. (c) ΔR_{sat} as a function of λ showing the suppression of photoresponse for photon energy $E_{\lambda} > E_g$ (for monolayer WSe₂, $E_g \approx 1.74$ eV). (d) Exponential relaxation of *R* for the different power level (*P*) of optical excitation (at λ = 600 nm). The black lines are fits to the data. (e) Dependence of the relaxation rate (τ^{-1}) on the excitation power (*P*) for both graphene–MoS₂ and graphene–WSe₂ heterostructures. (f) Comparison of the PL of bare WSe₂ and τ^{-1} as a function of λ . All experiments are performed in vacuum at T = 85 K, except for PL in (c) and (f) performed at *T* = 40 K.

the earlier reports on the photoresistance in the graphene-TMDC heterostructures^{1,4} and can also be viewed as a photogating effect, where the net photoresistance $\Delta R_{sat} = dR/dV_G \times eN_g/C_{ox}$ is the result of an effective change in V_G . Here, N_g is the total change in the carrier density in the graphene channel by virtue of TMDC \rightarrow graphene electron transfer once the system reaches the steady state, C_{ox} is the capacitance of the 290 nm SiO₂ per unit area, and e is the electronic charge. This is further confirmed by the observed proportionality of ΔR_{sat} and dR/dV_G (see Fig. S6 of the supplementary material). Here, ΔR_{sat} is persistent, and the transferred electron (in graphene) and hole (in TMDC) do not recombine even after the illumination is turned off, unless a positive pulse of ≥ 20 V in V_G is applied to reset the device.¹ The persistence indicates a strongly suppressed electron backflow to the TMDC layer due to the paucity of available states in TMDC at the Fermi level of graphene. Importantly, ΔR_{sat} [see Fig. 2(c)] is nonzero only for the photon energies $(E_{\lambda} = hc/\lambda)$, where *h* and *c* are the Planck constant and velocity of light, respectively) at which the optical density-of-states (DoS) in the TMDC layer is nonzero, as confirmed from the comparison of the PL and ΔR_{sat} [Fig. 2(c), also shown in Fig. S5(c) of the supplementary material for data from the graphene-MoS₂ device]. The wavelength dependent photoresistance measurements were performed at T = 85 K, with an

illumination power density (*P*) of 0.56 fW μ m⁻². The absence of the photoresponse at *E*_{λ} < optical bandgap (*E*_{*g*}) of the WSe₂ allows us to ignore the photo-thermionic charge transfer in our devices.^{13,22}

Figure 2(d) presents the time-dependent photoresistance relaxation data at different power densities (*P*) of the incident illumination with $\lambda = 600$ nm from the graphene–WSe₂ device at $V_G = -7$ V and T = 85 K (see Fig. S5 of the supplementary material for the data from the graphene–MoS₂ device). In this case, the power calibrated LED was used as the source of optical illumination. $R(t) = R_{off}$ + $\Delta R_{sat} \times (1 - \exp(-t/\tau))$ [solid lines in Fig. 2(d)] behavior is observed at all values of *P*, where τ is the timescale of the photoresponse. τ is observed to be inversely proportional to *P* over the experimental range of *P*. $\tau^{-1} \propto P$ behavior from both graphene– MoS₂ and graphene–WSe₂ devices is presented in Fig. 2(e). The dashed lines indicate linear fits to the data.

The exponential relaxation can be understood in terms of charge in-flow and out-flow rates to/from graphene. Following the generation of the exciton with the radiative lifetime τ_r in TMDC, the electron makes transition to graphene with the inter-layer charge transfer timescale τ_i . This leads to a negative (positive) ΔR in graphene in the electron (hole) doped regime. The *P* independent ΔR_{sat} [Fig. 2(d)] indicates a *P* independent number density (N_g)

of electron transfer. Considering the electron transfer rate $(N_g - n_g)/(N_g \tau_i)$ from the EX state (having energy E_X) to graphene, the electron transfer dynamics under the optical illumination can be expressed as¹⁸

$$\frac{dn_g}{dt} = \frac{n_e(N_g - n_g)}{N_g \tau_i} - \frac{n_g}{\tau_b}.$$
 (1)

Here, n_g is the transferred electron density at time t and $n_e = \phi_a \tau_r$ is the photo-excited electron density in the TMDC. The $\phi_a = \alpha_\lambda P/E_\lambda$ is the absorbed photon flux, where α_λ is the absorption coefficient of the monolayer TMDC. Considering electron's back transfer (graphene \rightarrow TMDC) timescale $\tau_b \gg \tau_i$ at $E_F \ll E_X$, we obtain the solution of Eq. (1) as $n_g(t) = N_g \times (1 - \exp(-t/\tau))$. This leads to a time-dependent photoresistance relaxation, where $\tau = (\tau_i/\tau_r)(N_g/\phi_a)$ is the timescale of photoresistance relaxation (see Fig. S7 of the supplementary material for the τ calculation details). This agrees well with the observed $\tau^{-1} \propto P (\tau^{-1} \propto \phi_a)$ behavior. Intriguingly, $\tau^{-1} (\propto \alpha_\lambda)$ follows closely the optical DoS of the TMDC underlayer [Fig. 2(f) (WSe₂) and Fig. S5e of the supplementary material (MOS₂)]. The α_λ demonstrates maxima at the excitonic and trionic (A, A^- , and B) energies in TMDCs, leading to the

maxima in τ^{-1} at those energies. The wavelength dependent τ^{-1} measurements were performed at T = 85 K, with an illumination power density (*P*) of 0.56 fW μ m⁻². Considering a typical value of $\tau_r = 1 \text{ ps}^{38,40}$ at low $T, N_g \sim 10^{11} \text{ cm}^{-2}$ (see Fig. S8 of the supplementary material), and $\alpha_{\lambda} = 10\%$ in the monolayer TMDC,⁴¹ and using the observed $\tau^{-1} \propto P$ relation [Fig. 2(e)], we estimate $\tau_i \approx 4$ ps in the graphene–WSe₂ heterostructure at 80 K. This matches well with the charge transfer timescales observed using the pump–probe experiments.^{12,20,22} Although charge trapping can play an important role in the photoresponse of bare TMDC phototransistors⁴² (see Fig. S10 of the supplementary material), ultrafast TMDC \rightarrow graphene charge transfer, facilitated by $\tau_i \approx 4$ ps, constitutes the primary source of photoresponse in our graphene–TMDC devices.

The quantitative relation between the photoresistance relaxation rate τ^{-1} and the charge transfer rate τ_i^{-1} allows us to monitor the charge transfer process as a function of energy difference between graphene's E_F and the EX state of the TMDC layer. We have performed the V_G dependent photoresistance relaxation experiments in both graphene–WSe₂ and graphene–MoS₂ devices. Converting the instantaneous photoresistance $[\Delta R(t)]$ to n_g using n_g = $\Delta RC_{ox}/(edR/dV_G)$, we plot the normalized $n_g(t)$ in Fig. 3(a) at

FIG. 3. (a) n_g/N_g vs time data from the graphene–WSe₂ heterostructure during the light off–on cycle with P = 0.56 fW μm^{-2} . The data at different E_F values are shifted vertically for clarity. The solid lines present exponential fits. [(b) and (c)] τ^{-1} (at P = 0.56 fW μm^{-2} using $\lambda = 600$ nm) from graphene–WSe₂ and graphene–MoS₂ heterostructures, respectively, are plotted as a function of the E_F . (d) Extracted τ_i^{-1} vs E_F data (in units of τ_r^{-1}) from the graphene–WSe₂ (right panel) and graphene–MoS₂ (left panel) heterostructures. The solid lines in Figs. 3(b)–3(d) are guides to the eye. (e) The resonance in τ_i^{-1} is schematically presented. The energy band diagrams of graphene and TMDC are schematically shown. The DoS of the EX (ρ_X) state is marked in orange trace. E_F values at different V_G values are shown using dashed lines. (f) τ_i^{-1} vs T^{-1} data are presented.

different values of $E_F = \pm \hbar v_F \sqrt{C_{ox} |(V_G - V_D)|/e}$, where \hbar , V_D , and v_F are the reduced Planck constant, gate voltage at the charge neutrality point, and the Fermi velocity in graphene, respectively; the "+" and "-" signs are for $V_G > V_D$ and $V_G < V_D$, respectively] from the graphene–WSe₂ heterostructure at P = 0.56 fW μ m⁻² and λ = 600 nm (shifted vertically for clarity). The characteristic τ is clearly dependent on E_F . To confirm this, we calculated τ^{-1} from the exponential fit and plotted it as a function of E_F in Figs. 3(b) and 3(c) for graphene-WSe₂ and graphene-MoS₂ devices, respectively. The solid traces are guides to the eye. Using the experimentally observed τ and N_g (see Fig. S8 of the supplementary material for N_g vs E_F data from both devices), we then calculate the TMDC \rightarrow graphene electron transfer rate $\tau_i^{-1} = \tau_r^{-1} \tau^{-1} N_g / \phi_a$, which exhibits a sharply peaked [Figure 3(d), the solid traces are guides to the eye] variation with E_F , with the peak positions around $E_F \approx -100 \text{ meV} (E_M)$ and $E_F \approx 70$ meV (E_W) in graphene–MoS₂ and graphene–WSe₂ devices, respectively. Notably, the FWHM (full width at half maxima) ~100 meV to 50 meV of the peaks closely corresponds to the excitonic linewidth of TMDC observed in the PL spectra [Fig. 1(d) and Fig. S5 of the supplementary material]. This suggests a possible resonance of E_F with the EX state in WSe₂ (MoS₂) at E_F = $E_{W(M)}$. To verify this, we calculate the excitonic binding energy in WSe₂ (MoS₂), $E_b = W - E_{W(M)} - \chi_{W(M)}$, considering the undoped graphene's work function $W \approx 4.56 \text{ eV}^{43}$ and the electron affin-ity of WSe₂ (MoS₂), $\chi_{W(M)} \approx 4.06 \text{ eV}^{37}$ (4.27 eV⁴⁴). In the literature, the reported values of W and $\chi_{W(M)}$ show approximately few tens of meV variations [see Fig. S9(a) of the supplementary material for a detailed review], resulting in up to ~50 meV difference between the actual E_b and its calculated value. The E_b of monolayer WSe₂ and MoS₂ were previously studied both experimentally and theoretically. The reported values show significant variations falling within the range of ≈300 meV-700 meV (see Fig. S9 of the supplementary material for a detailed review). Our estimated E_b \approx 460 meV and 400 meV for WSe₂ and MoS₂, respectively, match closely with the experimentally reported E_b using PL,^{30,31} transient absorbtion,³² and photoresistance spectroscopy³³ and also with the theoretical results using various approaches of the effective mass model.45

Resonant electron transfer is commonly observed in the tunneling diodes and the tunneling spectroscopy studies,⁵⁰ which generally occurs via the phonon or the defect-assisted pathways.⁵¹ Here, the electron transfer mechanism is schematically described in Fig. 3(e). The E_F of graphene is indicated at and away from the resonance $(E_{F(1)} \text{ and } E_{F(1)}, \text{ respectively})$. The DoS of the EX state is indicated as ρ_x . $M_i(E_X, E_F)$ is the TMDC \rightarrow graphene transmission matrix element containing the wavefunction overlap integral. The charge transfer rate τ_i^{-1} is proportional to $|M_i|^2$. At $E_X = E_F$, the resonance causes large $|M_i|^2$, which gives rise to the peaked behavior in τ_i^{-1} . Figure 3(f) presents the τ_i^{-1} vs T^{-1} data from the graphene–WSe₂ heterostructure at $V_G = -7$ V. τ_i^{-1} increases with an increase in *T*, with an activation energy \approx 7 meV, indicating a phonon-assisted electron transfer process, which is previously reported to occur across TMDC interfaces.^{52–55} In our heterostructures, $\tau_i^{-1} < \tau_r^{-1}$ behavior is observed, which can be related to the inter-layer coupling between graphene and TMDC layers. $\tau_i^{-1} \gg \tau_r^{-1}$ behavior is previously reported in graphene-TMDC heterostructures, which requires an exceptionally coupled interface, where the separation (d) between the monolayers of graphene and TMDC is $\approx 3 \text{ Å}-6 \text{ Å}$,^{20,22} leading

to a large PL quenching (by factor of ~250) in the overlap region.²⁰ With an increase in d, $|M_i|^2$ reduces and τ_i increases, which degrades the PL quenching effect,^{20,22,56} which is consistent with the weaker PL quenching in our heterostructures {up to factor of 5 and 1.5 in the graphene–WSe₂ [Fig. 1(d)] and graphene–MoS₂ (Fig. S4 of the supplementary material) heterostructure, respectively}.

Apart from the charge transfer rate, the magnitude of the charge transfer is also affected when E_F is dynamically tuned with respect to the EX state. Here, we observe that N_g decreases rapidly when E_F approaches increasingly closer to the EX state. N_g vs $E_F - E_X$ data [Fig. 4(a)] from the graphene–WSe₂(MoS₂) heterostructure at T = 85 K (180 K) show $N_g \propto \exp(-\frac{E_F - E_X}{k_B T})$ behavior (solid lines), confirming that the loss of N_g occurs via a thermally activated process. Such thermally activated graphene \rightarrow MoS₂ transfer of electrons has been discussed previously²² and represented by the $-n_g/\tau_b$ term in Eq. (1), that cannot be ruled out in the $|E_X - E_F| \sim k_B T$ regime. At equilibrium (after R_{on} is reached), E_X and E_F can act as a two state system, where $n_e/\tau_i = N_g/\tau_b$ or $N_g \propto \tau_b$ condition should be satisfied (n_e is the number density of electrons in EX). The rate of the thermal activation of the electrons from the E_F to the EX state is $\tau_b^{-1} \propto \exp(-\frac{\Delta_B}{k_B T})$, where $\Delta_B \approx E_X - E_F$, which

FIG. 4. (a) N_g (recorded at $P \approx 0.56$ fW μ m⁻²), from the graphene–WSe₂ (at T = 85 K) and graphene–MOS₂ (at T = 180 K) heterostructures, is plotted as a function of $E_F - E_X$. The solid lines present the $N_g \propto \exp(-\frac{E_F - E_X}{k_B T})$ fit. (b) Temperature-dependence of N_g . The black solid and dashed lines correspond to activation energies ≈ 88 meV and 8 meV, respectively.

gives rise to the activated behavior of N_g observed in Fig. 4(a). This is further verified by the *T* dependence of N_g [Fig. 4(b)] at $E_F - E_X \approx -100 \text{ meV}$ ($V_G = -7 \text{ V}$). In a sufficiently high *T* range (T > 100 K), N_g decreases with an activation energy $\Delta_B \approx 88 \text{ meV}$ (solid black line) that closely matches with the corresponding $E_X - E_F$ and validates a thermally activated scenario of electron's back transfer from E_F to the EX state. At $T \leq 100 \text{ K}$, a much lower activation energy of $\approx 8 \text{ meV}$ is observed, which closely matches with the phonon energies in monolayer WSe₂, indicating a phonon-assisted pathway of electron transfer from E_F to the EX state. Figures 3(f) and 4(b) suggest that the phonons^{52–55} can play a crucial role in graphene \leftrightarrow TMDC inter-layer charge exchange in our heterostructures in the low temperature range ($T \leq 100 \text{ K}$).

In summary, using the time-dependent relaxation of photoresistance in the field-effect architecture, we have identified a new resonant electron transfer from the excitonic (EX) state of TMDC to the Fermi energy (E_F) of graphene and a thermally activated back transfer electron from E_F to the EX state in optically excited graphene– MoS₂ and graphene–WSe₂ heterostructures. Our experiments yield a reasonable estimation of the excitonic binding energies (E_b) in both MoS₂ and WSe₂. We have demonstrated precise controllability on timescales and magnitudes of charge transfer by tuning the temperature and gate voltage.

See the supplementary material for Raman spectroscopy on individual flakes, device fabrication and details, optical source calibration, photoluminescence (PL) spectra of the graphene–MoS₂ heterostructure, photocurrent measurement of the graphene–MoS₂ (device 1) hybrid device, photogating effect in graphene–WSe₂ hybrid devices, procedure of transfer rate (τ^{-1}) calculation, N_g vs E_F in graphene–TMDC devices, estimation of exciton binding energy (E_b), and comparison of photoresponse in the graphene–MoS₂ hybrid and the bare MoS₂ underlayer.

AUTHORS' CONTRIBUTIONS

R.K., J.K.M., A.P., and T.A. contributed equally to this work.

R.K. acknowledges financial support from Dr. D. S. Kothari postdoctoral fellowship (UGC-DSKPDF), a program by the University Grant Commission (UGC), India. The authors thank NNFC, IISc Bangalore, India, and MNCF, IISc, Bangalore, India, for providing cleanroom fabrication and characterization facilities. The authors also acknowledge DST, Government of India, for funding the project.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

¹K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Nat. Nanotechnol. 8, 826 (2013).

²L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science 340, 1311–1314 (2013).
 ³S. Ghatak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707–7712 (2011).

⁴K. Roy, T. Ahmed, H. Dubey, T. P. Sai, R. Kashid, S. Maliakal, K. Hsieh, S. Shamim, and A. Ghosh, Adv. Mater. **30**, 1704412 (2018).

⁵Y. Li, C.-Y. Xu, J.-K. Qin, W. Feng, J.-Y. Wang, S. Zhang, L.-P. Ma, J. Cao, P. A. Hu, W. Ren, and L. Zhen, Adv. Funct. Mater. **26**, 293–302 (2016).

⁶A. Pradhan, A. Roy, S. Tripathi, A. Som, D. Sarkar, J. K. Mishra, K. Roy, T. Pradeep, N. Ravishankar, and A. Ghosh, Nanoscale 9, 9284–9290 (2017).

⁷S. Islam, J. K. Mishra, A. Kumar, D. Chatterjee, N. Ravishankar, and A. Ghosh, Nanoscale 11, 1579–1586 (2019).

⁸Y. Li, J.-K. Qin, C.-Y. Xu, J. Cao, Z.-Y. Sun, L.-P. Ma, P. A. Hu, W. Ren, and L. Zhen, Adv. Funct. Mater. **26**, 4319–4328 (2016).

⁹S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Nano Lett. 14, 2039–2045 (2014).

¹⁰D. Pierucci, H. Henck, J. Avila, A. Balan, C. H. Naylor, G. Patriarche, Y. J. Dappe, M. G. Silly, F. Sirotti, A. T. C. Johnson, M. C. Asensio, and A. Ouerghi, Nano Lett. 16, 4054–4061 (2016).

¹¹H. Coy Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, Nano Lett. 15, 1135–1140 (2015).

¹²M. Massicotte, P. Schmidt, F. Vialla, K. G. Schädler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, Nat. Nanotechnol. 11, 42 (2016).

¹³ M. Massicotte, P. Schmidt, F. Vialla, K. Watanabe, T. Taniguchi, K.-J. Tielrooij, and F. H. Koppens, Nat. Commun. 7, 12174 (2016).

¹⁴J. Y. Tan, A. Avsar, J. Balakrishnan, G. K. W. Koon, T. Taychatanapat, E. C. T. O'Farrell, K. Watanabe, T. Taniguchi, G. Eda, A. H. Castro Neto, and B. Özyilmaz, Appl. Phys. Lett. **104**, 183504 (2014).

¹⁵M. Ghorbani-Asl, P. D. Bristowe, K. Koziol, T. Heine, and A. Kuc, 2D Mater. 3, 025018 (2016).

¹⁶C. E. Giusca, I. Rungger, V. Panchal, C. Melios, Z. Lin, Y.-C. Lin, E. Kahn, A. L. Elías, J. A. Robinson, M. Terrones, and O. Kazakova, ACS Nano 10, 7840–7846 (2016).

¹⁷W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou, and L.-J. Li, Sci. Rep. 4, 3826 (2014).

¹⁸T. Ahmed, K. Roy, S. Kakkar, A. Pradhan, and A. Ghosh, 2D Mater. 7, 025043 (2020).

¹⁹C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, Appl. Surf. Sci. 479, 1161–1168 (2019).

²⁰G. Froehlicher, E. Lorchat, and S. Berciaud, Phys. Rev. X 8, 011007 (2018).

²¹ J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, Nat. Commun. 5, 5622 (2014).

²²L. Yuan, T.-F. Chung, A. Kuc, Y. Wan, Y. Xu, Y. P. Chen, T. Heine, and L. Huang, Sci. Adv. 4, e1700324 (2018).

²³ A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, Science 335, 1340–1344 (2012).

²⁴ A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W.-L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X.-Y. Zhu, Nat. Mater. **12**, 66 (2013).

²⁵H. Tamura and I. Burghardt, J. Am. Chem. Soc. **135**, 16364–16367 (2013).

²⁶X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Nat. Nanotechnol. 9, 682 (2014).

²⁷ F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, ACS Nano 8, 12717–12724 (2014).

²⁸X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, J. Am. Chem. Soc. **137**, 8313–8320 (2015).

²⁹A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, Nat. Commun. **8**, 15251 (2017).

³⁰K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, *Phys. Rev. Lett.* **113**, 026803 (2014).

³¹ H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, and T. F. Heinz, Nano Lett. **15**, 2992–2997 (2015).

- ³²L. Wang, Z. Wang, H.-Y. Wang, G. Grinblat, Y.-L. Huang, D. Wang, X.-H. Ye, X.-B. Li, Q. Bao, A.-S. Wee, S. A. Maier, Q.-D. Chen, M.-L. Zhong, C.-W. Qiu, and H.-B. Sun, Nat. Commun. 8, 13906 (2017).
- ³³A. Klots, A. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. Ghimire, J. Yan, B. Ivanov, K. Velizhanin, A. Burger, D. Mandrus, N. Tolk, S. Pantelides, and K. Bolotin, Sci. Rep. 4, 6608 (2014).
- ³⁴Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A. F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, and P. Jarillo-Herrero, Nat. Phys. **12**, 455 (2016).
- ³⁵C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,
- T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010). ³⁶P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, Appl. Phys. Lett. **99**, 232104 (2011).
- ³⁷K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, ACS Nano **9**, 4527–4532 (2015).
- ³⁸M. Palummo, M. Bernardi, and J. C. Grossman, Nano Lett. **15**, 2794–2800 (2015).
- ³⁹C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Phys. Rev. B 93, 205423 (2016).
 ⁴⁰G. Moody, J. Schaibley, and X. Xu, J. Opt. Soc. Am. B 33, C39–C49 (2016).
- ⁴¹W. Zhao, R. M. Ribeiro, and G. Eda, Acc. Chem. Res. **48**, 91–99 (2015).
- ⁴²M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Nano Lett. 14,
- 6165–6170 (2014).
- ⁴³ R. Yan, Q. Zhang, W. Li, I. Calizo, T. Shen, C. A. Richter, A. R. Hight-Walker,
 X. Liang, A. Seabaugh, D. Jena *et al.*, Appl. Phys. Lett. **101**, 022105 (2012).

- ⁴⁴C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, Appl. Phys. Lett. **103**, 053513 (2013).
- ⁴⁵T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Phys. Rev. B 88, 045318 (2013).
- ⁴⁶I. Kylänpää and H.-P. Komsa, Phys. Rev. B **92**, 205418 (2015).
- ⁴⁷M. Z. Mayers, T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Phys. Rev. B **92**, 161404 (2015).
- ⁴⁸D. K. Zhang, D. W. Kidd, and K. Varga, Nano Lett. **15**, 7002–7005 (2015).
- ⁴⁹T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Phys. Rev. Lett. 116, 056401 (2016).
- ⁵⁰ J. P. Sun, G. I. Haddad, P. Mazumder, and J. N. Schulman, Proc. IEEE **86**, 641–660 (1998).
- ⁵¹U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 16, 7982–7987 (2016).
- ⁵²Y. Wang, Z. Wang, W. Yao, G.-B. Liu, and H. Yu, Phys. Rev. B **95**, 115429 (2017).
- ⁵³K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon *et al.*, ACS Nano 10, 6612– 6622 (2016).
- ⁵⁴Q. Zheng, W. A. Saidi, Y. Xie, Z. Lan, O. V. Prezhdo, H. Petek, and J. Zhao, Nano Lett. **17**, 6435–6442 (2017).
- ⁵⁵H. Zhu, J. Wang, Z. Gong, Y. D. Kim, J. Hone, and X.-Y. Zhu, Nano Lett. 17, 3591–3598 (2017).
- ⁵⁶B. Yang, E. Molina, J. Kim, D. Barroso, M. Lohmann, Y. Liu, Y. Xu, R. Wu, L. Bartels, K. Watanabe, T. Taniguchi, and J. Shi, Nano Lett. 18, 3580–3585 (2018).