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Rényi entanglement entropy of Fermi and non-Fermi liquids:
Sachdev-Ye-Kitaev model and dynamical mean field theories
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We present a method for calculating Rényi entanglement entropies for fermionic field theories originating from
microscopic Hamiltonians. The method builds on an operator identity, which leads to the representation of traces
of operator products, and thus Rényi entropies of a subsystem, in terms of fermionic-displacement operators.
This allows for a very transparent path-integral formulation, both in and out of equilibrium, having a simple
boundary condition on the fermionic fields. The method is validated by reproducing well-known expressions
for entanglement entropy in terms of the correlation matrix for noninteracting fermions. We demonstrate the
effectiveness of the method by explicitly formulating the field theory for Rényi entropy in a few zero- and higher
dimensional large-N interacting models akin to the Sachdev-Ye-Kitaev (SYK) model and for the Hubbard model
within the dynamical mean field theory (DMFT) approximation. We use the formulation to compute Rényi
entanglement entropy of interacting Fermi liquid (FL) and non-Fermi liquid (NFL) states in the large-N models
and compare the results successfully with those obtained via exact diagonalization for finite N . We elucidate
the connection between Rényi entanglement entropy and residual entropy of the NFL ground state in the SYK
model and extract sharp signatures of quantum phase transition in the entanglement entropy across an NFL to
FL transition. Furthermore, we employ the method to obtain nontrivial system-size scaling of entanglement in
an interacting diffusive metal described by a chain of SYK dots.
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I. INTRODUCTION

Quantum entanglement has emerged as a major tool to
characterize quantum phases and phase transitions [1–6] and
to distill the fundamental quantum mechanical nature of non-
trivial many-body states, e.g., those with topological order
that is otherwise hard to quantify [7,8]. Recent developments
in condensed-matter and high-energy physics have revealed
beautiful connections among entanglement, thermalization,
and dynamics, leading to classification of dynamical phases
of interacting quantum systems into thermal and many-body
localized (MBL) phases [9–11]. Quantum entanglement is
quantified in terms of properties of the reduced density matrix,
ρA = TrBρ, of a system with density matrix ρ and divided,
e.g., into subsystems A and B, where TrB is the partial trace
over the degrees of freedom of B. Typical entanglement mea-
sures constructed out of ρA for a pure state are von Neumann
and Rényi entanglement entropies. The latter can be used to
compute useful measures [12–16] for entanglement even in a
thermal mixed state.
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However, calculation of entanglement entropy is much
more challenging than, e.g., that of thermal entropy or usual
correlation functions. Over the past decade, a lot of progress
has been made to obtain entanglement entropy, both nu-
merically and analytically, for noninteracting bosonic and
fermionic systems [3,4,17], and at critical points described by
conformal field theories [1,2]. The latter rely on field-theoretic
techniques using replicas and path integrals, typically in imag-
inary time, with complicated boundary conditions on fields
and associated Green’s function along the time direction
[1–3]. Such methods are often hard to implement for inter-
acting systems. Hence, computation of entanglement entropy
for interacting systems are only limited to small systems using
exact diagonalization (ED) or for systems like those without
sign problem accessible via quantum Monte Carlo (QMC)
simulations [18–21].

A promising path-integral approach that circumvents the
use of complicated boundary conditions using the known
relation between reduced density matrix and Wigner charac-
teristic function [22] has been recently proposed for bosonic
systems in Ref. [23]. Motivated by this, here we develop a
field-theoretic method to compute Rényi entanglement en-
tropy for fermions. A similar field-theoetic formalism for
fermions has been developed independently by Moitra and
Sensarma [24]. To this end, we derive different representa-
tions of an operator and traces of product of operators in
terms of fermionic displacement operators [25]. The repre-
sentations allow us to develop a very transparent fermionic
coherent-state path-integral method with simple boundary
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condition to compute Rényi entropies of a subregion of the
system in terms of a fermionic version of the Wigner char-
acteristic function. The formalism can equally be applied to
calculate subsystem Rényi entropy for thermal equilibrium
state via imaginary-time path integral or nonequilibrium time
evolution described via Schwinger-Keldysh field theory. The
approach naturally transcends the effect of boundary condi-
tion into time-dependent self-energy, which acts like a kick at
a particular time. We show that the method immediately re-
produces the known expressions for von Neumann and Rényi
entanglement entropies for noninteracting fermions. The ef-
fect of the time-dependent self-energy can be implemented
for interacting systems treated within standard perturbative
and nonperturbative field-theoretic approximation and dia-
grammatic continuous-time Monte Carlo simulation [26]. We
elucidate this by deriving the subsystem second Rényi en-
tropy within two well-known approaches to treat correlated
fermions: (a) strongly interacting large-N fermionic models
based on Sachdev-Ye-Kitaev model [27,28] and (b) dynamical
mean-field theory (DMFT) [29].

In the other major part of the paper, we explicitly demon-
strate the utility of the method by computing the second Rényi
entropy (S(2)) for subsystems in several large-N model in
thermal equilibrium: (i) zero-dimensional SYK model having
infinite-range random four-fermion or two-body interaction
with a non-Fermi liquid (NFL) ground state, (ii) SYK model
with additional quadratic hopping between fermions having a
Fermi liquid (FL) ground state, (iii) a generalized SYK model,
the Banerjee-Altman (BA) model [30], having quantum phase
transition (QPT) between SYK NFL and FL, and (iv) an
extended system, a chain of SYK dots [31,32], describing an
interacting diffusive metal. We compute the subsystem Rényi
entropy at the large-N saddle point as a function of subsystem
size for the thermal density matrix at a temperature T and
extrapolate to T → 0 to obtain ground-state Rényi entangle-
ment entropy. In all the above cases except (iii), we compare
and contrast the results for the interacting systems with a
corresponding noninteracting system where the SYK inter-
action is replaced by infinite-range random hopping. For the
noninteracting models, we numerically calculate the second
Rényi entropy by numerical diagonalization for moderately
large systems and compare with large-N field theoretic re-
sults. Moreover, we also compute subsystem Rényi entropy
via exact diagonalization (ED) of many-body Hamiltonian for
small N ≈ 8–16 for the interacting zero-dimensional models.
We obtain the following important results using our method
for the large-N models:

(1) We show that for the SYK model, in the N → ∞ limit,
the zero-temperature residual entropy [27,33–35] of the SYK
NFL contributes to the T = 0 subsystem Rényi entropy, thus
making it difficult to recover the true quantum entanglement
of the NFL ground state starting from a thermal ensemble.
Moreover, consistent with our numerical results, we analyti-
cally prove that the SYK model is maximally entangled when
the relative size of the subsystem p → 0.

(2) We demonstrate how the T → 0 bipartite Rényi entan-
glement entropy crosses over from a NFL to a FL as function
of the strength of hopping in the SYK model with random
quadratic term. The results show that heavy FL are much more
entangled than weakly or noninteracting FL.

(3) In the BA model with a NFL-FL transition, we establish
a precise connection between subsystem Rényi entropy and
the residual entropy of the NFL and show that the Rényi
entropy also carries sharp signature of the underlying QPT,
like the residual entropy [30].

(4) In the extended one-dimensional (1D) model of SYK
dots, we compute Rényi entanglement entropy of a subsystem
of length l . We find a crossover from S(2) ∼ ln l to S(2) ∼
ln[1/(l−2 + l−2

0 )1/2] with increasing l where the ln l behavior,
expected for gapless fermions, gets cut off by an emergent
mean-free path l0 in an interacting diffusive metal.

The paper is organized as follows. In Sec. II A, we derive
the operator identities that form the basis of our formalism and
discuss the connections of these identities with Rényi entropy
of a subsystem. The general formulation for the equilibrium
and nonequilibrium path integrals to compute the Rényi en-
tropy is discussed in Sec. II B. Section II C describes the
application of the field-theory formalism to derive well-known
formulas for Rényi entropy of noninteracting fermions. In
Secs. II D and II E, we develop the field theory for Rényi en-
tropy in several interacting large-N models based on the SYK
model and in the Hubbard model within DMFT approxima-
tion, respectively. We describe our analytical and numerical
results for Rényi entropy in the large-N models and com-
pare the large-N results with those obtained from numerical
exact diagonalization in Sec. III. Additional details of the
derivations of the operator identities, path-integral formula-
tions, and their analytical and numerical implementations in
various models for computing Rényi entropies are given in
the Appendixes.

II. COHERENT STATE-PATH INTEGRAL FORMALISM
FOR FERMIONS IN AND OUT OF EQUILIBRIUM

A. Subsystem Rényi entropy, displacement
operator, and trace formula

In this section, we consider a system with fermionic de-
grees of freedom and derive a useful expansion of an arbitrary
operator in terms of the so-called fermionic displacement
operator [25] and show that the expansion can be used to
represent Rényi entropies of a subregion of the system. A sim-
ilar representation of Rényi entropy has been independently
developed by Moitra and Sensarma [24]. The Rényi entropy of
a quantum system described by a density matrix ρ is obtained
by dividing the system into two parts A and B (not necessarily
equal) and defining a reduced density matrix,

ρA = TrBρ, (1)

for region A. If ρ represents a pure state, then a measure of
the quantum entanglement of region A with B can be obtained
by evaluating the von Neumann entropy SA = −TrA[ρA ln ρA]
by tracing over the degrees of freedom in A. In practice,
however, the von Neumann entropy is often hard to calculate
directly within field theoretic methods, and a more convenient
measure of entanglement [1–4] is the nth Rényi entropy, S(n)

A ,
defined as

S(n)
A = 1

1 − n
ln TrA

[
ρn

A

]
, (2)
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where the integer n > 1. The von Neumann entanglement
entropy can be obtained by analytically continuing to n → 1.
We refer to the above subsystem Rényi entropy throughout the
paper simply as Rényi entropy for brevity.

The main difficulty in evaluating the above comes from the
representation of TrA[ρn

A] = TrA[(TrBρ)(TrBρ) . . . (TrBρ)] in
a coherent-state path integral, since each factor of TrBρ leads
to separate replicas which need to be connected via appropri-
ate boundary condition when represented through Grassmann
variables [1,3]. To circumvent this difficulty, we derive the fol-
lowing operator expansion (see Appendix A) for an arbitrary
operator F ,

F =
∫

d2(ξ, η) fN (η, ξ)Tr[FDN (ξ)]DN (η), (3)

where ξ ≡ {ξ̄i, ξi} and η ≡ {η̄i, ηi} denote set of Grassmann
variables with index i = 1, . . . , NA, e.g., referring to a set
of sites that includes the support of the operator F on the
lattice; d2(ξ, η) =∏i d ξ̄idξid η̄idηi. Here the weight function
fN (ξ, η) is given by

fN (η, ξ) =2NA exp

[
−1

2

∑
i

(η̄iηi + ξ̄iξi − η̄iξi + ξ̄iηi )

]
. (4)

The basis of above expansion in Eq. (3) is formed by the
fermionic displacement operators [25], much like more fa-
miliar bosonic counterparts [22], defined as

D(ξ) = exp

[∑
i

(c†
i ξi − ξ̄ici )

]
, (5)

where c†
i , ci are the creation and annihilation operators on

site i. The displacement operator generates the coherent state
[25] |ξ 〉 = D(ξ)|0〉 by shifting the vacuum state |0〉 such that
ci|ξ 〉 = ξi|ξ 〉. The displacement operator DN (ξ) that appears
in Eq. (3) is normal ordered,

DN (ξ) = exp

[∑
i

c†
i ξi

]
exp

[
−
∑

i

ξ̄ici

]

= D(ξ) exp

[
1

2

∑
i

ξ̄iξi

]
, (6)

and more conveniently used in the path-integral representation
discussed in the next section.

Equation (3) offers a way to decompose a general opera-
tor F using only the normal-ordered displacement operators
DN (ξ) and is one of the key results of this paper. An important
corollary to the decomposition identity of Eq. (3) is to express
the trace of the product of operators F and G as

Tr[FG] =
∫

d2(ξ, η) fN (ξ, η)Tr[FDN (ξ)]Tr[GDN (η)]. (7)

To derive the above, we have used the identities
Tr[DN (η)G] = Tr[GDN (−η)] and fN (−η, ξ) = fN (ξ, η)
(see Appendix A). Equation (7) is the second key result
of this paper and is crucial for deriving a path-integral
representation for evaluating Rényi entropy as we discuss
in the next section. We could also make the operator
expansion F = ∫ d2(ξ, η) f (η, ξ)Tr[FD(ξ)]D(η) and obtain

the corresponding trace formula similar to Eq. (7), in terms
of the displacement operator D(ξ) and weight function
f (η, ξ) = 2NA exp[

∑
i(η̄iξi − ξ̄iηi )/2].

Using the trace formula [Eq. (7)], the second-Rényi en-
tropy, S(2)

A , can be conveniently expressed as

e−S(2)
A = TrA[ρAρA]

=
∫

d2(ξ, η) fN (ξ, η)TrA[ρADN (ξ)]TrA[ρADN (η)]. (8)

In the above, ξ ≡ {ξ̄i, ξi}i∈A (and similarly for η); i.e., the
displacements operators above only involve the fermionic op-
erators in the region A. As a result, we have

TrA[ρADN (ξ)] = Tr[ρDN (ξ ∈ A)]; (9)

i.e., the expectation value of the operator D(ξ) evaluated for
the reduced system is same as that obtained using the full
density matrix. Equation (9), therefore, eliminates the need
to calculate the reduced density matrix ρA. The evaluation of
ρA is a difficult step for calculating entanglement entropy, as
mentioned earlier. To proceed further, we define the normal-
ordered fermionic Wigner characteristic function [22,25] for
the density matrix,

χN (ξ) = Tr[ρDN (ξ ∈ A)], (10)

and arrive at the final expression for the second-Rényi entropy
for region A:

e−S(2)
A =

∫
ξ,η∈A

d2(ξ, η) fN (ξ, η)χN (ξ)χN (η). (11)

We also sometime use an analogous expression written in
terms of D(ξ) by replacing DN (ξ) and the function fN (ξ, η)
by f (ξ, η). This leads to the usual fermionic characteristic
function [25],

χ (ξ) = Tr[ρD(ξ ∈ A)]. (12)

The higher order Rényi entropies, S(n>2)
A , can be found in a

similar manner by repeated application of the trace identity
in Eq. (7). In fact, as we show in Sec. II C, a hierarchy for
higher order Rényi entropies can be derived that recursively
expresses the characteristic function of higher moments of the
reduced density matrix ρA in terms of the lower order ones.

B. Equilibrium and nonequilibrium field
theories for Rényi entropy

A path-integral representation of the characteristic func-
tion, χN (ξ), will naturally lead to a similar representation
for the second Rényi entropy of region A through Eq. (11).
Therefore, we first derive the path integral for χN (ξ) for (a)
thermal density matrix describing a system in equilibrium,
and (b) time-evolving density matrix subjected to a general
time-dependent Hamiltonian, e.g., describing a quench.

1. Path integral for thermal equilibrium

The density matrix for a system described by a Hamilto-
nian H under thermal equilibrium is given by

ρ = Z−1 exp[−βH], (13)
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with the partition function

Z = Tr[exp (−βH )] (14)

and inverse temperature β = 1/T (kB = 1). Inserting the iden-
tity operator

∫
d2c|c〉〈c| = I in the coherent state basis, we get

χN (ξ) = Z−1
∫ 1∏

n=0

d2cn〈−c0|e−βH |c1〉〈c1|DN (ξ)|c0〉, (15)

with d2cn =∏i dc̄indcin.

Using Eq. (6), the matrix element for the displacement
operator is easily evaluated as

〈c1|DN (ξ)|c0〉 = exp

(∑
i∈A

c̄i,1ξi − ξ̄ici,0

)
〈c1|c0〉. (16)

Finally, following the standard methodology [36] of
fermionic coherent state, e.g., evaluating 〈 − c0|e−βH |c1〉 via
Trotter decomposition β = Nτ�τ and taking the continuum
limit Nτ → ∞,�τ → 0, we get

χN (ξ) = Z−1
∫

D(c̄, c) exp

[
−
∫ β

0
dτ

{∑
i

c̄i(τ )∂τ ci(τ ) + H (c̄i(τ ), ci(τ )) −
∑
i∈A

c̄i(τ )δ(τ+)ξi +
∑
i∈A

ξ̄iδ(τ )ci(τ )

}]
, (17)

as the path-integral representation of the characteristic func-
tion. The above equation offers a significant advantage over
the usual field-theoretic formalism [1–3] used to compute
Rényi entropy. The imaginary-time boundary condition for
the Grassmann fields ci(τ ) and c̄i(τ ) are still antiperiodic, i.e.,
ci(τ + β ) = −ci(τ ), irrespective of whether i belongs to the
region A. Instead, the distinction between subsystem A and the
rest of the system is encoded by the auxiliary fields ξ which
only couple with the fields ci(τ ) and c̄i(τ ) for i ∈ A. Under
time discretization, relevant for the numerical implementation
discussed later, we have

c̄i(τ )∂τ ci(τ ) = c̄i,n
(ci,n − ci,n−1)

�τ

δ(τ+) = 1

�τ
δn,1, δ(τ ) = 1

�τ
δ0,n, (18)

where n denotes the nth time index.

2. Path integral for nonequilibrium evolution

The density matrix, at a time t , evolving under a time-
dependent Hamiltonian H (t ) is given by

ρ(t ) = U (t, t0)ρ0U (t0, t ), (19)

where ρ0 is the initial density matrix at time t0. The operator
U (t1, t2) is the unitary evolution operator associated with the
Hamiltonian H (t ) and defined as

U (t1, t2) =
{

T
[
exp
(−i

∫ t2
t1

dt H (t )
)]

t1 � t2

T̃
[
exp
(−i

∫ t2
t1

dt H (t )
)]

t1 < t2
, (20)

where T and T̃ are the time-ordering and anti-time-ordering
operators respectively. We use Schwinger-Keldysh closed
time-contour formalism [37,38] to obtain a path-integral rep-
resentation for the Rényi entropy, e.g., S(2)(t ), which is now
time dependent and given by

e−S(2)
A (t ) =

∫
ξ,η∈A

d2(ξ, η) fN (ξ, η)χN (ξ, t )χN (η, t ). (21)

Here we have rewritten the trace identity [Eq. (7)] (see Ap-
pendix A) to define the time-dependent characteristic function

as

χN (ξ, t ) = Tr[DN (ξ)ρ(t )] = Tr[U (t0, t )DN (ξ)U (t, t0)ρ0],
(22)

for the sake of convenience in constructing the path-integral
representation.

As in the standard Schwinger-Keldysh closed-time contour
formalism [37,38], the last line in Eq. (22) may be interpreted,
from right to left, as starting from an initial density matrix
ρ0, evolving forward in time [represented by + branch in
Fig. 1(a)] by U (t, t0) from t0 to t , applying fermionic source
fields ξ in region A, through DN (ξ), at time t and then go-
ing back to t0 via the backward time-evolution [− branch in
Fig. 1(a)] U (t0, t ). We refer to the closed-time contour with
the symbol C and use a contour variable z, which takes values
(t,+), (t,−) at time t for the +, − branches. As done often
in the Schwinger-Keldysh formalism, the contour is extended
to +∞ [see Fig. 1]. We incorporate this contour extension in
our expression for the characteristic function:

χN (ξ, t ) = Tr[U (t0, t )U (t,∞)U (∞, t )DN (ξ)U (t, t0)ρ0].
(23)

Again following standard route [36,37], as in the thermal
equilibrium case, we obtain a path-integral representation for

FIG. 1. Closed time contours (CTCs): (a) The Schwinger-
Keldysh contour, for an arbitrary initial density matrix ρ0, starting
at time t0 extending to +∞ and returning back to t0. The two
branches represent the forward (+) and backward (−) evolution of
time respectively. (b) The modified contour for an initial density
matrix picked from a thermal ensemble, i.e., ρ0 ∼ exp(−βH ). The
exp(−βH ) term is incorporated into the contour as an evolution
in imaginary time, represented by the additional vertical branch of
length β.
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χN (ξ, t ), in terms of the entanglement Keldysh action:

SC =
∫
C

dz

[∑
i

c̄i(z)i∂zci(z) − H (c̄(z), c(z))

]

− i
∫
C

dz
∑
i∈A

[c̄i(z)δC (z, (t+,+))ξi

− ξ̄iδC (z, (t,+))ci(z)], (24)

such that

χN (ξ, t ) =
∫

D(c̄, c)eiSC 〈ci(0,+)|ρ0| − ci(0,−)〉. (25)

Here δC (z, z1) is the Dirac δ function on C and takes into
account both the time argument and the branch index (±). The
coherent-state matrix element of the initial density matrix,
〈ci(0,+)|ρ0| − ci(0,−)〉 in Eq. (25), encodes the information
of the initial state at starting time t0. For a thermal initial state,
one can add an additional branch to C and redefine it as

C = [t0 + iβ, t0) ∪ [t0,+∞) ∪ (+∞, t0]; (26)

i.e., the contour is now composed of a vertical imaginary-time
branch of length β and the usual + and − branches, as shown
in Fig. 1(b). The form of the action SC remains exactly the

same as given in Eq. (24) such that

χN (ξ, t ) = Z−1
0

∫
D(c̄, c)eiSC

, (27)

where Z0 is the partition function for the initial thermal state
described by ρ0. We emphasize here that the Hamiltonian de-
scribing the ρ0 and the one dictating the unitary evolution [see
Eq. (20)] do not need to be same, e.g., in a quench [39–42].
This distinction is incorporated by choosing the appropriate
Hamiltonian in Eq. (24) for the imaginary-time and real-time
branches.

In the next section, we show that the equilibrium and
nonequilibrium coherent-state path integrals can be used im-
mediately to obtain well-known expressions for Rényi and
von Neumann entanglement entropies in terms of the corre-
lation matrix [3].

C. Rényi entropies for noninteracting fermions

We consider a noninteracting system described by the ther-
mal density matrix

ρ = exp

[
−β
∑

i j

ti jc
†
i c j

]/
Z, (28)

where Z = Tr exp [−β
∑

i j ti jc
†
i c j] is the partition function.

Using Eq. (17), the normal-ordered characteristic function in
this case is given by

χN (ξ) = Z−1
∫

D(c̄, c) exp

[
−
∫ β

0
dτ

{∑
i j

c̄i(τ )(δi j∂τ + ti j )c j (τ ) −
∑
i∈A

c̄i(τ )δ(τ+)ξi +
∑
i∈A

ξ̄iδ(τ )ci(τ )

}]
. (29)

The Gaussian structure of the fermionic integral allows us to
integrate the fermions to give

χN (ξ) = exp

[
−
∫

dτ1,2

∑
i j

ξ̄iδ(τ1)(−G)i j (τ1, τ2)δ(τ+
2 )ξ j

]
,

(30)

where the matrix G, is the Green’s function and is defined as
the imaginary-time-ordered two point correlator

Gi j (τ1, τ2) = − 〈Tτ ci(τ1)c†
j (τ2)〉

=
{

−〈ci(τ1)c†
j (τ2)〉 τ1 > τ2

+〈c†
j (τ2)ci(τ1)〉 τ1 < τ2

(31)

and can be calculated using

(−G−1)i j (τ1, τ2) = (δi j∂τ + ti j )δ(τ1 − τ2). (32)

However, because of the δ functions in Eq. (30), we need to
evaluate only Gi j (0, 0+). This allows us to define a correlation
matrix [3] Ci j , as follows:

CT
i j = Cji ≡ Gi j (0, 0+) = 〈c†

j ci〉 = Tr[ρc†
j ci], (33)

where CT is transpose of the matrix C. Therefore, the char-
acteristic functions for an arbitrary noninteracting system are

given by

χN (ξ) = exp

[∑
i j∈A

ξ̄iC
T
i jξ j

]
, (34)

χ (ξ) = exp

[∑
i j∈A

ξ̄iC
T
i jξ j − 1

2

∑
i∈A

ξ̄iξi

]
. (35)

The Gaussian structure of the characteristic function is a direct
consequence of the underlying noninteracting Hamiltonian.
Using Eq. (11) and the characteristic function above, the
second Rényi entropy can be immediately evaluated by inte-
grating out the auxiliary Grassmann variables ξ and η to get
the well-known expression [3] for noninteracting fermions,

S(2) = −Tr ln[(1 − C)2 + C2], (36)

where 1 is a NA × NA identity matrix and only the elements
Ci j of the correlation matrix [see Eq. (33)] with i, j ∈ A are
involved in the above expression. In fact, the Gaussian form of
the characteristic functions allows us to derive the expression
for the higher Rényi entropies as well. To this end, we first
define the higher order generalization of the characteristic
function [see Eq. (10)]

χn(ξ) = TrA[ρn
AD(ξ ∈ A)]. (37)
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A recursion relation of the form

χn+1(α) = 1

2NA

∫
d2(ξ, η) f (ξ, η) f (η,α)χn(ξ)χ1(α + η),

(38)

with χn=1 = χ , can then be derived (see Appendix B 1), which
obtains higher order χ from lower ones. As alluded earlier, we
use a Gaussian ansatz of the form

χn(α) = λn exp[ᾱT Anα], (39)

where α = [α1 . . . αNA ]T and An is a NA × NA complex ma-
trix, to solve the recursion. The ansatz is consistent with the
expression for χ obtained in Eq. (35), provided we set

A1 = A = CT − 1/2, (40)

λ1 = λ = 1. (41)

The ansatz lets us simplify the recursion (see Appendix B 2)
and derive recursions involving λn and An, i.e.,

λn+1 = det[2AnA + 1/2]λn,

An+1 = (A + An)(1 + 4AAn)−1. (42)

The last equation can be rearranged (see Appendix B 2) into

Xn+1 = 1 + CT (CT − 1)Xn
−1, (43)

with Xn defined as

Xn = 2AnA + 1
2 . (44)

We find the following

Xn = [(1 − CT )n + (CT )
n
][(1 − CT )n−1 + (CT )

n−1
]−1 (45)

solves Eq. (43); see Appendix B 3. The nth Rényi entropy is
obtained by evaluating λn, since

χn(α = 0) = TrA[(ρA)nD(α = 0)] = TrA[(ρA)n] = λn, (46)

and Eq. (2) implies

S(n)
A = 1

1 − n
ln TrA[(ρA)n] = 1

1 − n
ln λn. (47)

From the recursion for λn in Eq. (42), and Eq. (44), we see
that

λn = det(Xn)λn−1 = det(XnXn−1 . . . X1). (48)

Looking at the structure of Xn in Eq. (45), we find that the
inverse in Xn cancels with the noninverse term in Xn−1, and so
forth, leaving at the end

TrA
[
ρn

A

] = λn = det[(1 − CT )n + (CT )
n
]

= det[(1 − C)n + Cn], (49)

from which we find the nth Rényi entropy to be

S(n)
A = 1

1 − n
Tr[ ln[(1 − C)n + Cn]], (50)

in agreement with the known results [3]. Taking the limit
n → 1 above, we get the subsystem von Neumann entropy,
SEE = −Tr[(1 − C) ln(1 − C) + C ln C].

As shown in Appendix C, in the nonequilibrium case, using
the Schwinger-Keldysh path integral, discussed in Sec. II B 2,
we obtain the same expression for the n, the Rényi entropy

S(n)
A (t ), as given in Eq. (50) with a time-dependent correlation

matrix

Ci j (t ) = Tr[ρ(t )c†
i c j]. (51)

Here ρ(t ) is the density matrix at time t .
Having reproduced the results for noninteracting fermionic

systems, we now seek to set up the field theory for Rényi
entropy in some well-known models for interacting fermions
in the next sections. We discuss the formulation for two types
of systems, large-N fermionic models based on the SYK
model [27,28] and a repulsive Hubbard model treated within
single-site DMFT [29].

D. Rényi entropy for SYK and related models

SYK model [27,28] and its various extensions [30,32,43–
49] have emerged in recent years as a major paradigm to study
phases of strongly interacting fermions, e.g., NFL, marginal
and heavy Fermi liquids, strong-coupling superconductivity
[32,46–51], and quantum phase transitions [30,48,49,52,53].
Remarkably, these models can be solved exactly in a suitable
large-N limit, without resorting to any kind of perturbative
treatment. As a result, the study of this family of large-N
fermionic model has given insights into transport [32,43–
47], thermalization [54–62], many-body chaos [27,30,34], and
entanglement [43,63–67] in strongly interacting fermionic
systems, as well as their intriguing connections with black
holes [27,28,35]. Here we use the path-integral technique of
Sec. II B to formulate the field theory for the second Rényi
entropy for the SYK model and its various generalizations
discussed below.

1. SYK model for non-Fermi liquid state

The SYK model describes a zero-dimensional system hav-
ing N fermion flavors or sites [see Fig. 2(a)] that interact via an
all-to-all or infinite-range Hamiltonian. To keep the discussion
general, we use the q-body version [35] of the SYK model,
SYKq (typically referred in the literature as SYK2q) described
by the Hamiltonian

HSY Kq =
∑

i1...iq; j1... jq

Ji1...iq; jq ... j1 c†
i1

. . . c†
iq

c jq . . . c j1 , (52)

where Ji1...iq; jq ... j1 are properly antisymmetrized Gaussian ran-
dom numbers with variance J2/qN2q−1(q!)2. Setting q = 2 in
the above Hamiltonian gives back the original SYK model
[27,28]. The ground state for the SYKq model, for q � 2,
has been shown to be a non-Fermi liquid (NFL), lacking
quasiparticle excitations, with a fermion scaling dimension
� = 1/2q [35]. Interestingly, the SYK NFL states possess a
residual zero-temperature thermodynamic entropy S0 in the
limit N → ∞, e.g., S0 ≈ 0.464 for q = 2, which, as we shall
see later, plays a crucial role in the interpretation of the T = 0
Rényi entropy in the large-N limit as well. The q = 1 model
is a special case whose ground state is a noninteracting Fermi
liquid described by a single-particle semicircular density of
states (DOS).
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FIG. 2. Large-N models: (a) The q-body SYK model (SYKq) for
complex fermions shown for q = 2 interactions that scatter a pair of
fermions, e.g., from sites k, l to sites i, j with a random complex
amplitude Ji jkl . (b) Model for a zero-dimensional interacting Fermi
liquid obtained from the SYKq model by adding quadratic (one-
body) hopping terms (represented by dashed lines) on top of the
q-body (q � 2) interactions. (c) The Banerjee-Altman (BA) model
for NFL-FL transition, obtained by joining a noninteracting dot of
peripheral ψ fermions (blue dots joined by lines) to the SYK dot
of c fermions via random hopping amplitudes Viα . (d) A chain of
SYKq dots with periodic boundary conditions (PBC). Each dot is
connected to its nearest neighbors via qhop-body terms, e.g., qhop = 1,
as shown in the enlarged view (below). The highlighted part of the
chain is chosen as the subsystem A for which entanglement entropy
is calculated.

2. SYK model with quadratic hopping term for Fermi liquid state

The SYK model has also been generalized to describe
strongly interacting or heavy Fermi liquids (FL) [32] by
adding a random all-to-all hopping (q = 1) term to Eq. (52),
i.e.,

HFL =
∑

i j

ti jc
†
i c j +

∑
i1...iq; j1... jq

Ji1...iq; jq ... j1 c†
i1

. . . c†
iq

c jq . . . c j1 ,

(53)

where ti j are the Gaussian random numbers with variance
t2
hop/N [see Fig. 2(b)].

3. BA model for non-Fermi liquid to Fermi liquid transition

We also study Rényi entropy in the Banerjee-Altman (BA)
model of Ref. [30], H = Hc + Hψ + Hcψ , where

Hc =
∑
i jkl

Ji jkl c
†
i c†

j ckcl , (54a)

Hψ =
∑
αβ

tαβψ†
αψβ, (54b)

Hcψ (t ) =
∑

iα

(Viαc†
i ψα + V ∗

iαψ†
αci ). (54c)

The above model [see Fig. 2(c)] has two species of fermions:
(1) the SYK fermions (c), on sites i = 1, . . . , Nc, interact-
ing with random coupling Ji jkl [Eq. (54a)] with variance
J2/(2Nc)3/2, and (2) the peripheral fermions (ψ), on a sepa-
rate set of sites α = 1, . . . , Nψ connected via random all-to-all
hopping tαβ [Eq. (54b)]. The SYK and the peripheral fermions
are quadratically coupled via Viα; tαβ and Viα are Gaussian
random variables with variances t2

hop/Nc and V 2/
√

NcNψ , re-
spectively.

The model is exactly solvable for Nc, Nψ → ∞ with a
fixed ratio p = Nψ/Nc, that is varied to go through the QPT
between NFL and FL at a critical value p = pc = 1 [30]. The
residual entropy density S0(p) of the SYK NFL continuously
vanishes at the transition [30].

4. Lattice of SYK dots for interacting diffusive metal

Extension of the above zero-dimensional models to higher
dimensions have also been achieved [31,32,45,47,48]. These
systems typically involve a lattice of SYKq dots, each hav-
ing N fermion flavors, connected to their nearest neighbors
via qhop-body terms and can be described using the general
Hamiltonian

H =
∑

〈xx′〉i1...iq; j1... jq

tx,i1...iq;x′ jq... j1 c†
xi1

. . . c†
xiq

cx′ jq . . . cx′ j1 + H.c.

+
∑

x,i1...iq; j1... jq

Jx,i1...iq; jq ... j1 c†
xi1

. . . c†
xiq

cx jq . . . cx j1 , (55)

where the coordinates x, x′ denote the position of the in-
dividual dot in the lattice or chain and 〈xx′〉 represents the
nearest neighbors [see Fig. 2(d)]. The amplitude txx′ and Jx are
independent Gaussian random numbers with variances having
the same form as that of the coupling J in Eq. (52); q → qhop

and J → tchain for the txx′ amplitudes. Setting qhop = q = 1
produces a noninteracting diffusive metal, while qhop = 1,
q = 2 and qhop = 2, q = 2 result in a diffusive heavy Fermi
liquid [32] or a non-Fermi liquid [43], respectively.

5. Rényi entropy in the thermal state

Here we derive the exact equations to evaluate the Rényi
entropy for all the models of the preceding sections at the
large-N limit in thermal equilibrium. The evaluation of Rényi
entropy for nonequilibrium evolution can be performed using
the Schwinger-Keldysh path integral formalism of Sec. II B 2
and is discussed in Appendix D. In order to access the second
Rényi entropy at zero temperature, we use the thermal den-
sity matrix to perform the analysis and then take the T → 0
limit. The definition for second Rényi entropy [see Eq. (2)]
implies that we need to calculate the disorder averaged
quantity

S(2) = −ln
(
TrA
[
ρ2

A

]) = −ln TrA
[
Z2

A

]+ 2ln Z, (56)
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where · · · represents disorder average over the amplitudes
Ji1...iq; jq ... j1 . We also define the operator ZA = TrB exp(−βH ).
We evaluate each term in Eq. (56) separately. Using the trace
identity [see Eq. (7)] we formally write down TrA[Z2

A] as

TrA
[
Z2

A

] =
∫

d2(ξ, η) fN (ξ, η)Tr[ZDN (ξ)]Tr[ZDN (η)],

(57)

where as before ξ and η couple only to sites in the region A,
and Tr[ZDN (ξ)] is the characteristic function for the partition

function Z . Since we need to evaluate the logarithm of TrA[Z2
A]

[see Eq. (56)], we use the replica trick to express the logarithm
as a product of disorder replicas

ln TrA
[
Z2

A

] = lim
r→0

TrA
[
Z2

A

]r − 1

r
. (58)

The replicas, along with Eq. (57) and the integral represen-
tation in Eq. (17), allow us to write the path integral for the
SYKq model [Eq. (52)]

TrA
[
Z2

A

]r = 2NAr
∫

D(c̄, c)d2(ξ, η) exp

[
−
∫ β

0
dτ

r∑
i,σ,a=1

c̄iσa∂τ ciσa +
∑

i∈A,σ,a

∫ β

0
dτ [δ(τ+)c̄iσa(τ )ξiσa − ξ̄iσaδ(τ )ciσa(τ )]

−
∫ β

0
dτ
∑

i, j,σ,a

Ji1...iq; jq ... j1 c̄i1σa . . . c̄iqσac jqσa . . . c j1σa

]
exp

[
1

2

∑
i∈A,a

(ξ̄iaηia − η̄iaξia − ξ̄iaξia − η̄iaηia)

]
. (59)

The Grassmann fields c̄iσa(τ ), ciσa(τ ), appearing in the path
integral above and representing the fermions in the model,
are labeled by several indices apart from the site indices
i, j = 1, . . . , N—an imaginary-time coordinate τ , a disorder
replica index a = 1, . . . r, and an entanglement replica index
σ = 1, 2. Here ξi1a = ξia and ξi2a = ηia, indicating the Grass-
mann field originates either from the characteristic function
Tr[ZD(ξ)] or Tr[ZD(η)], respectively in Eq. (57). The Grass-
mann variables ξ and η have the same indices as c̄, c except
for the time coordinate τ . The subsystem or the region A in
the zero-dimensional model is defined as any of the NA sites,
e.g., i = 1, . . . , NA, out of the total N sites. Having obtained
the path integral, we now seek to evaluate the integral at the
large-N saddle point, i.e., N → ∞. This limit can be accessed
by taking the disorder average over Ji1...iq; jq ... j1 s and then intro-
ducing the large-N field

Gσ ′b,σa(τ2, τ1) = 1

N

∑
i

c̄iσa(τ1)ciσ ′b(τ2) (60)

and self-energy �σ ′b,σa(τ2, τ1) for the fermions. We point out
that the above analysis closely follows that of the thermal-
field theory of the SYK model. The latter can be found in
Refs. [30,33,43,48,49], to name a few. The end result of in-
troducing large-N fields is an integral of the form

Tr
[
Z2

A

]r =
∫

D(c̄, c, �, G)d2(ξ, η)e−S[c̄,c,ξ,η,�,G], (61)

where the effective action S for the second Rényi entropy is
bilinear in the Grassmann fields c̄, c, ξ, and η, i.e.,

S =
(

−
r∑

i∈A,a=1

[ξ̄ia η̄ia]

[ 1
2 − 1

2
1
2

1
2

][
ξia

ηia

]

+
r∑

i∈A,a=1

∫ β

0
dτδ(τ+)[c̄i1a(τ ) c̄i2a(τ )]

[
ξia

ηia

]

−
r∑

i∈A,a=1

∫ β

0
dτδ(τ )[ξ̄ia η̄ia]

[
ci1a(τ )
ci2a(τ )

])

+ · · · . (62)

The Gaussian structure allows us to integrate the ξ and η

variables, changing the effective action to another bilinear of
c̄ and c,

1

2NAr
exp

⎛
⎜⎜⎜⎝−

∫ ∑
i∈A,a

c̄T
ia(τ1)

[
1 1

−1 1

]
δ(τ+

1 )δ(τ2)︸ ︷︷ ︸
Mσ1σ2 (τ1,τ2 )

cia(τ2)

⎞
⎟⎟⎟⎠,

(63)

where the matrix M is defined as

Mσ1σ2 (τ1, τ2) =
[

1 1
−1 1

]
δ(τ+

1 )δ(τ2), (64)

and cia(τ ) = [ci1a(τ ) ci2a(τ )]T . Interestingly, at this point we
see explicitly, from Eq. (63), how the fields ξ, η extract
the information regarding entanglement. Instead, of intro-
ducing complicated imaginary-time boundary conditions for
fermions in subregion A, the fields alter the self-energy by pro-
viding a time-dependent “kick” to the fermions, while leaving
the fermions outside A untouched. All the fermions can now
be integrated to produce Tr[Z2

A]r = ∫ D(c̄, c, �, G)e−NS[�,G]

and the final effective action

S = −(1 − p) ln det (∂τ + �) − p ln det (∂τ + � + M )

+SG, (65a)

SG = −
r∑

ab

∫
dτ1,2(−1)q J2

2q
Gq

σ ′b,σa(τ2, τ1)Gq
σa,σ ′b(τ1, τ2)

−
r∑

ab

∫
dτ1,2�σa,σ ′b(τ1, τ2)Gσ ′a,σb(τ2, τ1), (65b)

which depends only on the Green’s function G and self-energy
�. Here

∫
dτ1,2 ≡ ∫ β

0 dτ1dτ2. The symbol p denotes the the
ratio of subsystem size to total size, i.e.,

p = NA/N, (66)
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and can take a value from 0 to 1. The symbols ∂τ , �, ap-
pearing above, represents matrices having elements ∂τ1δ(τ1 −
τ2)δσσ ′δab, �σa,σ ′b(τ1, τ2) respectively. We evaluate the action
S at the (disorder) replica diagonal and replica symmetric
saddle point (i.e., �, G ∝ δab) by minimizing with respect to
G and � to get

G = (1 − p)G̃ + pg,

G̃ = −(∂τ + �)−1,

g = −(∂τ + � + M)−1,

�σσ ′ (τ1, τ2) = (−1)q+1J2Gσσ ′ (τ1, τ2)qGσ ′σ (τ2, τ1)q−1, (67)

as the saddle-point conditions. Here G is the matrix repre-
sentation of the Green’s function G and g, G̃ are additional
matrices that we have introduced to simplify the notation.
Due to the similarities of the entanglement action S in Eq.
(65) with the thermal free energy, we define the entanglement
free-energy

FEE(p, β )

= 1

2β
S

= 1

2β

⎡
⎢⎣p ln det (−g) + (1 − p) ln det(−G̃)

−
∫ β

0
dτ1,2

∑
σ=1,2

(−1)q J2

2q
Gσ ′σ (τ2, τ1)qGσσ ′ (τ1, τ2)q

−
∫ β

0
dτ1,2

∑
σ=1,2

�σσ ′ (τ1, τ2)Gσ ′σ (τ2, τ1)

]
, (68)

which allows us to express the second Rényi entropy
[Eq. (56)] as

S(2)(p, β ) = 2β[FEE(p, β ) − FEE(p = 0, β )], (69)

which depends on p and temperature β−1. Note that we have
used the fact that thermal free energy F (β ) at the saddle
point is given by −β−1ln Z and is equal to FEE(p = 0, β ) in
Eq. (69). The ground-state Rényi entanglement entropy for an
arbitrary subsystem size p can now be calculated by taking the
limit

S(2)(p) = lim
β→∞

S(2)(p, β ). (70)

The above analysis can also be carried out for the gener-
alizations of the SYK model given in Eqs. (53), (55), and
(54). The equations to evaluate the Rényi entropy for the
strongly interacting Fermi liquid Hamiltonian in Eq. (53) and
BA Hamiltonian in Eq. (54) can be similarly obtained and are
given in Appendix E.

For extended systems of the kind described by Eq. (55),
i.e., a ring of SYK dots connected to their nearest neighbors,
we choose the subsystem as the l successive dots, e.g., x =
1, . . . , l [see Fig. 2(d)] as the subsystem A. The saddle-point
conditions for this arrangement are

(∂τ + �(x) + Mδx∈A)G(x) = −1,

�
(x)
σσ ′ (τ1, τ2) = (−1)q+1J2G(x)

σσ ′ (τ1, τ2)qG(x)
σσ ′ (τ2, τ1)q−1

(−1)qhop+1t2
chain

[
G(x−1)

σσ ′ (τ1, τ2)qhop

+ G(x+1)
σσ ′ (τ1, τ2)qhop

]
G(x)

σ ′σ (τ2, τ1)qhop−1, (71)

where the matrix M [defined in Eq. (64)] adds to the site-
dependent self-energy – �(x) only for dots which belong to
subsystem A, as indicated by the Kronecker δ function δx∈A.
The Green’s function G(x) also become dependent on the site
index x. The entanglement free energy can be calculated in
terms of the space-dependent G(x) and �(x), i.e.,

FEE(p, β )

= 1

2β

[∑
x

ln det(−G(x) )

−
∫ β

0
dτ1,2

{∑
x,σ

(−1)q J2

2q
G(x)

σ ′σ (τ2, τ1)qG(x)
σσ ′ (τ1, τ2)q

+
∑
x,σ

�
(x)
σσ ′ (τ1, τ2)G(x)

σ ′σ (τ2, τ1)

+
∑

〈xx′〉σσ ′

(−1)qhopt2
chain

qhop
G(x)

σσ ′ (τ1, τ2)qhop G(x′ )
σ ′σ (τ2, τ1)qhop

}]
,

(72)

where 〈xx′〉 represents nearest neighbors. The presence of δx∈A

in Eq. (71) explicitly breaks translation symmetry and one
needs to retain the Green’s functions for each site x in order to
calculate the entanglement entropy.

We obtain the Rényi entropy in Sec. III for all the models
discussed in this section by numerically solving the saddle-
point equations, such as Eqs. (67) and (71), and using Eq. (69).
We discuss the iterative numerical algorithm to solve the
saddle-point equations in Appendix H 2.

E. Rényi entropy in Hubbard model: Dynamical
mean field theory (DMFT)

In this section, we demonstrate the application of the path-
integral method of Sec. II B for the Hubbard model. We
develop the formulation to compute Rényi entropy within
the dynamical mean field theory (DMFT) [29], one of the
successful approaches to treat electronic correlation and
metal-insulator transition in Hubbard model. We formulate
the DMFT for Rényi entropy in the single-site approximation.
In the usual single-site DMFT [29], one reduces a lattice prob-
lem into an impurity coupled to a bath and the properties of the
impurity and the bath are calculated self-consistently using the
noninteracting dispersion. We extend the DMFT approxima-
tion to evaluate the path integrals developed in Sec. II B. The
method can be integrated with the continuous-time quantum
Monte Carlo (CTQMC) impurity solver [26] and extended
to the cluster implementations [68]. Here we only discuss
the formulation of the problem within DMFT; the numerical
implementation will be discussed in a future publication [69].

We consider the Hubbard model

H =
∑
(i j),σ

ti jc
†
iσ c jσ − μ

∑
i

ni + U
∑

i

ni↑ni↓ (73)
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with hopping amplitudes ti j between sites on a lattice, μ the
chemical potential, and U the on-site repulsive interaction
between fermions with opposite spins σ =↑,↓. Here niσ =
c†

iσ ciσ and ni =∑σ niσ are the electronic number operators.
We discuss the second Rényi entropy of a subsystem for

equilibrium state described by the thermal density matrix
[Eq. (13)]. The method can be easily extended to a nonequi-
librium situation (Sec. II B) via nonequilibrium DMFT [70].
As in Eq. (56), we compute

S(2) = β(�(2) − 2�), (74)

where �(2) = −T ln Z (2) (Z (2) ≡ TrAZ2
A) and � = −T ln Z

are relevant grand potentials. Again, using the trace identity
[Eq. (57)], we obtain the path integral

Z (2) =
∫ ∏

i∈A,σ,α=1,2

d2ξiσα fN (ξ)
∫

D(c̄, c)e−S , (75a)

S =
∫ β

0
dτ

[∑
iσα

c̄iσα

[
(∂τ − μ)δi j + ti j

]
c jσα

+ U
∑

iα

ni↑αni↓α

]

+
∑

i∈A,σα

∫ β

0
dτ [ξ̄iσαδ(τ )ciσα (τ ) − δ(τ+)c̄iσα (τ )ξiσα].

(75b)

Here we have the auxiliary Grassmann fields ξ =
{ξ̄iσα, ξiσα}i∈A with spin (σ ) and entanglement replica (α =
1, 2) indices, and fN (ξ) = exp[−(1/2)

∑
i∈A,σ (ξ̄iσ1ξiσ1 +

ξ̄iσ2ξiσ2 − ξ̄iσ1ξiσ2 + ξ̄iσ2ξiσ1)]. As in the case of chain of SYK
dots in Sec. II D 5, due to the entanglement subdivision, the
above action breaks translational invariance. Hence, we use a
single-site inhomogeneous DMFT to reduce the lattice prob-
lem [Eq. (73)] into an impurity problem for site i,

Z (2)
i =

∫ (
d2ξ fN (ξ)

)δi∈AD(c̄, c)e−Si , (76)

Si = −
∫

dτ1,2

∑
σαγ

c̄σα (τ1)G−1
iαγ (τ1, τ2)cσγ (τ2)

+U
∫ β

0
dτ
∑

α

n↑α (τ )n↓α (τ )

+ δi∈A

∑
σα

∫ β

0
dτ [ξ̄σαδ(τ )cσα (τ ) − δ(τ+)c̄σα (τ )ξσα].

(77)

The auxiliary Grassmann fields {ξ̄σα, ξσα} only appears
for sites belonging to the A region; d2ξ =∏σα d2ξσα

and fN (ξ) = exp[−(1/2)
∑

σ (ξ̄σ1ξσ1 + ξ̄σ2ξσ2 − ξ̄σ1ξσ2 +
ξ̄σ2ξσ1)]. The above impurity action could be derived from
Eq. (75) using the cavity method [29]. To simplify the
notations, we have assumed a paramagnetic state with spin
symmetry, and hence the dynamical Weiss mean field is
independent of spin and is given by

G−1
i (τ, τ ′) = − (∂τ − μ)δ(τ − τ ′)I − �i(τ, τ

′), (78)

a 2 × 2 matrix in the replica space, where I denotes a (2 × 2)
unit matrix and �i(τ, τ ′) is the hybridization function which
carries the information about the lattice and needs to be
found self-consistently (see below). For i ∈ A, we integrate
out the entangling Grassmann fields ξ̄σα, ξσα to get Z (2)

i =∫
D(c̄, c)e−S̃i and the effective action

S̃i = −
∫

dτ1,2

∑
σαγ

c̄σα (τ1)G̃−1
iαγ (τ1, τ2)cσγ (τ2)

+ U
∫ β

0
dτ
∑

α

n↑α (τ )n↓α (τ ), (79)

G̃−1
i (τ, τ ′) = −(∂τ − μ)δ(τ − τ ′)I − �i(τ, τ

′)

− δi∈AM(τ, τ ′), (80)

where the 2 × 2 matrix M is given in Eq. (64). The impurity
Green’s function Gi(τ, τ ′) can be obtained from the impurity
Dyson equation,

G−1
i (τ, τ ′) = G̃−1

i (τ, τ ′) − �i(τ, τ
′), (81)

where �i,αγ (τ, τ ′) is the impurity self-energy that needs to
be computed using an appropriate impurity solver, e.g., it-
erative perturbation theory (IPT) [29] or CTQMC [26]. The
hybridization function can be obtained in terms of cavity
Green’s function as

�iαγ (τ, τ ′) =
∑

jk

ti jtikG(i)
jα,kγ

(τ, τ ′). (82)

Here G(i)(τ, τ ′) is the Green’s function with ith site removed
from the lattice. The cavity Green’s function can be obtained
from the lattice Green’s functions as

G(i)
jα,kγ

(τ, τ ′) = Gjα,kγ (τ, τ ′) −
∑
ηδ

∫
dτ1,2

[
Gjα,iη(τ, τ1)

× G−1
iη,iδ (τ1, τ2)Giδ,kγ (τ2, τ

′)
]
, (83)

where G(τ, τ ′) is the full lattice Green’s function. To obtain
the full lattice Green’s function, within the single-site DMFT
approximation, one assumes that the lattice self-energy is
local and is given by the impurity self-energy. Then, the lattice
Green’s function is obtained from the Dyson equation∑

j

∫
dτ1[−{(∂τ − μ)δi j + ti j}δ(τ − τ1)I

+ δi∈Aδi jM(τ, τ1) − δi j�i(τ, τ1)]Gjk (τ, τ ′)

= δikδ(τ − τ ′)I. (84)

The above equation can be used to obtain the hybridization
function in Eq. (82) and thus closes the DMFT self-
consistency loop. The numerical solution of the above DMFT
equations is rather involved since both space and time transla-
tion invariance are broken, the former due to the choice of
subregion A and the latter due to the time-dependent self-
energy kick used to extract the entanglement. The numerical
solution will be discussed in a future work [69].

We conclude this section by briefly mentioning the impor-
tant step to compute the grand potentials �(2) and � appearing
in Eq. (74) for the second Rényi entropy. The grand potentials
can be obtained via coupling constant integration discussed in
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detail in Appendix F. In this method, one considers a modified
Hamiltonian Hλ = H0 + λH1, where H0 is the noninteracting
part in Eq. (73) and H1 is the Hubbard term with the coupling
constant 0 � λ � 1; λ = 0 is the noninteracting limit and the
λ = 1 is the interacting Hamiltonian of interest. The grand
potentials could be obtained as

�(2) = �(2)(0) +
∫ 1

0

dλ

λ

∑
i jσ

[
(∂τ0 − μ)δi j + ti j

]
× G(λ)

jσα,iσα (0, 0+), (85)

� = �(0) +
∫ 1

0

dλ

λ

∑
i jσ

[(∂τ − μ + εi )δi j + ti j]

× G(λ)
jσ,iσ (τ, τ+). (86)

The integrands above can be calculated by computing the
Green’s function G(λ) via DMFT for each λ. One important
point here is that the equal-time Green’s function appear-
ing in the expression for �(2) needs to be calculated at the
imaginary-time instant where the fermionic source fields are
inserted in the path integral, in our case τ = 0. In contrast,
τ in the expression of usual thermodynamic grand potential
� is arbitrary. �(2)(0) and �(0) are the grand potentials for
the noninteracting system (λ = 0) which can be calculated
directly using the results of Sec. II C.

III. ANALYTICAL AND NUMERICAL RESULTS FOR
RÉNYI ENTROPY IN LARGE-N FERMIONIC MODELS

OF FERMI LIQUIDS AND NON-FERMI LIQUIDS

With the formalism for calculating Rényi entropy for large-
N systems in place, we proceed forward and discuss the
solutions obtained for the models introduced in Sec. II D. In
this paper, we only describe the results for the second Rényi
entropy obtained from the thermal field theory in Sec. II D 5.
The results for higher order Rényi entropies and time evo-
lution of Rényi entropy in nonequilibrium situations will be
communicated in a future work [71].

A. Noninteracting large-N model with disorder

To set the stage and benchmark our large-N field theory
formalism of Sec. II D 5, we first discuss the Rényi entropy
in a noninteracting model. For q = 1, the model defined in
Eq. (52) describes a noninteracting system connected with
disordered random hoppings having a variance t2

hop, and hence
is amenable to solution in multiple ways. Therefore, we com-
pare the temperature-dependent Rényi entropy, defined in
Eq. (69), calculated using (a) the correlation matrix approach
applicable for noninteracting system as discussed in Sec. II C,
where the correlation matrix is evaluated by diagonalizing
the noninteracting Hamiltonian, (b) using many-body exact
diagonalization (ED) (see Appendix H 1), and (c) using the
large-N thermal field developed in Sec. II D 5. For cases (a)
and (b), the Rényi entropy is calculated by explicitly averag-
ing over multiple disorder realizations.

Figure 3 shows the variation of the second Rényi entropy
with subsystem size p for multiple temperatures calculated
using the above methods. We get an excellent match for

FIG. 3. Rényi entropy in noninteracting large-N model: Second
Rényi entropy, S(2), for the noninteracting model with random hop-
pings shown as a function of subsystem fraction p for several values
of temperature T . The predictions obtained from large-N saddle-
point theory (points with lines) show an excellent agreement with
results (represented by color matched squares) obtained using the
correlation matrix, as well as exact diagonalization (ED) calculations
(circles) performed for N = 10 sites. All three techniques show a
maximal entanglement scaling of Rényi entropy for small subsystem
sizes (p → 0) with a ln(2) coefficient. Inset gives the temperature
dependence of the Rényi entropy at p = 1, i.e., S(2)(p = 1), which
goes to zero as temperature is decreased, indicating that the thermal
density matrix, used for calculating entanglement, approaches the
ground state for the model.

all three cases. Particularly remarkable is the fact that the
large-N results almost exactly match with those obtained with
ED for quite small system size (N = 10), implying that 1/N
corrections to entanglement entropy are rather small. This
feature persists for the interacting large-N models discussed
in the next sections. We find that for small subsystem size,
i.e., p → 0, the Rényi entropy grows with p with a slope
of ln(2) (see dashed line in Fig. 3), indicating a maximal
entanglement which can be argued based on the counting of
degrees of freedom [63,72]. In the limit of large subsystem
size, i.e., p → 1, the Rényi entropy attains a finite nonzero
value that goes to zero as T → 0; see Fig. 3 inset. At finite
temperature, the Rényi entropy of the subsystem for a thermal
mixed-state density matrix picks up contributions from the
usual thermal entropy, which is only of statistical origin. How-
ever, as temperature is lowered (β → ∞), the thermal density
matrix approaches that of the ground state, i.e., ρ2 → ρ. For
any pure state, in this case the ground state, the entanglement
entropy goes to zero as the subsystem size approaches the size
of the parent system. This, however, is not the case for the
SYK model in the large-N limit, as discussed below.

B. SYK model: Rényi entropy of a non-Fermi liquid

We now move on to large-N interacting Hamiltonians,
starting with the original q = 2 SYK model described in
Eq. (52). The model connects fermions, on N sites, via all-
to-all two-body interactions with random complex amplitudes
having variance J2, which we set to unity for this section.
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There have been several numerical and analytical works on
entanglement entropy [43,63–66,72] in the SYK model for
various different contexts. The analytical approaches have
used standard replica path-integral approach for Rényi en-
tropy. Among these works, Gu et al. have studied growth
of bipartite Rényi entanglement entropy in a chain of SYK
dots starting from a thermofield double state [43]. They made
a diagonal approximation in the entanglement replica space
for weak interdot coupling. The diagonal approximation was
justified based on the argument that the replica off-diagonal
terms were perturbatively small in the interdot coupling. In
our work, we find the (entanglement) replica off-diagonal
terms to be very important for the Rényi entropy for a sub-
system within a single dot, since the intradot coupling, of
course, cannot be treated perturbatively. In Sec. III E, for the
higher dimensional models, we consider strong interdot cou-
pling and replica off-diagonal terms are also substantial there.
Reference [65] has used an approximation similar to that in
Ref. [43] to look into ground-state entanglement between two
quadratically coupled SYK dots. During the preparation of
our paper, we became aware of a very recent work [66] on
subsystem Rényi entropy in the thermal ensemble for the
SYK model using a standard approach with the boundary
conditions. Overall, their results compares well with our re-
sults on SYK model obtained using the field-theoretic method
developed in this work.

As in the noninteracting large-N model case, we compare
the Rényi entropy obtained via large-N thermal field theory
with that obtained via ED. However, the Rényi entropy cannot
be calculated in the interacting case using the correlation
matrix approach. Figure 4(a) gives the second Rényi entropy
with subsystem size p for several values of T . We find that,
yet again, for all temperature values the results from large-N
and ED calculations agree really well, when p < 0.4, even
for exact diagonalization performed for N = 12 sites. Also
as expected, volume law with a ln(2) coefficient still holds
as p → 0 for all temperature values. Interestingly though, as
T → 0, the large-N result deviates substantially from the ED
result when p � 0.4 and especially when p → 1. While the
Rényi entanglement entropy for the ground state, obtained
by ED, goes to zero as expected, the large-N result seems to
converge linearly to a finite value when T is reduced as shown
in Fig. 4(b), where we plot S(2)(p = 1) for low values of T .
In fact, when extrapolated to T → 0, we find the intercept
to be equal (within numerical accuracy) to the thermal resid-
ual entropy S0 ≈ 0.464 . . . of the SYK model. Remarkably,
the residual entropy has found a way to influence the zero-
temperature Rényi entropy of the SYK model in the large-N
limit. An explanation is provided when we look back at the
expression for Rényi entropy in Eq. (69). Since by definition
limp→1 FEE(p, β ) = F (2β ), expanding the entanglement free
energy to first order in T (= β−1) we find

S(2)(p → 1) = lim
T →0

F (T/2) − F (T )

T/2
= lim

T →0

T
2 F (0) − T F (0)

T/2

= − ∂F

∂T

∣∣∣∣
T =0

= S0, (87)

i.e., S(2)(p = 1) is indeed equal to the residual entropy S0. The
above analysis suggests that the limit N → ∞ and T → 0 do

FIG. 4. Rényi entropy in SYK model: (a) The second-Rényi en-
tropy (S(2)) for the SYK (q = 2) model as a function of subsystem
size p for temperature values T = 0.50, 0.20, 0.05. Predictions from
large-N formalism (points with lines) match exactly with ED calcu-
lations (represented by circles, squares, and triangles) for subsystem
sizes p < 0.4 [both showing a volume-law scaling with a ln(2)
coefficient], but deviate significantly at larger p values due to the
influence of residual-thermal entropy S0 of the SYK model. The S(2)

vs p curve (black line with crosses) for the ground-state of the model,
obtained using ED, is also shown for comparison. (b) Rényi entropy
for p = 1, i.e., S(2)(p = 1), approaches S0 linearly when temperature
T goes to zero, as seen explicitly from a linear fit (line) to the large-
N data (circles) and recovering an intercept equal to S0 ≈ 0.464.
(c) The match between large-N prediction (filled circles) and ED
(empty circles), for S(2)(p = 1), is recovered at higher temperatures;
see text for explanation. All ED calculations were done for N = 12
sites.

not commute. It is established that the residual entropy for the
SYK model is a consequence of exponentially small in N level
spacings arising from the large-N limit. Taking the large-N
limit first also prohibits “direct” access to the ground-state
quantum entanglement when temperature is reduced, since
any T however small cannot resolve these exponentially small
level spacings. We therefore argue that temperatures higher
than the typical level spacings obtained from ED should
“mimic” this large-N effect and predictions from large-N ther-
mal field theory should match with finite-N ED calculations.
To test this hypothesis, we plot the p = 1 value for the second
Rényi entropy obtained from large-N and finite-N ED calcu-
lations for higher values of temperature in Fig. 4(c). Indeed,
we find that the results match perfectly for T � 0.5, thereby
validating our intuition about the role of residual entropy in
T = 0 Rényi entropy at large N .

C. SYK model with disordered hopping:
Rényi entropy of an interacting Fermi liquid

We now discuss the behavior of entanglement in an inter-
acting Fermi liquid, like the one described by the Hamiltonian
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FIG. 5. Rényi entropy of interacting Fermi liquid: (a) Subsystem
size (p) dependence of second Rényi entropy, S(2), in the zero-
dimensional Fermi-liquid model [defined in Eq. (53)] with SYK
interactions, for several values of temperature T . The strength of
hopping thop and interactions J are both set to one. The predictions
from the large-N formalism (points) and results from exact diago-
nalization (circles) match for all values of p and T . Both predict a
volume-law scaling with a ln(2) coefficient. (b) The Rényi entropy
for p = 1 (represented by circles) shows a linear dependence on T
(for values less than T = 0.15) and goes to zero as T → 0, indicat-
ing an approach to a ground state with no residual-thermodynamic
entropy. (c) The zero-temperature bipartite second Rényi entropy,
S(2)(p = 0.5, T → 0), shown as a function of increasing hopping
strength thop (J = 1), with thop = 0 being the SYK-NFL limit. As
hopping increases, bipartite Rényi entropy decrease from a rather
large value (≈0.35) and saturates to a value (≈ 0.15) close to that
of the noninteracting model (see Fig. 3).

in Eq. (53). The addition of a q = 1 quadratic term ti jc
†
i c j has

been shown [30,72] to change the SYK NFL ground state to
an interacting zero-dimensional Fermi liquid. We set thop = 1,
J = 1 for the variances of ti j , Ji j in Eq. (53) and compare
the second Rényi entropy obtained from large-N theory with
ED in Fig. 5(a). Quite encouragingly, we find an excellent
match between the two for all values of temperatures. As
expected, the volume law for entanglement is shown to hold
as p → 0 due to the all-to-all nature of interactions and hop-
pings. Interestingly, this time, unlike the SYK NFL case, the
entanglement entropy for p = 1 goes to zero as temperature
approaches zero [see Fig. 5(b)]. Looking back at the analysis
in Eq. (87), S(2)(p → 1) → 0 implies that the FL ground state
does not possess any residual entropy. Indeed, we find in
literature [73] that the presence of a quadratic term in Eq. (53)
drastically reduces the exponentially large density of levels
near the ground state, thereby reducing the residual entropy
to zero.

It is interesting to explore how entanglement entropy
changes as the relative strength of interactions is increased
with respect to the quadratic term, going from a noninteracting

system to a NFL, via heavy Fermi liquid states for thop � J .
To this end, we set J = 1 and track the bipartite Rényi entropy,
i.e., S(2)(p = 1/2), as the value of thop is increased from 0
to 1. The bipartite Rényi entropy is the maximal value that
can be attained for any homogeneous system. Figure 5(c)
shows the result of this exercise. When thop = 0, the model
is described by purely SYK-type interactions and therefore
bipartite Rényi entropy attains the maximum possible value
≈0.5 ln(2). Interestingly, as t is increased, the entanglement
decreases continuously, indicating that a FL of this type be-
comes less entangled when the relative strength of interactions
is reduced. Finally, for values of thop � J the bipartite entan-
glement entropy saturates to around 0.16, a value close to that
of noninteracting large-N model (see Fig. 3), implying that
interactions become irrelevant in this limit.

D. BA model: Rényi entropy across a non-Fermi
liquid to Fermi liquid transition

One of the important aspects of the putative duality be-
tween SYK model and black holes in quantum gravity [27,33–
35] is the residual entropy and its possible connection with
the black hole entropy. Hence, it is interesting to ascertain
if there is any relation between the residual entropy and the
ground-state entanglement entropy of SYK NFL. We saw that
the residual entropy inevitably appears in the Rényi entropy
when the large-N limit is taken followed by the T → 0 limit
in the pure SYK model. Here we discuss the BA model [30],
which helps us to make the connection between the residual
and T = 0 Rényi entropy more explicit by tuning a QPT
between a SYK NFL and a FL.

The BA model is defined in Eq. (54). A T = 0 transition
between the chaotic NFL fixed point and nonchaotic FL fixed
point is achieved by tuning the ratio of sites p = Nψ/Nc. The
quantum-critical point (QPT) occurs at p = 1, below which
the c fermions behave as a SYK NFL and the whole sys-
tem has a finite p-dependent residual entropy, S0(p) = [(1 −
p)/(1 + p)]S0, that goes to zero at the critical point [30]. Mo-
tivated by this, we ask whether any such sharp features exists
in the Rényi entropy. We analyze the second Rényi entropy for
the model at the large-N saddle point (see Appendix E) using
the following two choices of subsystem A: (a) when A is made
up of all the c fermions that have the SYK type interactions
and (b) when the A is composed of the all the noninteraction ψ

fermions. For our calculations, we set J = thop = V = 1 [see
Eq. (54)].

The subsystem-Rényi entropy for the c-fermions, S(2)
c [case

(a)], and ψ fermions, S(2)
ψ [case (b)], are shown as a func-

tion of site fraction p in Fig. 6(a) for multiple values of
temperature T . Ideally, at T = 0, in a pure state one ex-
pects S(2)

c = S(2)
ψ . However, yet again, we find that residual

entropy S0(p) has managed to influence entanglement entropy
as seen from S(2)

c (represented by circles) approaching a value
close to S0 = 0.464 of the SYK model when p → 0. On the
other hand, the S(2)

ψ (triangles) goes to zero in the same limit
in accordance with the volume-law maximal entanglement,
p ln(2). To uncover the signature of the underlying QPT, we
extrapolated S(2)

c and S(2)
ψ to T → 0 and plot the results in

Fig. 6(b). Remarkably, we find that around the critical point,
p = 1, the Rényi entropy for the fermions becomes exactly
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FIG. 6. Rényi entropy in BA model: (a) Subsystem second Rényi
entropy for the c fermions S(2)

c (circles with lines) and ψ fermions
S(2)

ψ (triangles), for the BA model [Eq. (54)], shown as function
of site fraction p = Nψ/Nc for temperatures T = 0.015, 0.05, 0.1.
(b) Extrapolated zero-temperature Rényi entropies, S(2)

c (circles) and
S(2)

ψ (triangles), showing the signature of the underlying QPT. S(2)
c and

S(2)
ψ become exactly equal at the critical point for the QPT, p = 1,

and remain equal for p > 1. Inset gives the mutual information
(MI) between the c and ψ fermions showing a peak at the critical
point. Furthermore, the difference of the Rényi entropies, S(2)

c − S(2)
ψ

(squares with lines), precisely matches the analytical prediction,
S0(p) = S0(1 − p)/(1 + p) (solid line), for the p-dependent residual
entropy for the BA model from Ref. [30].

equal, i.e., S(2)
c = S(2)

ψ and remains equal for all values p >

1. Motivated by this, to further understand the relationship
between the residual entropy S0(p) and the Rényi entropies
S(2)

c , S(2)
ψ , we compare S0(p) with the difference S(2)

c − S(2)
ψ ,

which approaches S0 for p → 0 and also vanishes continu-
ously at p = 1. Quite encouragingly, we find the match to be
excellent, as seen in Fig. 6(b). Thus, the difference between
the Rényi entropies of the larger and smaller subsystems
directly corresponds to the residual entropy and carries the
signature of the underlying QPT. The preceding results also
leads us to conjecture that the zero-temperature Rényi entropy
of the BA model has contributions from both the exponentially
dense energy levels and the true ground-state entanglement for
p � 1. In particular, the results suggest that the true ground-
state entanglement primarily determines the Rényi entropy for
the ψ fermions, S(2)

ψ , while the large many-body density of
states, arising from the large-N limit, affects the Rényi entropy
for c fermions, S(2)

c . Further exploration along this direc-
tion should prove useful in separating the two contributions.
We also look into the mutual information (per site) between
the two species of fermions, defined as I (p) = 1

(1+p) S
(2)
c +

p
(1+p) S

(2)
c − S(2)

cψ . I (p) has a broad peak around the critical

point as shown in Fig. 6(b) (inset). Indeed, the underlying
QPT has left an imprint in the entanglement entropy.

E. Higher dimensional large-N models: Rényi entropy
in an interacting diffusive metal

We now discuss one of the main results obtained us-
ing the path-integral formalism developed in this work. We
compute the Rényi entropy of a subregion in an interacting
diffusive metal. To this end, we consider the higher dimen-
sional generalizations of the SYK-derived large-N models,
which were discussed in Sec. II D and can be described by
a Hamiltonian with the general form given in Eq. (55). The
large-N equations needed to determine Rényi entropy were
derived in Eq. (71) for one-dimensional large-N models. Here
we quantify how well our the formalism performs in pre-
dicting the Rényi entropy for these systems. As mentioned
earlier [see the discussion after Eq. (71)], naturally solving
the saddle-point equations for the extended system of the one-
dimensional chain is computationally more expensive than the
zero-dimensional case since we need to retain the Green’s
function G(x)

σσ ′ (τ1, τ2) for each SYK dot in the chain. In par-
ticular, the time complexity for solving the equations scales
linearly with the number of dots which we denote as Ndots.
However, this increase in time complexity does not prevent
us from accessing entanglement for large chains and we are
able to perform calculations for values of Ndots which are well
beyond the reach of ED, even for the noninteracting large-N
models for which we use the correlation matrix approach of
Sec. II C. Therefore, we adopt the following strategy: First,
we compare the results of our large-N field-theoretic approach
with that obtained from correlation matrix for noninteract-
ing systems for moderate system sizes, and then explore the
behavior of entanglement for large noninteracting and inter-
acting systems. The interacting systems are much larger than
that accessible via ED.

We set qhop = q = 1 in Eq. (55), making the model
noninteracting, and look at two configurations of hopping
amplitudes tchain = J = 1 and tchain = 1, J = 0. Also, we set
Ndots = 10 and N = 10, i.e., a moderate number of flavors per
dot to perform exact numerics using the correlation matrix
approach of Sec. II C. This allows us to access subsystems
sizes for p = 0.0–1.0 in steps of 0.1. The result for the above
two scenarios are shown in Figs. 7(a) and 7(b) respectively.
We find, like before, an excellent agreement between large-N
predictions and exact numerical calculations, with the results
for Rényi entropy from both the techniques collapsing on top
of each other for multiple temperature values.

Having established the agreement of our formalism with
exact numerics, we move on to larger chain sizes involving in-
teracting as well as noninteracting dots. In particular, we keep
qhop = 1 and study chains with either q = 2 or q = 1 body
interaction for the dots [see Eq. (55)]. The resultant ground
state in these cases is known to describe either a strongly
interacting diffusive Fermi liquid [32] or a noninteracting (but
still diffusive) FL, both of which are gapless phases. The
entanglement scaling with subsystem size (l) for a FL have
been argued to violate the area law. For example, in a 1-d
translationally invariant gapless Fermi system, conformal field
theory (CFT) predicts [2] that the von Neuman entanglement
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FIG. 7. Rényi entropy of diffusive Fermi liquid: (a) Behavior of Rényi entropy, S(2), vs subsystem size l in a model of noninteracting dots
coupled to nearest neighbors in a ring of Ndots = 10 dots [see Fig. 2(d)], for temperatures T = 0.03, 0.02, 0.01. The model is obtained by setting
q = qhop = 1 and intra- as well as interdot hopping strengths tchain = J = 1 in Eq. (55). (b) Rényi entropy vs l for the noninteracting model
when tchain = 1, J = 0. In both panels (a) and (b), large-N predictions (points joined by lines) are in agreement with the results obtained from
exact numerics (color matched circles) performed using correlation matrices. (c) Extrapolated zero-temperature Rényi entropy as a function of
subsystem size l for a ring of SYK dots [Fig. 2(d)], connected by random hoppings. We set the interaction strength J = 1 within each SYK dot
as well as the strength of hopping between dots tchain = 1. The number of dots in the chain, Ndots, is varied from 20 to 100 dots (well beyond the
scope of any exact numerics), to verify that the growth of entanglement for small subsystem sizes becomes independent of Ndots for Ndots > 20.
(d) An enlarged view, showing the growth of S(2) near small subsystem sizes, i.e., l � 20, in the interacting SYK chain (represented by squares)
and the noninteracting chain (represented by pentagon) discussed in panel (a), for a large value of chain size Ndots = 50. Both curves can be
fitted (lines) with the analytical function S(2) ∼ ln[1/(l−2 + l−2

0 )1/2], where l0 is an emergent “mean-free-path” length scale which takes a value
between ≈4 and 5 in this case.

entropy S(1) (obtained by taking the limit limn→1 S(n)) scales
with the universal form S(1) = (c/3) ln(l ) + const., where c
is the central charge of the underlying CFT, following which
an exact expression for S(1), of the form S(1) ∼ ld−1 ln l , was
obtained for noninteracting FLs in arbitrary dimensions d
[74]. Later on, it was argued that the nth-order Rényi en-
tropy for noninteracting as well as interacting FLs should
follow S(n) = 1

2 (1 + 1
n )S(1), and therefore should have the

same scaling with system size [75,76]. The above scaling
form has been studied and confirmed, for systems with and
without interactions, using several numerical approaches [77].
Therefore, we may naively expect to recover this ln l scal-
ing for our model of a one-dimensional chain of connected
dots.

To verify this, we evaluate the secondRényi entropy, in the
T → 0 limit, as a function of subsystem size l for increas-
ing values of Ndots and plot the result in Fig. 7(c). We find
that the curves converge as the chain size increases and en-
tanglement entropy growth near l = 0 becomes independent
of the total number of dots in the chain. Surprisingly, we
find that Rényi entropy quickly saturates to a finite value as
subsystem size is increased, a behavior inconsistent with ln l
scaling, which poorly fits the the entanglement growth curve
in our calculation. Instead, we find that a “modified” growth

function

S(2)(l ) ∼ ln

⎡
⎣ 1√

l−2 + l−2
0

⎤
⎦+ const. (88)

fits our data rather well; see Fig. 7(d). This indicates the pres-
ence of an emergent length scale l0 in the gapless system. This
could be explained by realizing that the FL state is obtained
by connecting sites (dots) having random intradot couplings,
which are uncorrelated at different sites, with random hoping
amplitudes [e.g., ti jxx′ in Eq. (55)]. The former will induce an
effective mean free path for the quasiparticles in the system
and therefore will cut off the growth of entanglement beyond
a length scale l0. Indeed, if we identify l0 as the mean-free
path and take l0 → ∞, we recover the expected ln l growth
of entanglement. However, we note that a definition of mean
free path in a system with random intersite hopping (with zero
mean) is somewhat subtle due to the difficulty in identifying a
Fermi velocity. Interestingly, the growth function in Eq. (88)
has also been suggested in Ref. [78] based on numerical
studies of system-size scaling of entanglement in a disordered
noninteracting system and hydrodynamic arguments for dif-
fusive FL. In contrast, our results explicitly demonstrate the
scaling law of Eq. (88) in an interacting diffusive metal for

033505-15



HALDAR, BERA, AND BANERJEE PHYSICAL REVIEW RESEARCH 2, 033505 (2020)

system sizes much beyond any other numerical techniques.
The coefficient of the growth function in Eq. (88) is also
expected to contain the information of effective central charge
[78] of the underlying CFT. As evident in Fig. 7(d), the coeffi-
cient of the growth function changes with interaction strength.
These aspects will be studied in detail in a future work [71].

IV. CONCLUSIONS AND DISCUSSION

In this work, we have proposed and developed an equi-
librium and nonequilibrium field theory method to compute
Rényi entanglement entropies for interacting fermions. The
basis of the field theory formalism relies on an operator
identity that we have derived here. The path-integral tech-
nique is an alternative, and maybe complementary, to the
existing path-integral methods that typically require com-
plicated boundary conditions on the fields for computing
Rényi entropy. Our method rigorously transforms the com-
plex boundary conditions into time-dependent self-energies
while preserving the familiar antiperiodic boundary condi-
tions on the fermionic fields as in a usual coherent-state
path integral. As a result, the path-integral formalism could
be easily incorporated within standard weak-coupling dia-
grammatic field-theory techniques and approximations, e.g.,
mean-field theory and random-phase approximation (RPA),
in a very transparent manner. The path-integral technique
to compute entanglement entropy could also be integrated
with strong-coupling approaches, e.g., in Hubbard model, to
go beyond Gaussian actions [79]. We demonstrate this by
formulating the field theory for Rényi entropy in Hubbard
model within DMFT approximation, and in several interacting
large-N fermion models of current interest.

Using the formalism, we obtain several important results
on Rényi entropy of FL and NFL states in zero-dimensional
interacting large-N models, i.e., SYK and related models. We
exactly compute the second Rényi entropy of a subsystem
as a function relative subsystem size p in the N → ∞ limit.
We analytically show that the subsystem is maximally en-
tangled with an entanglement entropy p ln(2) at half filling
in the limit p → 0. By comparing with exact diagonalization
result for small system sizes N = 10–12, we demonstrate that
the 1/N corrections are very small for entanglement entropy
for noninteracting systems as well as for strongly interacting
heavy Fermi liquids. However, the 1/N corrections are found
to be large and nonperturbative for p � 0.4 in the SYK model,
where the residual entropy of the NFL state contributes to
the T → 0 Rényi entropy in the large-N limit, as we ana-
lytically show for p → 1. Thus, our results reveal intriguing
connections between residual entropy of SYK NFL and its
T → 0 Rényi entropy in the large-N limit, calling for a proper
interpretation of residual Rényi entropy, in addition to the
pure ground-state quantum entanglement, for a general p. We
further make the connection between residual entropy and
Rényi entropy explicit in the BA model where the difference
of T → 0 Rényi entropy of larger and smaller subsystems,
for a particular subdivision of the system, can be directly
attributed to the residual entropy of the NFL state. Finally,
using our method, we obtain nontrivial system-size scaling
of entanglement in an interacting diffusive metal for system
sizes much beyond that accessible via exact diagonalization

methods. We find the existence of an emergent length scale
that limits the growth of entanglement entropy in the diffusive
metal.

The DMFT formulation developed here for Rényi entropy
would be very useful to understand quantum entanglement in
correlated systems. The formulation could be easily integrated
with a standard impurity solver, e.g., CTQMC [26]. Entan-
glement entropy has been previously studied within CTQMC,
treating the interaction correction perturbatively for weak in-
teraction [21]. Our method is nonperturbative and can be used
in the strongly interacting regime. The trace formula and the
path integral derived here might also be useful to compute
Rény entropy of fermions in other QMC techniques, like
determinant QMC (DQMC) [18–21,80].

The field theory developed in this work is also amenable
to perturbative renormalization group (RG) methods, e.g.,
applied to nonequilibrium situations [81], that may be ad-
vantageous for deriving analytical results on entanglement
entropy in interacting fermionic systems. It will be interest-
ing to explore possible recursion relations between Rényi
entropies at different orders (n) to understand the behavior
as a function of n and take appropriate limit to compute von
Neumann entanglement entropy and entanglement negativity
[12–16] for interacting fermions. For the large-N fermionic
models, it will be desirable to go beyond the N → ∞ limit
to compute fluctuations around the saddle point of the entan-
glement action, e.g., by generalizing the methods of Ref. [82]
for SYK thermal field theory. The time-dependent self-energy
kick in the real-time action [e.g., in Eq. (D5)] can be mimicked
by time-dependent non-Hermitian terms in a Hamiltonian or
nonunitary terms in the time evolution. Hence, a protocol,
inspired by the “kick” interpretation, may also be designed
to measure the Rényi entropy in quantum circuits.
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APPENDIX A: OPERATOR EXPANSION

In this Appendix, we derive the operator expansion identity
of Eq. (3). The displacement operator defined in Sec. II A can
be used to represent [25] the Dirac δ function for Grassmann
numbers

δ(ξ − η) = Tr[DN (ξ)EA(η)], (A1)

where the operator EA is defined as

EA(η) =
∫

d2α exp

[∑
i

ηiᾱi − αiη̄i

]
|α〉〈−α|. (A2)

The representation of the δ function [Eq. (A1)] allows the dis-
placement operators to form a basis for expanding an arbitrary
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operator F , such that

F =
∫

d2ξ Tr[FEA(ξ)]DN (ξ). (A3)

Although the operator expansion formula in Eq. (A3) is use-
ful, it has certain drawbacks. In particular, Eq. (A3) is not
amenable to a path-integral formulation with simple boundary
conditions mainly because of the outer product |α〉〈−α| in
the definition of EA [Eq. (A2)]. Therefore, a generalization
of Eq. (A3) involving only the displacement operators DN is
desirable. In this context, an insightful observation is to realize
that even the operator EA can be decomposed using Eq. (A3),
as shown,

EA(η) =
∫

d2ξ Tr[EA(η)EA(ξ)]DN (ξ), (A4)

which can then be used to transform Eq. (A3) into

F =
∫

d2ξ, η fN (η, ξ)Tr[FDN (ξ)]DN (η), (A5)

where

fN (γ, ξ) ≡ Tr[EA(γ )EA(ξ)]

= 2N exp

[∑
i

−1

2
(γ̄iγi + ξ̄iξi )

]

× exp

[∑
i

1

2
(γ̄iξi − ξ̄iγi )

]
. (A6)

Equation (A5) offers a way to decompose a general operator
F using only the normal-ordered displacement operators DN .
Using the relation between the usual displacement operators
and their normal-ordered counterparts in Eq. (6), an equivalent
identity involving the operator D(ξ) can be derived, i.e.,

F =
∫

d2ξ, η f (η, ξ)Tr[FD(ξ)]D(η), (A7)

where

f (η, ξ) = 2N exp

[∑
i

1

2
(η̄iξi − ξ̄iηi)

]

= exp

[∑
i

1

2
(η̄iηi + ξ̄iξi )

]
fN (η, ξ). (A8)

Both the functions f , defined above, and fN [see Eq. (A6)]
satisfy

fN (−η, ξ) = fN (η,−ξ) = fN (ξ, η). (A9)

It can be shown that cyclic rule for trace gets modified due to
the presence of the displacement operators, i.e.,

Tr[DN (η)G] = Tr[GDN (−η)], (A10)

Tr[D(η)G] = Tr[GD(−η)]. (A11)

The trace identity of Eq. (7) can be obtained using Eqs. (3),
(A9), and (A10).

APPENDIX B: THE CHARACTERISTIC
FUNCTION HIERARCHY

In this, section we give the details of the steps that went
into deriving the Rényi entropy hierarchy reported in Sec. II C
of the main text.

1. Derivation

We use the operator expansion formula Eq. (A7) to write

ρn+1D(α) = ρnρ D(α)

=
∫

d2ξ, η f (η, ξ)Tr[ρnD(ξ)]D(η)ρD(α). (B1)

Taking trace on both sides gives

Tr[ρn+1D(α)] =
∫

d2ξ, η f (η, ξ)Tr[ρnD(ξ)]Tr[D(η)ρD(α)].

(B2)
Using the modified cyclic rule for trace, Eq. (A11), and the
product formula,

D(ξ)D(η) = D(ξ + η) exp

[
1

2

∑
i

(η̄iξi − ξ̄iηi )

]
, (B3)

we have

Tr[D(η)ρD(α)] = Tr[ρD(α)D(−η)]

= Tr[ρD(α − η)] exp

[
1

2

(∑
i

ᾱiηi − η̄iαi

)]

= Tr[ρD(α − η)]
f (−η,α)

2NA
. (B4)

Putting this back, we get

Tr[ρn+1D(α)] = 1

2NA

∫
d2ξ, η f (η, ξ) f (−η,α)Tr[ρnD(ξ)]

× Tr[ρD(α − η)], (B5)

and substituting η → −η, we get Eq. (38), i.e.,

Tr[ρn+1D(α)]

= 1

2NA

∫
d2ξ, η f (−η, ξ) f (η,α)

× Tr[ρnD(ξ)]Tr[ρD(α + η)]

= 1

2NA

∫
d2ξ, η f (ξ, η) f (η,α)

× Tr[ρnD(ξ)]Tr[ρD(α + η)], (B6)

where we have used the property in Eq. (A9).

2. Simplification of the recursion

We continue from Eq. (38) and use the Gaussian ansatz
Eq. (39) to write

χn+1(α) = 1

2NA

∫
d2ξ, η f (ξ, η) f (η,α) χn(ξ)χ1(α + η)

= λnλ
1

2NA

∫
d2ξ, η f (ξ, η) f (η,α) exp[ξ̄

T
Anξ]

× exp[(ᾱ + η̄)T A(α + η)]
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= 2NAλnλ

∫
d2ξ, η exp

[
ξ̄η

2
− η̄ξ

2

]

× exp
[ η̄α

2
− ᾱη

2

]
exp[ξ̄

T
Anξ]

× exp[(ᾱ + η̄)T A(α + η)]

= 2NAλnλ

∫
d2ξ, η exp

[
ξ̄η

2
− η̄ξ

2

]

× exp
[ η̄α

2
− ᾱη

2

]
exp[ξ̄

T
Anξ] exp[ᾱT Aα]

× exp[η̄T Aη + ᾱT Aη + η̄T Aα].

Integrating out ξ and η, we get

χn+1(α)

= 2NAλnλ det(−An) det(−A − A−1
n /4)

× exp
[
ᾱT (A − (A − 1/2)(A + A−1

n /4)(A + 1/2)
)
α
]
.

Equating the answer to the Gaussian ansatz for n + 1, we get

λn+1 exp[ᾱT An+1α]

= 2NAλnλ det(−An) det
(− A − A−1

n /4
)

× exp
[
ᾱT (A − (A − 1/2)(A + A−1

n /4)(A + 1/2)
)
α
]
,

(B7)

implying the following recursion relations for λn and An:

λn+1 = 2NAλnλ det(−An) det
(− A − A−1

n /4
)

= 2NAλnλ det(AnA + 1/4)

= det[2AnA + 1/2]λn,

An+1 = (A − (A − 1/2)(A + A−1
n /4)(A + 1/2)

)
= (A + An)/(1 + 4AAn). (B8)

In the last line, we have chosen to simplify the expressions, by
assuming that An at the end will be well behaved functions of
the matrix A, and therefore commutes with A, allowing us to
treat all matrices as scalars. We rewrite the recursion for An as

An+1A = (A2 + AnA)/(1 + 4AAn)

⇒ 2An+1A + 1

2
= (2A2 + 2AnA)/(1 + 4AAn) + 1

2

⇒ 2An+1A + 1

2
= (2A2 + 2AnA) + 1

2 (1 + 4AAn)

(1 + 4AAn)

⇒ 2An+1A + 1

2
= 1 +

(
A2 − 1

4

)
2AnA + 1

2

. (B9)

The last line gives the expression reported in the main text as
Eq. (43).

3. Solving the recursion

We find the following solution

Xn = [(1 − CT )n + (CT )
n
][(1 − CT )n−1 + (CT )

n−1
]−1

(B10)
solves Eq. (43). To prove it, we first define B = CT (and treat
everything like scalars as explained earlier) to simplify the

notation and then plug the above solution into the right-hand
side of the recursion [Eq. (43)] and simplify as shown below,

1 + B(B − 1)

Xn
= 1 + B(B − 1)

(1−B)n+Bn

(1−B)n−1+Bn−1

= 1 + B(B − 1)[(1 − B)n−1 + Bn−1]

(1 − B)n + Bn

= (1 − B)n + Bn − B(1 − B)n − (1 − B)Bn

(1 − B)n + Bn

= (1 − B)n+1 + Bn+1

(1 − B)n + Bn
= Xn+1,

to find the answer to be Xn+1. Therefore, Eq. (B10) solves the
recursion in Eq. (43).

APPENDIX C: KELDYSH FORMULATION FOR
NONINTERACTING SYSTEMS

For a noninteracting system undergoing nonequilibrium
time evolution starting from an initial Gaussian state, e.g.,
described by the thermal density matrix of Eq. (28), the char-
acteristic function [Eqs. (23) and (24)] can be obtained in the
following form,

χN [ξ, t] = Z−1
∫

D(c̄, c) exp

⎡
⎣i
∫
C

dz1dz2

×
∑

i j

c̄i(z1)G−1
i j (z1, z2)c j (z2)

+ i

∫
C

dz
∑
i∈A

[c̄i(z)δC (z, (t+,+))ξi

− ξ̄iδC (z, (t,+))ci(z)], (C1)

where Gi j (z1, z2) is the contour-ordered single-particle
Green’s function that encodes the details of the nonequi-
librium process, e.g., for time-dependent Hamiltonian
H (t ) =∑i j ti j (t )c†

i c j with time-dependent hopping

ti j (t ), G−1
i j (z1, z2) = [(i∂z1 + μ)δi j − ti j (t1)]δC (z1 − z2)

[z1 = (t1,±)]. We can integrate out the fermions to get

χN (ξ, t ) = exp

[∑
i, j∈A

ξ̄i{−iGi j ((t,+), (t+,+))}ξ j

]

= exp

[∑
i j∈A

ξ̄iC
T
i j (t )ξ j

]
. (C2)

The last line follows from the relation Gi j ((t,+), (t+,+)) =
GT(t, t+) = i〈c†

j (t )ci(t )〉 = iCT
i j (t ) involving the time-ordered

Green’s function GT. Using Eq. (21) and the characteristic
function above, the second Rényi entropy can be immediately
evaluated by integrating out the auxiliary Grassmann variables
ξ and η to get

S(2)
A (t ) = −Tr ln[(1 − C(t ))2 + C(t )2], (C3)

as discussed in Sec. II C. The above is of the same form
as obtained in Eq. (36) for the thermal case. This implies a
similar recursion relation for higher Rényi entropies as the
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one given in Eq. (38) can be derived and solved in exactly
the same way to give the final expression reported in Eq. (50)
of the main text.

APPENDIX D: NONEQUILIBRIUM FIELD THEORY
FOR RÉNYI ENTROPY IN SYK MODEL

The imaginary-time thermal field theoretic formulation
discussed in Sec. II D for SYK model and its extensions al-
lows us to access ground-state entanglement in these large-N
model. In this section, we discuss the large-N Schwinger-
Keldysh formulation, which will enable us to track the
time evolution of entanglement entropy under nonequilib-
rium situations [54–62]. We demonstrate this by deriving the
Swinger-Keldysh action and saddle-point equations for out-
of-equilibrium evolution in the SYKq model [Eq. (52)] when
the strength of interactions is varying with time, such that

〈|Ji jkl |2〉 = J (t )2/qN2q−1(q!)2. (D1)

Here J (t ) is an arbitrary function of time. Also, we take the
initial density matrix as a thermal ensemble for the SYKq

model prepared for some initial configuration of Ji jkl s. We use
the path integral derived in Eq. (27) and a modified form of the
contour defined in Eq. (26) to develop the formulation. Instead
of stretching the real-time branches to +∞ [see Fig. 1(b)], we
stop it at t , the time at which entanglement is to be measured.
Therefore, the contour is now defined as

C = [t0 + iβ, t0) ∪ [t0, t] ∪ (t, t0], (D2)

where the imaginary-time contour remains same as that shown
in Fig. 1(b).

The steps are similar to the thermal case of Sec. II D, but
with the imaginary-time τ generalized to the contour vari-
able z, and we end up with an intermediate replica-diagonal
Keldysh action

S =
(

−
∑
i∈A

[ξ̄i η̄i]

[ 1
2 − 1

2
1
2

1
2

][
ξi

ηi

]

+
∫
C

dz δC (z− − t )[c̄i1(z) c̄i2(z)]

[
ξi

ηi

]

−
∫
C

dz δC (z − t )[ξ̄i η̄i]

[
ci1(z)
ci2(z)

])

+
∫
C

dz1

∑
i,σ

c̄iσ (z1)i∂z1 ciσ (z1)

− iN
∫

dz1,2

∑
σσ ′

[�σσ ′ (z1, z2)Gσ ′σ (z2, z1)

− J (z1)J (z2)

2q
[Gσσ ′ (z2, z1)]q[Gσ ′σ (z1, z2)]q

]
, (D3)

where the contour δ function δC (z− − t ) is nonzero when z
approaches the measurement time t along the − branch of the
contour and δC (z − t ) is nonzero when z approaches t from
the + branch of the contour; see Eq. (D2). The large-N field
G is upgraded to a contour version and is defined as

Gσ ′σ (z2, z1) = i

N

∑
i

c̄iσ (z1)ciσ ′ (z2). (D4)

The rest of the symbols have the same meaning as the ones
defined in Eq. (59). We emphasize that the time dependence
is explicitly encoded in the function J (z), which is equal to
J (t ) when z ∈ [t0, t] ∪ (t, t0] part of the contour, and a static
quantity J0 when z ∈ [t0 + iβ, t0). If we integrate ξ, η first,
in Eq. (D3), and then the fermion-fields c̄iσ (z), ciσ (z), in that
order, we arrive at the final expression for the entanglement-
Keldysh action,

SC = −i ln det [−i(i∂z − �)]

− ip ln det [−i(i∂z − � + iM)]

− i
∫

dz1,2

∑
σσ ′

[
�σσ ′ (z1, z2)Gσσ ′ (z2, z1)

− J (z1)J (z2)

2q
G(z2, z1)qG(z1, z2)q

]
, (D5)

in the large-N limit. The symbols ∂z, � represents matrices
having elements ∂z1δC (z1 − z2)δσσ ′ , �σσ ′ (z1, z2) respectively,
and the matrix M is defined as

Mσ1σ2 (τ1, τ2) =
[

1 1
−1 1

]
δC (z1− − t )δC (z2+ − t ). (D6)

Equation (D5) is the time-dependent generalization of
Eq. (65) that was derived in the context of thermal-field theory,
and in the same manner, the saddle-point equations can be
derived to yield

G = (1 − p)G̃ + pg,

G̃ = (i∂z − �)−1,

g = (i∂z − � + iM)−1,

�σσ ′ (z1, z2) = J (z1)J (z2)Gσσ ′ (z1, z2)qGσ ′σ (z2, z1)q−1, (D7)

the solutions for which, when plugged into Eq. (D5), provide
us with the expression for second Rényi entropy density at
time t , i.e.,

S(2)(t ) = −iSC (t ) + 2N−1 ln Z, (D8)

where Z is the partition function describing the initial thermal
ensemble and can be computed from standard thermal-field
theory for the SYKq model. The generalization of the for-
mulation to other versions of the SYK model can be done in
exactly the same manner and will be discussed elsewhere [71].

APPENDIX E: SADDLE-POINT EQUATIONS AND
ENTANGLEMENT FREE ENERGY FOR THE MODELS

OF FL AND NFL-FL TRANSITION

In this Appendix, we provide the saddle-point equations
and entanglement free energies for the rest of the large-N
modules introduced in Sec. II D.

1. SYK model with quadratic hopping term

The saddle-point equations for the interacting Fermi liquid
defined in Eq. (53) are same as Eq. (67), except the formula
for the self-energy is now given by

�σσ ′ (τ1, τ2) = (−1)q+1J2Gσσ ′ (τ1, τ2)qGσ ′σ (τ2, τ1)q−1

+ t2
hopGσσ ′ (τ1, τ2). (E1)
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Also, the entanglement free energy becomes

FEE(p, β )

= 1

2β

[
p ln det (−g) + (1 − p) ln det(−G̃)

−
∫ β

0
dτ1,2

∑
σ=1,2

(−1)q J2

2q
Gσ ′σ (τ2, τ1)qGσσ ′ (τ1, τ2)q

+
∫ β

0
dτ1,2

∑
σ=1,2

t2
hopGσ ′σ (τ2, τ1)Gσσ ′ (τ1, τ2)

−
∫ β

0
dτ1,2

∑
σ=1,2

�σσ ′ (τ1, τ2)Gσ ′σ (τ2, τ1)

]
. (E2)

2. BA model for non-Fermi liquid to Fermi liquid transition

We determine the saddle-point equations for calculating
Rényi entropy in the BA model [see Eq. (54)] for the following
two subsystem choices: (a) when the subsystem is chosen to
be the SYK c fermions and (b) when the subsystem is formed
by the noninteracting ψ fermions. In both cases, p represents
the ratio of ψ-fermion sites (Nψ ) to c-fermion sites (Nc), i.e.,
p = Nψ/Nc. The self-energies �(c) and �(ψ ), for both cases
(a) and (b), are given by

�
(c)
σσ ′ (τ1, τ2) = −J2G(c)

σσ ′ (τ1, τ2)2G(c)
σ ′σ (τ2, τ1)

+ √
pV 2G(ψ )

σσ ′ (τ1, τ2),

�
(ψ )
σσ ′ (τ1, τ2) = t2

hopG(ψ )
σσ ′ (τ1, τ2) + V 2

√
p

G(c)
σσ ′ (τ1, τ2). (E3)

The equations for obtaining the Green’s functions from the
self-energies are

G(c) = −(∂τ + �(c) + M )−1,
(E4)

G(ψ ) = −(∂τ + �(ψ ) )−1,

for case (a) and

G(c) = −(∂τ + �(c) )−1,
(E5)

G(ψ ) = −(∂τ + �(ψ ) + M )−1,

for case (b). The entanglement free energy is again same for
both the cases and is given by

FEE(p, β )

= 1

2β(1 + p)

⎡
⎣ ln det(−G(c) ) + p ln det(−G(ψ ) )

−
∫ β

0
dτ1,2

∑
σσ ′

J2

4
G(c)

σ ′σ (τ2, τ1)2G(c)
σσ ′ (τ1, τ2)2

−
∫ β

0
dτ1,2

∑
σσ ′

�
(c)
σσ ′ (τ1, τ2)G(c)

σ ′σ (τ2, τ1)

+ p
∫ β

0
dτ1,2

∑
σσ ′

t2
hop

2
G(ψ )

σ ′σ (τ2, τ1)G(ψ )
σσ ′ (τ1, τ2)

− p
∫ β

0
dτ1,2

∑
σσ ′

�
(ψ )
σσ ′ (τ1, τ2)G(ψ )

σ ′σ (τ2, τ1)

+ √
p
∫ β

0
dτ1,2

∑
σσ ′

V 2G(c)
σ ′σ (τ2, τ1)G(ψ )

σσ ′ (τ1, τ2)

⎤
⎦. (E6)

APPENDIX F: COUPLING CONSTANT INTEGRATION
METHOD TO COMPUTE GRAND POTENTIALS

For the nth Rényi entropy, we need to obtain the nth grand
potential, which is defined as

�(n)(λ) = −T ln Z (2)(λ) = −T ln TrAZn
A(λ),

ZA(λ) = TrBe−β(H0+λH1 ).

Here, H0 is a reference Hamiltonian, typically the noninteract-
ing part, whose grand potential can be obtained easily. H1 is
the interacting part and we have multiplied by a real variable
λ, which will be finally integrated. The Hamiltonian Hλ is
defined as Hλ = H0 + λH1, where λ = 0 is the noninteracting
limit and λ = 1 is the interacting Hamiltonian of interest.
n = 2 correspond to the second Rényi potential and n = 1 to
the usual grand potential. We obtain

∂λ�
(n)(λ) = −nT

Z (n)(λ)
TrA
[
Zn−1

A (λ)(TrB∂λe−β(H0+λH1 ) )
]
, (F1)

where ∂λ = ∂/∂λ. It can be easily shown that [84]
∂λ exp[−β(H0 + λH1)] = −β exp[−β(H0 + λH1)]H1, and
hence

∂λ�
(n)(λ) = n

λZ (n)(λ)
TrA
[
Zn−1

A (λ)(TrBe−β(H0+λH1 )λH1)
]
.

(F2)

For n = 2, using the trace formula [Eq. (7)] and integrating
both sides over λ from 0 to 1 we get

�(2)(λ) = �(2)(0) +
∫ 1

0

dλ

λ

2

Z (2)(λ)

∫
d2(ξ, η){ fN (ξ, η)

× Tr[e−βHλDN (ξ)]Tr[e−βHλλH1DN (η)]}, (F3)

where �(2)(0) is the Rényi grand potential for the noninteract-
ing system. As in Eq. (75a), one can construct a path-integral
representation for the above using the generating function
Z (2)(λ) and obtain

�(2) = �(2)(0) +
∫ 1

0

dλ

λ

〈
λU
∑

i

ni↑α (0)ni↓α (0)

〉
Z (2) (λ)

.

(F4)

Here α is the entanglement replica index. The important point
to note here is that the expectation of λH1 with respect to Z (2)

has to be calculated at the same time where DN (ξ) is inserted
in the path integral, i.e., at τ = 0 in our case. Naively, it seems
that the above requires the evaluation of a four-point function.
However, one can write 〈λU

∑
i ni↑α (0)ni↓α (0)〉 in terms of

the single-particle Green’s function. To show this, we use the
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Heisenberg equation of motion [84]

dciσ (τ )

dτ
= [H, ciσ (τ )]

= −
∑

j

ti jc jσ (τ ) + μciσ (τ )

− λU (ni↑(τ )ci↓(τ )δσ↓ + ni↓(τ )ci↑(τ )δσ↑).

(F5)

From the above, we can easily show that〈
λU
∑

i

ni↑α (0)ni↓α (0)

〉
Z (2) (λ)

= 1

2
lim

τ ′→τ+

∑
i jσ

[(∂τ − μ)δi j + ti j]G
(λ)
jσ,iσ (τ, τ ′). (F6)

Using the above in Eq. (F4), we obtain the expression for
second Rényi grand potential in Eq. (85) in Sec. II E. Also,
the usual thermodynamic grand potential (n = 1) is given by

� = �(0) +
∫ 1

0

dλ

λ

〈
λU
∑

i

ni↑(τ )ni↓(τ )

〉
Z (λ)

, (F7)

and one can obtain similar expression in terms of the Green’s
function as shown in Eq. (86) in Sec. II E.

APPENDIX G: PROOF OF MAXIMAL ENTANGLEMENT
IN SYK MODEL FOR SMALL SUBSYSTEMS

In this section, we analytically prove that the SYK model
is maximally entangled with second Rényi entropy S(2)

A =
p ln(2) for p → 0, i.e., when the subsystem size becomes
vanishing fraction of the total system size. To this end, we
start from Eq. (62), and instead of integrating out the ξ, η

variables first, we integrate the c fermions and then the ξ, η

variables. This leads to Tr[Z2
A]r = ∫ D(c̄, c, �, G)e−NrS[�,G]

and an effective action under (disorder) replica symmetric and
diagonal ansatz

S = − ln det(∂τ + �) + SG/r − p lnK,

K = 2[(C11 − 1/2)(C22 − 1/2) − (C12 + 1/2)(C21 − 1/2)].
(G1)

Here r is the number of disorder replicas, and SG is ob-
tained from Eq. (65) by plugging in the ansatz G, � ∝ δab

and Cαγ = G̃αγ (0, 0+) (see below for definition). The above
action produces an alternate [but mathematically equivalent to
Eq. (67)] set of saddle-point equations

G̃ = − (∂τ + �)−1, G = G̃ − p
δ lnK
δ�

,

�σσ ′ (τ1, τ2) = (−1)q+1J2Gσσ ′ (τ1, τ2)qGσ ′σ (τ2, τ1)q−1.

(G2)

When p → 0, the above saddle-point Green’s functions are
same as that of the original SYK saddle point in a thermal
ensemble and G̃αγ = Gαγ = Gδαγ . Also, Cαγ = nδαγ with
n = 〈c†

i (0)ci(0)〉, the fermion density per site. Hence, using
Eq. (69), the Rényi entropy density of the subsystem A is

simply given by

S(2)(p) = − p ln[(1 − n)2 + n2]. (G3)

For half filling, we get S(2) = p ln(2), i.e., the maximum en-
tanglement possible for spinless fermions.

APPENDIX H: NUMERICAL TECHNIQUES

In this section, we provide the details of the numerical
techniques used to arrive at the results of Sec. III. The section
contains two parts: the first part gives the details for finite-N
calculation and the second discusses the numerical solution of
the saddle-point equations that appear in the main text.

1. Finite-N numerics

We write the thermal-density matrix, ρ = exp(−βH )/Z , in
the eigenbasis ({|ψα〉}) of the Hamiltonian H as follows,

ρ =
∑

α

pα|ψα〉〈ψα|, (H1)

where the probability pα are calculated using

pα = exp(−βEα )/Z. (H2)

The many-body energies, Eα , and the eigenstates, |ψα〉, are
obtained by exact diagonalization (ED) of the Hamiltonian H .
The partition function, Z , for a given temperature T (= β−1)
is calculated from the energies Eα using

Z =
∑

α

exp(−βEα ). (H3)

We perform our calculations using the grand-canonical en-
semble in order to include contribution from all number
sectors in the Fock space for fermions. The dimension of the
Hilbert space is 2N with N being the total number of fermion
flavors and/or sites in the theory. The reduced density matrix
(ρA) for the subsystem A, having NA sites, can be calculated
from the reduced density matrices of the individual states
|ψα〉, as follows,

ρA = TrBρ =
∑

α

pαTrB[|ψα〉〈ψα|], (H4)

where TrB represents the trace over the rest of the system, B,
having N − NA sites. We define the reduced density matrices
of the individual state |ψα〉 as

ρ
(α)
A = TrB[|ψα〉〈ψα|], (H5)

which can be calculated by rewriting |ψα〉 in the form

|ψα〉 =
∑

i∈A, j∈B

ψ
(α)
i, j |i〉A ⊗ | j〉B ≡

∑
i∈A, j∈B

ψ
(α)
i, j |iA; jB〉, (H6)

where the vectors |i〉A (i = 1, . . . , 2NA ) span the Hilbert space
for the subsystem A, while | j〉B ( j = 1, . . . , 2N−NA ) span that
of B, the rest of the system. The amplitude ψ

(α)
i, j can be viewed

as a matrix with dimension 2NA × 2N−NA . The tracing over the
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B subsystem [see Eq. (H5)] can be performed to give(
ρ

(α)
A

)
i,i′ =

∑
j∈B

〈iA; jB|ψα〉〈ψα|i′A; jB〉

=
∑
j∈B

ψ
(α)
i, j

(
ψ

(α)
i′, j

)∗
, (H7)

where (ρ (α)
A )i,i′ is the i, i′th element of the reduced density

matrix ρ
(α)
A . The reduced density matrix for the subsystem A

can now be calculated using Eq. (H4), i.e.,

ρA =
∑

α

pαρ
(α)
A , (H8)

and the second Rényi entropy, S(2), can finally be evaluated
using

S(2) = −ln
(
TrA
[
ρ2

A

])
. (H9)

The · · ·, appearing above, denotes averaging over disorder
realizations of Ji jkl s [see Eq. (52)]. We performed averag-
ing over 2000 disorder realizations for calculations involving
N = 10 fermionic sites and averaging over 250 realizations
for system involving N = 12 sites. The reduced density matrix
ρA was calculated for each new disorder realization.

2. Solution of saddle-point equations

We demonstrate our numerical approach by using the
SYKq model, defined in Eq. (52), as a prototype. The saddle-
point equations for the model are given in Eq. (67). We

reiterate these equation here for ease of access:

G = (1 − p)G̃ + pg, (H10)

G̃ = −(∂τ + �)−1, (H11)

g = −(∂τ + � + M)−1, (H12)

�σσ ′ (τ1, τ2) = (−1)q+1J2Gσσ ′ (τ1, τ2)qGσ ′σ (τ2, τ1)q−1.

(H13)

We discretize the domain [0, β ) for imaginary-time τ into
Nτ segments. Since the matrix M, appearing above, breaks
time-translation symmetry [see Eq. (64)], we represent the
Green’s functions (G, g etc.) and self-energy (�) as matri-
ces having dimensions 2Nτ × 2Nτ . The factor 2 accounts for
the two copies of the reduced density matrix in the second
Rényi entropy [see Eq. (56)], and evaluating nth Rényi en-
tropy will require nNτ × nNτ matrices. The time derivative is
also represented as a matrix using the finite-difference rela-
tions given in Eq. (18). The antiperiodic boundary conditions
for the Green’s function, i.e., G(τ1 + β, τ2) = −G(τ1, τ2) =
G(τ1, τ2 + β ) etc., are incorporated into the matrix repre-
sentation of the derivative operator as well. With this setup,
the saddle-point equations can be solved by starting from
an initial guess for the Green’s function G̃, g, using which
the self-energy � can be determined via Eq. (H13). A new
“corrected” G̃, g can then found by performing the inverses in
Eq. (H11) and Eq. (H12) numerically. The process can then
be iterated until sufficient numerical convergence has been
achieved.
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