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Abstract: A listening test is proposed in which human participants detect talker changes
in two natural, multi-talker speech stimuli sets—a familiar language (English) and an
unfamiliar language (Chinese). Miss rate, false-alarm rate, and response times (RT) showed
a significant dependence on language familiarity. Linear regression modeling of RTs using
diverse acoustic features derived from the stimuli showed recruitment of a pool of acoustic
features for the talker change detection task. Further, benchmarking the same task against
the state-of-the-art machine diarization system showed that the machine system achieves
human parity for the familiar language but not for the unfamiliar language.
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1. Infroduction

The perception (and decoding) of talker attributes is essential while listening to multi-talker
speech conversations. In this paper, we present an experimental paradigm to probe talker change
detection in human listeners with stimuli drawn from familiar and unfamiliar languages and find
that change detection is dependent on language familiarity and specific acoustic features. A
human-machine comparison using a diarization system shows that the performance of the
machine system is on par with the human performance for the familiar language.

Previous behavioral studies suggest a substantial influence of indexical attributes, such as
talker identity, dialect, age, etc. (Laver, 1968), on speech intelligibility. For example, talker famil-
iarity improves speech in noise perception (Johnsrude et al., 2013; Kitterick et al, 2010; Nygaard
and Pisoni, 1998) and accent familiarity alters the perceived meaning of an utterance (Cai et al.,
2017). These imply perception of talker cues helps in parsing the semantic message. Lavner et al.
(2000) suggest that talker identification uses a distinct group of acoustic features. Yet, Sell et al
(2015) argue that a combination of vocal source, vocal tract, and cortical features fail to explain
the perceived talker discrimination in a listening test with simple word-level utterances. Talker
perception improves with increase in phonetic content in the speech signal, that is, from vowels
to words and sentences (Goggin et al, 1991). Deafness to talker change (Neuhoff et al., 2014), as
well as perceptual sensitivity in judging talker dissimilarity (Fleming er al, 2014; Perrachione
et al., 2011; Perrachione et al., 2019), are both found to be affected by linguistic familiarity as
well. These studies suggest an interplay between phonetic, semantic, and talker perception while
listening to speech.

Unlike single-talker speech, multi-talker conversations contain talker change instances
and detecting these instances is required for segregating the speech into time segments corre-
sponding to who spoke what, and when. Human listeners, on average, take approximately 700
ms (from the instant of change) to report a talker change (Sharma er al., 2019). While acoustic
features before and after the change instant influence change detection, it is not clear if semantic
processing in a familiar language impacts talker change detection (TCD). Hence, this paper com-
pares talker change detection using stimuli from familiar and unfamiliar languages.

We designed two speech stimuli sets, one in a language familiar to the participants
(English) and another in an unfamiliar language (Mandarin Chinese, henceforth referred to as
Chinese). We assume that, compared to a familiar language, semantic processing is minimal
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while listening to the unfamiliar language. The participants took part in a listening test to indi-
cate the number of talkers in multi-talker stimuli derived from these datasets. The collected data
were analyzed to understand the impact of language familiarity on detection metrics, namely,
miss and false alarm rates, and on the use of acoustic features in responding to the task via
regression modeling of the response times (RT). Further, talker change detection is identified as
a crucial pre-processing step (Ryant et al., 2018; Ryant et al., 2019) for machine recognition of
conversational speech. This step is primarily approached using diarization systems. We investi-
gate the performance of the state-of-art diarization system based on x-vector embeddings (Snyder
et al., 2018) on the stimuli sets used in the human listening task. In the recent years there have
been claims on achieving human parity in applications like automatic speech recognition (ASR)
(Saon et al., 2017; Xiong et al, 2016) and machine translation (Hassan et al, 2018). In this con-
text, highlighting the performance gap, if any, between humans and machines constitutes an
important step to achieve human parity for speaker diarization systems.

2. Methods

The study presented here is an extension of our work in (Sharma et al., 2020a) with a larger set
of human participants, and a detailed analysis of reaction time modeling.

2.1 Participants

A total of 28 human participants (21 male, age range 20-37; mean age 24 years, with self-
reported normal hearing) participated in the listening test. All participants were proficient in
English and had no prior exposure to Chinese. The protocol for the behavioral experiment was
approved by the Indian Institute of Science Human Ethics Committee. All participants provided
written consent for the test and were provided with monetary compensation.

2.2 Stimuli

The English and Chinese speech signal recordings were taken from the LibriSpeech corpus
(Panayotov et al., 2015) and the Aishell corpus (Bu et al., 2017), respectively. These corpora are
composed of read speech audio data (audiobooks and news broadcasts) from more than 400 talk-
ers and are freely available in the public-domain. For our experiment, the single talker stimuli
were formed by concatenating two utterances from the same talker, while the two-talker stimuli
were formed by concatenating two utterances from two different, gender-matched talkers. Both
utterances were chosen to avoid any contextual continuity, and had a duration ranging from 2.5
to 5 s, forming a stimulus of 5-10 s. With this approach, two curated stimuli sets were con-
structed—one for English and one for Chinese, each with 50 single talker and 50 two-talker stim-
uli. All the stimuli were manually checked for quality (absence of noise/channel distortions). In
order to avoid any talker adaptation during listening to these stimuli, none of the talkers
appeared in more than one stimulus. A comparison of the distribution of a few of the acoustic
features for the stimuli in the two stimuli sets is shown in Fig. 1(b). The acoustic features,
namely, pitch, harmonic-to-noise ratio (correlated with perceived voice quality), and intensity
(correlated with perceived loudness), are obtained from short-time 40 ms speech segments (with
temporal hop of 10 ms) derived from the speech signals [extracted using PRAAT (Boersma and
Weenink, 2020)]. There is considerable overlap between the distributions, illustrating the acoustic
feature similarity between the two stimuli sets. The bimodal distribution in pitch is due to male
and female utterances in the stimuli sets.
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Fig. 1. (Color online) (a) [llustration of a listening test trial. (b) A comparison acoustic feature distributions between English
(ENG) and Chinese (CHIN) audio stimuli sets.
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2.3 Listening test

The listening test for each participant was conducted in two sessions. Each session had stimuli
only from one language. The ordering of language presentations was randomized across partici-
pants, and the order of stimuli presentation in each language session was randomized for every
participant. The experiment was conducted in an isolated sound booth using high fidelity head-
phones (Sensheiser HD 215). A graphical user interface designed in python and HTML was used
for stimuli presentation and recording responses [stimulus material available at Sharma et al
(2020b)]. After presentation of a stimulus, the listener responded with a button press indicating
the number of talkers (1 or 2). Visual feedback (correct/incorrect) was provided to the participant
after every trial. An illustration of a trial is shown in Fig. 1(a). A small set of 16 trials were pro-
vided to get familiar with the task. On average, the session for each language took 20 min and
there was a 10 min break between sessions, making the total experiment duration 50 min per
participant.

2.4 Behavioral data pre-processing

The performance measures used are: (i) Miss rate (%): the percentage of two talker stimuli
reported by the participant as single talker, (ii) False Alarms (FA) rate (%): the percentage of
single talker stimuli reported as two-talker, and (iii) Response time (RT): the time duration
between the end of the stimulus and the participant’s response in the form of button press [that
is, RT=t, — t, shown in Fig. 1(a)]. Any trial with a response time R7 < 20 ms (too fast) or RT
> 2 s (too slow) was discarded for the analysis. The discarded trials constituted 6.7% of the col-
lected responses.

2.5 Machine system

We used an implementation of a state-of-the-art speech diarization system which uses x-vector
embeddings as acoustic features. The x-vector embeddings from short speech segments are fed to
a probabilistic linear discriminant analysis (PLDA) to generate the affinity matrix. The PLDA
affinity matrix is used by an agglomerative hierarchical clustering (AHC) framework to cluster x-
vector features. The output is talker-level segmentation of the input speech signal. We consider
the system output hypothesis as two talkers if more than one talker is present in the segmenta-
tion. The system implementation details are provided in Singh et al. (2019). The x-vector embed-
dings (Singh et al, 2019) are derived from a hidden layer of a time-delay neural network trained
for a talker classification task on the VoxCeleb-1 and VoxCeleb-2 [celebrity speech corpus
(Chung et al., 2018) composed of 7323 talkers]. These embeddings (512 dimensional) capture the
talker attributes derived from 1 s segments of speech. The threshold for the AHC clustering was
varied from —0.250 to 0.250, in increments of 0.005, to compute the miss and false-alarm proba-
bilities. These values were used to obtain the detection error trade-off curve plotted in Fig. 3(d).

3. Results
3.1 Behavioral data

A scatter plot of miss-rate and FA-rate for unfamiliar (Chinese) versus familiar language
(English) stimuli sets is shown in Figs. 2(a) and 2(b). A majority of the participants showed a
higher miss-rate for Chinese trials and a higher FA-rate for English trials. The d-prime for the
task [Fig. 2(c)] was found to be greater than 1.5 for most of the participants indicating the partic-
ipants performed the task effectively. Also, the bias [Fig. 2(d)] was between 0.4 and 3 with a
higher spread for Chinese trials. The miss and FA averaged across participants is shown in Figs.
2(e) and 2(f). The average miss-rate is significantly higher for the unfamiliar language [that is,
Chinese, with 7(56) = 2.38, p < 0.05, Cohen’s —d = 0.64]. The average FA-rate is significantly
higher for the familiar language [that is, English, with #(56) = —2.80, p < 0.01, Cohen’s
—d = —0.74). The distributions of pooled RTs (from all participants) for correct and incorrect
responses are shown in Fig. 2(g); these are visually distinct for the two languages. The grand
average of participants’ mean RT is shown in Figs. 2(h) and 2(i). The average RT for unfamiliar
language (Chinese) is significantly smaller [with #(56) = —3.02, p < 0.005, Cohen’s —d = —0.81
for correct responses, and (56) = —4.09, p < 0.005, Cohen’s —d = —1.09 for incorrect
responses]. These observations indicate a significant impact of language familiarity on human
TCD performance.

3.2 Linear regression modeling of RTs

A linear regression model was constructed with acoustic feature distances as predictor variables
and the RT as the dependent variable. As RT is always greater than zero and has a skewed dis-
tribution [see Figs. 2(e), 2(f)], the natural logarithmic transformation of RT was used. The acous-
tic features included: mel-spectrogram (MEL; using 40 filters), mel-frequency cepstral coefficients
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Fig. 2. (Color online) Human performance on the talker change detection task, as a function of language familiarity. (a), (b)
miss and false alarm rates, respectively, for each participant; (c), (d) d-prime and bias for each participant; (e), (f) average
miss and false rates; (g) all participants’ pooled response times on correct (top), and incorrect trials (bottom); (h), (i) average
response times on correct, and incorrect trials, respectively. All error bars represent the standard error of the mean.

(MFCC; 13 coefficients), intensity (INTENSITY), spectral centroid (SCENTROID), pitch
(PITCH), harmonic-to-noise ratio (HNR), and x-vectors (XVEC, features used in the machine
system). Given a stimulus signal, for each feature type, we obtain two representations - one for
each of the concatenated utterances. These feature representations correspond to average of
short-time frame-wise (40 ms, with temporal hop of 10 ms; unvoiced frames were discarded)
extracted features [using PRAAT; McFee er al (2020)]. The feature distance is measured as the
Euclidean distance between the mean of feature representations from the two utterances.
Alongside the acoustic features distances, we also included stimulus duration (7,) as a predictor
variable. As there is a significant impact of language type on RT (seen in Sec. 3.1), we model
RTs separately for different subsets of the pooled data. We have eight models basing on lan-
guage (Chinese/English), response (correct/incorrect trials), and trial stimulus type (two talker/sin-
gle talker). Figure 3(a) shows the result obtained from a type-1I analysis of variance (ANOVA)
on every model. There is variability in the RTs across subjects making the subject identity
(SUB_ID), a categorical predictor variable, significant in all the models. With respect to acoustic
features, more acoustic features are significant for English compared to Chinese stimuli. The R?
is also high for English compared to Chinese implying a relatively higher percentage of the
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Fig. 3. (Color online) (a) Top: Feature significance across models, green square indicates p < 0.05. Bottom: Model R*. (b)
Detection error trade-off (DET) curve for the machine system. The scattered data points correspond to human participants.
The two highlighted larger data points correspond to average across human participants.

J. Acoust. Soc. Am. 148 (5), November 2020

Shama et al.

EL417

m
[}
wn
I

m
m
n




............................. )
https://dol.org/10.1121/10.0002462 A S A

EXPRESS LETTERS

observed data variance explained by the predictors for English stimuli. Interestingly, the stimulus
duration is also found to be of significance in most of the models. Surprisingly, MFCC and
HNR did not turn out to be of significance in any model and SCENTROID was significant in
the majority of the models. The XVEC was found to be significant for two-talker correct English
trials. This is interesting as the x-vector features are designed to capture talker differences and
have been shown to be useful in machine diarization systems.

3.3 Human-machine comparison

The machine system performance is shown in Fig. 3(b). The human performance is also included
in this figure. The plot suggests that performance on the familiar language (English) for the
machine system is on par with human performance for the same stimuli. The performance on the
unfamiliar language (Chinese) is worse for the machines, compared to human performance. This
indicates that the future design of machine diarization systems could target invariance to lan-
guage mis-match.

4. Discussion

The listening test results from the study show a significant impact of language familiarity on human
talker change detection performance. Though the sound stimuli we used were short in duration
(2.5-5 s utterances), each utterance had close to 8-10 words and hence, was not devoid of semantic
information. Such short duration, sentence-level speech stimuli have previously been used for analyz-
ing language familiarity effects on speaker dissimilarity judgments by Perrachione er al. (Perrachione
et al., 2019) and Flemming et al. (Fleming et al., 2014). These studies highlight that even using time-
reversed speech devoid of semantics is sufficient to illustrate a familiarity effect.

The results show a lower miss rate for familiar language suggesting that success in
semantic processing (and understanding) benefits TCD. However, we also find that the FA is
higher for the familiar language. This suggests that a majority of participants falsely associated a
change in context between the utterances with a talker change. This is not the case for the unfa-
miliar language (significantly lower FA) as the semantic understanding is absent. The RT for
familiar language trials is significantly higher compared to the unfamiliar language trials. This
finding suggests that comprehension of speech (which likely occurs in familiar language stimuli)
adversely affects the TCD response time, whereas in the unfamiliar language case, there is no
conflict (increased cognitive load) of semantic processing involved. Past work by Neuhoff et al
(Neuhoff et al., 2014) presents an interesting interplay between semantic and indexical informa-
tion extraction, showing greater change deafness for familiar language (without participants
being cued to attend to the change). In contrast to that study, the subjects in the current study
were instructed to attend to talker changes and were also provided feedback after every trial.
Therefore, even when we instruct participants to attend to the change, we still find effects of lan-
guage familiarity on change detection. In particular, listening to familiar language speech dis-
tracts from the ability to attend to indexical information, which likely manifests as the increased
reaction times observed in the familiar language trials.

We note that the subject pool recruited for the study consisted of non-native English
speakers, proficient in English. Data from our past study (Sharma et al., 2020) and also from
Koster and Schiller (1997) suggests non-nativeness does not have an impact on talker perception
tasks, though future studies may wish to manipulate this factor.

Moving to the regression analysis of RTs, we find that a majority of the acoustic fea-
tures failed to be of significance for the unfamiliar language trials. This was also reflected in a
lower R? for the data drawn from trials corresponding to the unfamiliar language. We hypothe-
size that language familiarity enables usage of acoustic features which are different from those
used for unfamiliar language.

To the best of our knowledge, this study is the first of its kind to contrast human and
machine performance on a talker counting task. The human-machine performance comparison
shows that the diarization systems based on x-vector embeddings can achieve human-like perfor-
mance even on short duration stimuli when the training and test data come from the same lan-
guage. However, the results indicate that humans are superior in generalizing to unfamiliar lan-
guages. The future design of embeddings for diarization systems can target language invariance
to overcome this limitation.
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