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In animal groups, individual decisions are best characterized by probabilistic
rules. Furthermore, animals of many species live in small groups. Probabil-
istic interactions among small numbers of individuals lead to a so-called
intrinsic noise at the group level. Theory predicts that the strength of intrinsic
noise is not a constant but often depends on the collective state of the
group; hence, it is also called a state-dependent noise or a multiplicative noise.
Surprisingly, such noise may produce collective order. However, only a
few empirical studies on collective behaviour have paid attention to such
effects owing to the lack of methods that enable us to connect data with
theory. Here, we demonstrate a method to characterize the role of stochasti-
city directly from high-resolution time-series data of collective dynamics.
We do this by employing two well-studied individual-based toy models
of collective behaviour. We argue that the group-level noise may encode
important information about the underlying processes at the individual
scale. In summary, we describe a method that enables us to establish connec-
tions between empirical data of animal (or cellular) collectives and the
phenomenon of noise-induced states, a field that is otherwise largely limited
to the theoretical literature.

This article is part of the theme issue ‘Multi-scale analysis and modelling
of collective migration in biological systems’.
1. Introduction
Collective behaviour is an emergent property arising from repeated local inter-
actions among organisms [1–4]. A number of empirical studies over the last
decade have offered us novel insights on the challenging problems of characteriz-
ing collectivemotion and on inferring underlying local interactions [5–7].Much of
this success has been possible owing to the availability of high-resolution spatio-
temporal data of animal groups in motion, and thus in being able to reconstruct
fine-scale movement of organisms. However, many of the studies only consider
the average or mean properties of the group, for example average group polariz-
ation or average degree of consensus among group members. Consequently,
these studies inadvertently ignore variability of group properties, or more
broadly the role of stochasticity. The conventional wisdom dictates that stochas-
ticity often destroys order. However, this is not always the case; stochasticity may
sometimes create counterintuitive phenomena in complex systems [8–10] and
thus deserves careful attention both in theoretical and in empirical studies.

Stochasticity in collective behaviour arises from a number of factors. Here,
focusing only on factors internal to the system, we note that organisms’ decisions
are likely to be inherently probabilistic, either when acting on their own or when
interacting with other organisms. Additionally, animal groups are finite in size,
and in many taxa, groups are often relatively small. In such systems, the resulting
group-level stochasticity, also called the intrinsic noise, can produce nontrivial
collective dynamics [8,11–13].

We illustrate this concept with a simple example. Consider a colony of ants
choosing between two equally good nests [12]. Assume a simple scenario in
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which each ant may either pick one of the two nests randomly
or copy the nest choice of a randomly chosen ant. Clearly, there
is no preference for ants to pickone nest over the other.Wemay,
therefore, expect that ant colony members will be divided
equally between the two choices and hence fail to arrive at a
consensus. However, such an expectation is true only when
the colony size is very large, formally called the deterministic
limit. Theory predicts that if we account for stochasticity in
the system, the colony does reach a consensus, but only
when the colony size is smaller than a threshold value [12].
This consensus is possible, intriguingly, because smaller
groups exhibit more fluctuations. Therefore, in the physics
literature, the collective order or consensus in this simple
system is also called (intrinsic-) noise-induced order [11,12].

The literature on noise-induced collective behaviour is rela-
tively small and remains largely theoretical. Apart froma recent
work which demonstrates that schooling in fish is a noise-
induced state [14], empirical work analysing stochasticity and
its role in shaping collective behaviour remains at the margins
of collective behaviour research [15–19]. Given that many ani-
mals live in small groups and that behavioural interactions
are inherently stochastic, we assert that there is a vast scope
for applying these intriguing theoretical ideas to empirical
research on collective behaviour.

In this article,we describe amethod to characterize intrinsic
noise in collective dynamics of animal groups [15,18,19].
We argue how such an analysis may also help us reveal local
interactions that underlie the emergent patterns of collectives.
The method can be applied to a highly resolved time series
of the collective state of interest; for example, the collective
state could be group polarization (or group consensus),
which quantifies the degree of directional alignment (or agree-
ment among many choices) among group members. The
method we describe can be traced to van Kampen [20,21] in
the general context of stochastic processes in physics and
chemistry, but was later developed further [13,22,23] and
applied even in some biological studies [15,24–27]. However,
many important issues about the method—especially, the
appropriate time scale needed to characterize such
dynamics—although crucial, remain unresolved. Here, we
aim not only to address such methodological issues but also
to open up the potential role of stochasticity in collective
dynamics of biological systems.
2. Noise-induced collective behaviour: a brief
introduction

In the field of collective behaviour, we are interested in how
individual-level interactions (which are often stochastic)
scale to emergent collective properties. To understand the
role of noise in collectives, we employ the so-called mesoscopic
models; this refers to a description of collective dynamics
at an intermediate scale while explicitly accounting for the
finite size (N) of the groups. At this (group-level) scale,
probabilistic interactions produce a mean effect on the
dynamics of a collective state. In addition, owing to finite
size of groups, there could be substantial variations (or
‘noise’) around the mean effect. Typically, noise is expected
to merely create fluctuations around the mean (e.g. a
Gaussian distribution). However, when such group-level
noise creates new states in the system, they are called
noise-induced states [8].
In formal terms, mesoscopic dynamics of a collective state
of the group, denoted by m, may be written in terms of a
stochastic differential equation (SDE) [11,12,18]

_m ¼ f(m)þ g(m)h(t), (2:1)

(understood according to the Itô convention [21]) where η(t)
represents the noise term. Some key assumptions of this
framework are:

(i) The underlying process is Markovian, i.e. the current
state depends only on the previous state but not on
how the previous state was reached.

(ii) The noise η(t) is uncorrelated and follows a Gaussian
distribution with mean zero and unit variance
(〈η(t)〉 = 0; 〈η(t)η(t0)〉 = δ(t− t0)).

(iii) The mesoscopic state of the collective can be described
via a single coarse-grained dynamical variable (m).

(iv) The spatial extent of the group is sufficiently small or
the system is fully connected.

In the Discussion, we will revisit the above assumptions
of our framework in the context of applications to real
systems.

In equation (2.1), the first term f(m), or more generally
the deterministic term, arises from the mean effect of
individual-level probabilistic interactions among group
members. On the other hand, the stochastic term g(m) is a con-
sequence of variations, typically due to finite size of the
system, around this mean.

In very large groups (N→∞), the stochastic term can be
ignored and only the deterministic term f(m) drives the collec-
tive dynamics. In this limit, also called the thermodynamic
limit in the physics literature, collective states are given by
the stable fixed points of the ordinary differential equation
_m ¼ f(m).

For finite-sized groups, however, the stochastic term g(m) is
proportional to 1=

ffiffiffiffi
N

p
; thus, the strength of the stochastic term

is not negligible for smaller groups. We say that a system exhi-
bits a noise-induced state when the dynamics of the finite-sized
collective are qualitatively different from its deterministic
limit (box 1).

We emphasize that the noise in the SDE (equation (2.1)) is at
the mesoscopic or group level. Therefore, a noise-induced state
refers to a nontrivial state arising from group-level noise. Fur-
thermore, the noise-induced state is not merely a spread/
fluctuations observed around the deterministic stable state
but is a new state that is absent in the deterministic limit (see
box 1 for an example). Furthermore, a mere presence of noise
at the level of individuals need not create a noise-induced
state. It is often an interplay of deterministic and stochastic
terms at the group level that creates a noise-induced state. In
the context of collective behaviour, if a group-level noise
(g(m)) creates order (e.g. collective motion or consensus) that
was absent in the deterministic limit,we say the system exhibits
noise-induced order.

We demonstrate these principles using two simple indi-
vidual-based non-spatial stochastic models of collective
behaviour from the literature [12,18]. Here, individual rules
are described via stochastic interaction rates (or probabilities).
The models we have chosen have contrasting collective prop-
erties, with the collective order being driven stochastically
(i.e. noise-induced order) in one model whereas it is being
driven deterministically in the other model.



Box 1. Noise-induced order.

Consider m to be a quantitative descriptor of collective order, such as degree of consensus or polarization among group
members, as described in §2a. Consider a hypothetical dynamic of m given by the stochastic differential equation

_m ¼ �amþ sh(t), (2:2)

where α is a constant and η(t) represents uncorrelated Gaussian noise with mean zero (i.e. 〈η(t)〉 = 0 and 〈η(t)η(t0)〉 = δ(t− t0),
where δ(t) is a Dirac-delta function) and σ is the strength of the noise. This equation is also known as the Langevin equation
or Ornstein–Uhlenbeck process.

In the deterministic limit, i.e. σ = 0, the only fixed point of the system is m* = 0 (i.e. disorder) and is stable (figure 1a).
When σ is a nonzero constant, i.e. independent of m (figure 1b), it is referred to as the additive noise. Perturbations to the
fixed point arising from the additive noise term are damped because the deterministic term pulls the system back to the
fixed point (i.e. m* = 0). Therefore, for all finite σ, the steady-state probability density function P(m) shows a mode at zero
with a width proportional to σ (figure 1c). In other words, the additive noise plays the expected role of merely ‘adding
noise’ to the deterministic stable state.

Let us now consider the dynamics of the collective state given by the stochastic differential equation [11,12,14],

_m ¼ �amþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b(1�m2)

p
h(t), (2:3)

where α and β are constants. This equation is inspired by the mesoscopic dynamics of the pairwise copying model introduced
in §2a. Here, the deterministic part is identical to that of equation (2.2) (figure 1d ) and hence pulls the system towards
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Figure 1. An example of how noise can create new ordered states. In the first column, corresponding to equation (2.2), stochasticity merely creates a
distribution around the deterministic stable state of disorder (m* = 0). In the right column, corresponding to equation (2.3), stochasticity creates new
states, i.e. modes or most likely states, around m = ±1. (Online version in colour.)
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disorder (m = 0). However, the strength of the noise depends on the current value of the state (m(t)) and is also referred to as
state-dependent or multiplicative noise (figure 1e).

Here, when the system approaches the deterministic stable state of m = 0, the noise strength is highest and thus, pushes
the system away from disorder, m = 0. Consequently, when σ is above a threshold value, the most likely states of the system
are in the proximity of m = ±1 (figure 1f ). These new most likely states in the probability density function P(m), which were
absent in the deterministic limit, are called noise-induced states. In this case, where m refers to collective dynamics, we refer
to the most likely states (m = ±1, corresponding to a consensus or group order) as the noise-induced order.
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(a) Individual-based models of binary choice and their
mesoscopic descriptions

We consider a simple scenario of decision making in a binary
choice set-up. Binary choices, for example, can be used to rep-
resent the nest (or food) choice of ants, as described in the
Introduction. We emphasize that we have deliberately
chosen a simple framework—a non-spatial system with
only two states—for our study since our intention is to high-
light the key principles of noise-induced states and to
demonstrate a method of how to infer noise-induced states
from data. Despite the simplicity, the model can be applied
to contexts of decision making and even collective
motion—for example, a group moving in an annulus.
Indeed, this model and its extensions have been applied in
a wide range of contexts, such as marching locusts [18], fish
schooling [14], decision making in animals [28,29] recruit-
ment of cell signalling molecules [30] and even financial
markets [31,32].

Here, each individual of a group of finite size N can be in
one of the two states X1 or X2, representing their choice of the
nest 1 or 2, respectively. We denote the proportion of group
members choosing nest i (i = 1, 2) as xi =Ni/N, where Ni is
simply the number of individuals choosing the nest i.

The collective state of interest (also termed the order
parameter) is the degree of consensus among group members,
defined as m = x1− x2. A high degree of consensus (collective
order) corresponds to either m = ±1. The disordered state, in
which group members are split between two nests and
hence do not arrive at a consensus, corresponds to m = 0.

Wenowdefine twomodels inwhich groupmembers attempt
to arrive at the consensus via different sets of microscopic rules.

Pairwise copying model: In this model, individuals update
their states via twomechanisms. First is a spontaneous switching
where individuals change their state randomly, i.e. with no
interactions with other group members, at a rate r1. Using the
notation of chemical reactions, this may be written as

X1 �!r1 X2 (2:4a)

and

X2 �!r1 X1, (2:4b)

showing that spontaneous switching is unbiased. Second is
the pairwise copying interaction, where a focal individual, at a
rate r2, copies the state of a randomly chosen individual from
the rest of the group. In terms of chemical reactions, this may
be written as

X1 þ X2 �!r2 2X1 (2:5a)

and

X2 þ X1 �!r2 2X2, (2:5b)
which appears to create consensus among individuals [33–37],
but nevertheless remains unbiased between two choices.

With these individual-level probabilistic rules,we now turn
our attention to the dynamics of the collective, which are the
degree of consensus (m) among individuals for this model.
One approach to investigating collective behaviour in these
models is via computer simulations of the above probabilistic
rules. However, as discussed earlier, we need the analytical
framework of SDEs to decipher the role of stochasticity
(box1).Recall that this in turn requiresamesoscopicdescription
of collective dynamics, which accounts for both probabilistic
interactions and finite group sizes, via stochastic differential
equations. We refer the mathematically inclined readers to
[12,16–18] (also see [11] for a pedagogical review) for further
details on deriving mesoscopic models of collective behaviour.

For the pairwise copying model, the mesoscopic
dynamics of m follow the stochastic differential equation [12]

dm
dt

¼ �2r1mþ 1ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r1 þ (1�m2)r2

p
h(t), (2:6)

where η(t) represents uncorrelated Gaussian noise.
In this SDE, the first term captures how the dynamics of

consensus are shaped deterministically (i.e. mean effect), in a
putative N→∞ limit. The second term captures the residual
stochasticity associated with behaviour of the finite group
size. The above equation can be solved analytically to obtain
the steady-state probability density function of m [12]. Here,
we focus on the intuition of dynamics driven by the above
two terms.

In the limit of large group sizes (N→∞), where the stochas-
tic term becomes negligible, the dynamics of order are given by
_m ¼ �am. This is a simple and well-known differential
equation whose stable solution is m* = 0. Any perturbation
|m| > 0 decays exponentially to m = 0. In other words, any
degree of consensus (|m| > 0) will quickly decay (|m|→ 0)
and the system becomes disordered. Hence, the deterministic
(or the large group size) limit of the system does not admit
consensus within groups.

By contrast, for small group sizes the magnitude of
the stochastic term—given by 1=

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2r1 þ r2(1�m2))

p
—is

not negligible. Moreover, stochasticity is maximum when
the group is disordered (m = 0) while it is least when there
is consensus (|m| = 1). Consequently, when N is sufficiently
small, stochasticity pushes the system away from the disor-
dered state at a rate that is larger than the rate of
deterministic pull towards disorder. Thus, the system
achieves consensus (|m| = 1).

In other words, in the pairwise copying model, a curious
interplay of deterministic and stochastic terms maintains order
or consensus in small groups. Such a group consensus or collec-
tive order, which arises from stochasticity and is away from
deterministic stable state, is termed noise-induced order.



Box 2. Linking individual-level probabilistic rules to group-level dynamics.

Individual animal interactions anddecisions are bestmodelled asprobabilistic. It is not always obvious how these individual-level
probabilistic interactions scale to thegroup level or themesoscopicdynamics. Tounderstand this, recall thatwhile thedeterministic
term in the mesoscopic SDE is a mean effect of interactions, the stochastic term captures the residual variations around the mean.
We now discuss this scaling of individual-level rules to group dynamics in the contexts of pairwise and ternary copying models.

Spontaneous switching: The spontaneous switches of states (r1) are random changes in individuals’ state, without inter-
action with any other individuals. At the group level, the mean effect of such random state-changes is to reduce the order or
consensus within groups (captured by the term − 2r1m in the deterministic term of equation (2.6)). As expected, individual-
level randomness also leads to stochasticity at the group level (2r1 in the stochastic term of equation (2.6)).

Pairwise copying interactions: The pairwise copying interaction rate (r2), surprisingly, does not appear in the determi-
nistic term of the group-level dynamics. This is because the pairwise interactions exhibit no bias in the directionality of
state-change and thus, on an average, cause equal numbers of individuals to switch states from 1 to 2 and 2 to 1.

However, sampling errors while individuals choose copying partners can cause substantial variation around this zero
mean effect. Its effect is larger for smaller groups. When the group is at the disordered state (m = 0), the sampling error
can only cause the degree of consensus to increase and hence the strength of noise is maximum when m = 0. On the other
hand, copying (and associated sampling errors) will have least effect at/near the ordered state (m = ±1), where nearly all indi-
viduals are in the same state. Therefore, the net effect of sampling errors due to copying is captured by the state-dependent or
multiplicative noise term (1−m2)r2 in equation (2.6). This simple structure of the noise pushes the system away from m = 0
and when the group has high order it resides there longer owing to low levels of noise. Thus, the non-monotonic structure of
group-level noise, driven by pairwise copying interactions, pushes the system away from disorder (m = 0) and towards group
consensus (m = ±1).

Ternary interactions: Moving onto ternary interactions (with rate r3), we note that they cause the minority of the three
interacting partners to switch its state towards the majority. Consequently, its mean effect creates an ordered state and
hence appears in the deterministic term of equation (2.8). The residual stochasticity is exactly like the pairwise interactions.
When r3 > 4r1, the mean or the deterministic effect alon pushes the system away from disorder towards an ordered state; the
role of noise is not important to the collective dynamics in this model. However, for r3 < 4r1, the model behaves qualitatively
similarly to the pairwise model with a cubic deterministic term.

In summary, all individual-level probabilistic interactions contribute to the noise at the group level. However, interactions
whose mean effect is zero at the group level do not contribute to the deterministic dynamics.

Table 1. Scaling from individual stochastic interaction rates to group-level dynamics (deterministic and stochastic terms).

model
stochastic interaction
rates deterministic term f (m) stochastic term g(m)

pairwise copying

model

r1: spontaneous

switching rate

−2r1m
ffiffi
2
N

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r1 þ r2(1� m2)

p

r2: pairwise copying

rate

depends on switching but not on pairwise

copying

depends on both rates

ternary interaction

model

r1 and r2: same as

above

�2r1mþ 1
2 r3m(1� m2)

ffiffi
2
N

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r1 þ (r2 þ r3=2)(1� m2)

p

r3: ternary interaction

rate

depends on switching and ternary but not on

pairwise copying

depends on all three rates
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Ternary interactions model: In this model, individuals con-
tinue to exhibit a spontaneous switching between states at a
rate r1 and a pairwise copying interaction at a rate r2, exactly
as in equations (2.4) and (2.5). In addition, individuals exhibit
a ternary interaction given by the following reactions:

2X1 þ X2 �!r3 3X1 (2:7a)

and

X1 þ 2X2 �!r3 3X2: (2:7b)

Here, interactions can happen between three individuals at a
time. In an interacting triad, the individual who is in a minority
switches his/her state to those of majority, at a rate r3 [38].
The mesoscopic dynamics of m for this model are given
in [11,18]:

dm
dt

¼ �2r1mþ r3
2
m(1�m2)

þ 1ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r1 þ (r2 þ r3

2
)(1�m2)

r
h(t),

(2:8)

where η(t) again represents the uncorrelated Gaussian noise.
The functional form of the stochastic term here is similar to

that of the pairwise copying model but with an additio-
nal term associated with the ternary interaction rate (r3).
However, in contrast to the pairwise copying model, the
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deterministic termhere is acubic functionarising solely fromthe
ternary interaction rate r3. Focusing on the limit of large group
sizes N→∞ and thus ignoring the stochastic term,
the dynamics of order are determined by the cubic equation
_m ¼ �2r1mþ (r3=2)m(1�m2). Here, when r3 > 4r1, the system
has two additional fixed points at |m*| > 0 and are stable. Fur-
thermore, the m* = 0 fixed point becomes unstable. In other
words, the ternary interaction model exhibits order or group
consensus primarily via the deterministic term. Therefore, the
order is present even in the large group size limit (N→∞).

Summary of model results: In mathematical terms, the consen-
sus in the ternary model is driven by deterministic terms and
hence is realized in the large group size limit. This is a significant
contrast to the pairwise model, which shows consensus only
whenN is less thana thresholdvalue anddoes notadmit consen-
sus in theN→∞ limit. Therefore, the mechanism causing order
in the ternary interactionmodel is fundamentally different from
the pairwise copying model, thus providing a useful contrast.

Intriguingly, the stochastic terms are of the same form in
bothmodels, yet the importanceand the roleofnoise isdifferent
in both models. It is also worth emphasizing that an additive
noise of the form shown in equation (2.2) of box 1 does not pro-
duce any nontrivial ordering effects. Therefore, an interplay of
deterministic and stochastic terms is necessary to produce
noise-induced order. We refer the readers to box 2 and table 1
therein for an intuitive discussion of how individual-level
interactions scale to mesoscale dynamical terms.

Many previous studies on collective behaviour have investi-
gated the role of fluctuations in collectives via addingan additive
noise term to the deterministic term of the ternary interaction
model [39–41]. In [16], the authors begin frommicroscopic inter-
actions and show that the fluctuations (temperature) depend on
the group polarization (velocity field). This implies that the
state-dependent (multiplicative noise) can emerge even though
the individual rules have no such multiplicative noise—which
is consistent with themodels we have described here [11]. How-
ever, these conclusions are derived considering the infinite-size
limit or they do not account for finite system sizes explicitly.
Therefore, we re-emphasize here that our framework accounts
explicitly for fluctuations arising from finite system sizes.
3. Characterizing noise-induced states from data
With this background, we now turn our attention to the inverse
question, which is also the main goal of this manuscript: given
time-series data of a collective state (or order parameter), we ask
is it possible to infer if the order is noise-induced?

To address this question,we perform stochastic simulations
of both pairwise and ternary interaction models using the
Gillespie algorithm [42,43]. In figure 2a,b, we display the time
series of the degree of consensus (denoted by M) among
50 individuals using the pairwise and ternary copying
models, respectively. We denote the order parameter obtained
by simulations by the capital letter M.

We observe that in both systems the degree of consensus
does not reach an equilibrium value but shows dynamic
patterns, sometimes reaching a consensus (M = ±1) but
repeatedly switching back and forth between two consensus
values (i.e. M = 1 or − 1).

In figure 2c,d, we display the graphs of the probability
density functions of M. These show that the most likely
state in both models is a high degree of consensus (M≈ ±1).
We recall that there are fundamental differences between
the nature of collective dynamics in these models; while the
collective order in the pairwise copying model is driven by
stochasticity (i.e. noise-induced), the order in the ternary
copying system is entirely driven by the deterministic term.
Yet, visual inspection reveals no qualitative features that dis-
tinguish the two model outcomes in figure 2a–d— in terms of
either dynamics or the most likely states.

However, as shown in the previous section, the SDEs that
govern the dynamics of the consensus in two models are
indeed different. Therefore, if we can use the time-series
data shown in figure 2a,b to construct SDEs of the form (see
box 1)

_m ¼ F(m)þ G(m)h(t), (3:1)

we may decipher the role of stochasticity in each of the data-
sets. Here, as before, η is a Gaussian white noise with mean
zero and unit variance, F(m) represents the deterministic
term (also called drift coefficient) and G(m) is the stochastic
term (with G2(m) called the diffusion coefficient) driving
the dynamics.

Note that we have used capital letters to denote simulated
data (M) and the data-constructed functional forms of determi-
nistic (F(m)) and stochastic terms (G(m)). While the simulated
M is necessarily discrete owing to finite numbers of individuals
N in simulations, the order parameter in SDEs is assumed/
approximated as a continuous-order parameter; hence in the
functional form we keep the m notation, resulting in a compo-
site notation such as F(m) and G(m). This notation also helps to
distinguish from analytically derived formal equations such as
equations (2.6) and (2.8).

(a) Method for constructing stochastic differential
equations from data

Following [15,20,22,25,44], the deterministic component (or
the drift coefficient) can be approximately obtained by the
first jump-moment, defined as

F(m) ¼ M(tþ Dt)�M(t)
Dt

� ������
M(t)[[m,mþe]

, (3:2)

where the angular brackets denote an average over all instances
in the time series whereM(t) is close to a givenm. In either real
or simulated time series, the observablewill never (or rarely) be
exactly equal to a given m; hence the average is obtained con-
sidering all M∈ [m, m + e], where e is a small value (we
choose e = 0.01). In other words, the deterministic part f(m) is
the average or expected change per unit time in the observable
quantity when it is at (or near) the value m.

Likewise, the stochastic term (or the diffusion coefficient)
can be approximately computed via the second jump-moment,
defined as

G2(m) ¼ R2(m)
dt

� �
(3:3)

where, R(m) = (M(t + δt)−M(t))|M(t)∈[m,m+e]− F(m) δt.
Here too, the averaging is done over the entire time series,

and in the vicinity of m as described above.
To obtain intuition concerning this formula, we decom-

pose the residual term R into two parts. The first part is the
term M(t + δt)−M(t), representing the actual change in the
observable over a time δt from t. The second part is F(m)δt,
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Figure 2. Characterizing mesoscopic dynamics of collective behaviour from data. (a,b) Representative time series of M(t) for the pairwise and the ternary interaction
models show that the system does not reach an equilibrium value. (c,d ) Probability density function (PDF) of the data showing two modes corresponding to ordered
states for both the pairwise and the ternary interaction model. The red dashed line represents the PDF derived using the analytical expression (see [11]). (e,f ) Data-
derived deterministic terms match the expected functional forms when Δt = 50 for the pairwise and Δt≈ 5 for the ternary model. (g,h) Data-derived stochastic
terms for both the models are similar and match the expected function when δt = 1. The black solid line in (e–h) represents the analytical forms. Parameters:
( pairwise model) r1 = 0.01, r2 = 1, N = 50; (ternary model) r1 = 0.01, r2 = 1, r2 = 0.08, N = 50. (Online version in colour.)
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which is the expected change in the observable based on the
deterministic term alone. Therefore, for any given value of m,
the term R in the numerator is basically the difference
between the observed change and the expected change
from the deterministic term. Considering squaring of this
difference and then the averaging,, we may readily recognize
the numerator as the second moment and it hence captures
the stochasticity in the dynamics of the state variable m.

Although this method of constructing equations from data
has been used earlier [15,26], a fundamental issue of choosing
the right time scales to compute the deterministic and stochas-
tic terms is overlooked. Note that we have deliberately chosen



Box 3. Time scale to construct the mesoscopic dynamics.

Time scale to construct deterministic term Δt: The time scale to compute the deterministic component must be comparable
to (but less than) the autocorrelation time—the time difference above which two measurements of the observable M become
essentially uncorrelated (see electronic supplementary material, §S1.1 for formal definition)—of the time series (denoted
by τc). At very fine time scales (Δt≪ τc ), stochasticity of individual-level interactions will cause constant perturbations to
the system away from the deterministic. The time scale over which these perturbations decay and the system relaxes back
to deterministic stable states is typically given by τc. If we choose a Δt≫ τc, we are likely to miss the relaxation dynamics
of perturbations. Therefore, to capture the dynamics driven by the deterministic forces, we conjecture that a time scale Δt
comparable to τc is most appropriate.

Time scale to construct stochastic term δt: The time scale to compute the stochastic component should be much smaller
in order to capture stochastic effects provided the number of probabilistic events in that time window follow a Gaussian dis-
tribution. Equivalently, the residuals R(m) for any mmust follow a Gaussian distribution. This expectation is based on the key
assumption of the mesoscopic SDE description where the noise η(t) is uncorrelated and follows a Gaussian distribution. For
larger time windows, although these assumptions could still hold true, the stochastic effects would average out. Therefore,
we expect that δt is much smaller than Δt.
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different notations for time steps Δt and δt in the formulae to
compute the deterministic and stochastic terms, respectively.
A naive choice could be that both time steps must be equal to
the smallest time step, i.e. at the finest resolution in which
data are available. However, that is not the case. Here, we con-
jecture and later confirm via simulations that appropriate time
scales for constructing the deterministic and stochastic forces
are not the same. More specifically, while Δt must be compar-
able to the autocorrelation time of the time-series data, δt
must be much smaller provided that the Gaussian approxi-
mation of noise in the mesoscopic SDE is still valid (see box 3).

(b) Model parameters
Parameter values: We apply the above described method on the
data generated from simulation of the models. For generating
thisdata,wevarydifferentparameters (N, r1, r2, r3) in themodels.

The pairwise model is a special case of the ternary inter-
action model with r3 = 0. Without loss of generality, we set
r2 = 1. We then choose r1 = 0.01, which as per the analytical
results of [12] sets the critical system size to Nc = 100; that is, if
N <Nc, the group exhibits noise-induced order (|m| > 0),
whereas the group exhibits disorder (m≈ 0) ifN >Nc. Therefore,
for demonstration of the method, we choose three different
values of N = 50, 100 and 200 corresponding to the so-called
subcritical, critical and super-critical regimes, respectively.

For the ternarymodel,when the ternary copying rate is suf-
ficiently high (specifically, r3 > 4r1), the system exhibits
deterministically driven ordered dynamics (m > 0). Keeping
the rest of the parameters the same as for the pairwise model,
we arbitrarily set r3 = 0.08 for our analyses. We note that the
dynamics of thismodel are qualitatively similar to the pairwise
model in the subcritical regime of this model (r3 < 4r1) and
hence we do not consider those values for our demonstration.

Correlation time: The correlation time (τc) of a time series is
the time difference above which two measurements of the
observable become essentially uncorrelated (see electronic sup-
plementary material, §S1.1 for a formal definition and also
figure S1 for how autocorrelation changes with time). We
find that τc does not change with N for the pairwise model,
but it increases with N for the ternary model. For both the
models, τc decreases with the spontaneous rate r1 (electronic
supplementary material, figure S2). Hence, to understand the
role of correlation time in the reconstruction of the SDE, we
vary r1 for the pairwise model and N for the ternary model.
Distance between the expected and derived function: We
measure the distance between the derived and the expected
functions by calculating the normalized root mean square
distance metric (D), defined as

D(F, f) ¼ kA� ak2
kak2

, (3:4)

where kfk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m f2(m)
p

defines the ℓ2-norm for a function f.
A represents the derived function and a represents the expec-
ted functional form from the analytic derivations of the
mesoscopic SDE.

(c) Stochastic differential equations constructed from
data reveal the role of stochasticity in collective
dynamics

We nowdemonstrate themethod of SDE construction by using
the data generated by individual-based collective behaviour
models described in §2a (see figure 2a,b for representative
graphs of time series).

Toconstruct thedeterministic term,weapplyequation (3.2) to
time series ofM for bothmodels. For thepairwise copyingmodel,
we find that the deterministic term is a linear function of m
(figure 2e). Analysis of the time series of the ternary interaction
model reveals a deterministic term that is a cubic function of m
(figure 2e). Reassuringly, the functions thus constructed for both
models match remarkably well with the analytically expected
deterministic terms of equations (2.6) and (2.8).

In the above data-driven construction of deterministic
dynamics, we considered a range of values of Δt. The results
for some Δt are shown in figure 2e,f. The smallest time step
(Δt = 1) yields a noisy pattern around the analytically expected
functions for both the models. However, the constructed func-
tions become closer to the analytical expectations (table 1) for
larger values of Δt. When Δt is around an order of magnitude
less than the autocorrelation time of the time series, we find
that the fit ismost accurate, i.e. the distance between the analyti-
cally expected and the data-constructed functions reaches a
minimum value (figure 3a,b). Furthermore, we find a strong
positive relationship between the optimum value of Δt and the
autocorrelation time (τc) (figure 3c,d); τc changes as model par-
ameters vary (see §3b; electronic supplementarymaterial, S1.2)).

We now turn our attention to constructing the stochastic
term, by applying equation (3.3a) to time-series data from
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both models, for a range of values of δt. Here too, for both
models, we are able to obtain the analytically expected func-
tional form of an inverted parabolic function to a remarkable
accuracy. Interestingly, the smallest δt yields the most accurate
stochastic force function. This match becomes rapidly worse
with increasing the time step (δt), a pattern exactly opposite
to that of constructing the deterministic term (figure 2g–h;
see electronic supplementary material §S2 and figure S3 for
derivation with different parameter values).

We explore the role of δt further, by first generating very-
high-resolution data of both individual-based models and
then analysing the noise (η(t)) structure. Interestingly, we
find that for very-high-resolution data the noise distribution
is not perfectly Gaussian (figure 4a,c), thus violating the
assumption of SDE (equation (2.1)). We find the distribution
tends to Gaussian for coarser time scales (figure 4b,d also
see electronic supplementary material, §S3 and figure S4 for
δt = 100). We also analyse the correlations in noise by plotting
its autocorrelation function. For all time scales in our analysis,
we find the noise in the data to be uncorrelated (figure 4i–l ),
satisfying a key assumption of our framework (§2). Both
these checks, i.e. whether η(t) is Gaussian as well as uncorre-
lated in data, are important to validate key underlying
assumptions (figure 5). Furthermore, though the distribution
of the residuals/noise (R(m)) is Gaussian above a certain time
scale in the data, we conjecture and confirm that there is an
optimum of δt beyond which the extraction of the stochastic
term becomes inaccurate (figure 4i,k).

However, if the data were available at a coarser resolution,
we might not find the optimum δt as depicted by figure 4i,k.
For example, if the time interval between consecutive data
points is more than the optimum δt, we find that the smallest
time step of such coarser time series yields minimum error in
the reconstruction (figure 4j,l ). Indeed, this is the reason why
we find that the best reconstruction of the stochastic term in
figure 2 corresponds to δt = 1.

Finally, we confirm that the method of construction of
SDE from simulated data of the individual-based models is
consistent for different parameter values in models (electronic
supplementary material, §S2). Reassuringly, in all the cases,
the data-derived deterministic and stochastic functions
match not only the qualitative features of the analytically
expected functions but also quantitatively.
(d) Consistency of the method and model
We ask whether our proposed method is self-consistent? To do
this, we simulate the data-derived SDE to generate high-resol-
ution time series of the collective state variable m. We then
apply the same set of steps to reconstruct the SDE from this
time series. We find that such a procedure yields comparable
values of time scales (Δt and δt) and qualitatively similar
forms of the deterministic and stochastic terms of the SDE (elec-
tronic supplementary material, §S3, §S4 and figure S5 ), thus
demonstrating the consistency of the method.

Next,we askwhether thedata-derivedSDEmodel produces
dynamical features consistent with the experimental data; the
latter in our case corresponds to Gillespie simulation of the
microscopic interaction rules. We recall that the construction
of SDEs relied only on the first and second jump-moments,
together with the autocorrelation time, of the time series of the
state variable. We consider two functions—(i) autocorrelation
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function ofm and (ii) probability density function ofm—neither
ofwhichwere directly used to construct themodel.We find that
the autocorrelation function of the time series of the SDEmodel
is in excellent qualitative agreement with that of the Gillespie
simulations of the microscopic model (electronic supplemen-
tary material, figure S1). Likewise, the probability density
function of m computed from the SDE and the Gillespie simu-
lations of the microscopic model also show qualitative
agreement across a range of parameter values for both models
(figure 2c,d; electronic supplementary material, figures S4 and
S5 do not appear to have been cited). Put together, these ana-
lyses suggest self-consistency of both the method of
construction of SDE that we proposed and the model we
have derived.
4. Discussion
We demonstrate a method to characterize the dynamics of col-
lective behaviour that accounts for intrinsic stochastic effects in
groups. Such noise arises owing to small sizes of groups and
probabilistic interactions among group members. Specifically,
given a high-resolution time-series dataset of collective behav-
iour, we characterized the dynamics via a stochastic differential
equation (SDE) which accounts for both deterministic and sto-
chastic drivers. Our key contribution lies in finding optimum
time scales over which to compute the deterministic and sto-
chastic terms of an SDE. With this characterization, we
highlight the potential of intrinsic noise in producing
group order even though the deterministic limit does not
predict order.
(a) Novelty and applicability of the method
Strikingly, this method can help us distinguish whether the
observedcollectiveorder is due todeterministic or stochastic dri-
vers. Todemonstrate this,weuse twowell-studied toymodels of
collective behaviour. For thesemodels, we know the exact forms
of the mesoscopic-scale SDEs from previous analytical studies
[12,18,45]. Specifically, while the pairwise interaction model
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exhibits a noise-induced order, the ternary interaction domi-
nated system exhibits order driven by deterministic terms. The
qualitative features of the time series of collective behaviour
for these models are similar (figure 2a–d). From the same
high-resolution temporal data of the group order, we are able
to confirm that the described method faithfully characterizes
themesoscopicSDEs. This is reassuringand therefore instils con-
fidence that we can employ the method in more complex
scenarios including real data.

Although simple and elegant, this method has rarely been
used in the biology literature (but see [14,15,25,26]). One poss-
ible reason might be the lack of clarity on methods of
constructing the deterministic and stochastic terms. A key find-
ing from our study is that the construction of both the parts
needs to be done at different time scales in the data. To con-
struct the deterministic term, a time scale slightly smaller
than the autocorrelation time of the data seems optimal. By
contrast, the stochastic term needs to be constructed at much
finer time scales. In figure 5, we provide a flow chart of the
procedure.

In the context of collective behaviour, a study on marching
locusts applied the samemethod and found evidence formulti-
plicative noise that is of a similar form to the pairwise and
ternary interaction models [15]. However, in their system, the
deterministic term was cubic, like in the ternary model.
Hence, the deterministic term alone could explain the order.
A recent study on fish schools (Etroplus suratensis) of small
to intermediate group sizes showed that the highly aligned
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motion is a noise-induced effect, best explained by the simple
pairwise alignment interaction model we discussed above
[14]. The method has also been applied to study single-cell
migrations and find that movement in normal and cancerous
cell types differs qualitatively. While cancerous cells show
migration that is driven purely by deterministic effects,
normal cells are driven only by stochastic factors [19]. These
examples show that the method not only offers a rigorous
quantitative description of collective dynamics (or even
single organismal behaviour), but may also offer insights on
the individual-level processes.

We have demonstrated this method for two non-spatial
models of collective behaviour where each individual could
be in one of the two discrete decision states. Despite the
simplicity of the model framework we used, the applicability
of the method to construct mesoscopic dynamics is wider.
For example, as in the locust study [15], two states could be
interpreted as two directions of movement in an annulus,
and hence the group order may correspond to the degree of
alignment of collective motion. For swarming systems in a con-
tinuous two- (or three-) dimensional world, the number of
states is infinitely large. However, we may define the group
order using a vectorial representation and construct a meso-
scopic SDE by a fairly trivial extension of the method
proposed here [14].

(b) Limitations and future directions
The method to construct mesoscopic SDEs requires further
exploration in several contexts. A key assumption of the SDE
equation (2.1) is that the noise (η(t)) is Gaussian and uncorre-
lated. However, for time series (finest resolution) in many
systems, noise can be temporally correlated [46] and may
exhibit large fluctuations [47]. Therefore, it is important to test
these assumptions while applying the method to real datasets
(figure 4e–h). Furthermore, in the wild, the dynamics of
animal groups are likely influenced by external stimuli as indi-
viduals respond to threats, food availability, mates and so on.
Consequently, the resulting group dynamics may often be
non-stationary. However, our method is applicable only to
stationary time series. Thus, it would be interesting to general-
ize the method of SDE construction in such complex scenarios.

The dynamics of other collective state variables such as
rotational and dilational order are also of interest in many
biological and physical contexts. Our method can be readily
applied to these order parameters as well. However, in
many contexts the state of a collective may not be fully
described by a single coarse-grained variable but rather
requires coupled dynamical variables (e.g. density together
with the order parameter). Future work may extend the
method of characterization of noise to such scenarios.

In this study, we considered only simple non-spatial
descriptions. While neglecting space might be justified for
small groups, in larger groups explicitly accounting for
space is crucial to analyse the role of fluctuations. Recent
analytical work suggests that we can derive stochastic partial
differential equations to account for finite-group dynamics
[48,49] where group order can be described as a function of
both time and space. We note that promising efforts have
been made in the context of Navier–Stokes equations of
physical systems [50]. These approaches may shed light
on extending our approaches to develop data-driven
hydrodynamic descriptions of collective motion [39,41,51].

Finally, we comment on the potentially interesting
biological consequences of noise-induced order. A system
exhibiting (intrinisic) noise-induced states is characterized
by the existence of a critical group size, at which key collec-
tive properties qualitatively change. This is particularly
important for the design of experiments on collective behav-
iour, with the implication that conclusions based on small (or
large) group sizes cannot be trivially applied to other group
sizes. Another important question that merits attention is
whether the noise-induced collective behaviour is adaptive.
Natural selection is strongest at the level of individuals; there-
fore, it is likely that the observed mesoscopic noise-induced
order is a simple consequence of selection for the microscopic
interactions (e.g. pairwise copying versus higher-order copy-
ing); however, we may expect nontrivial feedback from the
emergent properties of the group. It would be interesting to
explore, both theoretically and experimentally, the adaptive
significance of noise-induced collective behaviour.
(c) Concluding remarks
Our study highlights a much neglected but an elegant
concept of noise-induced states in empirical studies on collec-
tive behaviour. The method we described to infer the role of
stochasticity can be readily applied to data on collective
motion across animal species. Stochastic interactions as well
as finite (and small) sizes are inescapable features of the bio-
logical world. Therefore, we expect that noise-induced states
are likely to occur in larger classes of biological phenomena.
We hope that our study inspires further studies on the role of
noise in collective motion, especially with a focus on
functional aspects of collective behaviour.
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