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An Eective Fusion and Tile Size Model for PolyMage
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Eective models for fusion of loop nests continue to remain a challenge in both general-purpose and domain-

specic language (DSL) compilers. The diculty often arises from the combinatorial explosion of grouping

choices and their interaction with parallelism and locality. This article presents a new fusion algorithm for

high-performance domain-specic compilers for image processing pipelines. The fusion algorithm is driven

by dynamic programming and explores spaces of fusion possibilities not covered by previous approaches, and

it is also driven by a cost function more concrete and precise in capturing optimization criteria than prior

approaches. The fusionmodel is particularly tailored to the transformation and optimization sequence applied

by PolyMage and Halide, two recent DSLs for image processing pipelines. Our model-driven technique when

implemented in PolyMage provides signicant improvements (up to 4.32×) over PolyMage’s approach (which

uses auto-tuning to aid its model) and over Halide’s automatic approach (by up to 2.46×) on two state-of-the-

art shared-memory multicore architectures.
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1 INTRODUCTION

PolyMage [14, 16, 17] is an experimental domain-specic language and compiler for several do-
mains of dense linear algebra, in particular, classes of image processing pipelines, geometric multi-
grid computations, and time-iterated stencils.
Computations in these domains can often be expressed as a directed acyclic graph of compute

nodes where each node applies a simple operation, which is often data parallel, on all elements
of a multi-dimensional array. A pipeline may involve a few simple point-wise functions or be as
complex as comprising hundreds of functions ranging from point-wise to stencil operations and re-
ductions. For example, in the case of image processing pipelines, domain-specic languages (DSLs)
such as Halide [20] and PolyMage [14] provide high-level constructs to express such pipelines, and
more importantly are able to do complex code transformations to enhance locality and parallelism.
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Akey component of suchDSL compilers that optimize image processing pipelines is their fusion al-
gorithm. Fusion of dierent image processing stages is used to exploit producer-consumer locality
across such stages. While the problem is viewed as that of loop fusion [9] in compiler optimization,
other terms such as kernel fusion and operator fusion are used in specic contexts. Both Halide and
PolyMage perform fusion and tiling across multiple stages through special techniques that are a
realization of overlapped tiling [10, 14, 20]. The locality is important to exploit, since outside of the
reuse available from the production and repeated consumption, there is no additional reuse unlike
in the case of other algorithms such as BLAS level-3 or time-iterated stencil computations [26].
Dramatic speedups have been reported in recent works [13, 14, 20] as a result of such optimiza-
tion. Similar optimizations have yielded performance improvements for the Geometric Multigrid
Method [24].

The automatic fusion heuristics used in both PolyMage and Halide share a greedy aspect of an
approach that excludes a large space of fusion possibilities. The heuristics start from a node and
explore nodes around it in a particular way to merge and form larger groups while evaluating prof-
itability. We propose an approach that explores a larger space of valid groupings than previously
considered. In addition, fusion is tightly connected to tile size selection as well as other optimiza-
tions such as inlining or expression propagation [4] that may in cases add redundant computation.
In this article, we present a new fusion-cum-tile size determination model that uses a dynamic

programming-based approach to address limitations of the state-of-the-art. In addition, PolyMage
searches and auto-tunes over a range of tile sizes that are all a power of two and a xed number of
tile overlap thresholds (boundary redundant computation) to keep the auto-tuning space tractable.
Our approach is completely model-driven—it alleviates the need for auto-tuning by directly incor-
porating tile sizes and relative tile overlap within the concrete cost function of the fusion heuristic.
In addition, the tile sizes are not restricted to powers of two. In summary, the key contributions of
this article are:

• a dynamic programming-based grouping algorithm to nd a good grouping along with the
tile sizes to be used for tiling each group, while considering a larger space of possibilities
than prior approaches;

• a concrete cost function to be used in conjunction with the grouping algorithm that con-
siders multiple aspects including locality, parallelism, and other optimization criteria much
more precisely than prior approaches;

• an incremental variant of the grouping algorithm to control its running time by trading o
certain choices;

• multi-level tiling to generate tiles that provides both L1 and L2 cache locality;
• automatic inlining of producer expressions into consumer expressions with no redundant

computations;
• and an implementation of the proposed technique in PolyMage and its experimental eval-

uation on two state-of-the-art multicore architectures over image processing benchmarks
and multigrid stencil benchmarks.

Experimental results demonstrate signicant improvement over PolyMage’s current auto-
tuning approach, over Halide’s auto scheduler, and over expert manual schedules provided with
Halide where applicable. Our approach is applicable to DSLs where computations can be expressed
through directed acyclic graphs where each node of the graph is a loop nest working on dense
multi-dimensional arrays or tensors. The TensorFlow/XLA [6] project for compilation of dense
linear algebra is another eort where our approach is applicable.
The rest of this article is organized as follows: In Section 2, we describe limitations of state-

of-the-art approaches. Section 3 through Section 6 describe all our contributions. Experimental
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Fig. 1. PolyMage DSL specification for blur.

evaluation is presented in Section 7. Related work is discussed in Section 8, and conclusions are
presented in Section 9.

2 BACKGROUND ANDMOTIVATION

In this section, we provide an overview of PolyMage, then discuss the automatic grouping heuris-
tics currently used by PolyMage [14] and Halide [13], and their limitations.

2.1 PolyMage

PolyMage is a domain-specic language (DSL) for writing image Processing Pipelines. It allows a
user to intuitively express common computation patterns such as point-wise operations, stencils,
upsampling, and downsampling. PolyMage DSL is embedded in Python. Figure 1 shows the spec-
ication of blur, a simple image processing pipeline with two stages, blurx and blury. Parameters
to the pipeline such as the number of rows and columns of the input image are declared using the
Parameter construct at line 1. Input data to the pipeline is declared using the Image construct at
line 9. Function is used to declare a stage of an image processing pipeline as a function mapping a
multi-dimensional integer domain to values representing intensities of image pixels. The domain
of the function is dened using the Interval construct at lines 12–14. The Case construct allows
conditional execution of computation. Function blurx (lines 19–22) takes the image as input and
blurs it in the x-direction. Function blury (lines 24–27) takes the output of blurx as input and blurs
it in the y-direction. The output of blury is the output of this pipeline.

PolyMage’s compiler constructs a polyhedral representation of the pipeline, with functions as
the statements with polyhedral domains. The compiler then is able to perform fusion and tiling
across these functions by constructing polyhedral schedules. Overlapped tiling for the blur pipeline
leads to trapezoid shaped tiles along the y-direction, and this is illustrated in Figure 3 (the x di-
mension is not shown for convenience). Such a tiling leads to recomputation of function values in
the overlapping region between two neighboring tiles. As a result, the dependence between neigh-
boring tiles is broken, allowing parallel execution of all tiles without the need for synchronization
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Fig. 2. Overlapped tiling of blur kernel in the y-direction.

or communication between them. In Figure 3, there is no dependence between tiles P1 and P2, as
both recompute function values at their intersection. Hence, tiles P0 through P4 can be executed
in parallel.

2.2 PolyMage’s Fusion Heuristic

PolyMage’s existing fusion heuristic takes as input a directed acyclic graph, (V ,E), which rep-
resents the image processing pipeline, where V is the set of stages or functions and edges in E

represent the producer-consumer relationship between two stages. We rst explain what exactly
fusion or grouping or merging means in this context, since all of these terms are used synony-
mously later in the article. When a set of nodes from the DAG are referred to as being grouped
or merged or fused together, that group of statements (where a statement corresponds to a node)
will also be tiled using overlapped tiling when necessary, and their tile space loops are fused. In
PolyMage, the intra-tile loops of the individual statements are distributed inside, i.e., a single trape-
zoidal tile (illustrated in Figure 3) runs tiles of the individual statements one after another (blurx
tile followed by blury tile). The generated code for the blur specication in Figure 1 is shown in
Figure 2.
At the start of the PolyMage’s Fusion algorithm each pipeline function is in a separate group.

The algorithm iteratively merges groups in the following way until no further merging is possible:
In each iteration, it nds all groups that have only a single child (successor) in the pipeline graph
(so cycles are not formed due tomerging). These candidate groups are then sorted in the decreasing
order of their sizes determined from the parameter estimates.
The algorithm then iterates over the sorted groups to check for merging opportunities. A group

is merged with its child only if the following two conditions are met: First, dependences between
the group and its child have to be made constant (not dependent on problem sizes) by performing
loop transformations (scaling and aligning) on the loops of the functions in the child and parent
groups. Note that scaling loops of dierent functions by dierent factors allows inter function
dependences that are originally non-constant (distances dependent on problem sizes) to be made
constant. Such scaling is necessary when functions involve upsampling and downsampling
operations. Aligning here refers to matching a specic dimension of one function with that of
another function for loop fusion. For example, consider two functions S1 and S2 each dened on
a two-dimensional domain: Now, a mapping S1 (i, j ) → (2i, j ); S2 (x ,y) → (4y,x ) implies that the
rst dimension of S1 and the second dimension of S2 have been scaled by factors of two and four,
respectively; then 2i has been aligned with 4y and j with x (in the transformed space) for fusion.
The scaling was necessary to make inter-function dependences constant. The second condition
to be met for merging is that the size of the overlapping region (which represents redundant
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Fig. 3. C++ code generated by PolyMage for the blur pipeline. tx , ty are the tile-space loops (fused for both

blurx and blury) corresponding to their intra-tile counterparts x and y, respectively. Tile size is set to 64 × 64,

and tiles overlap along y. Output of blurx is stored in a small local buer.

computation when the group is tiled), as a fraction of given tile size, is less than the overlap
tolerance (provided as a parameter and is part of the auto-tuning phase).
The parameters for PolyMage’s grouping algorithm, tile size and overlap tolerance, are tuned

over by its auto-tuner. The auto-tuner search space typically contains seven tile sizes per dimension
and three overlap tolerance values. For each combination of these values, grouping is performed
and the generated code is executed, and fastest version is empirically determined.

2.3 Halide Fusion Heuristic

Halide was originally proposed as a language where the schedule was specied by the program-
mer [19]; the optimization approach was thus semi-automatic. Earlier attempts to automate sched-
uling through auto-tuning met with limited success due to the large space being searched. How-
ever, recentwork byMullapudi et al. [13] introducedmodel-driven automatic scheduling forHalide
that is very eective; the fusion heuristic used is a signicant improvement over PolyMage in the
following two ways: (1) the heuristic determines grouping in conjunction with the best tile size
for the group, (2) the auto-tuning is done on parameters that more directly capture the tradeo
between performing redundant computation and cache misses.
Halide’s auto-scheduling fusion heuristic [13] rst places each function in the program in its

own group and tiles the function to maximize input data reuse, if such an opportunity exists. Then,
the algorithm considers those pair-wise merging opportunities where there is a direct producer-
consumer relationship. Halide enumerates these merging opportunities, and for each such merg-
ing opportunity, it estimates the performance benet of merging the two groups and picks that
merging that provides the highest benet. This process is repeated until no protable merging
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opportunity remains. The performance benet is calculated using a cost function that enumerates
several tile size possibilities and assigns tile sizes that are determined to provide best performance
analytically. Performance estimation for a given tile size is based on three factors: (i) the number
of tiles should be greater than or equal to PARALLELISM_THRESHOLD, which is set to the number
of cores; (ii) memory footprint, where a larger memory footprint is penalized more than a smaller
one depending on the L2 cache size; and (iii) the innermost storage dimension should have at least
VECTOR_WIDTH data points to iterate on. The cost of a group with a given tile size is estimated as
the sum of the costs of arithmetic operations in the group and the cost of loading a group tile from
main memory into cache (calculated using a LOAD_COST parameter). Two groups are merged only
if the cost of merging them is the lowest among all grouping possibilities and that cost is less than
that of not merging them. In addition, while evaluating a specic fusion choice, tile sizes that are
powers of two are iteratively tried to determine the largest one that allows data to t within the
CACHE_SIZE setting.

2.4 Limitations of Prior Art

Both PolyMage’s and Halide’s algorithms are evidently greedy and fast. The algorithms tend to
maximize reuse by grouping stages connected by producer-consumer relationships and prevents
a merge if it is not protable.
The downsides of PolyMage’s fusion algorithm are as follows.

• Several valid and potentially protable opportunities may be missed.
• The same tile size is used for each group in a particular grouping. However, clearly, each

group can have its own best tile size. The combinatorial explosion that results from auto-
tuning each group with an independent tile size prevents the auto-tuner from exploring
this freedom. For example, instead of a typical 147 choices (72 × 3 corresponding to several
tile sizes along each dimension and three overlap tolerance values), it may lead to (72)д × 3
choices, whereд is the number of groups. The resulting explosion in auto-tuning time is thus
undesirable for an approach that is aimed at being mostly model-driven if not completely.

• The tile sizes considered by the auto-tuner are only powers of two to explore the entire
typical range 32–2,048. However, there is no strong reason to discard tile sizes that are not
powers of two, and the latter may often lead to higher returns.

• PolyMage does not support inlining of producer expressions into consumer expressions.
Inlining of expressions helps in decreasing the total cache footprint and the amount of
redundant computations.

• PolyMage generates only one level of tiling, hence, providing locality for only level of cache.
However, we can provide locality for both L1 and L2 cache, thereby improving performance.

Halide’s automatic scheduling algorithm solves three key limitations of PolyMage’s: (a) it com-
putes tile sizes for each group independently, (b) it uses a cost model to determine tile sizes in-
stead of auto-tuning, and (c) automatically inlines expressions even if that results in redundant
computations. The auto-tuning is instead performed on another parameter that captures the ratio
of computation costs to cache misses, which is expected to be specic to dierent microarchitec-
tures. Halide’s algorithm rst runs a function inlining pass to determine all the inlining candidates.
However, Halide’s algorithm still has the remaining limitations, i.e., of not considering several po-
tentially protable grouping opportunities due to a local greedy choice, of not considering tile
sizes that are not powers of two (the implementation considers only power of two sizes, since
each candidate tile size has to be evaluated), of not exploiting locality for two levels of cache, and
of not considering inlining in the grouping algorithm.
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Fig. 4. Illustration to explain prior art limitations.

The rst key limitation, the greedy nature of the algorithm, remains common to PolyMage and
Halide. It allows both algorithms to evaluate a narrow space of valid groupings (and hence tiling
opportunities). We show now in what way the greedy nature of both of these algorithms excludes
a large number of groupings.
With the fusion algorithms of Halide and PolyMage, the exclusion of a signicant number of

valid and potentially protable grouping can be classied as occurring due to the following two
reasons: (1) Grouping along a path stops completely if the connected nodes make the merge non-
protable. Hence, a single node that makes the grouping non-protable can prevent the consider-
ation of a large number of groupings that may be protable as per yet unevaluated costs. (2) More
importantly, several dierent merging possibilities may exist and a choice of one over the other
(irrespective of which among them is protable) precludes a large number of other possibilities.
We explain this limitation through a simple example, the DAG of Figure 4.
For any linear pipeline graph with n stages, there are 2n−1 valid grouping possibilities. For the

given example, there are 25−1 = 16 valid groupings. In this case, invalid groupings are those that
comprise stages that are not adjacent to each other in the graph. For the Figure 4 DAG, Halide’s
grouping algorithm starts by rst considering {A,B}, {B,C}, {C,D}, {D,E} as the merging candidates
and picks the one that provides the best benet, say, {D,E}. In the next iteration, the grouping
candidates will be: {A, B}, {B, C}, and {C,{D, E}}. It will stop merging when no pair-wise producer-
consumer merging provides benet. For a linear pipeline graph with n stages, we notice that
Halide’s grouping algorithm will evaluate at most n(n − 1)/2 pair-wise groupings and ultimately,
1 + n(n − 1)/2 nal grouping candidates. However, grouping considerations are inuenced by local
greedy choices based on lowest cost function values at a particular step. For example, in the above
case, either of the groupings {{A,B,C,D},E} and {{A},{B,C,D},{E}} might have been ultimately better,
and these are not evaluated as a result of the initial choice to group D and E, which in turn may
make grouping other nodes not protable or less protable. The limitation is thus fundamental,
easy to see, and common to both PolyMage and Halide.
It is, however, challenging to develop an approach that is able to eciently evaluate all valid

or all interesting valid groupings for a general DAG while incorporating a concrete cost function,
and we address this in our work. We show that the approach we develop will be able to evaluate
a signicantly larger number of valid groupings through its cost function than prior approaches
do; in the specic case of linear DAGs like that of Figure 4, all 2n−1 valid groupings would be
considered (evaluated in eect), but in only O (n2) time.

3 A NEW FUSION APPROACH

In this section, we describe our new fusion algorithm. The cost function that will be used by the
fusion algorithm will be described in the next section.

Dynamic programming-based grouping:. In contrast to previous works that used a greedy al-
gorithm, we evaluate valid merging opportunities using a dynamic programming (DP) approach.
Given a pipeline graph (V ,E), V being stages as vertices, and E edges, our algorithm returns the
grouping that has the minimum cost over the space of possibilities considered, which we will
present in Section 4. Since our focus here is on improving producer-consumer locality, our algo-
rithm will evaluate only those merging opportunities for a group where at least one producer of

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 12. Publication date: November 2020.



12:8 A. Jangda and U. Bondhugula

Fig. 5. Dynamic programming formulation of fusion. PARTS (S ) generates all partitions of the set S .

SUCCG (H ) returns the set of direct successors of H that are not in any Hi ∈ G.

Fig. 6. Illustration for DP formulation.

the merge candidate is in the group. This restriction reduces the number of merging opportuni-
ties to be enumerated signicantly. We now present the formulation of the dynamic programming
recurrence.

3.1 Near-Optimal Sub-structure for Fusion

Let S = (V ,E) be the DAG of the image processing pipeline. LetG be the grouping for a portion of
the DAG, i.e., it is a set of sets of individual graph nodes such that:

G = {H1,H2, . . . ,Hn },

Hi is a sub-graph of S,

for any Hi ,Hj ∈ G, Hi , Hj , Hi ∩ Hj = ∅. (1)

The function F (G ) represents the minimum cost grouping for the portion of the DAG (V ,E) that
includes G and all nodes in V reachable from G under the condition that the grouping specied
in G will not be decomposed further nor will those groups be merged with each other, i.e., only
the descendants of G can be added to or merged into groups of G, and groups of G cannot be
partitioned further. This formulation underlies our DP-based approach.
The DP recurrence is provided in Figure 5, and Figure 6 helps with illustration; it works as

follows: If none of the groupsHi inG have any successors, then F (G ) is the cost ofG; otherwise, the
cost is the minimum between the choices of (Case I) grouping Hi ∈ G with any of Hi ’s successors
that are not in G, and (Case II) that of not grouping with any of Hi ’s successors that are not in
G. Both Case I and Case II involve multiple possibilities over which the minimum is computed.
PARTS (S ) represents all possible partitionings of a set S . A partitioning of S is a set of non-empty
subsets of S such that every element s ∈ S appears in exactly one of these subsets. SUCCG (H )

represents all the immediate successor nodes of H in the DAG that are not in any Hi ∈ G. In case
II, G is nalized (no further changes to it), and hence the recurrence subsequently explores the
graph starting from all possible partitionings of successors of G.
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ALGORITHM 1: Dynamic programming-based grouping

1: function DPGROUPING(G,T )

2: if G ∈ T then return T[G]

3: if
⋃

Hi ∈G SUCCG (Hi ) = ∅ then

4: T[G]← 
∑
Hi ∈GCOST(Hi ), G

5: return T[G]

6: minCost, minGroup ← ∞, ∅

7: for all Hi ∈ G do

8: for all sj ∈ SUCCG (Hi ) do

9: isCycle← false

10: for all t ∈ SUCC(Hi ) do

11: if t , sj and sj .isReachableFrom(t ) then

12: isCycle← true

13: break

14: if isCycle = false then

15: C ← {Hi ∪ {sj }}

16: cost1, д ← DP-GROUPING((G ∪C ) − {Hi },T)

17: if cost1 < minCost then

18: minCost, minGroup ← cost1,д

19: minPartCost←∞

20: for all Pj ∈ PARTS
(

∪Hi ∈GSUCCG (Hi )
)

do

21: cost, G  ← DP-GROUPING(Pj , T)

22: if cost < minPartCost then

23: minPartCost, minPartGrouping ← cost, G 

24: cost2 ←
∑

Hi ∈GCOST(Hi ) + minPartCost

25: if cost2 < minCost then

26: minCost, minGroup ← cost2,G∪ minPartGrouping

27: T[G]← minCost, minGroup

28: return minCost, minGroup

The algorithm starts with the source vertex of the pipeline graph. If there are multiple source
vertices, then a dummy source vertex is createdwith edges into the original source vertices. Group-
ing then starts from this dummy source vertex, which has a cost of zero. This recurrence can then
use memoization by using a tableT to store the cost of F (G) along with the grouping information.
By construction, we notice that the elements ofG will always be disjoint sub-graphs of (V ,E). The
objective of the DP is to minimize the sum total of the costs of all groups as computed by theCOST
function that will be described in the next section.
Algorithm 1 is driven by the DP recurrence of Figure 5 and uses memoization. It takes two

parameters: a pre-fused set G as described earlier, and the DP memo (table). DP-GROUPING rst
checks if the minimum cost grouping had already been calculated and stored in T . Line 5 returns
the cost of G corresponding to the base case, i.e., when G has no successors. Lines 8–18 nd the
grouping corresponding to the best possible way Hi could be merged with its successors that are
not already in G (Case I of Figure 5). Lines 15–16 evaluate merging Hi with each of its candidate
successors as long as grouping is the valid. Lines 20–24 evaluate the cost of not mergingG with any
of its successors (Case II of Figure 5). This is done by separating out (or nalizing) G and starting
again from all partitionings of successors ofG. Line 27 determines the nal minimum cost and the
corresponding merging as the minimum between the two cases (cost1 and cost2). The minimum
cost and the grouping corresponding to it are returned.
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3.2 Validity

A grouping is valid if it does not create a cycle between groups in the pipeline graph. Our algorithm
does not merge nodes into a group if it creates a cycle. For simplicity, we excluded this check from
Case I of Figure 5. For any sj to be a valid merge candidate, it should not form a cycle with the
respective Hi . Lines 9–13 check if grouping sj with Hi would create a cycle. Only if no cycles are
formed, sj is grouped with Hi . Hence, Algorithm 1 always generates valid groupings.

3.3 Complexity

For a linear DAG, |SUCC (G ) | (where G is the argument to the DP function as we dened it in
Section 3.1) is always one, sinceG will always have a single setH , i.e.,G = {H1}. The complexity of
the algorithm is thus O(|V |2), since the number of possible congurations forG is |V | ∗ ( |V | + 1)/2.
In other cases, the complexity of the algorithm is related to the number of sub-graphs of (V ,E).
Note that we do not consider congurations that create cycles. Coming up with an upper bound on
the complexity is beyond the scope of this work, but it is clearly at least exponential. Intuitively,
the number of choices depends on |SUCC (G ) | at any point. In practice, we see that |SUCC (G ) |

is often a small value (Section 7). This combined with the bounded incremental variant of this
DP algorithm that we will present in Section 6 allows us to always keep the running time within
desired limits, no matter what the size of the graph is.

4 COST FUNCTION

In this section, we present the cost function that is used in conjunction with the dynamic pro-
gramming algorithm presented in the previous section.

4.1 Locality, Parallelism, and Prefetching

The cost function COST(H ) in Algorithm 2 is expected to provide the cost of grouping the nodes
(image processing stages) of H with the best possible tile sizes that it estimates based on locality
and parallelism considerations. It takes into consideration four criteria: (1) cache reuse, (2) number
of cores available to run in parallel, (3) amount of redundant computation performed as a fraction
of tile volume, and (4) the dierence between the extents of the corresponding dimensions of the
stages being fused. Each of these parameters is multiplied by a weight and summed up to form the
cost as follows:

cost = w1 × ratio of live-in/live-out data to computation

−w2 × ((num_tiles + num_cores - 1)% num_cores)

+w3 × fraction of overlap

+w4 × relative dierence between sizes of dimensions. (2)

The lower the cost above, the more protable the specic grouping being evaluated is. The rst
factor takes into account the ratio of live-in and live-out data to the computation; it is thus one
way to calculate the inverse of the arithmetic intensity or the amount of cache reuse for a tile.
The second factor represents the number of “cleanup” tiles, i.e., the remainder tiles whenever the
number of tiles is not a multiple of the number of cores. This factor has to be minimized as well.
The third factor captures the fraction of redundant computation introduced. The ratio of the rst
and the third factors capture the tradeo between redundant computation and the improvement
in locality as a result of it. The fourth factor considers the dierence between the extents of the
corresponding domain dimensions of dierent functions of the fused group; this is to avoid fusion
if the dierence in trip counts are too high.
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ALGORITHM 2: Cost Function: C(H)

1: function COST(H, L1CS, L2CS, IMTS, NC)

2: if not constantDependenceVectors(H) then return ∞

3: cost, tileSizes, overlapSize ←CFCS(H, L1CS, NC,

4: IMTS)

5: if overlapSize > TV(H, tileSizes) then

6: cost, tileSizes, overlapSize ←CFCS(H, L2CS, NC,

7: IMTS)

8: return cost, tileSizes

9:

10: function CFCS(H, cacheSize, NC, innerMostTileSize)

11: liveout_size ← liveOutsSize(H)

12: totalFootprint← intermediateBuersSize(H) + liveout_size

13: tileFootprint← min(totalFootprint÷NC, cacheSize)

14: tileSizes← CTS(H, tileFootprint, innerMostTileSize)

15: livein_tile_size← liveInTileSize(H, tileSizes)

16: liveout_tile_size ← liveOutTileSize(H, tileSizes)

17: comp_vol ← CTV(H, tileSizes)

18: n_tiles← totalFootprint ÷ tileFootprint

19: overlapSize← OS(H, tileSizes)

20: relative_overlap← overlapSize ÷ tileFootprint

21: dim_di← dimSizeStandardDeviation (H)

22: cost←w1×(livein_tile_size + liveout_tile_size)÷comp_vol−w2 × ((n_tiles + NC−1) % NC)

+w3 × relative_overlap +w4 × dim_di

23: return cost, tileSizes, overlapSize

24:

25: function CTS(H, tileFootprint, innerMostTileSize)

26: tileVol← tileFootprint ÷ numBuers(H)

27: nDims← numDims(H)

28: dimReuse[1 . . . nDims]← getDimensionalReuse(H)

29: dimSizes[1 . . . nDims]← getDimensionalSizes(H)

30: tileSizes[nDims]← min(dimSizes[nDims], innerMostTileSize)

31: τ ← tileVol ÷ tileSizes[nDims]

32: maxDimReuse ← max(dimReuse[1:nDims − 1])

33: for i = 1→ nDims − 1 do

34: τ ← τ÷ (dimReuse[i] ÷ maxDimReuse)

35: τ ← τ 1/(nDims−1)

36: for i = 1→ nDims − 1 do

37: tileSizes[i]← min(dimSizes[i], τ× dimReuse[i] ÷ maxDimReuse)

38: return tileSizes

In Algorithm 2 function COST takes ve arguments: group, L1 and L2 cache sizes, innermost
dimension tile size, and the number of cores. It returns the cost of the group while also deter-
mining the associated tile sizes. COST returns ∞ if the dependence vectors in the given group
are not constant (line 2); note that PolyMage is able to perform overlapped tiling (Figure 3) only
if the scaling and alignment of all group functions’ dimensions is possible in a way that makes
the dependence vectors constant. Then, CFCS is called to rst compute the cost
and the corresponding best tile sizes for L1 cache at line 3. If the overlap size is not too high (less
than the total volume of computation), then L1 tiling is chosen. Otherwise, line 6 calculates the
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cost and the tile sizes for the L2 cache. Function CFCS calculates the cost and tile
sizes of a group for a given cache size and number of cores. Line 12 calculates the total memory
footprint, which is the sum of the size of intermediate outputs and live-outs. Lines 15–16 calculate
the live-in and live-out data sizes associated with a tile. OS computes the overlap size at
line 19 for the given tile sizes, which is the total volume of redundant computations in a tile due
to its overlap with its neighboring tiles along all dimensions. A local buer is not used for live-in
data. CTS computes the actual tile sizes and is described in the next subsection
(Section 4.2). We now explain how each of the desired optimization objectives is achieved.

Locality: Locality is captured in the cost function by considering the ratio of the number of
loads and stores performed into/out of local buers from main memory (or the L3 cache) to the
volume of computation in a tile. Note that a tile comprises multiple stages successively processing
a subset of the data. The local buers are constrained (through tile sizes) to t in L2 cache (or
the L1 cache, as we will see later). Using such a ratio captures the amount of reuse in a tile for
the fused group. This includes the producer-consumer reuse between stages, input reuse between
stages, and reuse within a stage (self-temporal and group-temporal) [25]. We will see later that the
relative degree of reuse across dierent dimensions is used to determine the ratio of tile sizes.

Prefetching: Since all intermediate data is stored in local buers (which are contiguous and
proportional to the tile sizes), spatial reuse is always exploited. In addition, the number of prefetch
streams needed is greatly reduced as a result of contiguity. The cost function determines the best
tile sizes for the group while ensuring a particular minimum tile size along the innermost dimen-
sion. This is to ensure that the subsequent prefetching and auto-vectorization performed by the
compiler are eective.

Parallelism: A loss of parallelism while merging is also captured through the cost function.
If the set of nodes being grouped cannot be aligned and scaled in a way that prevents overlapped
tiling, an innite cost is returned (line 2) and such a grouping is thus prevented. Algorithm 2
always ensures that we have at least as many tiles as the number of cores we intend to run
on. In addition, the part of the expression that is weighted with w2 also minimizes the number
of “cleanup” tiles whenever the number of tiles is not a multiple of the number of cores. This
minimizes load imbalance.

4.2 Tile Size Determination

We now describe how tile size selection works in Algorithm 2.
Our tile size determination algorithm is based on three parameters: (i) the L1 cache size, (ii) the

L2 cache size, and (iii) reuse of data along each dimension. We rst assign tile sizes such that the
volume of data accessed by the tile ts in L1 cache. If this leads to an overlap size more than the
tile size (for L1 cache), we determine tile sizes based on the L2 cache size. In addition, we ensure
that the tile size for the innermost dimension is large enough for a protable prefetching and
auto-vectorization. As a result, we set the tile size of the innermost dimension to the minimum of
size of the dimension and a xed value that we call innerMostTileSize; this is typically either 128
or 256. For all other dimensions, tile sizes are set in a ratio based on reuse along the dimensions
in a way we describe further below.
Reuse along a particular dimension (both temporal and spatial, group and self) is determined

by inspecting data accesses using well-known techniques [25]. A reuse score is determined for
each dimension. To keep the discussion simple here, we skip explaining an additional metric we
consider that captures the degree of overlap a particular dimension incurs at the boundary, which
is a function of dependence components along that dimension. Then, the tile size assigned for a
dimension is proportional to reuse along it—the dimension with larger reuse will have larger tile
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sizes. Such a strategy leads to tiles that are longer along dimensions with higher reuse. Let the ith
dimension have a tile size of τi . Since there is a one-to-one correspondence between iterations and
accessed data in the image processing pipelines that we currently support, form dimensions, the
product of tile sizes along all dimensions times the number of local buers has to be equal to the
allowable tile footprint, T (tileFootprint in Algorithm 2), i.e., τ1τ2 · · · τm = T .

For the ith dimension, let γi (dimReuse[i] in Algorithm 2) be the ratio of the reuse score of the
ith dimension to the maximum amount of reuse across all dimensions. Let τ be the tile size for the
dimension with maximum reuse. We then set: τi = γiτ . Hence, we have: τ

mγ1γ2 · · ·γm = T , and τ
can be determined.
Function CTS in Algorithm 2 is our tile size determination algorithm. C

TS takes group, cache size, and innermost dimension tile size as parameters. The tile
volume is then determined by dividing the allowable tile memory footprint with the number of
intermediate buers and live-outs (line 26). Function CTS is rst called by C
FCS to determine tile sizes that would t in L1 cache. Lines 28–29 get the dimensional
reuse scores and lengths for each dimension. Lines 30–37 assign tile sizes for all dimensions. Line 30
sets the tile size for the last dimension as the minimum of the dimension size and IMT
S. Lines 36–37 set tile sizes for the remaining dimensions weighted by per-dimension reuse, as
described earlier.

5 OPTIMIZATIONS

This section describes additional optimizations, beyond the tiling and fusion described earlier, that
we incorporated.

5.1 Expression Inlining

Inlining of producer expressions into consumer decreases the number of scratchpads required for
storing intermediate. Inlining arbitrary expressions can increase the amount of redundant compu-
tations but inlining pointwise expressions does not add any redundant computations. We inline
a producer expression to its consumer expression (i) if the consumer expression is a pointwise
expression, (ii) if the producer expression is a pointwise expression, or (iii) a producer expression
with branches, with each branch producing values for one pointwise consumer expression such
that each condition of the branch has non-overlapping references to the input of producer expres-
sion. We make sure we do not inline the live-outs of a group.
Algorithm 3 presents our expression inlining algorithm. Our algorithm takes a DAG starting

at node G and modies that graph. Cost function calls the inlining algorithm for the given group
to modify the graph after inlining expressions. Our algorithm executes while there are producers
eligible for inlining into consumers (line 3). Line 5 iterates over all groups д in the DAG. If д is
live-out, then we do not inline it at line 6. Line 8 inlines д in its consumers if д is a pointwise
expression. Line 11 inlines д if there is only one consumer and that consumer is pointwise. Line 14
checks if all the consumers of д has non-overlapping references to input data.

5.2 Multi-level Tiling

Tiling for L2 cache only ensures that the generated code exploits reuse in the L2 cache, but not
along all the dimensions in the L1 cache. While rectangular tiling for multiple levels for typical
dense linear algebra is well-studied, we show how the specic tiling scheme used here for image
processing pipelines is turned into a multi-level one.
Our multi-level tiling scheme can be described as follows: We create overlapped tiles for the

L2 cache; these overlapped tiles are parallelized across CPU cores. For each overlapped tile in
the L2 cache, our technique generates parallelogram tiles to exploit reuse in the L1 cache, i.e.,
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Fig. 7. Multi-level tiling for blur. Parallelogram tiles with green boundaries are inside overlap tiles in gray.

ALGORITHM 3: Expression Inlining Algorithm

1: function E I(G)

2: workToDo ← true

3: whileworkToDo do

4: workToDo ← false

5: for node ∈ G do

6: if node .isLiveout () then

7: continue

8: if node .isPointwise () then

9: node .inlineInAllConsumers ()

10: workToDo ← true

11: else if |node .consumers | = 1 and node .consumers[0].isPointwise () then

12: node .inlineInAllConsumers ()

13: workToDo ← true

14: else if |node .consumers | > 1 and node .nonOverlappinдConsumers () then

15: node .inlineInAllConsumers ()

16: workToDo ← true

each parallelogram tile’s resident data set ts in the L1 cache. All parallelogram tiles in a larger
L2 tile execute sequentially. We choose parallelogram tiles here for the inner level as opposed to
overlapped tiles within overlapped tiles, since the dependences between the inner tiles are not an
issue. Tile sizes at the outer level would have been chosen to provide sucient parallelism from
the overlapped tiles already. If the cost function we presented in Algorithm 2 chose to generate
an overlapped tile for the L1 cache in the rst place (instead of the L2 cache), then we choose not
to perform any multi-level tiling, because the tiling for the L1 cache is used for the parallelization
across cores.
The inner parallelogram tiles are generated with their slope parallel to the right hyperplane

of the outer overlapped tiles, as shown in Figure 7. Note that if parallelogram tiles are generated
with their slope parallel to the left hyperplane of the overlapped tiles, then there would be a cyclic
dependence between successive tiles. However, generating tiles with the right hyperplane as the
slope leads to no cyclic dependence among the tiles. Figure 7 illustrates multi-level tiling for the
blur example. The parallelogram tiles are shown in green. Each of these parallelogram tiles is de-
pendent on the left parallelogram tile. Hence, these tiles are executed from left to right sequentially,
with each tile tting in L1 cache.
Let ϕr be the right hyperplane of overlapped tiles and τ be the tile size for inner tiling, i.e., of

parallelogram tiles. Let the scaled and aligned schedule for a function fk in the group be (
→

ik ) → (
→
sk )
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ALGORITHM 4: Cost function for multi-level tiling

1: functionMLC(H, L1CS, L2CS, IMTS, NC)

2: if not constantDependenceVectors(H) then

3: return ∞

4: cost, L1tileSizes, overlapSize ←CFCS(H, L1CS, NC,

5: IMTS)

6: if overlapSize < TV(H, tileSizes) then

7: return cost, L1tileSizes

8: cost, L2tileSizes, overlapSize ← CFCS(H, L2CS, NC,

9: IMTS)

10: return cost,  L1tileSizes, L2tileSizes

after the overlapped tiling has been applied. The newly added dimension t corresponding to the
iterator on the tile space will be given by:

τ · t ≤ ϕr (
→
sk ) ≤ τ · (t + 1) − 1.

The schedule for fk can then be updated to (
→

ik ) → (t ,
→
sk ).

Algorithm 4 presents our cost function for multi-level tiling. Similar to COST in Algorithm 2,
MLC takes a groupH , L1 cache size, L2 cache size, innermost dimension tile size, and
the number of cores as parameters and returns the cost of the groupwith single-level or multi-level
tile sizes. When “multi-level” tiling is enabled, MLC is called instead of COST. Similar
to COST, MLC proceeds only if dependence vectors are constant at line 2. Line 5 calls
CFCS to get the tile sizes for L1 cache. If overlap size is less than or equal to the tile
sizes, then we return the L1 tile sizes and the cost at line 7. Otherwise, we determine the cost and
tile sizes for L2 cache at line 9 and return the concatenated tile sizes at line 10.

5.3 Intra-tile Loop Fusion for Register Reuse

In addition to performing fusion across loops to create overlapped tiles, we can fuse loops inside
a tile to increase register reuse. In a group, more than one consumer could have the same pro-
ducer function and the set of references belonging to the producers’ live-outs could overlap across
consumers. In this case, we can fuse loops of all consumers to enable register reuse of the output
from the producer function, thereby decreasing the number of loads from memory. We fuse loops
of two or more consumer functions when (i) all consumers have the same nesting depth, (ii) the
loops bounds of all consumer functions at all nesting depths are equal, and (iii) the intersection
between the references of elements in producer’s live-out for all consumers is not empty.
This schedule transformation is performed for each group after the grouping has been per-

formed and before code generation. For each group, we enumerate all combinations of two func-
tions f , д in the group and fuse the loops of f and д if (i) f and д have common inputs and the
intersection of the references to the input are common in each iteration, and (ii) f and д have the
same loop bounds.
Note that the fusion-cum-tile size determination approach described in previous sectionsmodels

cache locality as one of the criteria. This fusion of intra-tile loops, however, enhances register
reuse over an already cache locality optimized choice. As such, register reuse is only indirectly
modeled as part of the DP-based approach, and we do not add an additional term to our weighted
cost formula (2) in Section 2 to capture the fact that intra-tile loop fusion may be possible and
protable for a particular grouping choice.
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ALGORITHM 5: Bounded Incremental Dynamic Programming Grouping

1: function INCGROUPING(G, initialLimit , step)

2: groupLimit← initialLimit

3: max_size ← initialLimit

4: T← DictionaryG, float()

5: G  ← G

6: while true do

7: cost ,G  ← DP-GROUPING-BOUNDED({{source(G )}}, T, groupLimit)

8: if max_size ≥numVertices(G) then

9: break

10: groupLimit← step

11: max_size ← step ×max_size

12: return cost,G 

6 BOUNDED INCREMENTAL GROUPING

The DP-based grouping algorithm described in Section 3 can lead to signicant execution time as
described in Section 3.3. To reduce the number of choices explored and thereby the compilation
time, we introduce a variant of the DP grouping algorithm.
The key idea is to produce a grouping with a size constraint, which we call the group limit, and

then perform subsequent grouping on top of the groups from the previously grouped graph where
groups have already been coalesced into single vertices. This process can be performed iteratively,
either with a specic group limit each time or with the group limit being increased multiplicatively
by a factor.
Algorithm 5 presents our incremental dynamic programming algorithm. The groupLimit, l , is in-

creased until it becomes larger than the number of nodes in the pipeline graph. INC-GROUPING
is the driver function that calls DP-GROUPING-BOUNDED to nd the best grouping subject to
the size of groups being bounded by l . DPGROUPINGBOUNDED is a slight variant of DP
GROUPING (Algorithm 1) that does not allow any groups Hi with size greater than l ; DP
GROUPINGBOUNDED thus takes дroupLimit as an additional parameter. INC-GROUPING takes
three parameters: the source node of pipeline graph, initial group size limit, and the factor by
which the group size limit should be increased every iteration. The iterative part of the algorithm
(lines 6–11) runs for a sucient number of iterations to allow a grouping where all nodes of the
original pipeline graph could be grouped. In each iteration of the loop (lines 6–11), a grouping is
performed on the DAG returned at line 7 with group limit set to step. The grouping obtained from
the previous iteration is used for the next iteration to explore further grouping opportunities over
groups already formed from the previous iteration.
This algorithm allows us to collapse arbitrarily large graphs into smaller ones eciently (by

choosing small l ), while using DP-GROUPING in an incremental and iterative manner.

7 EXPERIMENTAL EVALUATION

The proposed fusion-cum-tile size algorithm and optimizations have been integrated into Poly-
Mage [16]. In the rest of this section, we refer to our implementation as PolyMage+, i.e., Poly-
Mage with our DP-based fusion-cum-tile size determination and the additional optimizations
presented. All presented optimizations including the incremental dynamic programming-based
grouping (Section 6) were implemented.
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Table 1. Benchmark Summary, Problem Size, Maximum Number of Successors in Graph, Number of

Fusion Choices Evaluated for Dierent l Values, and Time Taken by Grouping Algorithm

Benchmark Stages Image size max(succ(G)) Groupings enumerated Time(s)

(W×H×c) l = ∞ 32 16 8 l = ∞ 32 16 8

Unsharp Mask 4 4,256 × 2,832 × 3 2 10 − − − 0.05 − − −

Harris Corner 11 4,256 × 2,832 2 104 − − − 0.15 − − −

Bilateral Grid 7 1,536 × 2,560 1 16 − − − 0.02 − − −

Multi. Interp. 49 1,536 × 2,560 × 3 2 741 − − − 3.00 − − −

Camera Pipe. 32 2,592 × 1,968 5 12,227 12,227 3,825 1,631 13.7 13.7 5.10 1.0

Pyramid Blend 44 3,840 × 2,160 × 3 3 27,108 26,952 7,809 923 25.7 25.0 10.3 0.3

“−” for certain l values indicates that the algorithm took reasonable time with l = ∞ itself; hence, lower l values were

not required.

7.1 Experimental Setup

Evaluation was performed on the following two state-of-the-art multicore systems:

Intel Xeon (Haswell): A dual-socket NUMA server with the 8-core Intel Xeon E5-2630 v3
processor based on the Intel Haswell microarchitecture running at 2.40 GHz with 64 GB DDR4
2400 MHz RAM, 32 KB L1 cache, 256 KB L2 cache, and a 20 MB shared L3 cache. The OS is 64-bit
Linux kernel 3.10.0. The Haswell architecture supports 256-bit AVX2 vector instruction set. All
experiments were conducted with hyperthreading disabled.

AMD Opteron: This is a server with a 16-core AMD Opteron 6386 SE processor running at
1.4 GHz with 128 GB of DDR3 800 MHz RAM, running 64-bit Linux kernel 3.10.0 version. The
AMD Opteron 6386 SE processor uses a 16 KB L1 cache, 2 MB of L2 cache shared between two
cores, and an 8-core shared 12 MB L3 cache.
Code generated by PolyMage and PolyMage+ were compiled with Intel C/C++ compilers

(icc/icpc) 16.0.0 with ags “-O3 -xhost -openmp” on the Intel Haswell server and with GCC/G++
4.8.2 with ags “-O3 -march=native -fopenmp -ftree-vectorize” on the AMD Opteron. All exper-
iments were conducted with ve sample runs with each sample using 500 runs. We report the
minimum of the average of each sample. We used six image processing benchmarks, which were
also used earlier for evaluation in papers on Halide and PolyMage [13, 14, 19, 20], and eight multi-
grid benchmarks used earlier in Reference [24]. The parameter IMTS (Algorithm 2)
was set to 256 for the Xeon system and to 128 for the Opteron.

7.2 Image Processing Benchmarks

Unsharp Mask is a simple pipeline used to sharpen image edges, and comprises a series of im-
age blur operations. Harris Corner Detection is an implementation of theHarris corner detection
algorithm combining several stencils and point-wise operations. Multiscale Interpolation interpo-
lates image pixel values using an image pyramid of 10 pyramid levels. Bilateral Grid is used for
computing a fast approximation of the bilateral lter. Camera Pipeline processes raw images cap-
tured by the camera into a color image. The pipeline stages have stencil-like, interleaved, and
data-dependent access patterns. Pyramid Blending blends two images into one using a mask and
constructing a Laplacian pyramid of four levels. The number of stages in each benchmark and the
image size used are reported in Table 1.

Bounded Incremental Grouping. Table 1 shows how the time taken by the bounded incremental
DP algorithm (Section 6) changes when l , the group limit, is changed. It shows that our fusion
heuristic always runs in an acceptable amount of time when the group limit is l ≤ 32, through
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Table 2. Weights for Intel Xeon and AMD Opteron

System w1 w2 w3 w4

Intel Xeon 1.0 100.0 46,875 1.5
AMD Opteron 0.3 100.0 46,875 2.0

Table 3. Normalized Weights for the Cost Function

System w1 w2 w3 w4

Intel Xeon 47.04 1 13.18 33.57
AMD Opteron 14.11 1 13.18 44.76

which a grouping is obtained, and the subsequent iteration is run again without any group limit,
i.e., with l = ∞.

7.3 Cost Function Weights

We obtained the values for weightsw1,w2,w3,w4 in Section 4 using three image processing bench-
marks: Harris Corner, Multiscale Interpolation, and Camera Pipeline. We choose these bench-
marks, because each of these benchmarks exercise all parts of the cost function. The weights were
obtained manually through an empirical trial of these benchmarks in two steps. We rst obtained
the performance of the three training benchmarks using an initial guess of the weights. Then, we
manually adjusted the weights by increasing (or decreasing) the weight of a component, depend-
ing on whether the grouping obtained had a high (or low) value for that component. For example,
if the grouping had a high overlapping computation, we increased w3. However, if there is a low
overlap,w3 could have been higher than necessary.
Table 2 shows the values of the weights we used on each of the two systems. These weights

were used in the evaluation of all image processing and multigrid benchmarks.
Relative importance of each cost component. To better understand the relative importance of each

metric involved in the cost function, we performed a scaling of the weights. For this, we rst
collected the value of each component for all the groupings explored by our algorithm in all six
image processing benchmarks. Then, we ltered the outliers by selecting values that were not
in between two standard deviations around the mean for each component. This process ltered
out less than 5% of the collected values of each component. After ltering, we modied the cost
function so the value of each component in the ltered range was normalized to a 0 to 1 range,
and the weights were scaled based on that such that the nal cost remained the same as with the
unscaled weights in Table 2. The normalized weights are given in Table 3.

7.4 Performance Analysis for Image Processing Benchmarks

In this section, we report and analyze the performance improvements obtained.

7.4.1 Comparison Baselines. We compare the performance of PolyMage+ against Halide with
expert-tuned schedules, Halide with automatically generated schedules [13], and PolyMage with
auto-tuning. The version of PolyMage compared against was the same base version [16] that we
used for implementing our approach. For Halide, the latest version as of this writing (git commit1)
was used, both for auto-scheduling as well as expert-tuned Halide schedules in its repository. We
found this current version to be providing signicantly better performance than that reported in

1https://github.com/halide/Halide/commit/89679918b42eb14d358a8e6214755de1e42046.
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Table 4. Execution Times (in ms) of Image Processing Benchmarks

on Intel Xeon Haswell on 1 and 16 Cores

Benchmark
H-manual H-auto PolyMage-A PolyMage+ Speedup of PolyMage+ on 16 cores over

1 16 1 16 1 16 1 16 H-manual H-auto PolyMage-A

Unsharp Mask 159 20.4 76.4 17.1 105 19.7 89.3 8.71 2.34 1.96 2.26

Harris Corner 257 33.0 111 10.7 94.5 19.8 31.4 3.10 10.64 3.45 6.39

Bilateral Grid 66.1 6.47 78.3 6.13 84.9 7.66 84.7 7.3 0.88 0.84 1.05

Mult. Interp. 108 35.3 141 18.3 101 14.2 77.1 11.2 3.15 1.63 1.27

Camera Pipe. 34.2 3.60 36.8 5.10 52.7 4.40 51.4 4.05 0.89 1.26 1.09

Pyramid Blend 195 67.5 175 33.7 196 20.2 184 18.0 3.75 1.87 1.12

Table 5. Execution Times (in ms) of Image Processing Benchmarks on AMD Opteron on 1 and 16 Cores

Benchmark
H-manual H-auto PolyMage-A PolyMage+ Speedup of PolyMage+ on 16 cores over

1 16 1 16 1 16 1 16 H-manual H-auto PolyMage-A

Unsharp Mask 270 74.7 135 60.04 298 83.87 260 32.31 2.31 1.86 2.59

Harris Corner 432 57.8 142 46.68 266 87.80 194 20.32 2.85 2.30 4.32

Bilateral Grid 167 17.1 121 13.16 491 47.31 480 46.12 0.37 0.26 1.03

Multi. Interp. 266 153 157 37.91 245 58.11 234 51.40 2.98 0.74 1.13

Camera Pipe. 39.0 5.80 58.0 14.31 190 19.20 210 21.30 0.27 0.67 0.90

Pyramid Blend 443 366 234 169.1 325 73.44 343 68.70 5.33 2.46 1.07

its publication [13]; it has thus signicantly improved and is a strong baseline. LLVM 3.9 was the
backend used with Halide. PolyMage+ is compared in the following ways with the state-of-the-art
on all benchmarks.

H-manual:We compare with the manually tuned schedules for these benchmarks available in
the Halide repository. These schedules were also used earlier to evaluate Halide and PolyMage.

H-auto: We compare with the tuned schedules generated by Halide’s auto scheduler [13].
The parameters of Halide Auto Scheduler (mentioned in Reference [13]) were set in the follow-
ing way: For both Intel Xeon and AMD Opteron systems, VECTOR_WIDTH was set to 16, twice
the native vector width of AVX and AVX2 vector instructions for 32-bit oating point data;
PARALLELISM_THRESHOLD is set equal to the core count, i.e., 16. For the Intel system, CACHE_SIZE
is set to 256 KB (the per core L2 cache size), and for the AMD Opteron, it is set to 1 MB, which
is half the size of 2-core shared L2 cache. Note that Halide only uses the size of one cache level.
LOAD_COST is set to 40, which is a rough estimate of the relative cost of DRAM load vs. compute
on modern multi-core machines.

PolyMage-A: We compare with the generated PolyMage code tuned by the PolyMage’s auto-
tuner, which represents state-of-the-art with respect to PolyMage [14, 24]. For auto-tuning in Poly-
Mage, we used three threshold values, 0.2, 0.4, and 0.5, and seven tile sizes: 8, 16, 24, 128, and 256, for
tiling of only two dimensions. This is the parameter space that was also explored in Reference [14].

7.4.2 Performance Improvement and Analysis. Table 4 shows the absolute execution times
on the Haswell system for implementations generated by all congurations and the speedup of
implementations generated by PolyMage+ over H-manual, H-auto, and PolyMage-A. Similarly,
Table 5 shows the execution times and speedup on the Opteron system.
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PolyMage+ provides a signicant speedup over H-manual, H-auto, and PolyMage-A on both
the Intel Xeon and the AMD Opteron system as a result of better tile sizes and groupings. Since
both Halide and PolyMage/PolyMage+ use dierent backend compilers, we conducted additional
experiments to isolate performance benets to grouping and tile sizes. For Harris Corner, we found
that if the grouping generated by PolyMage+ is used in H-Manual (without the storage optimiza-
tions performed by PolyMage+, since there is no way to specify storage mappings explicitly with
Halide), the latter runs in 12.6 ms instead of 33.0 ms (on the Intel Xeon). Furthermore, if we use
PolyMage+’s tile sizes in H-manual in addition to the former’s grouping, it runs in 8.8 ms (better
than H-auto).
Groupings generated by PolyMage+ are dierent from the ones generated by PolyMage-A

for all benchmarks. Except for Unsharp Mask and Harris Corner, the groupings generated by
PolyMage+ are dierent from the ones used byH-auto. Due to space constraints and the large num-
ber of stages involved in the benchmarks, we are unable to list the grouping conguration and the
corresponding tile sizes. Note that the auto-tuning in PolyMage-A typically takes from a few min-
utes to up to 27 minutes for these benchmarks. However, PolyMage+ is completely model-driven.
For Bilateral Grid, PolyMage+ and PolyMage-A perform slightly worse than H-manual and

H-auto, because both H-manual and H-auto group the histoдram function, which is a reduction
operation, with other computations. However, PolyMage-A and PolyMage+ do not yet group or
optimize reductions in any way. For Camera Pipeline, H-manual performs slightly better than
PolyMage-A and PolyMage+ because H-manual has aggressive inlining of several functions,
which PolyMage-A and PolyMage+ currently do not support.
We also investigated the low performance of PolyMage+ in three cases on the AMD Opteron

(Table 5: Camera Pipeline, Bilateral Grid, andMultiscale Interpolation) and found that to be an issue
with compiler auto-vectorization. Note that PolyMage-A and PolyMage+ generated code rely
on icpc or g++’s auto-vectorization, while Halide generated code uses vector intrinsics and was
not aected by this issue. The cases here involved more challenging patterns, including integer
operations, for which the evaluated Opteron did not have AVX2. In these cases, we conrmed that
compiler auto-vectorization on the Opteron did not provide any improvement, while a signicant
improvement close to 2×was obtained on the Intel Xeon for the same code running on 16 cores. In
these benchmarks, although PolyMage+ and PolyMage-A perform worse than H-manual and H-
auto due to vectorization, PolyMage+ performs better than PolyMage-A in nearly all these bench-
marks, supporting our claim that the DP-based approach performs better than or is competitive
with an auto-tuned approach. For Pyramid Blend, g++ was not able to perform any vectorization;
hence, if auto-vectorization support is improved, we expect even better results for Pyramid Blend.

7.4.3 Analysis and Impact of Individual Optimizations. Figure 8 shows the performance of com-
paring various congurations of PolyMage+ over all six image processing benchmarks on dierent
threads to provide insights into the benets of dynamic programming with cost function, multi-
level tiling, expression inlining, and register reuse fusion. The congurations of PolyMage+ are:

• PolyMageDP represents PolyMage with our dynamic programming-based cost function.
• PolyMage+G+TC represents PolyMage with Halide’s greedy fusion algorithm but with Poly-

MageDP’s cost function with inlining and multi-level tiling.
• + F represents the addition of fusion for register reuse to PolyMageDP.
• + M represents the addition of multi-level tiling to PolyMageDP.
• + I represents the addition of expression inlining to PolyMageDP.

In this case, the implementations were generated for 16 threads and then executed on 1, 4, and 16
cores on the Intel Xeon. The baseline is the single threaded (sequential) version of the respective
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Fig. 8. Speedups of H-auto, H-manual, PolyMage-A, and several PolyMage+ configurations relative to Poly-

MageDP single-threaded version. Section 7.4.3 explains each PolyMage+ configuration in detail. Absolute

execution times can be determined in conjunction with Table 4.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 12. Publication date: November 2020.



12:22 A. Jangda and U. Bondhugula

Table 6. Fraction of Cache Hits/misses (in %) over Total Cache

Accesses on Intel Haswell for Unsharp Mask

Tile size L1_HIT L2_HIT L2_MISS Runtime (ms)
128 × 256 83.43 5.04 11.52 10.7
16 × 256 82.05 12.36 5.59 10.3
8 × 416 83.34 11.2 5.46 9.3
5 × 256 95.55 1.50 2.85 8.8

Table 7. Fraction Cache Hits/misses (in %) over Total Cache

Accesses on Intel Haswell for Harris Corner for L2 tile Sizes

and Multi-level Tile Sizes

Tile size L1_HIT L2_HIT L2_MISS Runtime (ms)
42 × 256 88.08 8.10 3.82 6.4
32 × 256 85.45 10.84 3.70 6.59

42×5×256 96.85 1.53 1.61 5.8

benchmark generated by PolyMageDP. We explain below the results of each optimization on each
benchmark:

Tile size selection schemes. To provide greater insight on the benets of the contributions, we
separately also compare the benets of the tile size selection algorithms of PolyMageDP and H-
auto. Figure 8 also provides results for PolyMage+G+TC, which is PolyMage using H-auto’s greedy
fusion algorithm but with PolyMageDP’s cost function. This could be compared to H-auto to un-
derstand improvements without the dynamic programming-based approach. For Unsharp Mask

and Harris Corner Detection, both PolyMage+G+TC and H-auto generate the same grouping and
perform expression inlining. For Unsharp Mask, PolyMage+G+TC’s generated schedule performs
1.96× better, because the tile size generated by PolyMage+G+TC is for the L1 cache and is not a
power of two; however, H-auto generates tile size for the L2 cache that is a power of two. Table 6
shows the tile size generated by PolyMage+G+TC leads to a lower cache miss ratio than any other
tile size. The L1 tile 5 × 256 has a smaller fraction of L2 misses than the best performing L2 tile
8 × 416; 128 × 256 and 16 × 256 are two sub-optimal L2 tiles, with the former “spilling” the L2
cache and the latter underutilizing its capacity. This shows that it is better to perform L1 tiling
whenever L1 tile sizes are not constrained to be too small to adversely aect prefetching and redun-
dant computation. Our heuristic automatically takes this into account. For Harris Corner Detection,
PolyMage+G+TC’s generated schedule performs 3.45× faster than H-auto’s generated schedule,
because the tile size generated by PolyMage+G+TC for the L2 cache is not a power of two. The tile
sizes generated by H-auto are again powers of two here. Table 7 shows that the tile sizes generated
by PolyMage+G+TC lead to a lower L2 cachemiss rate. For all other benchmarks, PolyMage+G+TC
provides improvements from 16% for Camera Pipeline to 41% for Pyramid Blending. These results
show that PolyMageDP’s cost function on its own produces better tile sizes than H-auto.

Impact of fusion approach. To compare the eectiveness of dynamic programming-based fusion
and previous greedy fusion heuristics, we compare the performance of PolyMageDP and Poly-
Mage+G+TC (which is PolyMage using H-auto’s greedy fusion algorithm but with PolyMageDP’s
cost function). Figure 8 shows the results of PolyMageDP’s and PolyMage+G+TC. For Unsharp
Mask, Harris Corner Detection, and Bilateral Grid, there is no dierence in performance, because
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Table 8. Geomean Speedups of all Optimizations on Image Processing Benchmarks

Optimization Cost function
Dynamic

programming fusion
Intra-tile
loop fusion

Multi-level
tiling

Inlining

Geomean speedup 1.30× (1.30×) 1.08 × (1.17×) 1.04× (1.02×) 1.04× (1.05 ×) 1.07× (1.08 ×)

Each column is represented as XX× (YY×). XX× is the geomean speedup on all six benchmarks and (YY×) is the geomean

speedup on benchmarks where the optimization generated a dierent grouping and tile sizes.

both PolyMage+G+TC and PolyMageDP produce the same grouping with the same tile sizes. How-
ever, for all other benchmarks, PolyMageDP provides improvements from 4% for Camera Pipeline

to 30% for Pyramid Blending. These results support our claim that a dynamic programming-based
fusion could provide better performance than greedy fusion algorithm even with the same power-
ful cost function. This is again because the dynamic programming-based approach explores more
fusion possibilities than the greedy one; in fact, the former explores nearly all interesting valid
fusion possibilities as described earlier.

Intra-tile loop fusion. The fusion of intra-tile loops to enable register reuse improves performance
in Unsharp Mask, Harris Corner, and Camera Pipeline. Since no such opportunities are present in
other benchmarks, there is no improvement in performance.

Multi-level tiling. Multi-level tiling improves performance for each benchmark, except for Un-
sharp Mask,where there is no improvement. Without multi-level tiling an L1 overlap tile is gener-
ated for Unsharp Mask, hence, multi-level tiling is not performed. Table 7 shows the performance
for two L2 tiles and a multi-level L1/L2 tile. Tile size 42 × 256 is the best performing L2 tile, be-
cause it perfectly ts in the L2 cache and hence has a better L1 and L2 hit rate than a sub-optimal
tting 32 × 256 L2 tile. A multi-level L1/L2 tile 42×5×256 gives best performance, because it pro-
vides locality for both L1 and L2 caches. This tile gives best L1 hit rate and lowest L2 Miss rate as
compared to other tile sizes, because the overlapped tile of size 42 × 256 perfectly ts in L2 cache,
while smaller parallelogram tiles of size 32 × 256 undert L2 cache.
Inlining. Expression inlining improves performance inUnsharpMask, Camera Pipeline, and gives

signicant improvement in Harris Corner. Harris Corner contains several pointwise computations
and computations with pointwise consumers. Our inlining algorithm inlines all these computa-
tions to reduce the number of groups from 11 to 3. Since there are no inlining opportunities in
Multiscale Interpolation, Bilateral Grid, and Pyramid Blend, there is no improvement in performance
for these benchmarks.

Summary. Table 8 presents the geomean speedups of each of the optimizations.

7.5 Multigrid Benchmarks

We also performed evaluation on Multigrid benchmarks that solve the Poisson’s equation:

∇2u = f , (3)

where ∇ is the vector dierential operator, and u and f are real functions. The Poisson’s equation
is a second-order elliptic partial dierential equation of fundamental importance to electrostat-
ics, mechanical engineering, and physics. We solve the Poisson’s equation for two-dimensional
and three-dimensional data grids using V-cycle and W-cycle. These benchmarks are also used for
evaluation by Vasista et al. [24]. We use two smoothing congurations, 4-4-4 and 10-0-0, for each
cycle; hence, there are eight benchmark congurations. We also evaluate Miniuxdiv benchmark
from Davis et al. [3]. Table 9 shows the multigrid benchmarks with their problem sizes, number
of stages, and time taken by the grouping algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 12. Publication date: November 2020.



12:24 A. Jangda and U. Bondhugula

Table 9. Multigrid Benchmarks: Problem Size, Number of Fusion Choices Evaluated for

Dierent l values, and Time Taken by the Grouping Algorithm

Benchmark Stages Grid size Groupings enumerated Time(s)
(W × H × c) l = ∞ 32 16 8 l = ∞ 32 16 8

Miniuxdiv 4 128 × 128 10 − − − 0.05 − − −

Jacobi2D-V-4-4-4 34 8,192 × 8,192 2,926 1,936 1,096 580 76 33.6 9.2 3.5
Jacobi2D-V-10-0-0 7 8,192 × 8,192 595 − − − 0.07 − − −

Jacobi2D-W-4-4-4 102 8,192 × 8,192 415 306 305 195 30 28 25 20
Jacobi2D-W-10-0-0 76 8,192 × 8,192 2,926 1,936 1,096 580 75.7 35.9 8.7 3.6
Jacobi3D-V-4-4-4 37 256 × 256 703 688 472 268 0.06 − − −

Jacobi3D-V-10-0-0 36 256 × 256 666 656 456 260 0.06 − − −

Jacobi3D-W-4-4-4 109 256 × 256 435 383 199 47 80 65 45 30
Jacobi3D-W-10-0-0 79 256 × 256 3,160 2,032 1,144 604 139 59 16.2 5.6

“−” for certain l values indicates that the algorithm took reasonable time with l = ∞ itself; hence, lower l values

were not required.

Table 10. Execution times (in ms) of T-stencils on Intel Xeon Haswell on 1 and 16 Cores

Benchmark PolyMG-A PolyMage+ Speedup of PolyMage+ on
1 16 1 16 16 cores over PolyMG-A

Miniuxdiv 121 28.7 118 20.7 1.39
Jacobi-2D-V-4-4-4 17.3 3.52 18.5 4.2 0.84
Jacobi-2D-V-10-0-0 12.9 3.15 14.68 3.54 0.89
Jacobi-2D-W-4-4-4 61.8 12.82 61.8 12.1 1.06
Jacobi-2D-W-10-0-0 23 5.25 18.74 5.23 1.0
Jacobi-3D-V-4-4-4 5065 490 3760 489 1.0
Jacobi-3D-V-10-0-0 5643 651 4413 625 1.04
Jacobi-3D-W-4-4-4 4153 824 3750 521 1.58
Jacobi-3D-W-10-0-0 5710 843 4196 536 1.57

We compare PolyMage+ with PolyMG [24]—the latter represents the state-of-the-art for multi-
grid stencils. PolyMG is based on PolyMage and adds several optimizations over PolyMage
for multigrid benchmarks. We compare with code generated by PolyMG and auto-tuned with
PolyMG’s auto-tuner. For auto-tuning in PolyMG, we used three threshold values: 0.2, 0.4, and
0.5, and seven tile sizes, 8, 16, 32, 64, 128, and 256, for tiling of only two dimensions. This is the
parameter space that was also explored by Vasista et al. [24].
Table 10 shows the performance on Multigrid benchmarks on the Intel Xeon. PolyMage+ is

considerably faster than PolyMage-A on four benchmarks, and on the other ve benchmarks,
PolyMage+ is competitive to PolyMage-A. For these benchmarks, we found that there are no
inlining and inner fusion opportunities. Moreover, PolyMage+ prefers tile sizes that t in L1
cache, and thus providing L2 locality already without multi-level tiling. Table 11 shows the results
for multigrid benchmarks on AMD Opteron. Even on the AMD Opteron, PolyMage+’s code is
competitive to PolyMG’s auto-tuned code. Note that auto-tuning in PolyMage-A takes from about
10 minutes to 30 minutes for these benchmarks. However, PolyMage+ takes a few seconds to
about 2 minutes to generate code competitive with PolyMage-A.
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Table 11. Execution Times (in ms) of T-Stencils on AMD Opteron on 16 Cores

Benchmark PolyMG-A PolyMage+
Speedup of PolyMage+ on
16 cores over PolyMG-A

Miniuxdiv 200 199 1.00
Jacobi-2D-V-4-4-4 8.09 8.45 0.96
Jacobi-2D-V-10-0-0 8.83 8.79 1.00
Jacobi-2D-W-4-4-4 25.3 25.0 1.01
Jacobi-2D-W-10-0-0 12.6 12.5 1.00
Jacobi-3D-V-4-4-4 1,029 1,010 1.02
Jacobi-3D-V-10-0-0 1,630 1,900 0.86
Jacobi-3D-W-4-4-4 2,544 2,530 1.00
Jacobi-3D-W-10-0-0 2,171 2,400 0.90

8 RELATEDWORK

As discussed in detail and through examples in Section 2, our fusion approach addresses limita-
tions in recently proposed state-of-the-art fusion heuristics in domain-specic compilers of image
processing pipelines—those of Halide [13] and PolyMage [14]. Other than for image processing
pipelines, prior work has shown that fusing across sequences of loop nests within a single time
iteration in stencil codes (for example, in iterative numerical solvers), demonstrates signicant
performance improvement [1, 15, 21, 28].

Fusion approaches used in general-purpose optimizing compilation [2, 5, 8, 9, 18, 22, 27] have
extensively dealt with aspects such as preserving parallelism while trying to maximize fusion for
locality. In contrast to what such approaches addressed, being domain-specic allows us to use
a large amount of information on what transformations are going to be subsequently applied on
the fused components; this in turn allowed us to integrate it well with the tiling technique—by
evaluating the cost of a grouping while considering the ratio of computation to loads/stores, the
amount of redundant computation, and other factors—to determine tile sizes in conjunction with
fusion. To the best of our knowledge, this is also the rst dynamic programming-based approach
to perform fusion and tile size selection for a class of multi-dimensional loop nests. There has
also been prior work on determination of tile sizes for ane loop nests via analytical as well as
empirical approaches [12, 23]. For the subset of ane loop nests that are relevant in the con-
text of image processing pipelines, tile size determination for a specic grouping itself becomes
quite simple: Our cost function does not evaluate tile sizes in isolation after having determined
a fusion, but only indirectly as part of the cost function of the outer dynamic programming-
based algorithm. While determining the tile sizes to use for a specic grouping, we simply
ensure that the associated footprint of the tile maximally utilizes the eective cache capacity
(Algorithm 2).
Megiddo and Sarkar [11] developed an integer programming-based approach for weighted loop

fusion while (a) ensuring that parallelism was not lost and (b) the sum total of inter-cluster edge
weights were minimized. Their cost function evaluates the benets of having less edges (or inter-
action) across groups, thus maximizing locality inside a group. Our cost function is much more
concrete and tackles the problem in the opposite direction—by evaluating what is inside the group;
it looks at the ratio of memory load/store to compute, is aware of the specic tiling scheme used,
and captures the tradeo between redundant computation and locality. Formulating the cost func-
tion based on the group’s composition thus allows us to incorporate more precise optimization
criteria.
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Davis et al. [3] recently presented an approach for automatic fusion of data nodes in Partial
Dierential Equation (PDE) solvers using a modied macro dataow graph and a cost model to
decide which nodes to fuse based on the amount of data read and the number of streams being
accessed simultaneously. The particular execution order employed therein in conjunction with
tiling is slightly dierent from that of PolyMage. Their technique achieves better performance
than PolyMage due to better vectorization and better reduction in temporary storage, both of
which are complementary to our work. However, their approach still requires auto-tuning, while
our is fully model-driven. In addition, our approach captures additional criteria in its cost model
and includes additional optimizations (multi-level tiling and inlining).
The recent polyhedral expression propagation work of Doerfert et al. [4] is related to the inlin-

ing optimization that we incorporated. Their approach takes a general view of expression prop-
agation that is applicable in other contexts beyond inlining. However, their expression propaga-
tion technique is not integrated with other aspects of optimization for locality and parallelism.
Such expression propagation by itself was reported to provide signicant performance improve-
ments, but in absolute terms lower than the improvements we obtain here over a naive paral-
lelization. As such, it is important to be able to reason about and model multiple optimization
criteria.
This work is a signicantly extended version of our previous work [7]. This extension has pri-

marily included in addition a multi-level tiling scheme, an expression inlining optimization, an
evaluation on the Multigrid benchmarks, and a clear characterization of the additional benet of
each optimization for all the benchmarks.

9 CONCLUSIONS

We presented a new model for fusion and tile size determination in a high-performance domain-
specic compiler for image processing pipelines. Our approach was driven by dynamic program-
ming with concrete cost evaluation criteria. The approach is fully analytical and is able to con-
sider spaces of valid fusion possibilities and tile sizes not covered by previous approaches. Its
implementation in PolyMage obtains a signicant improvement of up to 4.32× over PolyMage’s
current approach (even when auto-tuning was used with the latter) and up to 2.46× over Halide’s
automatic approach on two state-of-the-art multicore architectures. Our implementation and the
benchmarks are available as part of PolyMage’s public source code repository.
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