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A Robust and Non‑parametric Model for Prediction 
of Dengue Incidence

1 Introduction
Dengue is a fast emerging pandemic-prone 

viral disease transmitted by Aedes aegypti and 
Aedes albopictus mosquitos. According to the 
World Health Organisation (WHO), each year, 
an estimated 390 million dengue infections occur 
all around the world. Cases across the Americas, 
South-East Asia and Western Pacific exceeded 1.2 
million in 2008 and over 3.2 million in  201523. 
Several precautionary measures include vector 
control tools, like controlling mosquito popula-
tions; however, implementation is a major chal-
lenge and effective dengue prevention is rarely 
achieved, specially in developing countries. Often, 
it is the emergency vector control operation that 
is usually applied when an outbreak occurs, such 
as insecticide fogging.

Accurate forecasts of incidence cases, or 
infected individuals are key to planning and 
resource allocation of dengue vaccines, medical 
centres, etc. Previous attempts to model dengue 
have made use of relatively simple models, such 
as generalised linear model and ARIMA, exploit-
ing the relationship with other environmen-
tal  variables4, 7, 14. However, most of the times, 

Vector: In epidemiology, 
vectors are organisms that 
transmit infectious pathogens 
from animals to humans or 
between humans.

ARIMA: ARIMA models 
predict future values of a time 
series based on its past values, 
i.e., its lags.
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Abstract | Disease surveillance is essential not only for the prior detec‑
tion of outbreaks, but also for monitoring trends of the disease in the long 
run. In this paper, we aim to build a tactical model for the surveillance of 
dengue, in particular. Most existing models for dengue prediction exploit 
its known relationships between climate and socio‑demographic factors 
with the incidence counts; however, they are not flexible enough to cap‑
ture the steep and sudden rise and fall of the incidence counts. This has 
been the motivation for the methodology used in our paper. We build 
a non‑parametric, flexible, Gaussian process (GP) regression model 
that relies on past dengue incidence counts and climate covariates, 
and show that the GP model performs accurately, in comparison with 
the other existing methodologies, thus proving to be a good tactical and 
robust model for health authorities to plan their course of action.
Keywords: Epidemic, Dengue, Non-parametric, Gaussian process, Covariance, Kernel, Robust, 
Tactical model
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disease dynamics are not well understood and 
such models may fail to capture that 11. Den-
gue is closely related to the seasonal changes, 
rainfall and humidity. Our model is trained on 
historical incidence data, mean surface tempera-
ture, humidity and rainfall, and makes use of a 
Bayesian non-parametric modelling framework, 
Gaussian processes (GP) that allows for flexibility 
in the model, thus being able to forecast the sud-
den peak increase of the incidence counts.

2  Related Work
A study and systematic review of existing dengue 
modelling methods, conducted by Louis et al.11, 
has been instrumental in providing us with an 
overview of current modelling efforts and their 
limitations. The study enlists a wide range of pre-
dictors that were used to create dengue risk maps, 
such as socioeconomic and demographic data, 
climatic and environmental data, remote sensing 
and entomological data.

Several  efforts4, 6, 7, 14 have made use of para-
metric models such as logistic regression models, 
multinomial models and generalised linear mod-
els with climatic covariates as inputs. Climatic 

Non-parametric: A para-
metric model simplifies the 
learning model to a known 
functional form, but a non-
parametric model does not 
make any assumptions on 
the learning function and can 
hence learn any function from 
the training data.
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data have been found to be particularly useful for 
the generation of risk  maps2. Additionally, other 
factors, such as human mobility or housing con-
ditions, are also likely to be linked to the occur-
rence of dengue  cases8. In contrast to the fields 
of malaria and other vector-borne diseases, the 
study shows that dengue is particularly challeng-
ing due to the high number of non-detectable 
breeding  sites5, 9, 12, 20. There have been models 
making use of entomological  data1, 3, 16, 19–22 stud-
ying the link between several vector aspects (like 
larvae abundance, ovi-trapping) and dengue 
cases; however, the exact nature of the relation-
ship remains unknown. Such surveys are not only 
labor-intensive and costly, but they also yield spu-
rious results that are not useful for  prediction3.

The weakness of the current dengue predic-
tion efforts originates from the fact that dengue 
is highly dynamic and multifactorial. Factors such 
as host immunity and genetic diversity of circu-
lating viruses also play an important role, but 
they are difficult and expensive to track. They 
continue to pose challenges and limit the ability 
to produce accurate and effective risk maps and 
models, thus failing to support the development 
of an early warning system. Many epidemiologi-
cal models have been developed and have gained 
importance in the last decade; however, they 
cannot be used in the public health context due 
to their complexity and the extensive need for 
input data. Additionally, most models produce an 
average forecast of the numbers in the long run, 
instead of being able to predict the immediate 
rise and fall of the incidence counts. On account 
of this, we aim to build a robust but easily imple-
mentable model that would depend only on cli-
matic variables and past historical data. The GP 
model has an added advantage of generalising the 
model to include several other factors that affect 
dengue, such as human mobility and vector data.

3  The Data
We have chosen Singapore as our case study 

due to the free availability of weekly dengue inci-
dence counts. Data for the years 2005–2017 were 
downloaded from the Ministry of Health, Singa-
pore  bulletin13. Rainfall, relative humidity and 
surface air temperature data were also down-
loaded from the National Environment Agency 
 website15. The years 2005–2016 were used as a 
training set, whereas the year 2017 was used as a 
test set. The incidence data are final counts, i.e. 
the total number of cases in each week. To avoid 
overfitting or underfitting, we have implemented 
the process of k-fold cross-validation ( k = 10 ) to 

Cross-validation: Cross 
validation tests the model’s 
ability to predict unknown 
new data to avoid problems of 
over-fitting or selection bias.

help us understand the performance of the model 
and select an appropriate one.

Figure 1 shows Singapore incidence counts 
across 2005–2017. It clearly depicts a yearly cycle. 
Not only do the data have a mean response which 
varies with time, but also the variability of the 
incidence counts is unequal across the months. 
The dengue count is a heteroskedastic variable 
when predicted by the month number.

4  Methodology
4.1  Gaussian Process Modelling
This paper proposes to model dengue incidence 
with Gaussian processes (GP), a non-parametric 
modelling  framework17, for the purpose of get-
ting an added flexibility and making accurate 
predictions of the peak season, as it falls and rises. 
One can think of GP as defining a distribution 
over functions, and inference takes place directly 
in the space of functions.

A GP is completely specified by its mean 
function m(x) and the covariance func-
tion k(x, x′) of a process f (x), and we write 
f (x) ∼ GP(m(x), k(x, x′)). We first assume our 
model to be of the form y = f (x)+ ǫ, where ǫ is 
additive and independent identically distributed 
Gaussian noise with variance σ 2

n .

From our training data, we know 
{(xi, yi)|i = 1, . . . , n} , where n is the total num-
ber of observations. The joint distribution of 
the training outputs, y, and the test outputs f∗ 
according to the prior is

If there are n∗ test points. then K (X,X∗) 
denotes the n× n∗ matrix of the covariances eval-
uated at all pairs of training (X) and test points 
( X∗ ), and similarly for the other entries. To get 
the posterior distribution over functions, we need 
to restrict this joint prior distribution to con-
tain only those functions which agree with the 
observed data points. The key predictive equa-
tions for Gaussian process regression are

Heteroskedastic: Heter-
oskedastic data is data with 
unequal variability across a 
set of predictor variables, here 
across time periods.

Prior: In Bayesian inference, 
the prior expresses one’s belief 
before observing the data.

[

y
f∗

]

∼ N

(

0,

[

K (X,X)+ σ ∗
n I K (X,X∗)

K (X∗,X) K (X∗,X∗)

])

.

Posterior: The posterior dis-
tribution is the distribution 
of the parameters after taking 
into account the observed 
data.

(1)f∗|X , y,X∗ ∼ N (f̄∗, cov(f∗)),

(2)f̄∗ =K (X∗,X)[K (X ,X)+ σ 2
n I]

−1
y,

(3)

cov(f∗) = K (X∗,X∗)− K (X∗,X)[K (X ,X)+ σ 2
n I]

−1

K (X ,X∗).
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By this definition, GPs allow us to obtain the 
exact predictive distribution through a closed-
form expression. They are also flexible, since one 
can use any positive semi-definite kernel as the 
covariance function K as a measure of similarity 
between points, providing rich insights about the 
dependencies between them.

Positive semi-definite kernel: 
A positive semi-definite 
matrix has non-negative eigen 
values.

Under the Gaussian process model, the prior 
is Gaussian, f |X ∼ N (0,K ), or

(4)

log p(f |X) =
−1

2
f TK−1f −

1

2
log |K | −

n

2
log 2π
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Figure 1: Monthly incidence of dengue vs month across years 2005–2017.
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and the likelihood is a factorised Gaussian 
y|f ∼ N (f , σ 2

n I). We thus arrive at the log mar-
ginal likelihood as

We estimate the hyper-parameters of K by 
maximising the marginal likelihood (or mini-
mising the negative log likelihood). We can use 
several gradient-based optimisers, since it is nec-
essary to compute the partial derivatives of the 
marginal likelihood w.r.t. the hyper-parameters. 
For our purpose, we use the “BFGS” method.

We apply a logarithmic (one plus) transfor-
mation on the response variable and model this 
transformation as a GP. This is done to ensure 
that the largest variances are stabilised. The main 
task in modelling via GPs is to define an appro-
priate covariance structure. We assume a zero-
mean GP by centering the response variable 
about its mean.

4.2  Defining the Covariance Function
Covariance functions encode our assumptions 
about the function which we wish to learn. It is 
a basic assumption that input points which are 
“close” to each other are likely to have similar tar-
get values y. Based on this, training points that 
are close to a test point should provide informa-
tion about the prediction at that point. It is the 
covariance function that defines this nearness or 
similarity.

A complex covariance function is derived 
by combining several different kinds of simple 
covariance functions. The covariance structure 
imposed by the GP prior should reflect what we 
expect from the data. We make use of standard 
kernels defined in the GP  literature17. Our goal 
is to model the transformed incidence counts 
as a function of xi = (x1, x2, x3, x4)i, i.e. the 
ith observation and its corresponding month 
number, total monthly rainfall, mean relative 
humidity and mean surface air temperature, 
respectively.

To enforce the assumption that the test input 
is highly correlated with its pre-ceding inputs, 
we use a 5/2 Matern kernel which is defined as

Marginal likelihood: Likeli-
hood is the distribution of the 
observed data. The marginal 
likelihood is the distribu-
tion of the observed data 
marginalized (summed) over 
the parameters.

(5)

log p(y|X) =
−1

2
yT (K + σ 2

n I)
−1y−

1

2
log

× |K + σ 2
n I| −

n

2
log 2π .

Hyper-parameters: Model 
hyper-parameters differ from 
model parameters. Whilst 
the model parameter is a part 
of the learning model and 
is estimated from the data 
automatically, the model 
hyper-parameter is external 
to the model and is set manu-
ally, can be tuned for a given 
predictive model.

Kernels: A kernel (also 
called a covariance function) 
describes the joint variability 
between two variables. For 
rationale on the different 
kernels used, the reader is 
referred  to15.

where �x = |xi − xj| is the absolute distance 
between the inputs. Its hyper-parameters, σ1 
and l1 are used to control the strength of cor-
relation signal and the span of time that should 
correlate, respectively.

We use a second component to exploit the 
periodicity observed in dengue incidence, while 
still giving more importance to closer periods of 
time.

k21 is a squared-exponential kernel (also called 
radial basis function kernel) and k22 is a peri-
odic kernel. The hyper-parameters of k21–l2 and 
σ2 are used to control the number of months 
that should impact the incidence and strength 
of the correlation signal, respectively. p and lper , 
the hyper-parameters of k22 are used to control 
the periodicity and length scale of the signal, 
respectively.

Next, we model the small irregularities with 
a rational quadratic term. The rational quad-
ratic kernel allows us to model the data varying 
at multiple scales.

σ3 is the magnitude, α > 0 is the scale parameter 
and l3 is the characteristic length scale.

Finally, we specify the noise model as the 
sum of a squared exponential contribution and 
an independent component. Noise in the series 
could be due to measurement inaccuracies. It 
could also be due to the changes in weather phe-
nomena every year, hence we assume that there is 
a little amount of correlation in time.

(6)

k1(xi, xj) = σ 2
1

(

1+
√
5�x

l1
+

5�x2

3l21

)

× exp

(

−
√
5�x

l1

)

,

(7)k2(xi, xj) =k21(xi, xj)× k22(xi, xj),

(8)k21(xi, xj) =σ 2
2 exp

(

−�x2

2l22

)

,

(9)

k22(xi, xj) = exp

(

−2 sin2
(

π�x

p

)

/l2per

)

.

(10)k3(xi, xj) =σ3

(

1+
�x2

2αl23

)−α

.

(11)

k4(xi, xj) = σ 2
f exp

(

−�x2

2l24

)

+ σ 2
n δxixj ,
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where σf  is the signal variance, l4 is its length scale 
and σn is the magnitude of the independent noise 
component.

The final covariance function is

with 12 hyper-parameters.

(12)
k(xi, xj) = k1(xi, xj)+ k2(xi, xj)

+ k3(xi, xj)+ k4(xi, xj)

Note that most of the above defined covari-
ance functions are stationary, i.e. invariant to 
translations in the input space. Sampson and 
 Guttorp18 introduced the method of warping in 
1992, which allows us to introduce an arbitrary 
non-linear map u(x) of the input space x, and 
then use stationary covariance functions in the 
u(x) space. This is yet another reason for the loga-
rithmic transformation of the incidence counts.
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Figure 2: Gaussian model on the test set.
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The code has been run on R, mainly using the 
GauPro package. All the above-mentioned ker-
nels are imported from the kergp package. The 
training data are then fit and the marginal likeli-
hood is optimised using the “BFGS” algorithm.

5  Results and Discussion
We compare our GP model with three different 
existing methodologies— time series forecasting 
(ARIMA), generalised additive models (GAM) 
and predictions from random forests (RF), on the 
basis of two different metrics-root mean squared 
error (RMSE) and mean absolute deviation 
(MAD). The performance across various meth-
ods is reported as follows, for both in-sample and 
out-of-sample forecasts.

Model
Training 
RSME

Test 
RMSE

Training 
MAD Test MAD

GAM 0.608 0.682 0.623 0.883

Time 
series

0.521 0.562 0.493 0.512

Random 
forest

0.676 0.719 0.713 1.101

GP 8.3e−07 0.260 9.63e−07 0.262

Overfitting is taken care of by cross-validation. 
As can be seen from the above performance met-
rics, GP is very accurate for forecasting and easily 
implementable. It also has room for adding more 
covariates to the model. For the out-of-sample 
forecasts, Fig. 2 shows the predictions for the year 
2017.

6  Conclusion and Future Work
As we have seen in the last section, the model 
fit by Gaussian process serves as a good tactical 
model. This is due to its non-parametric nature 
and its flexibility, thus being able to automatically 
adapt to different scenarios. The other advantage 
of this model is the nature of the input, incidence 
numbers correlated with climate variables. In 
the future, we would like to investigate the role 
of human and vector factors in helping us fore-
cast dengue incidence in a public health context. 
The GP model can accommodate such factors by 
introducing kernel functions based on human 
and vector interactions and add it to the already 
defined kernel function in this paper.

The GP model provides a sufficient window 
for health authorities to be aware of the incom-
ing dengue counts and hence carefully plan and 
take necessary actions. Its easy implementation 
can act as a very accurate early warning system 

when implemented on a weekly basis. To make 
the model functional on a weekly basis, one may 
consider data on a weekly scale spatially and con-
sider resource allocation and facility problems to 
effectively implement an operational model.
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