
 

Born-Oppenheimer quantization of the matrix model for
N = 1 super-Yang-Mills theory

Verónica Errasti Díez ,1,* Mahul Pandey,2,† and Sachindeo Vaidya 3,‡

1Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 Munich, Germany
2School of Theoretical Physics, Dublin Institute for Advanced Studies,

10 Burlington Road, Dublin 4, Ireland
3Center for High Energy Physics, Indian Institute of Science, Bangalore 560012, India

(Received 6 February 2020; accepted 30 September 2020; published 27 October 2020)

We construct a quantum mechanical matrix model that is a dimensional reduction ofN ¼ 1 super-Yang-
Mills on S3 × R. We do so by pulling back the set of left-invariant connections of the gauge bundle onto the
real superspace, with the spatial R3 compactified to S3. We quantize theN ¼ 1 SUð2Þmatrix model in the
weak-coupling limit g ≪ 1, with g the dimensionless gauge coupling constant, using the Born-
Oppenheimer approximation and find that different superselection sectors emerge for the effective gluon
dynamics in this regime, reminiscent of different phases of the full quantum theory. We demonstrate that the
Born-Oppenheimer quantization is indeed compatible with supersymmetry, albeit in a subtle manner. In
fact, we can define effective supercharges that relate the different sectors of the matrix model’s Hilbert
space. These effective supercharges have a different definition in each phase of the theory.
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I. INTRODUCTION

It is hard to overemphasize the importance of Yang-Mills
theory [1] in theoretical physics. Suffice to recall that it
forms the basis of our understanding of the Standard Model
of particle physics. A (0þ 1)-dimensional reduction of
Yang-Mills on S3 ×R to a matrix model was obtained in
[2]. By construction, this model is expected to be valid for a
small enough radius ρ of the spatial S3, so that the higher
Fourier modes of the quantum fields can be consistently
truncated. However, because Yang-Mills is a nonlinear
theory, for certain questions the regime of validity of its
proposed matrix model has been found to substantially
extend beyond the said original ambit. Indeed, the matrix
model has been shown to be free of divergences and capture
relevant topological features of the full quantum field
theory. For instance, it has been successful in accounting
for the impure nature of colored states in QCD [2,3]. It has
also been used to describe the low-lying glueball spectrum
of pure QCD [4], as well as to realize edge-localized
glueball states in SUð2Þ Yang-Mills theory [5].

A remarkable property of this matrix model is that it
exhibits a rich zero-temperature quantum phase structure
when coupled to fermions. This property was studied in
detail in [6], where it was observed in particular that the
matrix model in [2], when weakly coupled to funda-
mental fermions and subsequently solved in the Born-
Oppenheimer approximation, demonstrates quantum
critical behavior at special corners of the gauge configura-
tion space. Indeed, the phases of thematrixmodelwere found
to show a similar symmetry-breaking pattern as the color-
spin-locked phase conjectured in one-flavor QCD [7].
Supersymmetric extensions of Yang-Mills theories have

received considerable theoretical attention too, starting with
[8]. For N < 4, a noteworthy aspect of these supersym-
metric theories resides in their nontrivial vacuum structure.
In this context, the groundbreaking finding of the exact low
energy effective action and spectrum of BPS states for
N ¼ 2, SUð2Þ super-Yang-Mills stands out [9]. On the
other hand, the investigation of the vacuum structure and
domain wall configurations of the N ¼ 1, SUðNÞ analo-
gous theories continues to be pursued with zeal, see
e.g., [10].
Historically, a variety of nonperturbative aspects of

supersymmetric theories were first discussed in the context
of supersymmetric quantum mechanics. Most importantly,
the dynamical breaking of supersymmetry [11,12] and the
well-known Witten index [13] were first introduced in a
SUSY quantum-mechanical model, which led to a number
of important works on topological aspects of super-
symmetry and the Witten index, studied for quantum
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mechanical models [14–18]. This fact, added to the success
of the quantum-mechanical matrix model first proposed in
[2] in capturing the variety of important nonperturbative
aspects of Yang-Mills theory, motivates us to study a
quantum mechanical reduction of SYM theory. More
precisely, we find that the quantum mechanical model
displays a nontrivial quantum phase structure, similar to the
colour-spin locked phase found in the nonsupersymmetric
version, and we also study the role that supersymmetry
plays in relation with these phases.
In this paper we focus on the SUð2Þ, N ¼ 1 super-

symmetric extension of the matrix model in [2]. This is a
model of supersymmetric quantum mechanics, and its
spectrum can be analyzed using well-known quantum
mechanical techniques. We do so for an arbitrary value
of the radius ρ since, by comparison to the nonsupersym-
metric model, it is natural to expect our approximation to be
successful in a regime beyond the natural small ρ limit. We
study the quantum phase structure of the model in the
weak-coupling regime via Born-Oppenheimer quantiza-
tion. The weak-coupling regime is characterized by g ≪ 1,
with g the dimensionless gauge coupling constant. We thus
find two distinct quantum phases for the effective gauge
dynamics. Our construction can be easily generalized to
arbitrary SUðNÞ and allows for the inductive inference of
matrix models with extended supersymmetry. For con-
creteness, the N ¼ 2 counterpart to our matrix model
follows from coupling the N ¼ 1 gauge multiplet
ðMμa; λaα; DaÞ introduced in (2.24) to an N ¼ 1 matter
multiplet and then imposing an internal SUð2Þ symmetry.
At first sight, it may seem that the Born-Oppenheimer

quantization is not quite justified in this case, as it treats the
gauge fields and fermions on unequal footing. Thus, such a
quantization procedure a priori seems inconsistent with
supersymmetry. Indeed, there is no apparent supersym-
metry in the effective Hamiltonian governing the gauge
field dynamics. However, by a careful analysis, we dem-
onstrate that supersymmetry gets restored in the full Hilbert
space, which is the direct sum of the Hilbert spaces of all
possible effective Hamiltonians corresponding to fermions
occupying different energy levels.
The paper is organized as follows. In Sec. II, we derive a

quantum mechanical matrix model for N ¼ 1 supersym-
metric Yang-Mills theory with gauge group SUð2Þ. We do
so by extending the matrix model [2] to the real N ¼ 1
superspace. In more detail, we begin by briefly reviewing
the construction of the nonsupersymmetric matrix model in
Sec. II A. We then introduce the relevant superspace in
Sec. II B, thereby setting our notation. After obtaining the
corresponding superconnection in Sec. II C, we adapt
Sohnius’ maximal approach [19] to suitably constrain this
superconnection and infer the action of the supersymmetric
matrix model in Sec. II D. Section II E is devoted to the
Hamiltonian formulation of the matrix model, including
the algebra of the supercharges. Next, Sec. III describes the

Born-Oppenheimer quantization of the supersymmetric
matrix model. This is done in two steps. First, we find
the fermionic spectrum in Sec. III A. Second, we compute
the effective gauge dynamics induced by the fermions
near the Fermi surface in Sec. III B. We thus demonstrate
that there are two distinct phases for the gluons. In Sec. IV,
we describe how supersymmetry can be reconciled with the
Born-Oppenheimer approximation, by defining operators
called effective supercharges which connect different sec-
tors of the full Hilbert space. We conclude in Sec. V, with a
summary and discussion of our results.

II. THE SUPERSYMMETRIC MATRIX MODEL

In this section, we provide the N ¼ 1 supersymmetric
extension of the quantum mechanical matrix model for
SUðNÞ Yang-Mills theory introduced in [2]. This matrix
model is in turn based on the canonical study of the said
field theory with gauge group SUð2Þ and defined on S3 × R
that was carried out in [20]. Although our construction is
straightforwardly generalizable to arbitrary N, for concrete-
ness we will explicitly provide the supersymmetric matrix
model for N ¼ 2 only.

A. The matrix model: A review

The main ideas involved in the definition of the non-
supersymmetric matrix model with gauge group SUðNÞ are
as follows. Start with the Maurer-Cartan left-invariant one
form on SUðNÞ,

Ω ¼ TrðTau−1duÞMabTb; u ∈ SUðNÞ: ð2:1Þ

Here, Ta are the generators in the defining representation of
suðNÞ and Mab is a real square matrix of order N2 − 1.
Throughout the paper, we employ the normalization con-
vention TrðTaTbÞ ¼ δab. Next, consider isomorphically
mapping the spatial S3 onto an SUð2Þ subgroup of the
SUðNÞ gauge group. Xi, the three generators of translations
on S3, are identified with the corresponding subset of
generators Ti, with i ¼ 1, 2, 3. The connection on S3 is
obtained by pulling back Ω under this map:

−iAi ≡ΩðXiÞ ¼ −iMiaTa; ð2:2Þ

where Mia is a rectangular 3 × ðN2 − 1Þ-dimensional
matrix that depends solely on time. In other words, Ai
plays the role of the vector potential in the matrix model
reduction of SUðNÞ Yang-Mills theory. Notice that we
choose to work with a Hermitian connection: A†

i ¼ Ai. The
homologous pullback of the structure equation for Ω yields
the curvature Fij on S3:

Fij ≡ dΩðXi; XjÞ þ ΩðXiÞ ∧ ΩðXjÞ: ð2:3Þ

The supersymmetric matrix model we propose is
obtained by generalizing the above procedure to N ¼ 1
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superspace. We begin our construction by convening
the basics of this superspace, together with the relevant
functions and differential operators defined on it. This helps
us establish our notation and conventions.

B. The N = 1 superspace

As is well known, theN ¼ 1 super-Poincaré algebra can
be naturally realized on the super-Minkowski space M4j4,
which is identified with the coset space Super-Poincaré/
Lorentz [19]. A convenient parametrization of this coset
space is given by the real (or symmetric) superspace, with
coordinates

zA ≡ fxμ; θα; θ̄ _αg; ð2:4Þ

where the four-vector index μ ranges from zero to three and
the spinor indices ðα; _αÞ run from one to two. Note that,
while ðA; μ; αÞ are upper indices, _α is a lower index.
The xμ are the usual bosonic coordinates on Minkowski
spacetime, where we use the mostly positive metric
ημν ¼ diagð−1; 1; 1; 1Þ. On the other hand, ðθα; θ̄ _αÞ span
the fermionic directions of the superspace and so they are
Grassmann numbers. For these anticommuting numbers,
all usual spinor identities hold. In particular, ðθαÞ2 ¼ 0 ¼
ðθ̄ _αÞ2. Spinor indices are raised/lowered with 2 × 2 totally
antisymmetric tensors, normalized so that

ϵαβ ¼ −ϵ _α _β ¼ iσ2; ð2:5Þ

with σ2 the second Pauli matrix. Subsequently, we com-
pactify the bosonic spatial R3 to S3.
Superfields are functions of superspace: ϕ ¼

ϕðxμ; θα; θ̄ _αÞ. As such, they are most conveniently
expressed in terms of their (finite) power series expansion
in the Grassmannian directions ðθα; θ̄ _αÞ. If we indicate the
superfields that generate translations on the superspace by
XA ≡ fXμ; Xα; X̄ _αg, then it follows that they satisfy the
super-Poincaré algebra

½Xi;Xj�¼ ϵijkXk; ½Xi;Xα�¼−1
2
ðσiÞα _αðσ̄0Þ _αβXβ;

½Xi;X̄ _α�¼1

2
X̄ _βðσ̄0Þ _βαðσiÞα_γϵ_γ _α; fXα;X̄ _αg¼ðσμÞα _βϵ_β _αXμ;

ð2:6Þ

where the sigma matrices form a basis for 2 × 2 complex
matrices and are defined as

σμ ≡ ð−1; σiÞ; σ̄μ ¼ ð−1;−σiÞ; ð2:7Þ

with 1 the identity matrix and σi the Pauli matrices. Notice
these are related by a simple operation of index rais-
ing: ðσ̄μÞ _αα ¼ ϵ _α _βϵαβðσμÞβ _β.
Additionally, we introduce the linear differential oper-

ators DA ≡ ð∂μ; Dα; D̄ _αÞ on the superspace, where

Dα¼
∂
∂θα− iðσμÞα _αθ̄ _α∂μ; D̄ _α¼ ∂

∂θ̄ _α
þ iθαðσμÞα _βϵ_β _α∂μ:

ð2:8Þ

Here, the differentials along the Grassmannian directions
are defined by

∂
∂θα θ

β ¼ δβα;
∂
∂θ̄ _α

θ̄ _β ¼ −δ_β
_α: ð2:9Þ

The only nonvanishing (anti)commutation relation between
the DA’s is given by

fDα; D̄ _αg ¼ ðσμÞα _βϵ _β _α∂μ: ð2:10Þ

Observe that the differential operators above are defined
so that they (anti)commute with supertranslations:
½DA; XBg ¼ 0, where the so-called graded commutator
½f; gg denotes either commutator or anticommutator,
according to the even or odd character of f and g. Thus
the DA’s should be regarded as the covariant derivatives on
the superspace.1 Further, for any Lagrangian to be N ¼ 1
supersymmetric, its kinetic term must be a function of
the DA’s.
There are three important classes of superfields that will

be crucial in Sec. II D. Vector superfields V satisfy the
reality condition V ¼ V†. Chiral Φ and antichiral Φ̄
superfields are characterized by D̄ _αΦ ¼ 0 and DαΦ̄ ¼ 0,
respectively.

C. The superconnection

We are now ready to obtain the superconnection AA on
the above introduced N ¼ 1 superspace. We will do so in
direct analogy to (2.2) before, while restricting attention to
the gauge group SUð2Þ. Namely, we shall isomorphically
map this gauge group to the real superspace and after
that pullback its left-invariant one-form under the said
isomorphism.
Consider a set of three real superfields ϕaðxμ; θα; θ̄ _αÞ,

with a ¼ 1, 2, 3. These enable us to define the following
map from the real superspace to SUð2Þ:

M4j4 ∋ zA ≡ ðxμ; θα; θ̄ _αÞ ↦ g

¼ exp½iϕaðxμ; θα; θ̄ _αÞTa� ∈ SUð2Þ; ð2:11Þ

with Ta the generators of the gauge group. As usual,
multiplication of group elements g induces a motion in the
zA parameter space: these are precisely the XA super-
translations. The Maurer-Cartan form Ω ¼ g−1dg can then
be pulled back under the map (2.11) onto the N ¼ 1
superspace, thereby yielding the desired superconnection:

1The covariant derivatives DA should not be confused with the
gauge-covariant derivatives ∇A introduced in Sec. II D.
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−iAA ≡ΩðXAÞ ¼ −iMAaTa: ð2:12Þ

The above real rectangular matrices MAa are functions
of only time and the fermionic coordinates: MAa ¼
MAaðt; θα; θ̄ _αÞ.
Paralleling the derivation of the nonsupersymmetric

curvature in (2.3), we pullback the structure equation
associated to Ω to obtain the curvature on M4j4:

FAB ≡ dΩðXA; XBÞ − i½ΩðXAÞ;ΩðXBÞg
¼ XAðABÞ − ð−1ÞABXBðAAÞ
− iΩð½XA; XBgÞ − i½AA;ABg: ð2:13Þ

Explicitly, the various components of this curvature on the
real superspace are given by

F 0i ¼ ∂0Ai − i½A0;Ai�; F ij ¼ −ϵijkAk − i½Ai;Aj�;

F 0α ¼ ∂0Aα −DαA0 − i½A0;Aα�; F iα ¼ −DαAi þ
1

2
ðσiÞα _αðσ̄0Þ _αβAβ − i½Ai;Aα�;

F 0_α ¼ ∂0A _α − D̄ _αA0 − i½A0;A _α�; F i _α ¼ −D̄ _αAi −
1

2
A_βðσ̄0Þ _βαðσiÞα _α − i½Ai;A _α�;

F αβ ¼ DαAβ þDβAα − ifAα;Aβg; F _α _β ¼ D̄ _αA _β þ D̄_βA _α − ifA _α;A_βg;
F α _β ¼ DαA_β þ D̄_βAα − ðσμÞα _βAμ − ifAα;A_βg; ð2:14Þ

with ðDα; D̄ _αÞ as defined in (2.8).

D. The action

Having established what the covariant derivatives, the
superconnection and its curvature are in the N ¼ 1 super-
space, we now proceed to construct the supersymmetric
quantum mechanical matrix model of interest from these.
Recall that, for gauge theories in flat space, a gauge
invariant Lagrangian is obtained by direct gauge-covarian-
tization. Namely, by replacing all spatial derivative oper-
ators ∂μ in the Lagrangian by gauge-covariant derivative
operators ∇μ ≡ ∂μ − iAμ, with Aμ the gauge field. For any
gauge group G with generators Ta, a generic element is
expressed as u ¼ expðiφaTaÞ, where φa are real parameters
that depend on the flat space coordinates: φa ¼ φaðxμÞ. In
our conventions, gauge transformations act on gauge fields
via Aμ → uAμu−1. Equivalently, one says that gauge fields
transform under the adjoint representation of the gauge
group. Meanwhile, the Lagrangian remains invariant. As a
consequence, the gauge group action does not fully specify
gauge fields. This freedom can be used to set constraints (or
gauge-fixing conditions) on the gauge fields and thus
remove redundancies in the description of the theory.
The generalization of the just described approach to

supersymmetric gauge theories is morally straightforward.
For each of the superspace covariant derivatives DA, one
introduces a gauge superpotential AA and forms a gauge-
covariant derivative ∇A ≡DA − iAA. In general, it is not
possible to make the a priori assumption that the AA’s are
real; they must be regarded as arbitrary complex super-
fields. Accordingly, the gauge group elements g ¼
expðiϕaTaÞ are to be taken as complex superfields them-
selves, with ϕa ¼ ϕaðxμ; θα; θ̄ _αÞ. Again, the gauge group
action on the gauge superpotentials leads to more degrees

of freedom than required to describe the supersymmetric
theory, the gauge parameter superfields ϕa having too few
components to be able to gauge away all these redundan-
cies. It follows that one must impose a set of gauge- and
super-covariant constraints on the complex AA’s to get rid
of the irrelevant degrees of freedom. However, which
constraints to impose is a nontrivial decision that was first
elucidated in a geometrically consistent manner in [21].
This work paved the way to the now standard constraint
procedure for obtaining a supersymmetric Yang-Mills
theory from the superfields, known as the maximal
approach and thoroughly explained by Sohnius [19]. In
the following, we adapt the maximal approach to our setup.
Indeed, our matrix model reduction on N ¼ 1 super-

space has led us to exactly the same situation: for each
superspace covariant derivative DA (2.8), we have a
corresponding gauge superpotential AA ¼ MAaTa
(2.12). Combining these, we define the gauge-covariant
derivatives in the matrix model as

∇A ≡DA − iMAaTa: ð2:15Þ

The intrinsically complex superfields MAa ¼
MAaðt; θα; θ̄ _αÞ have more components than needed to
specify the super-Yang-Mills matrix model, so we must
impose a consistent set of constraints on them.
First, we impose the constraints

F α _α ¼ 0; F αβ ¼ 0 ¼ F _α _β: ð2:16Þ

The leftmost equation results from a simple field
redefinition of the gauge superpotential. The rightmost
equations can be justified by arguments of consistency.
Supersymmetry requires coupling the gauge theory to
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matter. In particular, consider couplings to chiral and anti-
chiral superfields. For the (anti-)chirality conditions—
displayed at the end of Sec. II B—to be compatible with
gauge symmetry, the rightmost equalities must be satisfied.
Notice that these constraints imply that both MαaTa and
M _αaTa are pure gauge. We make use of this gauge freedom
to set

M _αa ¼ 0: ð2:17Þ

It is easy to check that, for our above (partial) gauge choice,

Mμa ¼ −
1

2
ðσ̄μÞ _ααD̄ _αMαa ð2:18Þ

solves all constraints in (2.16).
Further constraints are still needed. Expressly, one must

ensure the uniqueness of (2.18); i.e., its real and imaginary
parts should not be independent. To this aim, note that the
nonzero curvatures on the real superspace fulfill the
Bianchi identities ∇½μF νAg ¼ 0 by construction. It follows
]22 ] that all these curvatures can be expressed in terms of

two superfields W and W̄ as

F a
μα¼ðσμÞα _αW̄ _βaϵ

_β _α;

F a
μ _α¼ ϵαβWβaðσμÞα _α;

F a
μν¼−

1

2
ð∇αðσμνÞβαϵβγWγaþ∇̄ _αðσ̄μνÞ _α _βW̄ _γaϵ

_γ _βÞ; ð2:19Þ

where, based on the sigma matrices in (2.7), we have
defined

σμν≡1

2
ðσμσ̄ν−σνσ̄μÞ; σ̄μν≡1

2
ðσ̄μσν− σ̄νσμÞ: ð2:20Þ

In terms of the superspace covariant derivatives (2.8) and
the matrix model parameters (2.12), the ðW; W̄Þ superfields
take the form

Wαa ¼
i
4
D̄ _αD̄ _αMαa;

W̄ _αa ¼
i
4
ϵ _α _β

�
ϵabcϵ

αβD̄ _βMβbMαc þDαD̄ _βMαa

−
3

2
ðσ̄0Þ _βαMαa −

1

2
ðσ̄0Þ _βαðσ̄0Þ_γβfD̄_γ; DβgMαa

�
:

ð2:21Þ

This way of writing the F μA’s makes it clear that what is
known as the reality constraint,

F †
μν ¼ F μν; ð2:22Þ

entails precisely the desired uniqueness of (2.18), as it
implies

M†
0a ¼ M0a þ gauge transformation; M†

ia ¼ Mia:

ð2:23Þ

Notice that (2.22) also relates the otherwise independent
ðW; W̄Þ superfields. They are now subject to satisfy
W†

αa ¼ W̄ _αa þ gauge transformation. The above implemen-
tation of the constraints (2.16) and (2.22) yields the correct
number of degrees of freedom on the matrix model gauge
superpotentials MAa.
As already stated, it is convenient to express superfields,

and in particular, W, as an expansion in the fermionic
variables ðθα; θ̄ _αÞ. By construction, the coefficients of the
different powers of θα and θ̄ _α will be matrices depending
only on time. These play the role of fields in a super-
multiplet. The transformation of W under translations XA
on the superspace induces the supersymmetry transforma-
tions of the fields. Notice however that W in (2.21), is
gauge-covariant, and hence its expanded form will be
gauge-dependent. We choose to work in the Wess-
Zumino gauge. In this gauge, only the physical (matrix
model reduced) fields in the supermultiplet are nonvanish-
ing and so the degrees of freedom are manifest. The choice
may be regarded as analogous to setting the Coulomb
gauge in electrodynamics. Altogether, we get

Wαa ¼ −iλαa þ θαDa −
1

2
ðσμÞα _αðσ̄νÞ _αβθβFa

μν

þ θβθβððσ0Þα _α _̄λ _βa þ iðσ0Þα _αλ̄_βa
þ ϵabcðσμÞα _αMμbλ̄_βcÞϵ _β _α; ð2:24Þ

where the field strengths are given by

Fa
0i ¼ _Mia þ ϵabcM0bMic;

Fa
ij ¼ −ϵijkMka þ ϵabcMibMjc: ð2:25Þ

Observe the different character of ϵijk and ϵabc here: the
former signals that the bosonic spatial space R3 has been
compactified to S3, while the latter captures the structure
constants of the underlying SUð2Þ gauge group. It will be
immediately relevant to also point out that W is a chiral
superfield, see (2.21).
Finally, the matrix model action for N ¼ 1, SUð2Þ

super-Yang-Mills theory is derived by integrating the
superfield Lagrangian over superspace. In this case, the
square of (2.24) yields the Lagrangian of the theory.
Explicitly,

S¼
Z
S3×R

d4xL¼
Z

dtL; L¼ 1

16

Z
d2θϵαβWβaWαa:

ð2:26Þ

Until this point, we have chosen the radius of the spatial
S3 to be one, but it is straightforward to rewrite our
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equations for arbitrary radius ρ by a simple dimensional
analysis. The three-dimensional volume integral in S3 will
yield a factor of 4π2ρ3; we absorb the numerical factor into
g2 and simply write ρ3. Then, the Lagrangian for the matrix
model can be written in a compact way as follows:

L ¼ ρ3
�
−

1

4g2
Fa
μνFaμν −

i
g2

λ̄a_αðσ̄μÞ _ααðDμλαÞa

−
1

g2ρ
λ̄a_αðσ̄0Þ _ααλaα þ

1

2g2
DaDa

�
; ð2:27Þ

where g is the dimensionless gauge coupling constant and
the Dμ are the gauge-covariant derivatives:

ðD0fÞa ¼ ∂0fa þ ϵabcM0bfc; ðDifÞa ¼ ϵabcMibfc:

ð2:28Þ

The field strength taking into account the radius is

Fa
0i ¼ _Mia þ ϵabcM0bMic;

Fa
ij ¼ −

1

ρ
ϵijkMka þ ϵabcMibMjc: ð2:29Þ

It can be readily seen that the field Da has no kinetic
term. It is an auxiliary field that vanishes on shell, while
ensuring that the number of bosonic and fermionic com-
ponents match off shell.
The action corresponding to (2.27) is invariant under the

following supersymmetry transformations:

δMμa ¼ iðζ̄ _αðσ̄μÞ _ααλaα − λ̄a_αðσ̄μÞ _ααζαÞ;

δλaα ¼
1

2
ðσμνÞαβζβFa

μν þ iζαDa;

δDa ¼ ζ̄ _αðσ̄μÞ _ααðDμλαÞa þ ðDμλ̄ _αÞaðσ̄μÞ _ααζα
−
i
ρ
ðζ̄ _αðσ̄0Þ _ααλaα − λ̄a_αðσ̄0Þ _ααζαÞ; ð2:30Þ

where ðζα; ζ̄ _αÞ are the supersymmetry (anticommuting)
parameters depending only on time. Compatibility with
supersymmetry then requires ζ to be a constant: ∂0ζ ¼ 0.
Clearly, the supersymmetry transformation of λaα implies
δλ̄a_α ¼ 1

2
ζ̄ _βðσ̄μνÞ _β _αFa

νμ − iζ̄ _αDa. Corresponding to the above
supersymmetry, by Noether’s theorem, there is a conserved
supercharge Q. This is computed to be

Q ¼ Qαζα þ ζ̄ _αQ̄ _α;

Qα ¼ iρ3

2g2
λ̄a_αðσ̄0Þ _αβðσμνÞβαFa

μν;

Q̄ _α ¼ iρ3

2g2
ðσ̄μνÞ _α _βðσ̄0Þ _βαλaαFa

μν: ð2:31Þ

E. The Hamiltonian

The central object of study in supersymmetric quantum
mechanics is the Hamiltonian. Accordingly, in the follow-
ing we make use of the equivalence between the
Lagrangian and Hamiltonian formalisms [23] to obtain
all relevant quantities of the just derived matrix model in
the latter picture. This will enable us to investigate our
model’s quantum phase structure in Sec. III. Henceforth,
we shall omit contracted spinorial indices, so as to
abbreviate the notation.
As a first step, we compute the conjugate momenta to

Mia and λa in (2.27):

Πia ≡ ∂L
∂ _Mia ¼

ρ3

g2
Fa
0i; Παa ≡ ∂L

∂ _λaα
¼ −

iρ3

g2
ðλ̄aσ̄0Þα:

ð2:32Þ

Observe that M0a is nondynamical: the Lagrangian does
not depend on its time derivative _M0a. For this reason, its
conjugate momentum vanishes,2 Π0a ¼ 0, and so M0a
plays the role of a Lagrange multiplier. The only non-
vanishing (anti)commutation relations among the matrix
model fields and momenta can be easily verified to be of the
canonical form:

½Mia;Πjb� ¼ iδijδab; fλaα;Πbβg ¼ iδabδαβ: ð2:33Þ

Using (2.27) and (2.32), it is a matter of straightforward
algebra to calculate the matrix model Hamiltonian. This is
given by

H ¼ g2

2ρ3
ΠiaΠia þ

ρ3

4g2
Fa
ijF

a
ij þ

ρ2

g2
λ̄aσ̄0λa

þ iρ3

g2
ϵabcλ̄

aσ̄iλcMib: ð2:34Þ

and we also obtain the Gauss’ law constraint

Ga ≡ ϵabc

�
ΠibMic −

iρ3

g2
λ̄bσ̄0λc

�
: ð2:35Þ

Before we proceed, we take a look at the length
dimensions of the different degrees of freedom. From
the definition of the covariant derivative, M has length
dimension −1. For consistency between the dimensions of
the different terms in the Lagrangian, λ must have length
dimension −3=2. Since ρ has length dimension 1 by

2More precisely, this vanishing is a primary constraint. There-
fore, one should really write Π0a ≈ 0. Here, ≈ denotes a so-called
weak equality, which only holds true in the subspace of the
parameter space (known as the constraint surface) that the
constraint itself defines.
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definition, the Hamiltonian (2.34) has dimensions−1 iff the
coupling constant g is dimensionless, as expected.
To make the equations simpler, we express all our

quantities in terms of dimensionless fields M0 and λ0, such
that M ¼ ρ−1M0 and λ ¼ ρ−3=2λ0. Omitting the primes for
notational convenience, the Hamiltonian and Gauss’ law in
terms of the dimensionless fields are

H ¼ 1

ρ

�
g2

2
ΠiaΠia þ

1

4g2
Fa
ijF

a
ij þ

1

g2
λ̄aσ̄0λa

þ i
g2

ϵabcλ̄
aσ̄iλcMib

�
; ð2:36Þ

and

Ga ≡ ϵabc

�
ΠibMic −

i
g2

λ̄bσ̄0λc
�

ð2:37Þ

respectively. Since g is dimensionless, it can be varied
independently of ρ, and our results are true for any ρ. So we
set ρ ¼ 1 for subsequent discussions.
The Gauss’ generates infinitesimal color transformations

and so satisfies an SUð2Þ algebra: ½Ga;Gb� ¼ −iϵabcGc.
We stress that the Gauss law operator vanishes when acting
on physical states. This will be relevant later on.
In terms of the momenta, the conserved supercharge’s

components in (2.31) become

Qα ¼ 1

g2
ðλ̄aσ̄iÞα

�
ig2Πia þ

1

2
ϵijkFa

jk

�
;

Q̄ _α ¼ 1

g2
ðσ̄iλaÞ _α

�
−ig2Πia þ

1

2
ϵijkFa

jk

�
: ð2:38Þ

It is easy to check that Q forms a field representation of
supersymmetry:

½Q;Mia� ¼ iδMia; ½Q; λaα� ¼ iδλaα; ð2:39Þ

with ðδMia; δλaαÞ as given in (2.30). Straightforward
yet tedious algebra allows one to write the nontrivial
(anti)commutator of the algebra among the supercharge’s
components as

fQα; Q̄ _βg ¼ −ðσ̄0Þ _βαð2H þ RÞ þ 2ðσ̄iÞ _βαðGaMia þ JiÞ;
ð2:40Þ

where Ji is the angular momentum operator generating
rotations in the spatial S3 and R is the R-parity operator.
Explicitly,

Ji ¼ ϵijkΠjaMka þ
1

2g2
λ̄aσ̄iλa; R ¼ 9þ 1

g2
λ̄aσ̄0λa:

ð2:41Þ

Thus the matrix model reproduces the known R-charges of
the N ¼ 1 super-Yang-Mills gauge multiplet. In our con-
ventions, this means thatMia is neutral, while λaα is R-even:
½R;Mia� ¼ 0 and ½R; λaα� ¼ λaα. The other commutation
relations required to describe the full superalgebra are

½Qα; Ji� ¼
1

2
ðQσ0σ̄iÞα; ½Qα; R� ¼ Qα;

½Qα; Ga� ¼ 0; ½Qα; H� ¼ ðλ̄aσ̄0ÞαGa: ð2:42Þ

Notice that the first commutator indicates thatQ transforms
as a spin-1

2
operator. Consequently,Q has R-charge equal to

one, as shown in the second commutator. SinceGa vanishes
on the space of physical states, in this space of color-
singlets, the Hamiltonian commutes with the supercharge
in the physical Hilbert space—see the last commutator of
(2.42). It follows then that degenerate eigenstates of H
organize themselves into supersymmetry multiplets.

III. BORN-OPPENHEIMER QUANTIZATION OF
THE SUPERSYMMETRIC MATRIX MODEL

The Hamiltonian (2.36) governs the dynamics of the
gauge fields Mia and their superpartners λaα. When the
coupling constant g is small, g ≪ 1, we observe that the
kinetic term for the gauge fields is suppressed with respect
to that of the fermions. In this weak coupling limit, it is
suitable to quantize the system in the Born-Oppenheimer
approximation, as was argued in [6], where the general
framework of [24] was suitably adapted to the matrix model
case in the presence of fundamental fermions.
At this point, the reader may worry about the validity of

the Born-Oppenheimer approximation we propose, since
the coupling constant g employed to differentiate between
slow and fast degrees of freedom can be (partially)
absorbed in a field redefinition. Indeed, consider the
following rescaling of our matrix model variables:
Mμa → gMμa, Da → gDa and λaα → gλaα. Then, our matrix
model Lagrangian (2.27) takes the form

L ¼
�
−
1

4
Fa
μνFaμν − iλ̄a_αðσ̄μÞ _ααðDμλαÞa

−
1

ρ
λ̄a_αðσ̄0Þ _ααλaα þ

1

2
DaDa

�
; ð3:1Þ

with

Fa
0i ¼ _Mia þ gϵabcM0bMic;

Fa
ij ¼ −ϵijkMka þ gϵabcMibMjc; ð3:2Þ

and the covariant derivatives defined as

ðD0fÞa¼∂0faþgϵabcM0bfc;

ðDifÞa¼gϵabcMibfc: ð3:3Þ
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This is the matrix model for the usual perturbative
description of super-Yang-Mills theory, where one would
naturally proceed by performing perturbation theory in the
small coupling constant limit g ≪ 1. However, notice that
due to the rescaling and in order for the dynamical variables
in our description to be of order Oð1Þ at small g, the
corresponding perturbative fields would need to have very
large values, of order Oð1=gÞ. Our description deals
precisely with the regime corresponding to large expect-
ation values of all the chromo-electric, chromomagnetic
and the gluino fields. It is this sector of the theory,
intrinsically inaccessible to perturbation theory, that we
find suitable to describe using the Born-Oppenheimer
quantization scheme. We proceed to do so, in the not-
rescaled form of the matrix model in (2.36), which makes
the regime of validity of the approximation we employ
most transparent.
In brief, the modern treatment of the said Born-

Oppenheimer approximation consists on viewing the
fermions as “fast” degrees of freedom and quantizing
them in the background of the (comparatively) “slow”
gauge fields. Then, the effective dynamics of the gauge
bosons induced by the fermions is determined. We begin
this section by providing the details of this procedure.
Afterwards, we proceed to its implementation in Secs. III A
and III B.
For notational convenience, we abandon the use of

dotted spinor indices from this point onwards and under-
stand λ̄≡ λ†. Paralleling the discussion in [6], we begin by
rewriting our on shell Hamiltonian in (2.36) as a sum of its
gauge and fermionic pieces,

H ¼ HYM þHf;

HYM ¼ g2

2
ΠiaΠia þ

1

4g2
Fa
ijF

a
ij;

Hf ¼ −
1

g2
ðλ†αaλαa þ ðTbÞacλ†αaðσ̄iÞαγλγcMibÞ; ð3:4Þ

with ðTaÞbc ≡ −iϵabc the generators of gauge transforma-
tions. We denote asHtot the Hilbert space of physical states
of H.
If g is sufficiently small, the fermion dynamics is much

faster compared to the gauge dynamics and can be
quantized separately, treating the gauge degrees of freedom
as a slow moving background field. In this context,Htot can
be split into the direct product of the Hilbert spaces of the
fast and slow degrees of freedom: Htot ¼ Hslow ⊗ Hfast.
We first construct Hfast from the set of eigenstates of the
fermionic Hamiltonian Hf, obtained by treating the gauge
field variables Mia as a background field and solving the
eigenvalue equation

HfðMÞjnðMÞi ¼ ϵnðMÞjnðMÞi; ð3:5Þ

with n ∈ N ∪ f0g labeling the energy levels. A suitable
choice for a complete set of basis vectors in Htot is then
given by the generalized eigenvectors

jM; nðMÞi≡ jMi⊗̃jnðMÞi; ð3:6Þ
where jMi are the bosonic “position” vectors, i.e., eigen-
states of the operatorMia that label the points in the (matrix
model reduced) configuration space of Yang-Mills. Note
that e⊗ indicates that the right-hand side of (3.6) is not an
ordinary tensor product but rather a “twisted” direct
product, since jnðMÞi depends on the gauge fields Mia.
Let jψEi denote an eigenstate of the on shell Hamiltonian

H with eigenvalue E:

HjψEi ¼ EjψEi: ð3:7Þ

This energy eigenstate can be expanded in the basis (3.6) as

jψEi ¼
Z

dM0X
n

jM0; nðM0ÞiψE
n ðM0Þ;

ψE
n ðM0Þ≡ hM0; nðM0ÞjψEi: ð3:8Þ

Here, ψE
n ðMÞ can be thought of as the slow part of the wave

function jψEi. It satisfies the Schrödinger equation

X
m

�
g2

2

X
l

ð−iδnl∂ia−Anl
iaÞð−iδlm∂ia−Alm

ia Þ

þδnm
�

1

4g2
Fa
ijF

a
ijþϵnðMÞ

��
ψE
mðMÞ¼EψE

n ðMÞ; ð3:9Þ

with Amn
ia ≡ ihnðMÞj∂iajmðMÞi. The above follows from

taking the inner product on both sides of (3.7) with the basis
states defined in (3.6) and working through. The indices l,
m and n run over all fermion energy levels.
Henceforth, we shall focus on the situation where a

single fermion occupies the ground state. Taking into
account fermions that only occupy their ground state
amounts to restricting to n ¼ 0 ¼ m in (3.9). In general,
the fermionic ground state may be degenerate. We label this
degeneracy with Greek letters ðα; β;…Þ, which take values
from 1 to g0, the degeneracy of the ground state. In this
case, the slow wave function ψE

α ðMÞ satisfies

Hαβ
effψ

E
β ¼ EψE

α ;

Hαβ
eff ¼ −

g2

2
Dαγ

iaD
γβ
ia

þ δαβ
�

1

4g2
Fa
ijF

a
ij þ ϵ0ðMÞ þ g2

2
ΦðMÞ

�
: ð3:10Þ

Here, D is the covariant derivative, whose explicit form is

Dαβ
ia ¼ δαβ∂ia − iAαβ

ia ; ð3:11Þ
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with Aαβ
ia the vector potential induced by the fermion in the

effective gauge dynamics:

Aαβ
ia ≡ ih0ðMÞ; αj∂iaj0ðMÞ; βi: ð3:12Þ

Notice that the fermion induces an additional effective
scalar potentialΦ for the slow degrees of freedomMia. The
Φ can be expressed in terms of the projector P0 to the
ground state and Q0 ≡ 1 − P0 as [25]

Φ¼
X
l≠0

A0l
iaA

l0
ia ¼

1

g0
Tr

�
P0∂iaHf

Q0

ðH − ϵ0Þ2
∂iaHfP0

�
:

ð3:13Þ

Both Aαβ
ia and Φ are best understood in the context of

quantum adiabatic transport. In the first step of our
approximation, we need to quantize the fermions in the
background of the slowly varying gauge fields Mia, see
(3.5). TheMia’s act as an adiabatic parameters on which the
Hamiltonian Hf and its spectrum have functional depend-
ence. The induced vector potential Aαβ

ia in (3.12) is simply
the Berry connection associated with the ground state of
Hf, while the effective scalar potential Φ is the trace of the
quantum metric tensor [26]. The latter acts as a measure of
the “distance” between two states corresponding to the
same energy level (the ground state in this case), but
separated in the parameter space.
Having set up the Born-Oppenheimer quantization for

the on-shell part of the Hamiltonian (2.36), we now turn to
its off shell piece. Following a procedure analogous to that
which allowed us to obtain the effective Hamiltonian (3.10)
from (3.7), the Gauss’ law constraint GajψEi ¼ 0 results
into a modified Gauss’ law generator Gαβ

a . This can be
worked out to be

Gαβ
a ¼ iδαβϵabcMib∂ic þ h0ðMÞ; αjGaj0ðMÞ; βi: ð3:14Þ

We observe that, sinceHf is gauge-invariant, its eigenstates
must also be annihilated by Gauss’ law generators:
GajnðMÞi ¼ 0, for any eigenstate jnðMÞi. In this case,
the effective Gauss’ law operator reduces to the first term in
(3.14) and it is easy to verify that such Gαβ

a ’s satisfy an
SUð2Þ commutation relation: ½Ga;Gb�αβ ¼ −iϵabcG

αβ
c .

Similarly, we obtain expressions for the effective angular
momentum and effective R-charge operator acting on the
Hilbert space of Heff :

J αβ
i ¼ iϵijkMjaD

αβ
ka −

1

2g2
h0ðMÞ; αjλ†ðσi ⊗ 1Þλj0ðMÞ; βi;

Rαβ ¼ ð9 − r0Þδαβ; ð3:15Þ

where r0 counts the number of fermions in the ground
state j0ðMÞi.
To summarize, the Born-Oppenheimer approximation

procedure involves first calculating the fermionic energy
spectrum by treating the gauge variables Mia as a back-
ground field; namely, we should solve (3.5). We then focus
on the ground state energy of Hf and its corresponding
(possibly degenerate) eigenstate. The effective gauge
dynamics thereby induced should be determined via
(3.10), (3.14) and (3.15).

A. The fermionic spectrum

We now proceed with the first step of the Born-
Oppenheimer quantization procedure, i.e., we turn to
solving (3.5). To simplify notation, we denote by capital
Latin letters the collective color and spin indices:
A≡ ða; αÞ, A ¼ 1;…; 6. Then, we can concisely rewrite
Hf in (3.4) as

HfðMÞ ¼ −λ†AðHfÞABλB;
ðHfÞAB ¼ ð−1 −MicTc ⊗ σiÞAB; ð3:16Þ

where 1≡ 1 ⊗ 1. Since the above Hamiltonian commutes
with the fermion number operator λ†AλA, its eigenstates can
be arranged according to their fermion number: jr; nðMÞi.
For every fermion number r ¼ 0; 1;…; 6; n runs over all
possible r-fermion eigenstates. The fermionic vacuum j0i
is nondegenerate and has zero energy. It is not difficult to
see that the normalized one-fermion eigenstates are of the
form

j1;ni¼1

g
C1;n
A λ†Aj0i; suchthat g2ðHfÞABC1;n

B ¼ ϵ1;nC
1;n
A :

ð3:17Þ

The above is just a (suitably normalized) linear combina-
tion of one-fermion states with fixed spin and color. Then,
states with higher fermion number can be constructed by
placing fermions in different spin-color single-fermion
energy levels:

jr > 1; ni ¼ 1

gr
ffiffiffiffi
r!

p Cr;n
A1…Ar

λ†A1
…λ†Ar

j0i: ð3:18Þ

Because any two λ†’s anticommute, the Cr;n’s are anti-
symmetric under the exchange of any two pairs of indices
Ai and Aj, with i ≠ j. It can be easily verified that

Cr;n
A1…Ar

¼ C1;n1
fA1

C1;n2
A2

…C1;nr
Arg ; ð3:19Þ

with the energy of the corresponding eigenstate being
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ϵr;n ¼
Xr
i¼1

ϵ1;ni : ð3:20Þ

To sum up, single-fermion states can be constructed by
evaluating the eigenvectors C1;n

A of ðHfÞAB and taking a
linear combination, see (3.17). States with higher fermion
number can then be constructed by placing fermions in
different single-fermion energy levels according to the
Pauli exclusion principle, with the maximum number of
fermions that can be placed being six. Therefore, it is
sufficient to consider only single-fermion energy levels for
our following discussion—since every other result can be
easily deduced from these. For ease of notation, henceforth
we omit the 1 in the superscript of the single-fermion
eigenstate: Cn

A ≡ C1;n
A .

Ignoring the constant −1 piece of ðHfÞAB, its character-
istic polynomial fðxÞ2 ≡ detðxI − ðHfÞABÞ is evaluated to
be fðxÞ2 ¼ ðx3 − TrðMTMÞx − 2 detMÞ2. We define the
second-degree gauge-invariant function of M as

g2 ≡
�
TrMTM

3

�
1=2

: ð3:21Þ

Upon rescaling x as x → x=g2, the characteristic poly-
nomial takes the simpler form

fðxÞ2 ¼ ðx3 − 3x − 2g3Þ2; g3 ≡ detM
ðg2Þ3

: ð3:22Þ

We denote as xn its roots: fðxnÞ2 ¼ 0. The single-fermion
energy eigenvalues follow from these, according to the
relation

ϵ1;n ¼ −1þ g2xn: ð3:23Þ

Note that xn and ϵ1;n have functional dependence on the
gauge-invariant functions of M, given by g2 and g3. These
functions can be used as coordinates on the gauge con-
figuration space. While the explicit expression for the roots
xn is cumbersome and not of much physical significance,
we can gain valuable insights into the fermion spectrum by
analyzing the characteristic polynomial fðxÞ2 itself.
First, we observe that there are three doubly degenerate

energy levels, given by the roots of the cubic fðxÞ. The
double-degeneracy is a characteristic of adjoint fermions.
Indeed, given a single-fermion eigenstate ofHf of the form

jψ1;ni ¼ Cn
AðMÞλ†Aj0i ð3:24Þ

there is a degenerate single-fermion eigenstate

jχ1;ni ¼ ðσ2Cn�ÞAλ†Aj0i: ð3:25Þ

It is easy to see that the degenerate states jψ1;ni and jχ1;ni
are related to each other via time-reversal. Hence,

the double-degeneracy of the single-fermion spectrum
of adjoint fermions is a consequence of Kramers’
theorem [27].
Next, we examine the cubic polynomial fðxÞ. Because

ðHfÞAB is a Hermitian matrix, fðxÞ must have three
real roots. Since the leading term of fðxÞ is cubic,
limx→�∞ fðxÞ ¼ �∞. It follows from both considerations
that the curve fðxÞmust intersect the x-axis three times and
its local minimum must be negative or zero. We start by
localizing the extrema of fðxÞ:

df
dx

¼ 0 ⇒ x ¼ �1: ð3:26Þ

It is easy to check that x ¼ 1 is a minimum, while x ¼ −1 is
a maximum. Thus, the condition for fðxÞ to have all three
real roots is

fjx¼þ1 ≤ 0 ⇒ jg3j ≤ 1: ð3:27Þ

The latter is a mathematical identity satisfied by any
arbitrary real 3 × 3 matrix M. A plot of the roots of
fðxÞ against g3 in the allowed range is shown in Fig. 1.
The inequality in (3.27) is saturated for M ¼ aR, with

a ∈ R and R ∈ SOð3Þ. In this case, the cubic polynomial
reduces to

fðxÞjg3¼1 ¼ ðx3 − 3x − 2Þ ¼ ðx − 2Þðxþ 1Þ2; ð3:28Þ

giving rise to the roots x1 ¼ x2 ¼ −1 and x3 ¼ 2. At this
corner of the configuration space, the ground state degen-
eracy changes from 2 to 4.
Recall that multiple-fermion energy levels can be

deduced in a straightforward manner from the single-
fermion energies. For completeness, we provide the char-
acteristic polynomials, roots and degeneracy of the
complete fermionic spectrum in Table I, starting from
the vacuum state and all the way to the six-fermion
state. Remarkably, there is a fermion/hole duality in the

FIG. 1. Roots xi of the characteristic polynomial as a function
of g3.
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spectrum: the six-fermion state with all energy levels filled
is equivalent to the vacuum, the five-fermion spectrum is
equivalent to the single-fermion spectrum, and so on. In
particular, the three-fermion spectrum is self-dual.

B. Effective gauge dynamics

After having determined the fermionic energy spectrum,
we proceed to examine the effective dynamics of the gauge
degrees of freedom induced by the fermion occupying the
ground state, or the lowest available energy level near the
Fermi surface. From (3.10), it can be readily seen that this
dynamics is governed by the effective potential

Veff ¼
1

g2
ðVðMÞ þ ϵ0Þ þ

g2

2
Φ;

VðMÞ≡ 1

4
Fa
ijF

a
ij; ð3:29Þ

where Φ is the induced scalar potential defined in (3.13).
The potential VðMÞ and the ground state fermion energy ϵ0
are well-defined everywhere in the gauge configuration
space. However, Φ becomes singular whenever the ground
state degeneracy changes. We demonstrate this important
point using the example of a single fermion occupying the
ground state.
In this case, the scalar potential in the bulk of the gauge

configuration space (i.e., g3 < 1) is

Φbulk ¼
1

9g2
2ð1þ x1Þ4

�
7ð1 − x21Þ2ð2þ x21Þ

− 2ð1þ 2x21Þ
�
1 −

g4

3

��
;

g4 ≡ TrðMTMÞ2
ðg2Þ2

; ð3:30Þ

where x1 stands for the lowest solution of the characteristic
polynomial. When the boundary point is approached from
within the bulk (namely, g3 → 1 in the above equality), the
scalar potential shows a quadratic divergence:

lim
g3→1

Φbulk ¼
7

12g2
2

1

ð1þ x1Þ2
; ð3:31Þ

since limg3→1 g4 ¼ 3 and limg3→1 x1 ¼ −1. The effective
potential Veff thus blows up as the boundary point is
reached from the bulk. To avoid inconsistencies, the wave
functions in the domain of the effective Hamiltonian (3.10)
in the bulk must vanish at this boundary point. However, if
we instead restrict ourselves to the point g3 ¼ 1 and use the
rank-4 projector to the ground state, we obtain a well-
defined scalar potential:

Φboundary ¼
7

27g2
2

: ð3:32Þ

TABLE I. Roots, degeneracy and characteristic polynomial of the fermionic eigenstates of the supersymmetric
matrix model in the Born-Oppenheimer approximation, arranged according to their fermion number.

Type Roots Degeneracy Characteristic Polynomial

0-fermion (vacuum) 0 1 ∅

1-fermion x1 2

ðx3 − TrðMTMÞx − 2 detMÞ2x2 2
−ðx1 þ x2Þ 2

2-fermions 2x1 1
2x2 1

−2ðx1 þ x2Þ 1 ðx3 − 4TrðMTMÞx − 16 detMÞ·
−x1 4 ·ðx3 − TrðMTMÞxþ detMÞ4
−x2 4

x1 þ x2 4

3-fermions 2x1 þ x2 2

x8½x6 − 6TrðMTMÞx4 þ ðTrðMTMÞÞ2x2
−f4ðTrðMTMÞÞ3 − 27ðdetMÞ2g1=2�2

−ð2x1 þ x2Þ 2
x1 þ 2x2 2

−ðx1 þ 2x2Þ 2
x1 − x2 2

−ðx1 − x2Þ 2
0 8

4-fermion ¼ 2-hole Negative of 2-fermion energies
5-fermion ¼ 1-hole Negative of 1-fermion energies
6-fermion (completely filled) Same as vacuum: E ¼ 0
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This leads to an also well-defined Veff and nontrivial wave
functions in the domain of the effect Hamiltonian at the
boundary. These cannot be consistently created out of a
linear superposition of the bulk wave functions, since the
latter have to vanish at the boundary. It follows that the
effective theory has two superselection sectors, correspond-
ing to the bulk g3 < 1 and to the boundary point g3 ¼ 1.
These can be interpreted as two distinct phases. As argued
in [6], the phase at the boundary is characterized by color-
spin locked fermion condensates.
The above discussion can be readily generalized to states

with higher fermion number. As already stated, the fer-
mionic state with r fermions occupying the lowest available
energy levels is equivalent to a single fermion occupying
the lowest r-fermion energy level. So the induced effective
potential can be computed using the corresponding infor-
mation in Table I. In all cases, the singularity structure ofΦ
(and hence the two different phases) can be easily identified
from the degeneracy structure of the lowest root of the
characteristic polynomial.
Notice however that Veff is rather involved for any r:

suffice to observe that it contains both cubic and quartic
interactions among the gauge variables Mia. As a result, it
is extremely difficult to analytically solve for the bosonic
energy spectrum. Instead, numerical methods such as the
variational principle should be employed to this aim, e.g.,
[6]. This goal lies beyond the scope of our present
investigations and therefore we do not list the explicit
bosonic spectrum.
An important comment is in order here. If instead of

restricting to the ground state in (3.9) we took into account
all the energy levels, the induced effective potential would
be zero, since P0 ¼ 1 in this situation. Furthermore, the
induced vector potential in (3.9) can be found to have zero
curvature, rendering it pure gauge. Thus, the induced gauge
dynamics in this case would be trivial, corresponding to a
situation without fermions. This is expected, since the state
with all six energy levels filled is equivalent to the vacuum,
due to the fermion/hole duality mentioned at the end of
Sec. III A.

IV. SUPERSYMMETRY IN THE
BORN-OPPENHEIMER PICTURE

To our knowledge, a Born-Oppenheimer scheme has
only been previously applied to obtain an effective super-
symmetric Hamiltonian in [28]. In this work, the Born-
Oppenheimer scheme explicitly breaks gauge symmetry, as
it treats a particular gauge direction as slow and the others
as fast. On the other hand, in our current work, the same
scheme is used to treat the fermions as fast degrees of
freedom that move in the background of the comparatively
slow gauge fields. Therefore, in our approach the gauge
symmetry remains intact. Instead and throughout the
analysis in Sec. III, we have ignored the crucial point that
the matrix model constructed is supersymmetric, while the

Born-Oppenheimer approximation treats the gauge bosons
(gluons) and the fermions (gluinos) differently. As a result,
we seem to have lost explicit supersymmetry upon quantiz-
ing the model. To justify the approximation and its results,
we need to recover supersymmetry in the effective theory.
This is the aim of the present Sec. IV.
First, let us recast the relevant ideas of Sec. III. Before

any approximation is made, the on shell Hamiltonian H of
the supersymmetric matrix model is that in (3.4). Recall
(3.7), which defines jψEi as an eigenstate ofH with energy
E. On the space of physical states Htot, H commutes with
the supercharges. This implies that QαjψEi and Q†

αjψEi are
also eigenstates of H with eigenvalue E. Additionally, H
commutes with the fermion-number operator, so its eigen-
states have a fixed fermion number r. Equation (3.9) relates
the eigenfunctions of H to all the eigenstates of the
fermionic Hamiltonian Hf with the same fermion number,
through a modified Schrödinger equation for the bosonic
part of the wave function. When we assume that only the
ground states of the fermions contribute, we obtain an
effective Hamiltonian HðrÞ

eff in the r-fermion sector, given
by (3.10).
Next, we retrieve supersymmetry in our analysis. We

begin by considering the simple example of a purely
bosonic eigenstate (with fermion number r ¼ 0), which
we call jψ ; 0i. It fulfills Hjψ ; 0i ¼ Ejψ ; 0i, for some
energy E. In the Born-Oppenheimer approximation, the
corresponding effective Hamiltonian for the slow degrees
of freedom satisfies the Schrödinger equation

ðHð0Þ
eff Þψ ð0Þ ¼ Eψ ð0Þ; ð4:1Þ

where the superscript (0) denotes that we are in the zero-
fermion sector. The Fock vacuum j0i is unique, so there is
no degeneracy and the dimension of Hð0Þ

eff is one. Since Q
†

contains one λ operator, it annihilates the purely bosonic
state. On the other hand, Q contains one λ† operator, so
when it acts on the bosonic state it produces a single-
fermion eigenstate with the same eigenvalue E:

Qαjψ ; 0i ¼ jψ ; αi ⇒ Hjψ ; αi ¼ Ejψ ; αi: ð4:2Þ

Corresponding to jψ ; αi, there is an effective Hamiltonian
in the single-fermion sector such that

ðHð1Þ
eff Þρσðψ ð1Þ

α Þσ ¼ Eðψ ð1Þ
α Þρ; ð4:3Þ

where ρ and σ run over the degenerate ground states of the
single-fermion sector. Taking the inner product on both
sides of (4.2) with the basis vector jM; nðMÞi and working
through, we get an effective supersymmetry charge which
relates ψ ð0Þ to ψ ð1Þ as
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ðQð0Þ
α Þρψ ð0Þ ¼ ðψ ð1Þ

α Þρ;

ðQð0Þ
α Þρ ¼ ðC̄ðMÞρaσ̄iÞα

�
−ig2∂ia þ

1

2
ϵijkFa

jk

�
: ð4:4Þ

For each value of α, the operator Qð0Þ
α is a rectangular g0 ×

1 matrix, with g0 the ground state degeneracy of the single-
fermion spectrum. Note that, since Qð0Þ

α is an operator with
spin 1

2
, the zero-fermion wave function ψ ð0Þ gets related to a

degenerate spin-1
2
doublet of states through supersymmetry.

Acting once more on the bosonic eigenstate with Qβ

(such that β ≠ α), a two-fermion state is obtained. This
yields an effective supersymmetry charge in the single-
fermion sector, that relates an eigenstate of Hð1Þ

eff to an
eigenstate of Hð2Þ

eff :

ðQð1Þ
β Þρð2Þσðψ ð1Þ

α Þσ ¼ ðψ ð2Þ
αβ Þρð2Þ ; ð4:5Þ

where ρð2Þ runs over the degenerate two-fermion ground
state. Note that due to the anticommutation of the Q’s,
ψαβ ¼ −ψβα, which implies there is only one such state.
Also, further action on this state with Q leads to its
annihilation. The explicit form of Qð1Þ can be worked
out by noting that the two-fermion ground state is made up
of two single-fermion states, i.e., ρð2Þ ¼ ðρ1; ρ2Þ; so that
ρð2Þ runs over all such combinations. We find that

ðQð1Þ
β Þρ1ρ2;σ ¼ ðC̄ρ1

a σ̄iÞβ
�
−ig2Dρ2σ

ia þ 1

2
ϵijkFa

jkδ
ρ2σ

�
− ðρ2 ↔ ρ1Þ: ð4:6Þ

Conversely, there is an operator Qð2Þ†
α that takes the two-

fermion state to any of the two single-fermion states.
Subsequent action of Qð1Þ†

α takes the reached single-
fermion state to the purely bosonic state. These operators
take the form

ðQð2Þ†
β Þσ;ρ1ρ2; ¼ ðδσρ2ðσ̄iCρ1

a Þβ
− δσρ1ðσ̄iCρ2

a ÞβÞ
�
−ig2∂ia þ

1

2
ϵijkFa

jk

�
− ig2ðDσρ2ðσ̄iCρ1

a Þβ −Dσρ1ðσ̄iCρ2
a ÞβÞ;

ðQð1Þ†
α Þρ ¼ ig2ðσ̄ið∂iaCρ þ Cρ∂iaÞα þ

1

2
ϵijkFa

jkðσ̄iCρÞα:
ð4:7Þ

In general, the full Hilbert space for the effective
dynamics of the gluons can be expressed as a direct sum
of sectors

H ¼ ⨁
r
HðrÞ; ð4:8Þ

where HðrÞ stands for the Hilbert space of the effective
gauge dynamics induced by r fermions occupying the

lowest energy levels. In each of these sectors, there is an
effective Hamiltonian HðrÞ

eff governing the gauge dynamics
and one can define effective supersymmetry charges that
operate between pairs of Hilbert spaces:

QðrÞ
α ∶HðrÞ → Hðrþ1Þ; QðrÞ†

α ∶HðrÞ → Hðr−1Þ: ð4:9Þ

QðrÞ
α takes us from the spectrum of HðrÞ

eff to that of Hðrþ1Þ
eff .

Meanwhile,QðrÞ†
α takes us from the spectrum ofHðrÞ

eff to that
of Hðr−1Þ

eff :

QðrÞ
α HðrÞ

eff ¼Hðrþ1Þ
eff QðrÞ

α ; QðrÞ†
α HðrÞ

eff ¼Hðr−1Þ
eff QðrÞ†

α : ð4:10Þ

Since the Q’s connect two distinct Hilbert spaces, they are
represented by rectangular matrices. The general expres-
sion for the effective supersymmetry charges is given by

ðQðrÞ
α ÞΩρ ¼ h0ðrþ1Þ;ΩjQj0ðrÞ; ρi;

ðQðrþ1Þ†
α ÞρΩ ¼ h0ðrÞ; ρjQj0ðrÞ;Ωi: ð4:11Þ

Here, j0ðrÞi denotes the lowest r-fermion energy level, and
ρ and Ω run over the degenerate ground states of the r- and
(rþ 1)-fermion sectors, respectively. Thus, supersymmetry
in the Born-Oppenheimer picture translates into a duality
between Hilbert spaces of different effective Hamiltonians,
with the effective supercharges connecting the said spaces.
The supercharges satisfy an anticommutation relation:

Qα
ðrþ1Þ†Qβ

ðrÞ þQα
ðr−1ÞQβ

ðrÞ†

¼ δαβð2HðrÞ
eff þRðrÞÞ − 2ðσiÞαβðMiaG

ðrÞ
a þ J ðrÞ

i Þ − ΘðrÞ
αβ ;

ð4:12Þ

where ΘðrÞ
αβ is given by

ΘðrÞ
αβ ¼ TrðPr

0Q
†
αð1 − Prþ1

0 ÞQβPr
0Þ

þ TrðPr
0Q

†
αð1 − Pr−1

0 ÞQβPr
0Þ: ð4:13Þ

Here, GðrÞ
a , RðrÞ and J ðrÞ

i are the effective Gauss’ law,
R-charge operator and angular momentum in HðrÞ, respec-
tively. Pr

0 is the projector to the ground state of the
r-fermion sector. The additional piece ΘðrÞ

αβ arises because
of our restriction on fermions to only occupy the lowest
energy levels and prevents the effective supersymmetry
algebra from closing exactly. The algebra would close if we
took into account all the fermion energy levels: Pr

0 ¼ I, for
all r. However, that would describe trivial gauge dynamics
(as in the end of section III B) and supersymmetry would be
exact to begin with.
At the corner of the gauge configuration space described

by g3 ¼ 1, the degeneracy of the r-fermion ground state
changes for all r ¼ 2, 3, 4, 5. As a result, there is a different
set of effective supercharges relating the effective
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Hamiltonians in this phase. The two sets of effective
supercharges (in the bulk g3 < 1 and boundary g3 ¼ 1)
cannot be smoothly transformed into each other, since they
have different dimensions. Further, they satisfy different
algebras; the projectors in (4.13) having different ranks in
the distinct phases. Therefore, the effective supercharges
exhibit a similar singular behavior as the effective scalar
potential in (3.13) and we say they are superselected.
In the beginning of this Sec. IV, we identified one type of

supersymmetry multiplet that definitely exists in the
spectrum: the one obtained by the action of the supercharge
Q on purely bosonic states (or the fermion vacuum).
Correspondingly, there exists another multiplet that can
be obtained by the action ofQ† on six-fermion states (or the
hole vacuum). It can definitely be expected that there exists
other multiplets; these are obtained by the action of Q on
states which are in the kernel of (i.e., annihilated by) Q†.
Indeed, it can be shown that the kernel of the effective
supercharge Q† directly follows from the kernel of the
original superchargeQ†. To see this, it suffices to repeat the
Born-Oppenheimer procedure for an r-fermion state anni-
hilated by Q†, (namely, Q†

αjψ ðrÞi ¼ 0); so as to obtain

ðQα
ðrÞÞ†σψ ðrÞ

σ ¼ 0; ð4:14Þ

where ψ ðrÞ
σ is the corresponding Born-Oppenheimer wave

function, defined as

ψ ðrÞ
σ ðMÞ≡ hM; 0ðMÞ; σjψ ðrÞi; ð4:15Þ

with σ labeling the ground state degeneracy of the fer-
mionic part of the wave function. The examination of other
multiplets is thus reduced to the study of the subset of wave
functions in the kernel of Q† that has a nonzero fermion
number. In accordance to Eq. (2.38), the bosonic part ϕ of
these wave functions must satisfy�

g2
∂

∂Mia
þ 1

2
ϵijkFa

jk

�
ϕðMÞ ¼ 0: ð4:16Þ

It can be easily seen that such states are of the form

ϕðMÞ ∼ exp

�
−

1

g2

�
TrðMTMÞ

2
− detðMÞ

��
: ð4:17Þ

Due to the unbounded term detðMÞ in the above
exponential, such wave functions are in general non-
normalizable.

V. CONCLUSION

By pulling back the set of left-invariant connections of
the full Yang-Mills theory onto the real superspace, we
obtain a natural quantum mechanical matrix model reduc-
tion of the N ¼ 1 super-Yang-Mills gauge multiplet. We

then examine the spectrum of the corresponding
Hamiltonian, which is that of the matrix model for
SUð2Þ Yang-Mills theory coupled to adjoint fermions.
We proceed to quantize our model in the Born-
Oppenheimer approximation, by treating the gauge fields
as slow degrees of freedom and the gauginos as fast ones.
This leads to two distinct phases for the matrix model: a
color-spin-locked phase at the boundary and a bulk phase.

A. Our main result

The apparently supersymmetry-violating quantization
scheme we use recovers supersymmetry in an interesting
and subtle way. The spectra of the effective Hamiltonians in
the different sectors of the Hilbert space—corresponding to
the fermions filling different numbers of Fermi energy
levels—get related by operators called effective super-
charges. As a result, the different effective Hamiltonians
organize themselves into multiplets, with the spectra related
as (4.10). Supersymmetry is thus restored in the full Hilbert
space, even though it is lost in any one sector. Each and
every sector is sensitive to the nontrivial quantum phase
structure. This can be most easily verified by noting that the
effective supercharges exhibit a similar singular behavior as
the effective potential (3.13) for the gauge dynamics when
one approaches the boundary from the bulk and vice-versa.
We observe that there naturally exists two types of
multiplets of effective Hamiltonians: one starting with
the purely bosonic (or fermion vacuum) sector and one
starting with the hole vacuum sector. The study of other
multiplets generically leads to non-normalizable states,
recall (4.16). We regard this nontrivial reconciliation of
supersymmetry and our novel use of the Born-
Oppenheimer quantization as our main result.

B. The pertinence and relevance of the model

The matrix model for super-Yang-Mills on S3 × R here
proposed is interesting in relation to both the field theory
itself and previously put forward models.
As pointed out in the introduction Sec. I, there is a

noteworthy ongoing effort devoted to understanding the
vacuum structure of the N ¼ 1 field theory. However, the
intrinsic difficulty of the corresponding, necessarily non-
perturbative calculations has prevented a deep analytical
knowledge on the topic. Numerical simulations, placing the
field theory on a lattice, have helped fill in the gap—for
instance, see [29]—after it was found that a fine-tuning of
the bare parameters allows for lattice regularization without
violating supersymmetry [30]. The numerical computation
scheme put forward in [4] for the nonsupersymmetric
version of our model can be extended to the supersym-
metric current scenario. Thereby, our model provides an
independent approach to the study of the phase structure of
the said field theory, free of lattice artefacts.
Matrix models for SUðNÞ super-Yang-Mills on S3 ×R,

such as the maximally supersymmetric ones in [31], are
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defined in the large N limit. Alternative matrix models
inspired by string theory, e.g., the Banks-Fischler-Shenker-
Susskind (BFSS) [32] and related models, require N → ∞.
As such, to make a comparison of our matrix model with
previous models, we would need to first investigate the
large N limit of our proposal, and possibly carry out some
extensive numerics, which is beyond the scope of the
present work. Notice however that since our matrix model
variables Mia are 3 × ðN2 − 1Þ rectangular matrices, it is
precisely in this large N limit that our model becomes less
appealing. Thus, our proposal is complementary to the
related literature, allowing for numerical calculations for
small values of N. Recall that, in the nonsupersymmetric
case, such calculations have proven accurate [4,6]. To our

mind, this is not a shortcoming but rather a propitious
feature of our model.
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