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We present a theoretical study of the structure and functionality of ferroelastic domain walls in tungsten
trioxide, WO3. WO3 has a rich structural phase diagram, with the stability and properties of the various structural
phases strongly affected both by temperature and by electron doping. The existence of superconductivity is
of particular interest, with the underlying mechanism as of now not well understood. In addition, reports of
enhanced superconductivity at structural domain walls are particularly intriguing. Focusing specifically on the
orthorhombic β phase, we calculate the structure and properties of the domain walls both with and without
electron doping. We use two theoretical approaches: Landau-Ginzburg theory, with free energies constructed
from symmetry considerations and parameters extracted from our first-principles density functional calculations,
and direct calculation using large-scale, GPU-enabled density functional theory. We find that the structure
of the β-phase domain walls resembles that of the bulk tetragonal α1 phase, and that the electronic charge
tends to accumulate at the walls. Motivated by this finding, we perform ab initio computations of electron-
phonon coupling in the bulk α1 structure and extract the superconducting critical temperatures, Tc, within
Bardeen-Cooper-Schrieffer theory. Our results provide insight into the experimentally observed unusual trend
of decreasing Tc with increasing electronic charge carrier concentration.
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I. STRUCTURE AND PROPERTIES OF WO3

A. Introduction

Tungsten trioxide WO3 is a functionally versatile material
with possible applications based on electrochromism (smart
windows), gasochromism (gas sensors) and photocatalysis
[1–3]. The high-symmetry structure of WO3 is that of a per-
ovskite with a vacant A site (see Fig. 1), and it exhibits a
series of lower symmetry phases at lower temperature. Both
its structure and its properties depend on and can be tuned
by doping [4]. For instance, while pure WO3 is an insu-
lator, it becomes metallic upon occupation of the A sites
with alkali metal ions. In addition, superconductivity was
reported as early as 1964 for Na-doped WO3, and MxWO3−x

systems are now well established as superconductors (with
M usually an alkali metal) [5–17]. The reported supercon-
ducting critical temperatures (Tc) for bulk MxWO3−x systems
are generally less than 2 K [9,12], and, interestingly, tend to
decrease with increasing doping above the lowest doping level
at which superconductivity is observed [9,17,18]. Moreover,
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different dopants result in superconductivity in different
structural phases. More recently, nonbulk high-temperature
superconductivity was reported on the surface of dopant-
rich islands in NaxWO3−x [19]. Around the same time,
superconductivity was discovered in reduced WO3−x with a
superconducting critical temperature of around 3 K [20–22].
In this case, the bulk sample was not superconducting, but
sheet superconductivity occurred along the ferroelastic do-
main walls of the reduced WO3−x crystals.

B. Structural phase transitions and domain walls

At room temperature, WO3 shows two types of ferroelastic
domain walls which correspond to two successive ferroelas-
tic transitions at higher temperatures. Figure 2 shows the
sequence of structural phases of WO3 as a function of tem-
perature and doping [20,23–25]. The high-symmetry cubic
Pm3m reference structure of WO3 does not form under stan-
dard conditions as WO3 sublimes before reaching it [26,27].
Therefore there are no ferroelastic domain walls resulting
from a cubic Pm3m to tetragonal P4/nmm (α1) transition.
Additionally, the subsequent α1-α2 transition does not form
domain walls since it does not change the point symmetry
[28,29]. As temperature is further reduced, the next structural
phase transition, and the first ferroelastic transition, is from
the tetragonal α2 (space group P4/ncc) to the orthorhombic
β phase (Pbcn). In terms of distortions from the cubic phase,
the tetragonal α2 phase is characterized by two normal modes
of the cubic perovskite structure with representations (and
wave vectors) M−

2 ( 1
2 , 1

2 , 0) and R−
5 ( 1

2 , 1
2 , 1

2 ), respectively (see
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FIG. 1. High-symmetry cubic pseudoperovskite Pm3m structure
of WO3. The perovskite B sites are occupied by W atoms (grey),
which are encapsulated by O atom (red) octahedra. The A sites on
the unit cell corners are vacant.

Figs. 2 and 3), we refer to these as the cubic M−
2 and the cubic

R−
5 modes below. The cubic M−

2 mode [Fig. 3(a)] consists of
antipolar displacements of the W atoms, and the cubic R−

5
mode [Fig. 3(b)] of out-of-phase rotations of the O octahedra
with a0a0b− Glazer notation. The transition from the α2 to
the β phase then introduces in addition mainly the cubic X +

5
( 1

2 , 0, 0) and the cubic M+
2 ( 1

2 , 1
2 , 0) modes and reorients the

already present cubic M−
2 mode from along the a axis to

FIG. 2. Symmetries of, and transitions between, the structural
phases of WO3 as a function of decreasing temperature T or increas-
ing amount of electron doping ρ. The arrows indicate the transition
modes using the notation of the structure at the arrow origin. That is
blue modes denote modes of the cubic, green of the α1, red of the α2

and black of the β structures. Listed in blue on the right are all modes
of the cubic structure present in the respective lower-symmetry struc-
tures. The Q and R labels at the transitions represented by red arrows
denote parameters of the energy expansions that will be introduced
later.

FIG. 3. Distortions of the cubic WO3 structure, labeled with the
irreducible representations of the cubic unit cell, that lead to the
tetragonal α1 and α2, and orthorhombic β phases.

the (a, b) diagonal spatial direction. The X +
5 mode causes

further antipolar displacements of the W atoms and the M+
2

mode introduces in-phase rotations of the O octahedra (Glazer
notation a0a0b+). The primary order parameter with respect
to the tetragonal α2 phase is an M1 ( 1

2 , 1
2 , 0) mode, which

causes a doubling of the unit cell along the rotation axis, along
with antipolar displacements. We refer to the domain walls
that form between different orientations of the β phase at this
transition as β domain walls.

Upon further reduction of temperature, the second ferroe-
lastic transition corresponds to the transformation from the
orthorhombic β phase to the monoclinic γ phase (P21/n).
In addition to the monoclinic distortion of the lattice, this
transition introduces additional directional components to the
already present cubic X +

5 and R−
5 modes, however the ad-

ditional amplitude of the X +
5 is very small. These changes

require no further doubling of the unit cell, so the order pa-
rameter of this second transition is an orthorhombic � mode:
�+

2 (0,0,0). We refer to the domain walls that form between
different orientations of the γ phase at this transition as γ

domain walls.
In experiments, the two types of domain walls create a

pattern in which the γ domain walls (blue in Fig. 4) form
in a zigzag manner between the β domain walls (red in
Fig. 4) [22,24,30]. The γ domain walls in different β do-
mains meet at 90 degree angles, and the β and γ domain
walls are oriented at 45 degrees with respect to each other.
Atomic force microscopy (AFM) measurements of epitaxially
grown WO3 films have shown that the two types of domain
walls correspond to crystallographic (100) (γ ) and (110) (β)
planes [30]. The same orientations are implied by a strain
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FIG. 4. Idealized schematic of ferroelastic domain walls in WO3.
The 2D coordinate system corresponds to the pseudocubic directions.
Red and blue lines represent β domain walls with (110) and γ

domain walls with (100) crystallographic plane orientation, respec-
tively. Domain sizes and domain wall widths are not representative
and β domain walls can also be present with (110) plane orientation.

analysis of the respective ferroelastic transitions [31–33]: The
planes of vanishing strain for a ferroelastic transition of type
4/mmmFmmm (which is the type of the α2-β transition) cor-
respond to (110) planes and a transition of type mmF2/m
(which the β-γ transition corresponds to) has (100) vanishing
strain planes.

C. Questions addressed in this work

In this work, we investigate theoretically the structure
and properties of the β domain walls in WO3. We start by
constructing the Landau-Ginzburg free energy densities us-
ing parameters obtained from electronic structure calculations
based on density functional theory (DFT), and use these
Landau-Ginzburg expressions to calculate the structure and
properties of the walls with and without doping. We bench-
mark our model calculations by also calculating the structure
of the β domain wall directly from first principles using a
large supercell. Our calculations allow us to extract both the
structural and electrostatic changes associated with domain
wall formation. We find that the structure at the β domain wall
resembles that of the bulk tetragonal α1 phase, and that the
electrostatic changes cause a local accumulation of electronic
charge at the wall. Motivated by these results, we calculate the
doping dependence of the critical temperature for electron-
phonon mediated superconductivity in the bulk tetragonal α1

structure, and find that Bardeen-Cooper-Schrieffer (BCS) the-
ory reproduces the experimentally observed decrease in Tc

with increasing doping in the α1 phase.

II. LANDAU-GINZBURG THEORY OF THE TETRAGONAL
TO ORTHORHOMBIC (α2 → β) TRANSITION

We begin our treatment of the β ferroelastic domain walls
in WO3 by constructing the equations describing their free
energy density according to the Landau-Ginzburg theory of
the α2-β transition. We then determine the lowest energy

domain wall profiles by numerical minimization, and partly
by analytical solution, of the free energy density. The detailed
analytical solution is presented in Appendix A.

As outlined above, the tetragonal α2 to orthorhombic β

transition, which occurs at around 1000 K, is driven by the
condensation of a single mode with M1 symmetry of the
tetragonal phase (see Figs. 2 and 3) [26,28,29]. The irre-
ducible representation of the M1 mode is two-dimensional,
and so the order parameter of the transition, which we denote
as Q, has two components, Q(q1, q2). The Landau free energy
density FQ of a domain wall described by Q, then depends on
both q1 and q2, as well as on the strain, e. It is given by the
following expansion around the α2 bulk free energy density:

FQ(q1, q2, e) = F 0
α2

+ a
(
q2

1 + q2
2

) + b
(
q2

1 + q2
2

)2

+ c(q2
1 + q2

2 )3 + dq2
1q2

2 + e
(
q4

1q2
2 + q2

1q4
2

)
+ λ1

(
q2

1 + q2
2

)
es + λ2

(
q2

1 − q2
2

)
eas

+ λ3
(
q2

1 + q2
2

)
e3

+ s[(∇q1)2 + (∇q2)2] + Ci jeie j , (1)

where we use Voigt and Einstein notations [34,35]. FQ, q1, q2,
and the strains are treated as continuous fields and the spatial
coordinates z [for example, q1(z), etc.] are implied. The non-
symmetry breaking (es) and symmetry-breaking (eas) strains
can be related to the amplitudes of the in-plane eigenvectors
of the tetragonal elastic tensor, e1 and e2, through es = e1 + e2

and eas = e1 − e2, and e3 is the strain along the tetragonal
axis. Parameters a, b and c describe the Landau potential up
to sixth order in q1 and q2. Parameters d and e describe the
additional coupling between order parameter components q1

and q2 up to sixth order that is not contained in b and c.
The parameters λ1, λ2, and λ3 describe the separate couplings
between the order parameter and the tetragonal strains. The
Ginzburg parameter s accounts for the variation of the order
parameter Q in the domain wall. The last term is the strain
energy with Ci j the elastic tensor.

To circumvent the explicit calculation of the strain de-
pendence, we incorporate the energy-minimizing strains in
effective Landau parameters for q1 and q2. The general free
energy density for a domain wall described by Q then simpli-
fies to

FQ = F 0
α2

+ aQ
(
q2

1 + q2
2

) + bQ
(
q2

1 + q2
2

)2

+ cQ
(
q2

1 + q2
2

)3 + a2Qq2
1q2

2 + b2Q
(
q4

1q2
2 + q2

1q4
2

)
+ s[(∇q1)2 + (∇q2)2]. (2)

Parameters aQ, bQ and cQ correspond to terms that are nonvan-
ishing even when Q has only one component (i.e., q2 = 0) and
parameters a2Q and b2Q describe the bidirectional coupling be-
tween the order parameter components that only occur when
both q1 and q2 are nonzero.

A. Extension of the Landau-Ginzburg free energy density to
include the effect of additional charge

Next we extend the Landau-Ginzburg free energy density
to study the effect of additional charge, ρ(z), introduced by
reduction or doping.
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a. Effect of charge on the order parameter Q. We begin
by analyzing the effect of additional charge density on the Q
order parameter describing the α2 to β transition by extending
the free energy density expression as follows.

FQ = F 0
α2

+ aQ(ρ)
(
q2

1 + q2
2

) + bQ(ρ)
(
q2

1 + q2
2

)2

+ cQ(ρ)
(
q2

1 + q2
2

)3 + a2Q(ρ)q2
1q2

2

+ b2Q(ρ)
(
q4

1q2
2 + q2

1q4
2

) + s(ρ)[(∇q1)2 + (∇q2)2]

+ μ(ρ). (3)

Here, the direct effect of the charge on the free energy
density in the α2 reference structure appears explicitly as
the chemical potential term μ(ρ). All additional effects of
the change in chemical potential are incorporated in the ρ

dependence of the Landau parameters, aQ(ρ) etc. Note that
we also account for the effect of charge on the gradient
parameter s(ρ).

b. Effect of charge doping on the amplitude of the cubic
R−

5 mode. In addition to affecting the Q order parameter re-
sponsible for the α2 to β transition, the addition of charge has
the effect of reducing the amplitude of the cubic R−

5 mode
which is present in both the α2 and β phases [36,37]. This
mode is the order parameter for the transition between the α1

and α2 structures (see Fig. 2). Complete suppression of the
cubic R−

5 mode therefore transforms the α2 phase to the higher
symmetry α1 phase. In order to take this into account, we
extend the Landau potential for α2 further by expanding this
mode around its value in the α2 phase, Rα2 . For convenience,
we define an expansion parameter R = Rα2 − |R−

5 |, which is
zero in the α2 phase and increases with doping, reaching
the value Rα2 in the α1 phase, and so its sign matches that
of a conventional Landau theory order parameter. (|R−

5 | is
the amplitude of the cubic R−

5 mode at the particular doping
value of interest.) The new parameter R therefore describes
the reduction in the amplitude of R−

5 in the transition from α2

to α1.
Including this degree of freedom in the Landau potential

with this definition of R leads to the free energy density:

FQR = FQ + aR(ρ)R + bR(ρ)R2 + cR(ρ)R3 + dR(ρ)R4

+ eR(ρ)R5 + fR(ρ)R6 + aRQ(ρ)R
(
q2

1 + q2
2

)
+ bRQ(ρ)R2

(
q2

1 + q2
2

) + cRQ(ρ)R3
(
q2

1 + q2
2

)
+ dRQ(ρ)R

(
q2

1 + q2
2

)2 + eRQ(ρ)R4(q2
1 + q2

2

)
+ fRQ(ρ)R2

(
q2

1 + q2
2

)2 + aR2Q(ρ)Rq2
1q2

2

+ bR2Q(ρ)R2q2
1q2

2 + cR2Q(ρ)R3q2
1q2

2

+ dR2Q(ρ)R
(
q4

1q2
2 + q2

1q4
2

) + eR2Q(ρ)R4q2
1q2

2

+ fR2Q(ρ)R2(q4
1q2

2 + q2
1q4

2

) + t (ρ)(∇R)2. (4)

Thus the additional energy, FR = FQR − FQ, is 0 in the α2

phase where R is 0. Note that we included R2Q terms, in
which R is present in a single and Q in two directions, up
to eighth order.

III. COMPUTATIONAL DETAILS

A. Choice of exchange-correlation functional

The properties of WO3 are unusually sensitive to the
choice of exchange-correlation functional, with many stud-
ies in the literature suggesting different choices. Consistently
good matches of relaxed structures to experimental structures
have been reported using the B1-WC hybrid functional by
Hamdi et al. [38,39], as well as by Wang et al. using HSE-
06 albeit not to the same degree [37], but use of a hybrid
functional is prohibitively expensive for our calculations. We
found that the generalized gradient approximation (GGA) in
the PBEsol implementation grossly underestimates the ampli-
tude of the tetragonal M1 mode; a similar underestimation
of the oxygen rotations in GGA(PBE)-relaxed monoclinic
WO3 has also been reported [40]. A more detailed compar-
ison with published calculations is often problematic, since
in many cases only the lattice parameters of relaxed WO3

bulk structures are reported but not the internal coordinates
[18,36,41–52].

In this work, we use the local-density approximation
(LDA) description of the exchange-correlation functional.
Our motivation is its good description of the amplitude of the
tetragonal M1 mode, which is the order parameter Q of the
α2-β transition that we study in detail here. The lattice con-
stants and phonon mode amplitudes of WO3 bulk structures
that we calculate within the LDA in this work are listed in
Tables I and II.

We note, however, that our chosen LDA implementation
is not suitable for describing the γ domain walls because it
does not yield a pronounced and necessary decrease in energy
from the β to the γ phase as for instance reported by Hamdi

TABLE I. Lattice parameters (in angstrom and degrees) of re-
laxed structures obtained in this work with LDA-VASP (upper rows)
and LDA-QUANTUM ESPRESSO (lower rows) compared with experi-
mental values from the literature.

P4/nmm Current work Experimental [53]

a b c a b c
5.314 5.314 3.872 5.303 5.303 3.935
5.282 5.282 3.872

P4/ncc Current work Experimental [26]

a b c a b c
5.272 5.272 7.833 5.276 5.276 7.846
5.178 5.178 7.750

Pbcn Current work Experimental [26]

a b c a b c
7.425 7.429 7.652 7.333 7.573 7.74
7.370 7.397 7.628

P21/n Current work Experimental [26]

a b c a b c
7.438 7.404 7.613 7.303 7.538 7.692
7.356 7.401 7.622

α β γ α β γ

90 90.829 90 90 90.855 90
90 90.295 90

033460-4



THEORETICAL INVESTIGATION OF TWIN BOUNDARIES … PHYSICAL REVIEW RESEARCH 2, 033460 (2020)

TABLE II. Total amplitudes of the main cubic phonon modes
(in Å) in relaxed structures obtained with LDA-VASP (upper rows)
and LDA-QUANTUM ESPRESSO (lower rows) compared with exper-
imental values from the literature. Phonon mode amplitudes were
obtained with ISODISTORT [35,54]. The amplitudes correspond to the
summed atomic displacements normalized to the cubic cell relaxed
with LDA-VASP.

P4/nmm Current work Experimental [53]

X +
5 M+

2 M−
2 R−

5 X +
5 M+

2 M−
2 R−

5
- - 0.239 - - - 0.253 -
- - 0.223 -

P4/ncc Current work Experimental [26]

X +
5 M+

2 M−
2 R−

5 X +
5 M+

2 M−
2 R−

5
- - 0.235 0.551 - - 0.265 0.310
- - 0.250 0.542

Pbcn Current work Experimental [26]

X +
5 M+

2 M−
2 R−

5 X +
5 M+

2 M−
2 R−

5
0.099 0.224 0.239 0.474 0.284 0.322 0.253 0.353
0.112 0.281 0.253 0.462

P21/n Current work Experimental [26]

X +
5 M+

2 M−
2 R−

5 X +
5 M+

2 M−
2 R−

5
0.085 0.251 0.243 0.514 0.262 0.339 0.246 0.400
0.125 0.303 0.251 0.466

et al. [38]. A detailed discussion of this point is provided in
Appendix C.

B. Calculation of Landau-Ginzburg parameters

The calculations to obtain the parameters of the Landau-
Ginzburg free energies in Eqns. (3) and (4) were performed
using the QUANTUM ESPRESSO (version 6.2.1) plane-wave
pseudopotential DFT implementation [55,56]. The choice
of DFT implementation was made to be consistent with
the electron-phonon coupling calculations, which we de-
scribe later. This forced us to use norm-conserving pseu-
dopotentials as these were the only available option for
electron-phonon calculations when this work was started. The
norm-conserving LDA pseudopotentials were generated with
the ONCVPSP program and the input parameters provided
by the PseudoDojo pseudopotential repository [57–60]. A
high cutoff energy of 120 Ry was necessary to converge
the parameters in the Landau potentials, due to the use of
norm-conserving pseudopotentials and the small core of the
available W pseudopotential. We used valence electron con-
figurations of 4 f 145s25p65d46s2 for the W atoms and 2s22p4

for the O atoms. The k- and q-point grid sizes were set to
12 × 12 × 12 and 4 × 4 × 4, respectively in the cubic phase,
and scaled down relatively for larger unit cells, ensuring that
they were always commensurate with each other as required
for the electron-phonon calculations.

The Landau parameters were determined by calculating
the energies of structures with different amplitudes of the Q
(q1 and/or q2) and/or R distortions frozen into the reference
α2 structure in the range from 0 to 1.2 Å per unit cell. We
calculated the energies of a total of 360 distinct (R, q1, q2)

TABLE III. Landau-Ginzburg parameters and their dependence
on doping calculated to sixth order using DFT for a doping range of
-0.25 to 0 me Å−3.

μ[meVÅ−3] 9.35ρ + 0.17ρ2

s 6.64 + 4.59ρ2 + 1.68ρ4

t 1026.92 + 70.9(ρ + 2.41)2

+ 16.6(ρ + 2.41)4

aR[meVÅ−4] 0.99ρ + 0.04ρ2

aQ[meVÅ−5] −0.30 − 0.59ρ − 0.04ρ2

bR 1.59 − 0.49ρ − 0.48ρ2

cR[meVÅ−6] −0.95 + 0.5ρ + 1.22ρ2

aRQ −0.85 − 0.25ρ − 0.12ρ2

bQ[meVÅ−7] 0.26 + 0.02ρ − 0.008ρ2

dR 0.28 − 0.74ρ − 1.67ρ2

bRQ 0.34 + 0.52ρ + 0.26ρ2

a2Q 1.44 − 0.009ρ − 0.05ρ2

eR[meVÅ−8] −0.05 + 0.74ρ + 1.18ρ2

cRQ −0.22 − 0.33ρ − 0.2ρ2

dRQ 0.08 + 0.07ρ + 0.04ρ2

b2Q −0.31 + 0.11ρ + 0.06ρ2

aR2Q −0.004 + 0.003ρ + 0.002ρ2

cQ[meVÅ−9] 0.009ρ + 0.002ρ2

fR −0.27ρ − 0.33ρ2

eRQ 0.11 + 0.05ρ + 0.05ρ2

fRQ −0.03ρ − 0.03ρ2

c2Q 0.04 − 0.14ρ − 0.11ρ2

d2Q 0.02 − 0.03ρ + 0.02ρ2

bR2Q 0.24 + 1.46ρ + 0.72ρ2

cR2Q[meVÅ−10] −0.75 − 1.81ρ − 1.03ρ2

dR2Q −0.09 − 0.13ρ − 0.11ρ2

eR2Q[meVÅ−11] 0.41 + 0.76ρ + 0.47ρ2

fR2Q −0.25ρ − 0.07ρ2

points, with the size of the unit cells allowed to relax in each
case to satisfy the condition of energy-minimizing strain.

Parameters to sixth order (eighth order for the R2Q) were
calculated for all described terms, with higher-order terms,
constrained to be small and positive, included in the fit in each
case to prevent unphysical negative divergence. To calculate
the change of the parameters on charge doping, we repeated
the set of calculations for a total of four different amounts
of additional electrons up to 0.25 electrons per f.u. The cell
parameters were set to those obtained from relaxations that
did not contain additional charge and they were not allowed to
relax further. The changes in the parameters were then fitted
up to quadratic order of the charge density ρ (see Table III).

We fitted the chemical potential μ(ρ) of the α2 reference
structure with a quadratic dependence on the charge density ρ

in the free energy density (see Table III). To accurately extract
a value for the quadratic term, which is small compared to the
linear term, a total of 80 energies for charge densities between
0 and 0.25 electrons per f.u. were calculated.

Finally, the gradient parameters s and t were obtained
with the procedure described in Appendix B. The interatomic
force constants of the α2 phase in real space were calculated
by interpolating the dynamical matrices on a q grid. Force
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FIG. 5. The initial unrelaxed supercell for the β domain wall along a crystallographic (110) plane (shown with the black dashed lines). We
label the direction perpendicular to the plane of the wall as z. The orthorhombic β unit cell is indicated by the blue box and the ions that were
kept fixed during the relaxation by red boxes (with black lines depicting their center). The cubic phonon modes and directions that are already
present in the α2 phase are denoted by black vectors and those introduced by the α2-β transition by green vectors.

constant matrices were then interpolated for q points on the
q paths (1/2, 1/2, 0) → (1/2 + δ, 1/2 + δ, 0) for the M1 and
(0, 0, 0) → (δ, δ, 0) for the �+

2 mode (the corresponding α2-β
domain walls correspond to the (110) crystallographic plane).
The path length δ was set to 0.04. The branches belonging
to the transition modes M1 and �+

2 in the force constant
matrix dispersion were determined by symmetry combined
with visual analysis of the respective displacements η. The
corresponding gradient parameters s and t were finally ob-
tained by performing a quadratic fit to the determined force
constant branch as shown in Eq. (B4). To describe the change
of the gradient parameters with charge, calculations of s(ρ)
and t (ρ) were performed in the α2 cell with three values of ρ,
and then fitted to fourth order in ρ with the third order term
omitted (see Table III).

C. Supercell calculations of domain wall structures

In addition to our Landau-Ginzburg calculations of the β

domain wall, we also performed direct calculations by ex-
plicitly relaxing the domain wall structure using DFT. We
constructed a supercell containing two β domain walls cor-
responding to (110) crystallographic planes for subsequent
relaxation (see Fig. 5). The supercell was generated as fol-
lows: First, the bulk structures were relaxed and one domain
was constructed with the resulting relaxed structure. The sec-
ond domain was then created by application of the point-group
symmetry operations on the first domain that are lost during
the transition. The supercell for the β domain wall calculation
contained 512 atoms and had dimensions of approximately
84 × 11 × 8 Å.

We then relaxed the supercell structure with some atoms
fixed to the bulk structure (see Fig. 5) as releasing the bulk
cells causes a relaxation back to a single domain state. The
relaxed structures were analyzed in terms of distortion modes.
Additional charge was then introduced to the relaxed cells
to determine if there was an accumulation of charge at the
domain walls.

All calculations for the large domain wall supercells were
performed with the GPU-accelerated VASP (version 5.4.4)
DFT implementation [61–64]. The wave functions were ex-
panded with a basis set of plane waves and their cutoff

energy was set to 800 eV for the bulk structures but was
decreased to 600 eV for the supercell relaxations. The core
electrons were treated with projector-augmented waves, al-
lowing for a lower plane-wave cutoff energy compared to the
norm-conserving pseudopotentials employed for the rest of
this work [65,66]. The valence electron configurations were
5p65d46s2 and 2s22p4 for the W and O atoms, respectively.
The k-point grid sizes were chosen relative to a 10 × 10 × 10
grid for the cubic phase. The relaxation convergence criterion
was 10−3 eVÅ−1 in the residual forces. Phonon mode ampli-
tudes in the supercells were determined with the ISODISTORT

program from the ISOTROPY software suite [35,54].

D. Calculations of electron-phonon coupling and
superconducting critical temperature

First-principles calculations of electron-phonon coupling
were performed for electron-doped 8-atom α1 and 16-atom α2

cells. Electron doping was achieved by adding electrons with
a compensating background charge rather than explicit inclu-
sion of point defects; this method has been shown to describe
well the charge-induced structural distortions in WO3 [36].
For reasons discussed in the next section, Sec. III E, we only
relaxed the internal coordinates and the cell parameters were
manually set by linear interpolation between the calculated
values for the tetragonal WO3 and the cubic NaWO3 cells.

We used the EPW package in conjunction with QUANTUM

ESPRESSO [67,68]. The cutoff energy had to be kept at an
extremely large value of 120 Ry to converge the calculations,
as tested by the convergence behavior of the total electron-
phonon coupling strength λ in the cubic phase. Coarse k- and
q-point grids were set relative to 12 × 12 × 12 and 4 × 4 × 4
grids of the cubic phase. Additionally, fine grid sizes for the k-
and q-point grids were set relative to 200 000 and 100 000 ran-
dom points for the cubic phase, respectively. W 5dxy, 5dxz, and
5dyz orbitals were chosen for the wannierization procedure,
which was performed using the WANNIER90 package [69].

Superconducting critical temperatures were then extracted
using the usual Eliashberg formalism of Bardeen-Cooper-
Schriefer (BCS) theory, as described in Appendix D. The
temperature for the Fermi occupations in Eq. (D1) was set to
0.075 K and the Fermi surface energy window of considered
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electron states was set to 3 eV. The Coulomb pseudopoten-
tial parameter μ was set to 0.10. All results are given for
smearings of 0.05 meV for the delta functions in Eq. (D3)
and 0.25 eV for the frequency delta functions in Eq. (D7),
respectively. None of the calculations were performed with
the double-delta approximation.

E. Lattice relaxation of charged unit cells

As the calculated stresses in charged unit cells with a
constant background charge are not well-defined in DFT im-
plementations, we did not relax the volumes of our unit cells
and supercells in the calculations for which we include addi-
tional electronic charge [70].

To determine the validity of keeping the lattice parame-
ters fixed in our Landau model, we compared our Landau
parameters calculated using the relaxed lattice parameters of
the undoped cells with calculations in which the cell param-
eters of the α2 cells were interpolated to those of the cubic
NaWO3 cell. We found that the changes in the Landau curves
caused by the volume change were negligible compared to
those caused by the introduction of charge into the uncharged
cells. Thus the change in volume caused by doping within the
doping range used here can be safely disregarded.

In the case of the electron-phonon calculations for the α1

phase, the change in cell size on doping could not be disre-
garded, as the phonon dispersions depend strongly on the cell
volume. For example rotational modes are artificially stabi-
lized if the cell volume is not allowed to increase, whereas
antipolar modes are artificially destabilized. Thus, we opted
for the compromise of linearly interpolating the lattice pa-
rameters between those calculated for the tetragonal WO3 and
for the cubic NaWO3 unit cells. We found this approxima-
tion to be sufficient to describe the correct general trends of
the modes upon doping in the α1 phase. In particular, the
rotational R−

5 mode became softer with decreasing charge x
so that the α2-α1 transition occurred at a doping value close
to the experimentally observed transition value of x = 0.2 in
NaxWO3−x [9]. Also, the amplitude of the antipolar cubic
M−

2 mode decreased with increasing x consistent with the
literature [36].

IV. RESULTS OF DOMAIN WALLS CALCULATIONS

A. Landau-Ginzburg domain wall profiles

Using the Landau-Ginzburg parameters obtained as de-
scribed in Sec. III B, we calculated the profiles of the order
parameters across the domain walls by numerically minimiz-
ing the total free energy density functional given in Eq. (4).
The spatial grid of the order parameter fields, z, consisted of
251 points, spaced by 
z = 0.6 Å. Self-consistent solutions
were found as follows: For given q1(z) and q2(z) profiles at a
specific total charge, the minimum energy charge distribution
ρ(z) was calculated. For this ρ(z), the minimum energy R(z)
and subsequently q1(z) and q2(z) were obtained, after which
the cycle was repeated. Self-consistency was achieved when
the change in the total z-integrated energy density between
steps was less than 10−4 meV Å−2.

FIG. 6. Profiles of (a) the angle φ (solid lines) and amplitude
|Q| (dotted lines) of the mode Q, (b) the charge density ρ (in milli-
electronic charges per cubic angstrom) and (c) the total amplitude
|R−

5 | of the cubic R−
5 mode in (c) across domain walls, calculated

with the Landau-Ginzburg model. The total amount of additional
charge corresponds to the doping level x (in electrons per formula
unit) depicted in the color bar.

We checked our numerical approach for the simplified
potential of Eq. (A1) by comparing with the analytical solu-
tions of Eqs. (A3) and (A6), and found excellent agreement
between the numerical and analytical results.

The calculated evolution of the order parameters across the
energetically minimized β domain walls for various doping
levels is shown in Fig. 6. For clarity, we plot the magnitude
|Q| =

√
q2

1 + q2
2 and the angle φ = arctan q1/q2 of the order

parameter. Panel (a) shows the angle φ (solid lines) with re-
spect to the z axis along the wall. We see that, for the undoped
case (blue line), the wall shows characteristic Néel-like behav-
ior. The order parameter Q retains 80% of its bulk amplitude
across the wall and the reorientation is achieved by rotation
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of Q along the wall as represented by φ. The small reduction
in amplitude at the wall can be explained by the bidirectional
coupling of Q (that is q1 to q2) which results in an energy
reduction when the amplitude of Q decreases. We extracted
the wall width 2ξ by fitting Q(z) to a | tanh(z/ξ )| curve as in
Eq. (A3) and obtained a value of ∼1.35 nm for the undoped
case. As can be seen from equations (A4) and (A8), the widths
are mostly determined by the gradient parameter s of the order
parameter Q which is an order of magnitude larger than the
Landau terms (see Table III). This value lies well within the
general range of ferroelastic domain wall widths, which are
generally between 0.2 and 2 nm at low temperatures [71].

A distinct change in behavior is seen on introduction of
electrons. At the most strongly doped example studied, 0.24
electrons per formula unit (yellow line), the wall is strongly
Ising like, with the amplitude of Q suppressed to zero in the
wall region. At this highest doping level, the domain wall
width is widened by a factor of around 3.6 relative to the width
in the undoped wall as measured by the fitting of the φ curves
to | arctan(exp(z/ξ ))| curves. The crossover from undoped
behavior to doped behavior, as well as the wall broadening,
are gradual, with intermediate dopings (purple, red and orange
colors) having intermediate behavior.

The origin of the evolution with doping is clear in Fig. 6(b),
which shows the charge density as a function of position
across the wall. We see that, for all doping levels, the charge
accumulates in the wall region, and no additional charge re-
mains in the bulk of the domains.

As discussed earlier, electron doping causes a reduction in
the amplitude of the Q order parameter, moving the structure
towards the α2 phase. In addition, it causes a decrease of the
Z+

3 mode, parametrized by |R−
5 | as shown in Fig. 6(c). As a

result the structure within the domain wall approaches that
of the α1 phase. Note that we calculated Landau-Ginzburg
parameters only for concentrations up to −2.5 me Å−3. This
is the origin of the forced cutoff of ρ in the yellow curve in
Fig. 6(b). However, we expect that |R−

5 | would decrease to 0
with increasing doping.

B. Direct calculation of domain walls using density
functional theory

Motivated by our estimation of the domain wall widths of
∼14 Å from our Landau-Ginzburg model, we next performed
a full density functional calculation of the domain wall struc-
ture shown in Fig. 5.

Our calculated layer-resolved order parameter angle φ and
its amplitude |Q| are shown in Fig. 7(a) as a function of
position perpendicular to the wall plane, z. Consistent with our
results from Landau-Ginzburg theory, we find the domain wall
to be predominantly of the Néel type as represented by the
gradual transition in φ. In Fig. 7(b), we show the calculated
charge density distribution obtained by adding an additional
but small electronic charge of 1.6 × 10−2e to the supercell.
We find that, as in our Landau-Ginzburg simulations, the
charge accumulates at the walls. While the macroscopic pla-
nar charge density shows an alternating behavior from site to
site, there is a clear depletion of charge from the bulk towards
the domain wall structure as indicated by the top and bottom
envelopes of the density. We note that a definitive study would

FIG. 7. (a) Rotation angle φ (blue) and amplitude |Q| (red) of
the Q mode along the [110] direction (z) of the relaxed β domain
wall supercell. (b) Change in macroscopic planar charge density 
ρ

[in milli-electronic charges per length (in angstrom)] upon addition
of charge in the relaxed β domain wall structure. The red and green
lines represent the upper and lower envelopes of the charge densities
of red boxes as depicted in Fig. 5. The dashed and solid lines in both
panels indicate the positions of the fixed bulk unit cells and domain
wall centers as in Fig. 5.

require further relaxation of the wall after the introduction of
the charge. In addition, a systematic study of larger supercells
would be desirable to ensure that there are no interactions
between the walls and that full convergence to the bulk values
is achieved in the intermediate regions. The supercells used
here were barely large enough to host two domain walls as we
observe no clear bulk plateau in the order parameters.

A clear difference compared to the Landau-Ginzburg
model can be found in the amplitude of the Q (M1) mode in the
domain walls. In the DFT-calculated walls, we observe a slight
increase in Q, whereas it decreased in the walls obtained from
Landau-Ginzburg theory. The reason for this is the limitation
of the phase space used in the Landau-Ginzburg model. When
comparing fully relaxed structures of the Pbcn (β) [with order
parameter direction Q(a, 0)] and the P421c [corresponding to
order parameter direction Q(a, a)] phases we observe that the
latter has a lower energy and a higher total Q amplitude than
the former. Thus we expect that including additional order pa-
rameters in the Landau-Ginzburg model would also lead to an
increase in Q in the center of the domain wall. However, this
would lead to a highly increased dimension of the phase space,
making the Landau-Ginzburg parametrization unfeasible. Due
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to the small amplitude of these additional distortions, it is
reasonable to assume that the difference in domain wall width
would be minor if they were included. Furthermore, we expect
the inaccuracy in the Q displacement to be less relevant in the
charged domain walls, as the charge reduces the amplitude of
both Q and R−

5 at the domain wall.

C. Summary of domain wall results

In summary, we investigated the structure of the β-type
domain walls that form during the phase transition from the
tetragonal α2 phase to the orthorhombic β phase in WO3 in
the framework of Landau-Ginzburg and density functional
theories. Our Landau-Ginzburg calculations showed that the
ferroelastic walls in the undoped case are mostly Néel-like,
with the amplitude of the order parameter Q retaining ∼80%
of its bulk value. We found the domain wall width 2ξ to be
around 14 Å in the undoped case. Electronic doping increased
our calculated domain wall width and led to an accumulation
of the additional charge in the domain wall. The domain
wall width of WO3 β domain walls at very low temperatures
has been reported to be around 2w = 1.2 nm in experiments
[23,24], which is very close to the value suggested by our
Landau-Ginzburg model. We found that the charge accumu-
lation at the walls caused an increasingly large Ising-type
component, indicated by the drop in the order parameter
amplitude |Q| across the wall. The accumulated charge also
reduced the magnitude of the |R−

5 | order parameter, so that
the structure approached that of the α1 phase in the wall
region. Using DFT calculations on supercells, we were able to
confirm the Néel-type character of the domain walls, as well
as the predicted accumulation of charge at the domain walls.

V. IMPLICATIONS FOR DOMAIN WALL
SUPERCONDUCTIVITY

Motivated by our finding that the charge accumulates at
the domain walls and causes a local α1-like structure, we next
study the superconducting properties of this phase. Experi-
mentally, the α1 phase of NaxWO3−x, which also has P4/nmm
symmetry [72], was shown to be superconducting. Similar to
other superconducting tungsten bronzes, the superconductiv-
ity shows two general features. First, for each dopant type,
superconductivity occurs in only one high-symmetry struc-
ture. For smaller alkali metals (Na and K) these are structures
of tetragonal symmetry, while for larger alkali metals (Rb and
Cs) the structures are hexagonal. At doping levels x that lie
above or below the x range of these phases, superconduc-
tivity is not found. The second feature is a decrease in Tc

with increasing x, within the superconducting phase. Thus
the highest Tc is reported at the lowest x value at which the
superconducting phase is still retained; lower doping results in
a phase transition to the lower-symmetry, nonsuperconducting
phase. Both properties implicate the soft mode associated with
the corresponding structural phase transition in the supercon-
ductivity mechanism [6,9,20,73].

Our approach is to calculate and analyze Tc as a function
of doping within standard Bardeen-Cooper-Schrieffer (BCS)
theory [74] for the α1 phase of WO3. While BCS theory has
been shown to capture some aspects of the behavior of doped

FIG. 8. Calculated α1 electron bands (a), phonon bands and
phonon linewidths (b), phonon density of states and α2F (c) for the
case of x = 0.125 additional electrons per formula unit. The phonon
linewidths are shown as vertical red bars in the phonon band structure
plot and they are scaled by a factor of 10 for visibility. Occupied
states in the electron band structure are shown in red, unoccupied
states in blue, and the horizontal line at zero eV is the Fermi level.

WO3 [9,21,75,76], the absence of superconductivity in the α2

phase, and the decrease in Tc with increasing doping are not
well understood (the latter has even been described as the
“Tc paradox”! [9,14,16,18,73,77,78]), and we explore these
aspects here.

We calculate the electron-phonon coupling matrix,

gν
nm(k, q) = 〈

ϕmk+q

∣∣
ν
qVKS

∣∣ϕnk
〉
, (5)

using density functional perturbation theory (DFPT) [79].
Here, 
ν

qVKS is the phonon perturbation to the Kohn-Sham po-
tential, and the matrix elements are the transition probability
amplitudes for an electron in initial state ϕnk with wave vector
k and band n, scattering to final state ϕmk+q of band m, via a
phonon of wave vector q and branch ν. We then evaluate the
superconducting critical temperature using the semiempirical
Allen-Dynes equation [80]

Tc = 〈ω〉
1.2

exp

[ −1.04(1 + λ)

λ − μ(1 + 0.62λ)

]
, (6)

with the coupling strength, λ, and the weighted phonon fre-
quency 〈ω〉, extracted from the electron-phonon matrix as
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FIG. 9. Calculated phonon bands (left) and α2F (right) for the
α1 structure, for a range of added electron concentrations. Blue cor-
responds to the lowest (0.125 electrons per formula unit) and orange
to the highest (0.24 electrons per formula unit) doping levels, with
successive lines corresponding to successive points in the plots of
Fig. 10.

described in Appendix D and an empirical value of 0.1 taken
for the effective Coulomb repulsion μ.

A. BCS theory applied to the bulk α1 phase

We begin by calculating the superconducting Tc for the
α1 phase, to see whether the measured decrease in Tc with
increasing doping is correctly captured within BCS theory.
The α1 structure is stable for calculated electron concentra-
tions larger than x ≈ 0.125 (for lower concentrations, it has
an unstable Z+

3 mode, indicating the transition to the lower-
energy α2 structure), which is therefore the lowest doping
concentration that we consider. Our calculated electron bands,
phonon bands, phonon linewidths, phonon density of states
and Eliashberg spectral function α2F for x = 0.125 are shown
in Fig. 8, where the soft Z+

3 mode is the lowest frequency Z
mode in the phonon bands close to zero frequency. Interest-
ingly, while there is some electron-phonon coupling at low
frequency, it is considerably stronger at higher frequencies,
with the highest values of α2F occuring at around 600–800
cm−1. This suggests that, at least in the BCS picture, the soft
mode is not the most relevant in determining the supercon-
ducting Tc. The subsequent changes in the phonon bands and
α2F upon increase of x are presented in Fig. 9. We see that,
as expected, the Z+

3 soft mode hardens with increasing doping,
leading to a reduction of α2F at low frequency with increasing
doping. Interestingly, the high energy phonons shift to lower
frequencies as doping is increased, with corresponding shifts
of the peaks in α2F to lower frequency. Finally, the calculated
superconducting critical temperature, Tc, and density of states
at the Fermi level, n(EF ), are shown in Fig. 10 as a function

FIG. 10. Calculated superconducting critical temperature Tc and
electron density of states at the Fermi level n(EF ) in the α1 phase, as
a function of added electrons per formula unit, x.

of doping concentration, x.1 The first points in Fig. 10 (at
x = 0.125) correspond to the band structures shown in Fig. 8.

Figure 10 clearly illustrates that our BCS-theory calcu-
lations reproduce the experimental trend of decreasing Tc

with increasing doping, with the calculated maximum in Tc

at x = 0.125 coinciding with the calculated α1-α2 transition,
where the transition Z+

3 mode starts to become imaginary. In
addition, our calculated Tc’s are comparable to the reported
values (�2 K in bulk samples), although we emphasize that
their actual magnitudes should not be over-interpreted, since
they are sensitive to the spreads in α2F integration in Eq. (D7)
and the value of the screened Coulomb potential μ in the
Allen-Dynes formula (6). The trend of a decreasing Tc, how-
ever, is robust to these parameters. Therefore we conclude
from our calculations that conventional BCS theory captures
the observed evolution of Tc with doping in the α1 phase of
WO3.2

Given the good agreement of our computational BCS
theory results with experiments, we next analyze them to
rationalize the behavior. In particular, the decreasing Tc with

1Note that we excluded the imaginary frequencies around M (q =
[1/2, 1/2, 0]) in our calculation of α2F in the integration in equation
(D7). We also checked the influence of the adjacent real values that
are close to zero by excluding the real part of the branch within a
window bounded by a maximum frequency of 50 cm−1 and a box
around M defined by 
q = 0.2 in each direction. We found that
including or excluding the phonons in this window causes only a
small change in the calculated α2F (see Fig. 14) between the two
cases.

2We note that a recent paper [18] using ostensibly similar methods
obtained an increase in Tc with increasing doping. We have been un-
able to reproduce the results of their work or understand the origin of
the difference with our calculations. Note that they do reproduce the
experimental behavior when they dope by introducing point defects
rather than with electrostatic doping.
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FIG. 11. Calculated superconducting temperature Tc and total
coupling strength λ as a function of added electrons per formula unit,
x, in the α1 phase.

x was unexpected within a simple BCS picture, since the
electron density of states at the Fermi level, n(EF ), has been
reported from photoemission measurements to increase with
increasing x in tetragonal NaxWO3−x [81,82]. Since the BCS
Cooper-pair binding energy scales as exp [−1/(n(EF )Vep)]
(Vep is the interelectronic attraction caused by the electron-
phonon coupling), an increase in n(EF ) should in turn lead to
an increase in Tc, provided that the electron-phonon coupling
strength remains constant with electron density. Our calcu-
lations of n(EF ) (Fig. 10) in fact indicate that, within the
α1 phase, n(EF ) (red line) at first decreases with increasing
doping (as does Tc). Note that there is no inconsistency with
Refs. [81] and [82], which provided measured n(EF ) values
only above x = 0.25. At higher dopings (above x = 0.18)
n(EF ) starts to increase, while Tc continues to decrease. This
lack of correlation between Tc and n(EF ) points to a doping
dependence of the electron-phonon matrix elements.

In Fig. 11, we show our calculated doping dependence of
Tc and total coupling strength, λ, as defined in Eq. (D6). First
we note that, over the whole range, the coupling strength,
λ, has a substantial value, consistent with the measurable
superconductivity. Second, as we expected, it is clear that the
value of λ decreases with increasing doping, explaining the
corresponding decrease in Tc according to the Allen-Dynes
formula given in Eq. (6). In particular, the calculated Tc tracks
closely the calculated value of λ.

Finally, to understand the change in superconductivity
across the α1-α2 transition, we performed a calculation of
Tc in the α2 phase where experimentally superconductivity
has not been measured. We chose a value of x = 0.125 for
the Tc calculation in the α2 phase, and adjusted the lattice
constants as outlined in Sec. III E for the α1 phase, so that
the resulting system in the α2 phase was quite far from the
α1-α2 transition. (The amplitude of the transition mode Z+

3
was 0.51 Å, compared with the amplitude of 0.76 Å in the
undoped α2 phase). As expected, our calculated Tc dropped

FIG. 12. Calculated Tc as a function of the upper integration
frequency limit ωmax in Eqs. (D6) and (D8). Blue curves show the
lowest and orange curves the highest doping x (in electrons per
formula unit), over the same range as in Fig. 10.

sharply from the calculated α1 value, to 0.018 K, consistent
with a sharp drop in the calculated λ value to 0.25. The bands
and linewidths for the α2 case are shown in Appendix Fig. 15.

B. Discussion of bulk superconductivity results

While our calculations indicate that the superconducting
behavior of WO3 can be reproduced within standard BCS the-
ory, this is of course not definitive evidence that WO3 is a BCS
superconductor. In this section, we discuss two other models
for superconductivity—based on soft modes and bipolarons,
respectively—that have been discussed in the literature.

We begin with a discussion of the importance of the soft
mode, whose strong change in frequency with doping was
originally proposed to account for the apparently paradoxi-
cal behavior of Tc upon doping [9], in spite of its absence
in inelastic neutron scattering experiments [73,77]. As men-
tioned above, our calculated phonon linewidths and doping
dependence of α2F point to a small, if any, role of the soft
mode at the BCS level; here we quantify its contribution. In
Fig. 12, we plot the calculated Tc as a function of the max-
imum frequency of the phonons included in the calculation,
for a range of doping values within the α1 phase. We see
that the modes below 200 cm−1, which include the soft mode,
contribute negligibly to Tc. As noted above, the modes above
around 600 cm−1, which had the largest phonon bandwidth
and the strongest frequency shifts on doping, contribute most
to Tc at every doping concentration.3 While our calculations
were performed for tetragonal structures, we note that Brusetti

3We note that again our findings are in contrast to those of Ref. [18],
who report that 60% of the electron-phonon coupling comes from the
lowest quarter of the spectrum.
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et al. have attributed the increase in Tc with decreasing x in
hexagonal RbxWO3−x to changes in electron-phonon coupling
for phonons with a frequency of more than 240 cm−1 [78].

Before leaving the topic of soft-mode superconductivity,
we point out that the superconductivity in WO3 is some-
what reminiscent of that in SrTiO3, for which a model of
superconductivity mediated by fluctuations associated with
the ferroelectric quantum critical point has been proposed
[83]. The quantum criticality model had considerable success
in reproducing the measured behavior, as well as in making
rather bold predictions about strain and isotope effects that
were subsequently verified experimentally [84–87]. An im-
portant difference is that SrTiO3 has a superconducting dome
as a function of doping, whereas in WO3 an analogous picture
would have the left side of the dome cut off due to the absence
of superconductivity in the α2 phase. If this mechanism is
relevant in WO3, a large and anomalous oxygen isotope effect
on Tc should be observed.

Second, we note that electronic carriers in doped WO3

have been shown, using optical absorption, conductivity
and electron spin-resonance data, to form both polarons—in
some cases in combination with free carriers [88–90]—and
bipolarons [91,92]. While it was speculated that bipolarons
could be responsible for the high temperature surface su-
perconductivity in HxWO3 [19], their role in mediating
superconductivity in tungsten-based oxides was subsequently
largely neglected until a recent measurement of sheet super-
conductivity in the shear planes of the WO2.90 Magneli phase
[93]. The remarkably high reported Tc of 80 K in this system
was attributed to W5+-W5+ bipolarons, which were identi-
fied using electron paramagnetic resonance. A recent density
functional study of self-trapped polarons in WO3 succeeded in
capturing a polaronic state, with substantial lattice distortions,
in the simulations [94], although the polaron was at higher
energy than the delocalized electron. The role of electron lo-
calization and its coupling to the lattice is clearly an important
area for future study [71].

C. From bulk to sheet superconductivity

To link our bulk WO3 results to the sheet superconductivity
reported at the WO3 β domain walls [20,21], we revisit the β

domain walls that we obtained from Landau-Ginzburg theory
and our density functional calculations. We can make three
main inferences. First, from both studies we see that it is lower
energy for electronic charge to be at the domain than in the
surrounding β bulk structure leading to local charge accu-
mulation at the walls. Second, this local increase in charge
induces a local transition to the tetragonal bulk α1 phase in
the domain walls. And third, the additional charge, combined
with the presence of the α1 phase, leads to strong enough
electron-phonon coupling to enable superconductivity in the
domain walls.

Many of the samples in which domain wall supercon-
ductivity was measured showed a stripe pattern of parallel
ferroelastic domain walls of only one type (see, for example,
Ref. [21]). Since similar samples were characterized in detail
and shown to consist of β domain walls [23], it is likely that
the superconducting samples contained only β domain walls.
Whether γ domain walls are also superconducting, and if so

by what mechanism, is an interesting open question for future
study.

VI. CONCLUSION

In this work, we calculated the structure and properties
of the ferroelastic domain walls within the β phase of WO3,
using a combination of first-principles density functional cal-
culations and Landau-Ginzburg theory. We showed that the
ferroelastic β domain walls have mixed Néel and Ising char-
acter, and found that free electronic charge preferentially
accumulates at the domain walls. We showed that this accu-
mulation of charge leads to a broadening of the walls and
an increase in their Ising character, as well as a change in
the atomic structure within the domain wall structure to the
α1(P4/nmm) phase. This latter phase is known to be the
superconducting phase in doped WO3, suggesting that the do-
main wall superconductivity is a consequence of the combined
electron accumulation and local structural change at the walls.

To investigate further this possible link between domain
wall and bulk superconductivity, we performed electron-
phonon calculations based on DFT to calculate the Tc as a
function of doping in the bulk α1 phase at the BCS-theory
level. Our calculated values were comparable in magnitude
to the measured values (�2 K) and showed the same trend
of decrease in Tc with increasing doping. The evolution of
Tc with doping correlated with a reduction in the electron-
phonon coupling, with the largest contribution coming from
high frequency phonons above approximately 600 cm−1.

Our calculations suggest that the superconductivity at the
domain walls in WO3 results from the combined accumulation
of charge at the walls and the structural changes at the domain
walls that are induced by the presence of the carriers.

Data and data analysis presented in this work can be found
in Ref. [95].

ACKNOWLEDGMENTS

This work was supported by by the Körber Foundation and
the ETH Zürich. Calculations were performed at the Swiss
National Supercomputing Centre (CSCS) under project IDs
s889 and eth3 and on the EULER cluster of ETH Zürich. A.N.
acknowledges support from the start-up grant at the Indian
Institute of Science (Grant No. SG/MHRD-19-0001). We ac-
knowledge helpful discussions with E. Bousquet who made us
aware of the ill-defined pressures in charged unit cells in DFT
implementations, and we thank E.K.H. Salje for helpful input
on the manuscript.

APPENDIX A: ANALYTICAL SOLUTIONS OF DOMAIN
WALL PROFILES

Using the Landau-Ginzburg free energy density expres-
sion, one can calculate domain wall profiles by minimizing
the free energy density with appropriate boundary conditions.
For a 2D order parameter, in general, we can have two types
of domain walls, Néel-type (order parameter rotates along the
wall) and Ising-type (order parameter vanishes on the domain
wall). These two limiting cases can be calculated analytically
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for a simple Landau theory of the form:

F = a

2

(
q2

1 + q2
2

) + b

4

(
q2

1 + q2
2

)2 + d

2
q2

1q2
2

+ s

2
[(∇q1)2 + (∇q2)2]. (A1)

1. Néel wall

For ease of calculation, we parametrize q1 and q2 with
polar coordinates {Q, φ}. For a fixed amplitude Q0, we con-
struct the Euler-Lagrange equation (2) with respect to φ(z)
and obtain the following equation:

∇2φ(z) = dQ2
0

4s
sin[4φ(z)]. (A2)

Using the boundary conditions Q(−∞) = −Q0 and
Q(∞) = Q0, equation (A2) is solved by a stationary Sine-
Gordon equation and its solution is given by

φ(z) = arctan [exp(z/ξ )], (A3)

ξ =
√

s

dQ2
0

, (A4)

with ξ considered to be half the domain wall width.

2. Ising wall

The other possible domain wall for a 2D order parameter
is the Ising-type wall, in which the order parameter ampli-
tude vanishes in the middle of the wall. (Note that for 1D
irreps, this is the only possibility.) For such a wall, the Euler-
Lagrange equation has the form

∇2Q(z) = a

2
Q(z) + b

4
Q(z)3, (A5)

where the sixth-order Landau term has been omitted, so that
we can exploit the known solutions of the fourth-order equa-
tion. These solutions are

Q(z) = Q0tanh

[
z√
2ξ

]
, (A6)

Q0 =
√

−a

b
, (A7)

ξ =
√

− s

a
. (A8)

3. General domain wall profile

In reality, a structural domain wall with 2D order parameter
will be a mixture of Néel- and Ising types, and its profile can
be obtained by solving both (A2) and (A5) simultaneously.
This problem can likely not be solved analytically.

APPENDIX B: DETERMINATION OF THE
GRADIENT PARAMETER

To calculate the gradient parameters we followed the pro-
cedure outlined by Artyukhin et al in Ref. [96]. Consider any

order parameter Q described by the eigendisplacement ηQ(q)
of a force constant mode corresponding to a wave vector q. Q
is then given by an eigenvector of the force constant matrix

Q(r) = ηQ(q)eiqr. (B1)

The gradient energy term in q space associated with the
parameter sQ can then be written as

fG(q) = sQ(∇Q)2 = sQq 2|ηQ|2 , (B2)

which equals 0 if q = 0. Therefore it is possible to determine
sQ for some direction of q by calculating the energies of
supercells with distortions described by Eq. (B1) with various
magnitudes of qs frozen in along this direction.

A more feasible approach is to determine sQ from the force
constant dispersion. The Hessian of the gradient energy for all
modes ηq of q is equal to the force constant matrix in q-space
C(q) within the harmonic approximation:

∂2 fG

∂η2
q

(q) = sqq 2 = C(q). (B3)

Consequently, the eigenvalues of the Hessian in expression
(B3) are the eigenvalues of the force constant matrix and we
can determine all gradient parameters of modes with wave
vector q by expanding the Hessian in (B3) around q = 0:

sq = 1

2

∂2C(q)

∂q 2

∣∣∣
q=0

. (B4)

The gradient parameter corresponding to the mode ηQ is
then given by the eigenvalue of expression (B4) corresponding
to the mode ηQ:

sQ = 〈ηQ|sq|ηQ〉. (B5)

APPENDIX C:
EXCHANGE-CORRELATION-FUNCTIONAL SUITABILITY

FOR THE DESCRIPTION OF THE β TO γ TRANSITION

As mentioned in the main text, both LDA and GGA
(PBEsol) exchange-correlation functionals yielded almost
identical energies for the β and γ phases, even though the
structural relaxations yielded distinct structures. This was the
case for both QUANTUM ESPRESSO and VASP calculations.
Consequences of the small energy difference between the two
phases were a negligible Landau parameter a, which [consis-
tent with Eq. (A8)] led to unreasonably large widths for the
γ domain walls, and erratic behavior in the DFT structural
relaxations.

A crude estimate for the Landau parameters can be made
by using the β-γ transition energy obtained with B1-WC
calculations as reported by Hamdi et al. to approximate the
Landau parameters a and b [38]. The condition that the mode
amplitude Q0 in (A7) equals the bulk amplitude of the or-
thorhombic �+

2 mode in the γ phase (experimentally 0.531 Å)
and that the Landau potential in eq. (2) with only the aQ

and bQ terms equals this reported energy difference (F 0
Pbcn-

13 meV/f.u.) at Q0 results in the values for aQ and bQ of
−0.22 meV Å−5 and 0.39 meV Å−7, which are comparable to
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FIG. 13. Initial unrelaxed supercell for the γ domain wall corresponding to a crystallographic (100) plane. The monoclinic γ unit cell
is indicated by the blue box and the ions that were kept fixed during the relaxation by red boxes. The black vectors indicate the cubic
phonon modes and directions that are already present in the β phase; those introduced by the β-γ transition are shown by green vectors. The
orthorhombic �+

2 mode causes a slight monoclinic tilt in one of the directions of the cubic M−
2 and R−

5 modes each of which is illustrated by
circular arrows.

our values for the α2 − β transition Landau potential [26,38].
However, ultimately a final estimation for the Ising domain
wall width cannot be made without the Ginzburg parameter
s and the calculation thereof for the orthorhombic �+

2 mode
does not seem reasonable based upon the poor characteriza-
tion of the γ phase by LDA. A model of the γ domain wall
with the corresponding directions of the relevant modes is
shown in Fig. 13.

APPENDIX D: SUPERCONDUCTING CRITICAL
TEMPERATURE

Once the electron-phonon matrix in Eq. (5) is known, the
phonon linewidth γqν resulting from electron-phonon interac-
tion can be calculated [67,68,80,97–99]. Within the Migdal
approximation the linewidth of a phonon with wave vector
q and branch ν is given as the imaginary component of the
phonon self-energy,

γ ν
q = Im

∑
nm

1

�BZ

∫
BZ

wk

∣∣gν
nm(k, q)

∣∣2

× f (εnk) − f (εmk+q)

εnk − εmk+q − ων
q + iη

dk, (D1)

where wk denotes the weights for the k points, εnk is the
band energy, f (ε) is the associated Fermi occupancy, ων

q is
the phonon frequency and η is a smearing parameter for
allowed transitions. In principle, the latter can be neglected
in calculations where the k and q grids are dense enough.
In such a limit of vanishing smearing, and additionally van-
ishing phonon frequencies, limη,ωqν→0 γqν , one arrives at the
so-called double-delta approximation of the phonon linewidth

γ ν
q = 2πων

q

∑
nm

1

�BZ

∫
BZ

dkwk

∣∣gν
nm(k, q)

∣∣2
δ(εnk)δ(εmk+q),

(D2)
where a smearing may be reintroduced in the two delta
functions. A similar expression as the one for the double-
delta approximation (D2) gives the electron-phonon coupling
strength λν

q for the phonon

λν
q = 1

n(EF )ων
q

1

�BZ

∫
BZ

dk
∣∣gν

nm(k, q)
∣∣2

δ(εnk)δ(εmk+q),

(D3)
where n(EF ) is the DOS at the Fermi energy. Consequently,
the coupling strength in the double-delta approximation is

given as

λν
q = γ ν

q

πn(EF )ων
q

2 . (D4)

Calculating the Brillouin-zone average of the coupling
strength yields the first parameter in the McMillan formula
which is the total coupling strength λ

λ =
∑

ν

1

�BZ

∫
BZ

dqwqλ
ν
q, (D5)

where wq now denotes the weights for the q points. In the
Allen-Dynes formula, λ is evaluated as

λ = 2
∫

dω

ω
α2F (ω), (D6)

where α2F (ω) is the isotropic Eliashberg spectral function,
which in turn is given as

α2F (ω) = 1

2

∑
ν

1

�BZ

∫
BZ

dqwqω
ν
qλ

ν
qδ

(
ω − ων

q

)
. (D7)

The delta function may again be subject to a smearing for
numerical calculations. The remaining characteristic phonon
frequency 〈ω〉, according to Allen and Dynes, is then given as

〈ω〉 = exp

[
2

λ

∫
dω

ω
α2F (ω) ln(ω)

]
. (D8)

APPENDIX E: SUPPLEMENTARY DATA FROM THE
ELECTRON-PHONON CALCULATIONS

In this Appendix we show supplementary data from our
electron-phonon coupling calculations. In Fig. 14, we show
the difference in α2F when including and excluding the soft
phonon branch at q = [1/2, 1/2, 0] in the calculations for the
α1 phase. In Fig. 15, we show for completeness the electronic
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FIG. 14. Eliashberg spectral function α2F as a function of fre-
quency in the low-frequency range for the α1 phase, at a doping
level of x = 0.18 (blue curve), and modified by excluding electron-
phonon couplings around ω = 0, q = [1/2, 1/2, 0] (red curve). The
full range is shown in Fig. 9.

and the phonon bands and line widths for the α2 phase, from
which we calculate a TC of 0.018 K. This is much lower
than the TC we obtained for the α1 phase, as is discussed in
Sec. V A.

FIG. 15. Calculated electronic bands (a), phonon bands and
phonon linewidths (b), phonon density of states and α2F (c) for
x = 0.125 additional electrons per f.u. in the α2 phase. The phonon
linewidths are shown as vertical red bars in the phonon plots and
they are scaled by a factor of 10 for visibility. Occupied states in the
electron band structure are shown in red, unoccupied states in blue.
Horizontal line at zero denotes the Fermi level.
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