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Abstract—In the emerging commercial space industry there
is a drastic increase in access to low cost satellite imagery.
The price for satellite images depends on the sensor quality
and revisit rate. This work proposes to bridge the gap between
image quality and the price by improving the image quality
via super-resolution (SR). Recently, a number of deep SR
techniques have been proposed to enhance satellite images.
However, none of these methods utilize the region-level context
information, giving equal importance to each region in the
image. This, along with the fact that most state-of-the-art SR
methods are complex and cumbersome deep models, the time
taken to process very large satellite images can be impractically
high. We, propose to handle this challenge by designing an
SR framework that analyzes the regional information content
on each patch of the low-resolution image and judiciously
chooses to use more computationally complex deep models to
super-resolve more structure-rich regions on the image, while
using less resource-intensive non-deep methods on non-salient
regions. Through extensive experiments on a large satellite
image, we show substantial decrease in inference time while
achieving similar performance to that of existing deep SR
methods over several evaluation measures like PSNR, MSE
and SSIM.
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I. INTRODUCTION

Satellites images are used to observe the earth’s surface

from outer space in order to provide rich visual information.

Such information is often useful in many important real-

world applications, such as natural disaster warning [1],

exploration of resource [2], land cover classification [3], [4],

[5], [6], weather/environment monitoring and many more.

However, often the quality and resolution of these satellite

images are affected due to the limitations in the imag-

ing equipment, the space to ground station communication

bandwidth, transmission noise etc. [7]. The acquired low

resolution (LR) images, resulting from the aforementioned

hardware limitations, may not be suitable for the downstream

analytics tasks such as object detection and fine grained

classification, precision mapping and measurement etc. To

overcome such challenges, super-resolution (SR) techniques

are used towards improving the spatial resolution of the

collected images [8], [9], [7], [10].

Deep learning has been successfully applied to various

vision tasks including object recognition, detection, action

recognition, image/video analytics and processing, optical

flow estimation, image captioning, etc. Deep learning ap-

proach is a data dependent approach, where a large amount

of image data along with the ground truth information is

used for training a neural network with many parameters.

The design of the network architecture plays a crucial role

in obtaining better results. Many SR techniques that use deep

learning have been proposed for general/natural images. For

example, SRCNN [11] performs end-to-end learning from

low resolution to high-resolution images via fully convolu-

tional network. The method uses a bi-cubic interpolation

as its pre-processing step followed by the extraction of

overlapping patches, via convolution, as high dimensional

vectors with as many feature maps as their dimensions.

The vectors are then non-linearly mapped to each other and

subsequently aggregated in the form of patches to get the

reconstructed SR image that is supposed to be as close to

the ground truth as possible. Another method, VDSR [12]

uses a very deep convolution network inspired by VGG-

net used for ImageNet classification. In this approach, the

residue is predicted from the input low resolution image and

the final SR image is obtained by adding the residue with the

interpolated low resolution image. In EPSCN [13], the final

convolutional layer predicts r2 channels corresponding to

each pixel of low resolution image. This approach is simple

and quite powerful for super-resolving.

Most of the aforementioned super-resolution approaches

do not rely on context information and treat all regions

equally, whereas in satellite images, the context plays a

crucial role in determining the objects, which usually occupy

a tiny region (for example, the object floating on a large

water body is most likely a ship or boat). Since the satellite

images are huge in size, it is a good candidate for super-

resolving only for salient object regions. This would ensure

that the images are processed quickly despite their large size.

Leveraging this, we propose a novel approach where we

utilize the deep SR models only on high frequency regions

which are more informative whereas fast non-deep methods

like Bicubic interpolation are used to super-resolve on the

low frequency regions.

The rest of the paper is organized as follows: section 2 list

out the major contributions of this work, section 3 discusses

the proposed framework in detail, section 4 demonstrates

the empirical evaluation and discussion on the results, and

section 5 finally concludes the paper.
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Figure 1. Proposed Method: The low-resolution image is divided into patches, and edge maps are generated where the top k patches (descending order)
based on edge content are allocated to the deep model, and the remaining patches are allocated to bicubic interpolation. Finally the high-resolution patches
obtained from the deep and non-deep methods are fused to obtain the output image

II. DETAILED CONTRIBUTIONS

1) To the best of our knowledge, this is the first work

in the direction of selective deep super-resolution on

satellite and aerial imagery via intelligent fusion of

deep and non-deep methods .

2) We design a simple and intuitive selection criteria,

based on edge information for deciding image regions

which are more salient and thus better served by super-

resolution via deep models, and non-salient regions to

be super-resolved using fast non-deep methods.

3) The proposed approach is model-agnostic and can

easily be coupled with any state-of-the-art deep super-

resolution model.

4) Our methodology enables significantly faster super-

resolution with marginal loss in performance as com-

pared to the deep model. We demonstrate the veracity

of our claims using SRCNN due to its simplicity and

popularity.

III. PROPOSED METHOD

The steps involved in our proposed method are diagram-

matically depicted in Figure 1 and also described below in

detail:

1) Generating Patches: The input low-resolution image

is cropped into several non-overlapping patches of

equal length (s × s), which are then passed into the

next module.

2) Generating Binary Edge Map: This module per-

forms simple edge detection using gradients - first, the

gradient vector at each pixel is computed by convolv-

ing the image with horizontal and vertical derivative

filters, and then gradient magnitudes are computed at

each pixel. If magnitude at a pixel exceeds a threshold

(taken here as 100 when the maximum pixel value is

255), a possible edge point is reported. The module

generates a binary edge map for each low-resolution

image patch.

3) Finding Amount of Edge Content: This module

simply counts the number of pixels where the edge

point is reported, for each low-resolution image patch.

4) Sorting: The patches are sorted in decreasing order of

the amount of edge content they contain.

5) Allocating Patches: This module allocates Top-K

patches to the deep model for super-resolution while

the remaining patches are simply upscaled using bicu-

bic interpolation. Here, Top-K corresponds to the

percentage of total number of low-resolution image

patches allocated to the deep model.

6) Fusing Patch Responses: The final module collects

the high-resolution image patches generated by bicu-

bic interpolation and the deep model. Then these

image patches are fused to obtain the final high-

resolution image output. Here, the image reconstruc-

tion is analogous to completing a jigsaw puzzle,

accomplished by simply placing the patches in the

spatially correct order as in the original image.

The obtained high resolution image from the proposed

method can be used for any downstream task.

IV. EXPERIMENTS

In this section, we describe the experimental settings

to evaluate our proposed approach. We also discuss about

several ablations to decide the trade-off between speed and

performance. Finally, we demonstrate the efficacy of the
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Figure 2. Ablation Study: (a) Scatter Plot describing the variation in the performance of Bicubic Interpolation, SRCNN and Proposed Method over time
taken for super-resolution for a fixed patch size of 100 × 100 (b) The performance of the Proposed Method on different evaluation metrics over several
choices of patch size.

proposed method by achieving performance similar to deep

model like SRCNN with significant drop in run time.

A. Image Description
To evaluate the performance of our proposed approach

on the real-life application of super-resolution on satellite

and aerial imagery, we use the aerial image of Kyushu

University New Campus available on [14]. The original

image, sized 12000 x 8486, was resized to 6000 x 4800

owing to hardware constraints, and treated as the high-

resolution image. The low-resolution image is obtained as

described in [11] by downsampling high-resolution image

by a factor of 2.

B. Pretrained Model
The SRCNN network pretrained by following the same

training paradigm defined in [11] barring a few design

changes, was taken as the choice of deep model for our

proposed approach. Instead of the original network settings,

i.e. filters f1 = 9, f2 = 1, f3 = 5, and feature maps

n1 = 64 and n2 = 32, the settings used were: f1 =
9, f2 = 3, f3 = 5, n1 = 128, and n2 = 64. Further, the

Adam optimizer was used with a learning rate of 0.0003 for

all layers, and the MSE loss function was evaluated only

by the difference between the central pixels of the input

image and the network output. The training was done on 91

images for 200 epochs, with an upscaling factor of 2, and the

convolutional layers were trained without padding in order

to avoid any border effects. Although a fixed image size was

used in training, the SRCNN input can be of arbitrary size

at test time. We used the network weights from [15].

C. Evaluation Metrics
For evaluating our method, we use “Mean-Squared Error”

(MSE), “Peak Signal-to-Noise Ratio” (PSNR), and “Struc-

tural Similarity Index” (SSIM). We use the same evaluation

protocol as mentioned in [11] and the average results over

10 observations are reported. Given an image (Y ) of size

M ×N and a reference image (X) of the same size, each

pixel of X and Y is denoted by x and y respectively.

Mean-Squared Error: MSE measures the quality of Y

by averaging the squared difference between its pixel values

and that of X. It is always non-negative and lower values

are better. A common problem with MSE is that it strongly

depends on the intensity scaling of the image.

MSE(X,Y ) =
1

MN

M∑

n=1

N∑

m=1

[xnm − ynm]
2 (1)

Peak Signal-to-Noise Ratio: PSNR [16] builds over the

MSE by scaling it according to the image range. A higher

PSNR value denotes a higher quality image, and vice versa.

For 8-bit images:

PSNR(X,Y ) = 10 log10
(
2552/MSE(x, y)

)
(2)

Structural Similarity Index: SSIM, developed by Wang

et al.[17], is obtained by modelling an image distortion

as a combination of three factors, namely, loss of corre-

lation, contrast distortion, and luminance distortion. The

commonly-used, specific form of SSIM is reduced to:

SSIM(X,Y ) =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) (3)

where X and Y are two windows of common size N ×N ,

μx is the average of X, μy is the average of Y, σ2
x is the

variance of X, σ2
y is the variance of Y, σxy is the correlation

coefficient of X and Y , C1 = k1L
2, C2 = k2L

2, L is the

dynamic range, and k1 = 0.01 and k2 = 0.03 by default.
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Figure 3. Demonstration of qualitative results obtained using our selective deep super-resolution approach on a given low resolution image.

D. Ablation Study

We do ablation on the choice of patch size (s), and

percentage of patches super-resolved using the deep model

(p) to investigate the trade-off between speed and perfor-

mance. We tile the low-resolution image using patches of

size 100 × 100, 200 × 200, and 300 × 300 at a time,

while the hyperparameter for percentage of patches being

super-resolved through deep model varies as {20%, 40%,

60%, 80%}. The scatter plots in Fig. 2 (a) clearly show

that increasing p significantly improves the performance.

Particularly, the average PSNR values obtained by increasing

p for s = 100 x 100 are 27.26 dB, 27.41 dB, 27.53 dB,

and 27.61 dB respectively. However, the prediction speed

also decreases with increase in p. For example, the average

runtime values for the configurations are 13.22 s, 25.66

s, 37.92 s, and 50.00 s respectively. In this case, the best

performance-speed tradeoff is obtained when 60% of the

low-resolution patches are super-resolved by the deep model.

Hence, we set p to 60% in order to compare our method with

other approaches.

Next, we examine the effect of enlarging the patch size to

(i) 100 x 100, (ii) 200 x 200, and (iii) 300 x 300, keeping

p constant. As shown by the trend lines in Fig. 2 (b), the

performance of our model saturates beyond patch size of

200 x 200. Thus, we use this combination (p = 60% and

s = 200 × 200) as our hyperparameters for comparing the

efficacy of our proposed method with Bicubic Interpolation

and SRCNN. As observed from Table I, the PSNR, SSIM,

and MSE values are 27.59 db, 0.84 and 340.04 respectively,

and the time taken is 41.71 s.

Method PSNR (dB) SSIM MSE Time (s)

Bicubic 27.05 0.82 384.62 0.10
SRCNN 27.92 0.85 314.65 71.91
Proposed 27.59 0.84 340.04 41.71

Table I
COMPARISON OF OUR PROPOSED TECHNIQUE WITH A DEEP (SRCNN)

AND A NON-DEEP (BICUBIC) METHOD

E. Results and Discussion

Our proposed approach is qualitatively demonstrated in

Figure 3 where we perform selective deep super-resolution

on patches of salient regions based on edge content, and

bicubic interpolation for non-salient regions. It is evident

from Table I that our proposed method shows a time

advantage of 30.20 s, which is in line with an intuitive

formula of (1 ∗ tsrcnn− (0.6 ∗ tsrcnn +0.4 ∗ tbicubic)) s. On the

other hand, it performs very close to the deep model on all

evaluation metrics. Our choice of hyperparameters handles

the tradeoff between speed and performance. Moreover, a

suitable combination of p and s, can help in prioritising

either faster or better performance to obtain desired results

depending upon the requirements. It is also worth noting that

our proposed approach does not depend on the architecture

of any deep SR model and can easily be used on top of it.

V. CONCLUSION

A key challenge in single image super-resolution for

satellite and aerial imagery is inference time. In this work,

a novel approach has been proposed that exploits the power

of deep methods and the speed of non-deep methods for

the task in hand. Our framework, by design, greatly reduces

the computational overhead and achieves performance close

to the deep model across several evaluation measures. Our

methodology also provides a flexible pipeline to decide

the allocation of image patches to either deep or non-deep

methods based on edge map which is a simple indicator of

regional information content. More sophisticated indicators

for identifying salient and informative regions in the satellite

image will be explored in future work.We hope that this

work will be useful to the research community and generate

further interest in the direction of selective deep super-

resolution for satellite and aerial imagery.
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