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nteraction between steady-state 
visually evoked potentials at nearby 
ficker requencies
Siddhesh Salelkar1 & Supratim Ray1,2*

Steady-state visually evoked potential (SSV) studies routinely employ simultaneous presentation 

o two temporallymodulated stimuli, with SSVEP amplitudemodulations serving to index top-down

cognitive processes. However, the nature oSSVEP amplitudemodulations as a unction o competing

temporal requency (TF) has not been systematically studied, especially in relation to the normalization

rameworkwhich has been extensively used to explain visual responses tomultiple stimuli.We recorded

spikes and local eld potential (LFP) rom the primary visual cortex (V1) as well as EEG rom two

awakemacaquemonkeys while they passively xated plaid stimuli with components counterphasing

at dierentTFs.We observed asymmetric SSVEP response suppression by competingTFs (greater

suppression or lowerTFs), which urther depended on the relative orientations o plaid components.A

tuned normalizationmodel, adapted toSSVEP responses, provided a good account o the suppression.

Our results provide new insights into processing o temporallymodulated visual stimuli.

The steady-state visually evoked potential (SSVEP) is a stimulus-locked oscillatory response to periodic 
visual stimulation commonly recorded in electroencephalogram (EEG) studies in humans1. Due to its high 
signal-to-noise ratio, relative immunity to artifacts, non-invasiveness and ease of recording, the SSVEP has 
become a popular modality in visual cognitive neuroscience research2,3. When two or more ickering stimuli are 
simultaneously presented, in addition to the SSVEP and their harmonics, intermodulation (IM) components are 
also produced due to nonlinear interactions between the neural substrates producing the SSVEP4. e SSVEP and 
IM responses are known to be sensitive to top-down cognitive modulatory eects, and numerous studies have 
used such paradigms to investigate a wide variety of cognitive and perceptual phenomena5–12.

SSVEP has oen been used in masking paradigms, in which human observers detect a temporally modulated 
target grating when it is superimposed by another temporally modulated mask grating presented at dierent 
contrasts and orientations relative to the target13–16. ese studies have shown that the target SSVEP is reliably 
suppressed in the presence of the mask, depending on its contrast and relative orientation. Masking suppression 
has been shown to be broadly tuned14,17, which is consistent with literature from neurophysiology showing that 
inhibition in single neurons is also broadly tuned, with similar orientations causing stronger suppression than 
dissimilar orientations18–20. Previous reports13,21,22 suggest that masking could be temporally asymmetric such 
that lower mask frequencies could behave dierently than higher mask frequencies, but this has not been tested 
using invasive recordings.

In the context of sensory processing, presentation of two stimuli within a visual neuron’s receptive eld is 
known to cause marked dierences in the spiking response as compared to either stimulus presented alone; this 
has been explained using normalization, which dictates how a neuron combines stimuli in its receptive eld23–25  
such that the response to a combination of preferred and non-preferred stimuli is usually weaker than the 
response to the preferred alone. Normalization is thought to operate throughout the visual cortical hierarchy as 
well as across modalities26. Unsurprisingly, masking studies have also used variants of the normalization model 
to explain SSVEP suppression15–17. Normalization models in the neurophysiology literature commonly explain 
the aggregate response of a cell or neural population in a given time window23,25,27, but a few recent studies have 
also explored more dynamic formulations28,29. Masking studies have usually employed temporal domain models, 
which can also account for IM responses across dierent stimulus conditions15–17. Notwithstanding, a common 
feature of all these normalization models is the “normalization pool”, which is broadly tuned for stimulus attributes  
(such as orientation and spatial frequency) and accounts for the experimentally observed suppression by 
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appearing as a divisive term in the denominator of the model17,25. It is plausible that the normalization pool is also 
tuned to temporal frequency30, but how this shapes target SSVEP response suppression as a function of the mask 
frequency is presently unknown.

Traditionally, most SSVEP studies have been performed using human EEG. Despite the widespread use of 
SSVEP, its precise mechanisms remain unclear, although the dominant view holds that the SSVEP results from 
the synchronized activity of spatially homogeneous cortical neurons in an open-eld arrangement31. is is a 
simplied assumption, however, since the surface EEG can relate to the underlying neural activity in more com-
plex ways32–35. Attempts to probe the nature of TF normalization at multiple scales of neural recording, therefore, 
could potentially shed light on the mechanisms of SSVEP generation as well.

To address these questions, we recorded spiking activity and local eld potential (LFP) from the primary 
visual cortex (V1) as well as scalp EEG, from two awake, xating female macaque monkeys while they viewed 
sinusoidal gratings and plaids, and analyzed the modulation of SSVEP response as a function of the driving stim-
ulus frequencies. We presented one of the gratings of the plaid at either 8 Hz or 16 Hz (since SSVEP amplitude 
response has generally been observed to be the largest in this range) while varying the TF and orientation of the 
second grating relative to the TF and orientation of the rst. To explain the results, we adapted the normalization 
model to SSVEP responses and characterized the nature of suppression as a function of the dierence in TFs and 
orientations used.

Results
We recorded spiking activity and LFP using chronic arrays consisting of 96 microelectrodes (Blackrock 
Microsystems) implanted in the right hemisphere of V1, along with simultaneous surface EEG from up to 7 
electrodes. e monkeys passively xated within a 2° window around a xation spot at the center of the screen 
while full-eld stimuli (gratings and plaids in various congurations; see Methods for details) were presented for 
1500 ms each (2 stimuli per trial, with an interstimulus interval of 1500 ms).

Spikes, LFP and EEG have dierent tuning or preerredTF. In Experiment 1, we measured SSVEP 
responses to counterphase gratings presented at a range of contrasts (n = 5; 0, 12.5, 25, 50, 100%) and TFs (n = 8; 
0, 1, 2, 4, 8, 16, 32, 50 Hz) while varying orientations (6 orientations, uniformly spaced between 0–150°) across 
sessions. is allowed us to obtain an estimate of SSVEP response tuning and compare it with other response 
measures. Figure 1a,b show the spiking and LFP responses of a typical electrode at full contrast (Monkey 1, 
electrode 2; 90° counterphase grating presented at 8 TFs). Gratings at lower temporal frequencies induced higher 
frequency oscillations (gamma band responses at ~30–70 Hz) in the LFP signal in addition to SSVEP responses; 
however, stimuli at higher temporal frequencies produced signicant SSVEP responses but almost negligible 
gamma oscillations (Supplementary Fig. S1). As expected for counterphase stimulation, there was a prominent 
SSVEP response at double the stimulation frequency (2F), which was also visible when averaged across the pop-
ulation of spiking electrodes (Fig. 1c; electrodes were selected from each session using predetermined cutos 
before being pooled together, see Methods; n = 32; Monkey 1: n = 20; Monkey 2: n = 12) and LFP electrodes 
(Fig. 1d; electrodes having consistent LFP responses and stable estimates of receptive eld across days; n = 650; 
Monkey 1: n = 65 electrodes × 7 sets across 6 orientations; Monkey 2: n = 39 electrodes × 5 sets across 4 orien-
tations) at full contrast. e SSVEP responses could also be observed in simultaneously recorded occipital EEG 
electrodes (Supplementary Fig. S2).

Previous studies have shown that TF tuning is not invariant with contrast; the preferred TF increases as con-
trast increases23,24. To estimate the TF tuning of dierent SSVEP response measures in our experiment, we t a 
dierence-of-exponentials function36,37 to the response measure for each contrast condition. For spiking elec-
trodes, we t the mean dierence in spike counts from baseline (Fig. 1e, top; t to example spiking responses 
from the same electrode and session as in Fig. 1a). For LFP electrodes, we used the mean dierence in SSVEP 
amplitude (in μV) from baseline (Fig. 1e, bottom; t to LFP amplitude responses from the same electrode in 
Fig. 1b but averaged across sessions; also see Supplementary Fig. S2 for t to EEG amplitude responses averaged 
across sessions for occipital electrodes from both monkeys). Fit quality was quantied as in our earlier report37; 
for all three response measures, we generally obtained good ts to data across all non-zero contrast conditions in 
both monkeys (Supplementary Fig. S2).

Consistent with previous studies, the preferred TF increased with stimulus contrast for both spiking (Fig. 1f, 
top; n = 32) and LFP responses (Fig. 1f, bottom; n = 650). We observed some notable dierences between LFP and 
spike response tuning. e ts for many spiking electrodes were low pass at low contrasts and became band-pass 
at higher contrasts. Most LFP electrodes, on the other hand, showed good band-pass ts even at the low contrasts 
in our experiment. LFP responses peaked around the upper alpha (~12–16 Hz) range but were more closely 
clustered (that is, more similar in their tuning), whereas spiking responses tended to prefer slightly lower TFs 
than LFP responses but spanned a wider range (Supplementary Fig. S2). LFP responses showed a sharp increase 
at ~16 Hz as compared to other TFs, which was more prominent at higher contrasts and was evident in the ts 
deviating quite a bit from the data points (Fig. 1f, bottom; orange circles, 50% and 100% contrasts). Notably, 
spiking responses did not show such behavior (Fig. 1f, top). As an additional measure, we directly compared 
spiking and LFP tuning obtained from the same electrode, in a subset of electrodes which showed good ts to 
both spiking and LFP data for at least one contrast condition in at least one session (see Methods). We saw similar 
tuning behavior as above; the preferred LFP TF was signicantly higher than the preferred spiking TF for most of 
the electrodes (Fig. 1g; p < 0.001 in both cases; paired Wilcoxon signed-rank test, one-tailed) which was clearly 
visible at higher contrasts (Fig. 1h).

EEG electrodes (occipital electrodes from each monkey) showed similar contrast tuning as spiking and LFP 
responses but appeared to prefer lower TFs (Fig. 1h). We interpret the EEG tuning results with caution since the 
SSVEP responses were oen noisier, especially at lower contrasts, due to a small number of trials.



3Sf RRS |  | https://doi.org/10.1038/s41598-020-62180-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Competing TFs can potentially interact in multiple ways. In Experiment 2, we sought to charac-
terize how the presence of two competing TFs in the visual eld can have interactional eects on their SSVEP 
amplitudes. To this end, we measured SSVEP responses to plaids formed by the superposition of two gratings 
counterphasing at dierent frequencies, while the monkeys passively xated. To check whether the orientations 
of the gratings have any bearing on TF interactions, we also varied the relative orientation dierence between the 
two gratings (parallel, 30° separation, 60° separation, orthogonal) across sessions. Since SSVEP response ampli-
tudes in spiking and LFP were found to peak around the 8–16 Hz range (Fig. 1), we presented one of the gratings 
at either 8 Hz or 16 Hz (“target” frequency, fTARGET, separate sessions for each), while the TF of the other grating 
(“mask” frequency, fMASK) varied in a close range around fTARGET between lower delta (2 Hz) to high beta (30 Hz), 
depending on the fTARGET used in that session. e target grating was always presented at a xed contrast of 25%, 
whereas the mask grating was presented at either 0% or 25% contrast, allowing us to measure grating and plaid 
SSVEP amplitudes in the same experiment. Note that there was no behavioral task of detecting the target in the 
presence of the mask in our experiments; we mainly use the terminology of “target” and “mask” for clarity.

Figure 2a depicts the TF tuning of a grating at 25% contrast, and we analyzed how the amplitude at 2FTARGET 
(Fig. 2a, arrows) varies as a function of fMASK (Fig. 2a, thick horizontal bars). Several candidate hypotheses are 
shown in Fig. 2b–e. e simplest possibility is the absence of any TF normalization; the target SSVEP amplitude 
is unaected by fMASK, so that the plaid target amplitude is identical to the grating target amplitude (Hypothesis 1,  
Fig. 2b). Previous masking studies13,14,17 show that this is not the case. A second possibility is non-specic or 

Figure 1. SSVEP tuning of MUA, LFP and EEG. (a) Raster plots (thin black ticks) and peri-stimulus time 
histogram (PSTH, solid colored trace) plots of the MUA response of a typical electrode (Monkey 1, electrode 2)  
to a full-contrast 90° sinusoidal grating presented at a range of counterphase frequencies in Experiment 1. 
Rows show TF conditions from top to bottom: static, 1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz and 50 Hz. (b) Evoked 
response (solid colored trace) for the same electrode and session. Two example trials (thin light and dark gray 
traces) are also plotted for comparison. (c) PSTH plots showing mean ring rate for the entire population of 
MUA electrodes (N = 32), normalized across sessions. MUA electrodes were selected from LFP electrodes 
having a SNR of ≥2, which had accumulated ≥2000 spikes during the recording, and showed a ring rate 
increase of ≥5 spikes/s (Monkey 1) or ≥3 spikes/s (Monkey 2) in the 0.5–1.5 sec period aer stimulus onset 
for the full contrast, static grating. (d) Mean evoked response for the entire population of LFP electrodes 
(N = 650) across sessions. (e) Dierence of exponentials ts for the spiking response (top) and LFP response 
(bottom) of example electrode shown in (a,b) respectively, for ve contrasts (0, 12.5, 25, 50 and 100%). Fits 
(grayscale curves) were computed for mean change in spike counts and mean change in SSVEP amplitude at 
2F (colored circles) as a function of TF for each contrast separately. Triangles denote the estimated preferred 
TF for each nonzero contrast. Error bars denote ±1 SEM and are smaller than marker size when not visible. 
Changes in spike counts and SSVEP amplitudes were computed during 0.5–1.5 sec aer stimulus onset, using 
the 1 sec pre-stimulus period as baseline. (f) Dierence of exponentials ts for the normalized MUA response 
(top) and LFP response (bottom) across the entire population of MUA (N = 32) and LFP (N = 650) electrodes 
respectively. Error bars/curves denote ±1 SEM. ick blue bar indicates the combined TF range over which 
mask frequency was varied in Experiment 2. (g) Scatter plots of preferred TFs estimated for MUA (x-axis) and 
LFP (y-axis) responses from the same electrode. Each data point represents an electrode having t quality ≥0.75 
and preferred TF ≥ 1 Hz for both MUA and LFP responses for a contrast condition (gray level). Le panel, 
all electrodes meeting chosen criteria. Right panel, spiking electrodes above cutos chosen in (c). (h) Mean 
preferred TF as a function of increasing contrast, estimated from band-pass (preferred TF ≥ 1 Hz) dierence of 
exponentials ts for MUA, LFP and EEG (N = 4) electrodes. Shaded error bars denote ±1 SEM.
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symmetric suppression, in which the plaid target amplitude is suppressed relative to the grating target amplitude, 
but the magnitude of suppression is essentially independent of fMASK (Hypothesis 2, Fig. 2c). e magnitude of 
suppression may be frequency-tuned so that the suppression is dierent for 16 Hz and 8 Hz target frequencies.

Finally, the magnitude of TF suppression may be asymmetric and depend on fMASK relative to fTARGET. One 
possibility is that the strength of TF suppression may be SSVEP gain-specic, or in other words, tuned to absolute 
TF, such that the magnitude of suppression is proportional to the SSVEP tuning strength of fMASK (Hypothesis 3, 
Fig. 2d). In other words, if this hypothesis were true, we would expect to see maximum suppression at ~10–12 Hz 
where the relative increase in SSVEP amplitudes from baseline were the largest (Fig. 2a). is also means that we 
would see the 16 Hz target amplitude getting suppressed more by fMASK < 16 Hz, whereas the 8 Hz target amplitude 
would be suppressed more by fMASK > 8 Hz.

An alternate possibility is the normalization strength depends not on the relative increase in power from 
pre-stimulus baseline (as shown in Fig. 2a) but instead on the absolute power. Due to the 1/f n nature of the power 
spectral density (PSD) of the LFP and EEG, this would mean that lower frequencies that have much greater abso-
lute power than higher frequencies would be more suppressive, such that mask frequencies lower than the target 
frequency would suppress the target frequency more than mask frequencies higher than the target frequency 
(Hypothesis 4, Fig. 2e). ere could be other reasons for such a scenario as well. For example, if the normalization 
signal is generated by integrating the pooled responses over some temporal window (eective low-pass ltering), 
higher mask TFs will contribute less to the normalization pool than low TFs16. In such a case, the nature of sup-
pression would be similar for the 16 Hz and 8 Hz target frequencies. Note that given the way we have formulated 
our hypotheses, the behavior of SSVEP amplitude modulation in the 8 Hz target frequency is crucial for dier-
entiating between Hypotheses 3 and 4, since the amplitude modulation in the 16 Hz target frequency is similar 
in both cases.

Suppression depends on both relative orientation andTF. We rst studied how the 16 Hz SSVEP 
target frequency amplitude in the LFP changes as a function of the competing mask frequency and orientation 
(see Methods). Figure 3a,b show the evoked response for an example LFP electrode (Monkey 1, electrode 90) 
for the 12 Hz and 20 Hz mask frequencies, respectively, from a session in which all four orientation conditions 
were recorded on the same day for the 16 Hz target frequency orientation of 60°. Interestingly, the LFP amplitude 
spectrum showed a higher suppression of the target SSVEP amplitude (at 2FTARGET = 32 Hz) for the 12 Hz fMASK 

Figure 2. Hypotheses for interaction between competing SSVEP tags. Mean SSVEP amplitude response over 
LFP electrodes from both monkeys as a function of TF (a), averaged over 25% contrast grating conditions from 
Experiments 1 and 2. Error bars denote ±1 SEM and are smaller than the marker size when not visible. Smooth 
gray curve indicates the dierence of exponentials t to the mean response. Arrows and thick horizontal bars
indicate, respectively, the target frequencies and the corresponding mask frequencies used in Experiment 2. 
Panels below depict hypothetical target frequency SSVEP amplitude responses for no TF suppression (b), non-
specic suppression (c), SSVEP gain-specic suppression (d) and low-frequency suppression (e).
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than for the 20 Hz fMASK and varied as a function of the relative orientation dierence between the target and mask 
(compare Fig. 3a,b insets).

To determine whether this was true for our population of LFP electrodes, we averaged the spectra for all LFP 
electrodes across all 16 Hz target frequency sessions from both monkeys and compared the 2FTARGET SSVEP 
amplitude modulations between dierent conditions (Fig. 3c). We observed that in all orientation conditions 
(Fig. 3c, columns; le to right, orthogonal to parallel), there was a reliable suppression of the 16 Hz target fre-
quency SSVEP amplitude by all nearby mask frequencies (gray annotations within panels), indicating a robust 
presence of TF normalization and suggesting that Hypothesis 1 (Fig. 2b) can be ruled out as expected. For the 
orthogonal plaid (Fig. 3c, lemost column), the suppression was approximately symmetric, with mask frequen-
cies both above and below 16 Hz almost equally suppressing the target SSVEP, which seems to be consistent 
with Hypothesis 2 (Fig. 2c). However, as the relative orientation dierence between the two component gratings 
decreased and the gratings became more and more similar in their orientation (Fig. 3c, second-le to rightmost 
columns), the degree of asymmetry in the suppression increased; mask frequencies less than 16 Hz more strongly 
suppressed the target SSVEP than mask frequencies greater than 16 Hz. e pattern of suppression, now, seemed 
to be consistent with Hypothesis 3 (Fig. 2d) or Hypothesis 4 (Fig. 2e). ese results suggest that the nature of TF 
suppression is not xed, but rather is governed by the relative orientations and TFs of the gratings generating the 
SSVEP. Note that there were additional peaks in the PSDs corresponding to sub-harmonics and IM components. 
For example, we found a peak at FTARGET + FMASK for the parallel case, but not at any other condition, consistent 
with a prior nding15 that the FTARGET + FMASK peak is salient only when the target and mask orientations are close 
to each other. For the non-parallel conditions, a prominent peak was instead observed at |2FTARGET − 2FMASK | . We 
discuss the IM components in more detail later.

TF suppression is low requency tuned. To distinguish between Hypothesis 3 and Hypothesis 4, we 
next looked at the corresponding 2FTARGET SSVEP amplitude modulation patterns for the 8 Hz target frequency 
(Fig. 4). Here, we used the same number of mask frequencies as for the 16 Hz target frequency but spaced evenly 
in steps of 1 Hz from the 8 Hz target.

Results were broadly similar to the ones for the 16 Hz target frequency, as shown for the same example LFP 
electrode (Fig. 4a, 8 + 5 Hz; Fig. 4b, 8 + 11 Hz). For the orthogonal condition (Fig. 4c, lemost column), we 
observed nearly symmetric suppression by mask frequencies both above and below 8 Hz, which became strongly 
asymmetric as the orientations became parallel (Fig. 4c, rightmost column) with lower mask frequencies more 
strongly suppressing the 8 Hz target SSVEP than higher mask frequencies. is observation, together with the 
results for the 16 Hz target frequency (Fig. 3), suggest that suppression in the V1 SSVEP is “tuned” in the joint 

Figure 3. LFP amplitude suppression (16 Hz target frequency). (a) Evoked response of a typical LFP electrode 
(Monkey 1, electrode 90) to plaid stimuli composed of a 16 Hz target grating (60°) and a 12 Hz mask grating 
(60°, black; 90°, brown; 120°, orange; 150°, light brown), all recorded in the same session. Amplitude spectrum 
of the 16 Hz mask-only condition (60°, blue) is plotted for comparison. Inset shows the LFP amplitude 
spectra highlighting the target SSVEP (red rectangle). (b) Evoked response of the same LFP electrode with 
the mask grating contrast-reversing at 20 Hz, other stimulus conditions remaining the same. Inset shows the 
corresponding LFP amplitude spectrum. (c) Mean amplitude spectrum of the population of LFP electrodes 
across both monkeys for the 16 Hz target frequency, with rows showing dierent TF conditions and columns 
showing dierent orientation conditions. Target-only amplitude spectrum (blue) is averaged across sessions 
from Experiment 1 for the 16 Hz, 25% contrast condition. Numbers indicate the mean change in power (in dB) 
at 32 Hz from the target-only condition to the corresponding plaid conditions.
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orientation and TF space: mask frequencies lower than the target are more suppressive compared to mask fre-
quencies greater than the target, and the degree of this asymmetric suppression depends on the orientation of the 
mask relative to the target.

Figure 5 shows the summary of the results separately for each monkey. e asymmetry was quantied by 
tting a line to the mean SSVEP amplitude responses at 2FTARGET (16 Hz for fTARGET = 8 Hz, Fig. 5a,c; 32 Hz for 
fTARGET = 16 Hz, Fig. 5b,d) for the six masking frequencies (three below and three above each target frequency; 
we also tted the lines separately to the points either below or above the target frequency, but the ts were noisier 
because this approach led to only three data points for each t). In general, slopes were close to zero for orthogo-
nal orientations, tended to increase with decreasing dierence between orientations and were largest for parallel 
orientations. One exception was the parallel condition at 8 Hz for Monkey 2 (Fig. 5c, black trace), which was 
almost at. Some of these monkey-specic dierences are discussed later. EEG slopes were comparable to, but 
noisier than, the corresponding LFP slopes for both monkeys (Supplementary Fig. S3).

Many studies have used IM components to study stimulus interactions10,11,15,16,38. When we analyzed the IM 
components at 2|FTARGET − FMASK | using a similar approach as above, we did not observe more suppression at 
low masking frequencies, but instead observed inconsistent suppression for mask frequencies very close to the 
target (Supplementary Fig. S4). However, this happens because when target and mask frequencies are very close 

Figure 4. LFP amplitude suppression (8 Hz target frequency). Same as in Fig. 3, but for the 8 Hz target 
frequency. Evoked response is plotted for the same monkey and electrode for plaid stimuli composed of an 8 Hz 
target grating (30°) and a 5 Hz (a) or 11 Hz (b) mask grating (30°, black; 60°, brown; 330°, orange; 300°, light 
brown). Amplitude spectrum of the 8 Hz mask-only condition (30°, blue) is also plotted. Target-only amplitude 
spectrum in (c) is averaged across sessions from Experiment 1 for the 8 Hz, 25% contrast condition. Numbers 
in (c) indicate mean change in power (in dB) at 16 Hz from the target-only condition to the corresponding plaid 
conditions.

Figure 5. SSVEP amplitude suppression summary (individual monkeys). Plots showing summary of amplitude 
suppression in LFP as a function of relative orientation and mask TF for the two monkeys [fTARGET = 8 Hz, (a,c); 
fTARGET = 16 Hz, (b,d)]. Colors denote relative orientation as in Figs. 3 and 4. Error bars indicate ±1 SEM across 
electrodes. Lines show the ts of linear regression across the six data points (three below and three above the 
target frequency). e mean slopes and their associated signicance levels (***p < 0.001; **p < 0.01; *p < 0.05) 
are shown on top le corner.
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to each other, the IM responses are generated at very low frequencies (for example, at 2 Hz for fTARGET = 8 Hz and 
fMASK = 9 Hz), which cannot be estimated clearly because the LFP power is already very high at low frequencies 
(because of the 1/f n power law).

Plaid stimuli generate beatmodulation o spiking activity. Since our focus was on characterizing the 
modulation of SSVEP amplitudes in LFP and EEG, the experiments and stimuli were neither explicitly designed 
for eliciting spiking activity nor tuned to preferred orientations or receptive eld sizes of our spiking electrodes. 
In particular, we used full screen stimuli to maximize the SSVEP response in the EEG, which, as in our previous 
studies39,40, led to large suppression of ring rates. Consequently, reliable MUA could be recorded from only a few 
electrodes in Experiment 2, as described below.

We rst studied well-tuned MUA when a plaid composed of the preferred (target) and null (mask) orien-
tations were presented (Fig. 6). Target frequency gratings, when presented alone, elicited robust ring (blue; 
Fig. 6b, 16 Hz, n = 6; Fig. 6e, 8 Hz, n = 8), observed as prominent peaks at 2FTARGET in the corresponding ring 
rate spectra (blue; Fig. 6c,f). e orthogonal grating presented on its own elicited only a weak or no response 
(orange; Fig. 6b,e) with inconspicuous peaks in the ring spectra (orange; Fig. 6c,f). However, for both target 
frequencies, there was a signicant temporal modulation of ring rates with the superimposition of the two grat-
ings to form a plaid (black; Fig. 6b,e), producing small but noticeable peaks at the IM components (gold arrows; 
Fig. 6c,f). is temporal modulation resembled the IM components that could be observed in the contrast proles 
of the plaids due to full wave rectication (Fig. 6a,d; see Methods). To observe this more clearly, one condition 
for each target frequency is plotted (Fig. 6g; top, 16 + 14 Hz; bottom, 8 + 9 Hz) along with a moving average of 
the PSTH (magenta trace) as well as the envelope (cyan trace). Both show modulation at the ‘beat’ frequency 
(|2FTARGET − 2FMASK|, or 4 and 2 Hz for the top and bottom conditions), which are also observed in their spec-
tra (Fig. 6g, insets). us, although we did not have sucient number of MUA for statistical analysis, the clear 
‘beat’ modulation of MUA activity for orthogonal plaids, together with robust spiking for the preferred grating 
and little or no spiking for the orthogonal grating, suggests the involvement of orientation-based normalization 
mechanisms underlying the observed time course of neuronal spiking responses, reminiscent of the results of an 
earlier study18.

We also looked at spike spectra for all MUA with appreciable ring rates (see Methods for details), for dif-
ferent orientations of target and mask TFs, in a format similar to Figs. 3 and 4 (see Supplementary Figs. S5 and 
S6). Spikes were clearly locked to the temporal frequencies and produced distinct peaks at the target and mask 
frequencies as well as salient IM components. However, the pattern of asymmetry observed in the LFP SSVEPs, 
especially for parallel orientations, was not observed in these plots. We interpret these results with caution 
because the stimuli used here were not optimal for spiking (leading to very few MUA units) and these plots 

Figure 6. Beat modulation of MUA to orthogonal plaid stimuli. (a,d) Stimulus contrast proles for orthogonal 
plaid stimulus as a function of mask frequency (rows) for the 16 Hz target frequency (a) and 8 Hz target 
frequency (d). Target and mask frequencies were full rectied before being added to generate the contrast 
proles (see Methods). (b,e) PSTH plots showing the mean MUA across selected spiking electrodes for 
the grating (blue, target-only; orange, mask-only) and orthogonal plaid (black) stimuli for the 16 Hz target 
frequency (N = 6, b) and 8 Hz target frequency (N = 8, e) in Experiment 2. (c,f) Mean MUA spectra for the 
PSTH data shown in (b,e) respectively. Inset labels denote the TFs of the plaid stimuli. Arrows (gold) label 
|2FTARGET − 2FMASK | IM components. (g) Magnied PSTH traces for the 16 + 14 Hz plaid (top) and 8 + 9 Hz 
plaid (bottom) showing the beat modulation of the envelope (cyan) and the moving average (magenta) of the 
MUA. Insets show the corresponding spectra with the IM components (arrows).



8Sf RRS |  | https://doi.org/10.1038/s41598-020-62180-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

were averaged over conditions that were not always recorded in the same session. Nevertheless, these potentially 
interesting dierences between MUA and LFP/EEG SSVEP suppression point to dierent mechanisms by which 
normalization may act across spatial scales, as discussed later.

A tuned normalizationmodel can explain the size oSSVEP amplitudemodulations. To explain 
our results, we used a variant of the “tuned” normalization model that has been recently used in the context of primate  
visual cortex41–44, adapting it from an earlier model which explained simple cell responses in macaque V123. We t 
the data from Experiments 1 and 2 separately, in two steps.

First, we t mean SSVEP responses from Experiment 1 to a normalization model for grating responses [Eqs. (1)  
and (2)], allowing us to estimate model parameters for amplitude, time constants and exponent (see Methods). 
Figure 7a shows the model t for the LFP responses of typical electrodes in the two monkeys (le, Monkey 1, 
electrode 90; right, Monkey 2, electrode 65). Most LFP electrodes showed prominent saturation at mid-level 
contrasts for lower TFs, and the contrast at which responses saturated increased with increasing TF. We obtained 
reasonably good ts for spike electrodes (although there was little or no evidence of response saturation at higher 
contrasts for most TFs) and occipital EEG electrodes, and the t quality across dierent response measures was 
comparable (see Supplementary Fig. S7).

To explain target frequency SSVEP responses as a function of suppression arising from the mask frequency in 
Experiment 2, we adapted the plaid normalization model23 [Eq. (3)], using the term S(δθ, δf) in the denominator 
of the normalization equation to capture suppression in the joint orientation and TF space (see Methods). Under 
the assumptions of this model, it was possible to obtain empirical estimates of S(δθ, δf) for dierent plaid orien-
tation conditions for each target frequency separately in both monkeys (Fig. 7b, top). From these, we modeled 
and t S(δθ, δf) as a function linear in the dierence between the target and mask frequencies [Fig. 7b, bottom; 
Eq. (4), parameters α and β]. e mean strength of target suppression across mask frequencies, as measured by 
α, decreased as δθ increased (Fig. 7c, dark gray), with high values of α for similar orientations and low values of 
α (although still signicantly greater than zero) for dissimilar orientations. More importantly, the dependence 
of suppression on the dierence between target and mask frequencies, captured by β, shows that the asymmetry 

Figure 7. A tuned normalization model explains SSVEP suppression eects. (a) Fits of the model (Eqs. 1 and 2)  
to the mean LFP amplitude responses (circles) for two representative electrodes (le, Monkey 1, electrode
90; right, Monkey 2, electrode 65) from Experiment 1. Colors indicate grating TF as in Fig. 1. Inset numbers 
indicate the fraction of variance in the data captured by the t. Error bars indicate ±1 SEM across sessions. 
(b) Empirical suppression values (circles and dotted traces, top row) and tted suppression values (solid lines, 
bottom row) obtained from the normalization model (Eqs. 3 and 4) using LFP amplitude responses for the 
8 Hz and 16 Hz target frequencies in Experiment 2 for each monkey. Colors in each panel indicate dierent 
orientation conditions as in Figs. 3, 4 and 5. Data was normalized before averaging across electrodes for each 
monkey. Error bars in top row and shaded regions in bottom row indicate ±1 SEM across electrodes for each 
monkey. (c) Fitted parameters α (dark gray) and β (light gray) from the normalization model (Eqs. 3 and 4) as a 
function of relative orientation for the 8 Hz (le column) and the 16 Hz (right column) target frequencies in the 
LFP data for the two monkeys (rows). Data was normalized before averaging across electrodes for each monkey. 
Error bars indicate ±1 SEM across electrodes for each monkey. (d) Baseline LFP amplitude (gray), stimulus 
LFP amplitude (red) and LFP amplitude response (blue) for the two monkeys (le, Monkey 1; right, Monkey 
2) around the 8 Hz and 16 Hz target frequencies. Shaded error bars indicate ±1 SEM across electrodes for each 
monkey.
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in the suppression also decreased as δθ increased (Fig. 7c, light gray). Specically, at the orthogonal orientations 
(δθ = 90°), the mean β value was almost close to 0, indicating that the suppression is essentially independent of δf. 
e only exception, as before, was the parallel condition for 8 Hz in Monkey 2.

e model is agnostic to where the tuned suppression might be originating from. Two possibilities that we 
considered are SSVEP gain or response amplitude (relative change in SSVEP power from baseline; Fig. 2d) and 
absolute SSVEP power (Fig. 2e). Could the dierences across monkeys be due to dierences in SSVEP power/
gain? To test this, we plotted raw SSVEP amplitude, baseline amplitude and response amplitude (change in SSVEP 
amplitude from baseline) separately for the two monkeys (Fig. 7d). Interestingly, the raw SSVEP as well as the 
response amplitude had dierent shapes near 8 Hz for the two monkeys. In particular, the V-shape of the normal-
ization strength for the 8 Hz condition in Monkey 2 (Fig. 7b, top) resembled a similar shape in the raw SSVEP 
and response amplitude in this monkey (Fig. 7d, right). Unfortunately, while this would explain the V-shape 
response at 8 Hz for Monkey 2, it cannot explain the 8 Hz responses in Monkey 1. Strength of normalization is 
likely to depend on several parameters in addition to the response amplitude, some of which are described in the 
Discussion.

Discussion
Using multiscale recordings of MUA and LFP from macaque V1 together with scalp EEG, we have provided a 
denitive account of suppression acting along the TF axis, which modulates SSVEP responses dierently depend-
ing on the relative TFs and orientations of the two driving stimuli. We also show that a tuned normalization 
model can account for most of the observations in our experimental data.

A previous study has looked at temporal frequency suppression in the spiking responses of cells in cat striate 
cortex using driing gratings30, in which suppression was found to be tuned to higher temporal frequencies of 
the mask relative to the target, which appears to be dierent from the low-frequency tuned suppression observed 
here. Our SSVEP results are population neural responses dominated by synchronous activity due to counterphase 
stimulation, and thus not directly comparable to individual neurons’ spiking responses which were measured 
with driing gratings optimized for each cell. In addition, since they only used the mask grating at the null orien-
tation for each cell, they could not quantify the tuning of suppression as a function of relative mask orientation as 
we have done. Moreover, with their null gratings, they observed that suppression in spiking activity was tuned to 
higher temporal frequencies, whereas with our orthogonal gratings, we observed SSVEP suppression which was 
mostly untuned and symmetric. Overall, these dierences suggest that LFP amplitude SSVEP responses may not 
be amenable to similar kind of suppression as observed in spiking responses.

We observed that dierent measures of neural activity have dierent SSVEP tuning (Experiment 1). ere 
appear to be dierences in the contrast response tuning of SSVEP in EEG vis-à-vis spikes and LFP, but we had 
insucient number of stimulus repeats for EEG which limits any further inferences. However, LFP amplitude 
responses clearly preferred higher temporal frequencies than spiking responses, especially at higher contrasts. 
A simple explanation could be that LFP amplitude responses reect aerent synaptic activity more than spiking 
activity, so our SSVEP tuning results are simply a reection of the higher temporal frequency tuning of the lateral 
geniculate nucleus (LGN) as compared to V137. More experiments are needed to further probe such tuning dif-
ferences, which likely contribute to the overall temporal frequency tuning of the normalization pool and which 
our experiments do not address.

Our study builds on previous work on masking with human participants, many of which used similar nor-
malization models14–17. One key dierence is that while in many previous studies the test and mask TFs were 
xed and mainly the contrast was varied13,15,16, here we have instead used a much larger number of TFs while 
keeping the contrast xed. For modeling our results, we used a variant of the basic normalization model that was 
originally proposed to explain the spiking activity of individual neurons in the visual cortices23,25, but has been 
adapted since then to explain a lot of other phenomena, including population activity27,45. In the basic normali-
zation model, the overall normalization strength depends on stimulus contrast but not on other properties such 
as orientation. e “tuned” normalization model used here relaxes this assumption19,23,46. ese models have 
recently been used in attention studies in higher visual cortices41–44. We chose to make our normalization model 
tuned based largely on our results, with tuning in the joint TF and orientation space.

One practical implication of our results could be related to SSVEP studies of attention in human EEG which 
typically employ two or more stimuli, each ickering at a dierent TF. Specically, paying attention to one stim-
ulus will increase the overall normalization strength and reduce the amplitude of the remaining (unattended) 
SSVEPs, and this reduction will depend not only on attention but also on the icker frequencies and properties of 
the attended and unattended stimuli. Reassuringly, though, our results suggest that if stimulus features (orienta-
tions in our case) are orthogonal, the interaction becomes non-specic, making the sensory component irrelevant 
for the most part.

We note that the stimulus-specic eects described here are likely to be important only in some cases. Oen, 
the stimuli used in attention studies are small and occupy dierent locations in the visual eld, either in the same 
or dierent hemields6,47–49. It is unclear whether our results extend to these conditions, since the stimuli need 
to be spatially overlapping or at least be suciently close to each other to engage normalization mechanisms. 
Our results are more relevant to studies in which overlapping random dot patterns (RDPs) have been used, with 
dierent stimuli shown in dierent colors7,9. But even then, it is unclear whether the normalization observed 
with plaids is comparable to RDPs, and whether usage of dierent orientations is comparable to usage of dierent 
colors. We used oriented gratings and plaids since we were primarily looking at responses in V1 (which is driven 
well by such stimuli), which is one of the major contributors to the SSVEP50, and because considerable previous 
work has been done to characterize normalization using counterphasing plaid stimuli14,17. e receptive elds of 
V1 recording sites were anyway too small to allow two non-overlapping stimuli inside the RF. Overall, although 
we show suppression of SSVEPs at one frequency because of a competing tag at another frequency using plaid 
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stimuli, these need to be further characterized using non-overlapping gratings within or across hemields as well 
as RDPs in the EEG.

Orientation specicity of masking, whereby a parallel mask is more suppressive than an orthogonal mask has 
been shown before15,17. Since neurons preferring a particular orientation are spatially clustered in a pinwheel like 
structure in V151, a normalization signal based on the pooled response of nearby neurons is likely to be stronger 
for a similar orientation than an orthogonal one, and hence more suppressive (this aspect is captured in a tuned 
normalization model). e TF specic suppression is more dicult to explain, since the detailed physiology of TF 
motifs in the primate is not clear; it is at best a representation of neuronal “islands” preferring high TFs scattered 
in a region which largely prefers low TFs52. A candidate mechanism is putative interactions between magno-
cellular and parvocellular pathways, which are known to have dierent temporal response characteristics53–56, 
although it remains unclear how these interactions lead to the TF prole that we observed.

In addition, the normalization signal may engage mechanisms stemming from sources other than TF tuning. 
For example, normalization strength may be obtained by integrating neural responses in a pool over some tem-
poral integration window, akin to using a low-pass lter in the denominator of the normalization equation as 
suggested recently16. In this case, the normalization strength as a function of TF will depend on the characteristics 
of the low-pass lter. e IM components in the spike as well as SSVEP spectra oer further insights along these 
lines. Specically, if the normalization pool oscillates with the driving frequency, the nal response is of the form 
sin(ωT)/(σ + sin(ωM) + sin(ωT)), where the denominator is the normalization signal. Simple simulations of this 
form show that the resulting output spectrum has frequencies at many components, not just ωT, ωM and their 
dierences/averages. However, in our data we only observed IM components at the dierences/averages of ωT 
and ωM, which could be obtained using simple non-linearities such as squaring or taking the modulus. is sug-
gests that the normalization signal may not oscillate at the driving frequencies, which could be achieved by low 
pass ltering the inputs before summing to generate the normalization signal. More experiments in which mask 
TFs are varied over a longer range are needed to tease out the components that contribute to the normalization 
pool.

Finally, another factor that would lead to stronger normalization at low frequencies and also explain the 
dierences between spikes and SSVEP suppression proles is the greater spatial summation for the LFP signal 
compared to MUA57–59. It is typically observed that coherence, which is a measure of phase consistency across 
electrode pairs, is highest at low frequencies and falls o with increasing frequency60,61. e phase dierence 
across electrode pairs is typically zero61, suggesting that sinusoids comprising the LFP signal are in phase across 
space at low frequencies, but not at high frequencies. erefore, even if the suppressive drive is independent of the 
TFs at the level of spiking activity, this drive could nonetheless be stronger at low frequencies when summed over 
a large space because of higher coherence.

While our model, like previous models of tuned normalization, provides a simple explanation of some of the 
observed results, there are a number of limitations. First, to t normalization models to data, it is useful to have 
multiple contrast levels for both the target and mask stimuli, as done in previous studies15,16. Because we used 
a single contrast for both target and mask, we could not generate contrast response functions in Experiment 2, 
which could have enabled us to t better normalization models to our results. Instead, we mainly aimed to deter-
mine the strength of the normalization signal that would explain our results and compared whether some of the 
candidate signals that may be contributing to the normalization pool (such as the response amplitude) varied with 
TF in a similar way as the normalization strength.

Second, the use of full-eld stimuli to maximize the surface EEG SSVEP led to a drastic reduction in r-
ing rates, such that we could not use spiking data to t the normalization model, as done previously23–25. is 
suppression in ring rate has been observed in our previous studies as well39,40 in which we focused on gamma 
oscillations, because gamma oscillations (like SSVEP) are also most salient for large stimuli. Because the ring 
rates were low to start with, further suppression due to a mask, or changes in the phase relative to the stimulus23 
were dicult to quantify for most of the cells. In addition, we could not record all stimulus conditions in the same 
session due to the large number of stimulus parameters and the animals’ unwillingness to perform the task for 
longer periods of time. Since chronic recordings like ours may not sample the same MUA across days (unlike the 
LFP which is much more stable), any attempt to compare MUA responses between dierent stimulus conditions 
must necessarily record them in the same session. Notwithstanding these limitations, we did t the rst stage of 
our normalization model to MUA responses (Experiment 1) and found that it accounted for the experimental 
data reasonably well.

We observed dierences in temporal frequency tuning of MUA versus LFP, which raises the question whether 
a single, unied normalization model can generalize to dierent modalities. It is possible that our normalization 
model can also explain MUA response suppression in temporal frequency with additional constraints on the 
parameters, which we unfortunately cannot test. However, dierent neural measures can diverge considerably 
in response to the same stimulus, complicating the interpretation of the normalization model. In particular, the 
normalization model used here is unlikely to explain the SSVEP responses in EEG appropriately because this 
model does not capture neural synchrony, which can boost the EEG gain even when the underlying LFP power 
is negatively modulated32. Specically, the tuning of this synchrony could potentially vary along the TF axis and 
dierentially contribute to normalization strength, especially when observed at the level of EEG that is dominated 
by synchronous activity in the underlying population31,33,62.

Finally, our model cannot explain the dierences in IM components for parallel versus non-parallel masks, 
which is likely due to the way non-linearities are applied to signals before being combined15,17,38. IM terms have 
previously proved to be useful in discriminating among computational models in two-input experiments16,38,63. 
Additionally, there is a strong expectation from previous literature that IM components could be temporally 
tuned given that they are sensitive to the orientations of the two component inputs15,64,65. In our data, we observed 
prominent peaks at |2FTARGET − 2FMASK| in all orientation conditions except the parallel mask, but the amplitude 
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of the dierence IM components showed inconsistent trends. is happens because when the mask frequency 
is very close to the target frequency, the dierence IM components are produced at low frequencies and which 
ride on the steep descent of the LFP power spectrum (where the power is already very high), making an accurate 
estimation of IM peaks dicult. is is a methodological limitation which is hard to overcome, unless one uses 
stimuli of much longer duration to get a ner frequency resolution or focuses on the higher-order IM peaks for 
which a larger number of trials would be needed. Furthermore, in order to compare dierent variants of normali-
zation models (for example, as done by Foley17), stimuli must be presented at dierent contrast levels to eectively 
modulate both self and IM components. A more complete model, which explains SSVEP response generation in 
the time domain, is needed for capturing these aspects.

Temporal domain models have been used previously in the masking literature, but most of these studies relied 
on multiple contrast levels for the target or the mask for evaluating between candidate models15–17, something our 
study lacks. A recent study29 has used a delayed gain control model to explain the temporal structure of neural 
responses in various modalities of recording. Although they do not focus on temporal frequency steady-state 
responses, it seems conceivable that the impulse response function in their model formulation would relate to 
the observed temporal frequency tuning (Fig. 1) through the Fourier transform. Further, the time constant of the 
low-pass lter in the model could potentially explain some of the observed similarities between the temporal fre-
quency tuning and the suppression due to the mask (Fig. 7). An investigation of these ideas merits further exper-
iments with the mask frequency varied over much of the temporal frequency range, rather than in the immediate 
vicinity of the target frequency as we have done here.

In summary, here we have shown that SSVEP tags interact depending on both absolute and relative TFs as well 
as relative orientations. More data, using smaller stimuli, longer range of TFs, and multiple contrasts per TF, along 
with a detailed normalization model for SSVEP generation, are required to completely describe the biophysical 
mechanisms underlying TF specic normalization.

Methods
e animal protocols in this study were reviewed and approved by the Institutional Animal Ethics Committee of 
the Indian Institute of Science and conducted in accordance with the guidelines approved by the Committee for 
the Purpose of Control and Supervision of Experiments on Animals.

Recording setup. Recordings were performed on two female adult bonnet monkeys. Before training, a tita-
nium headpost was implanted under general anesthesia. Aer the monkey learned the xation task, a microe-
lectrode array grid (Blackrock Microsystems) consisting of 96 active electrodes (1 mm long and 400 µm apart), 
was implanted in the right V1 cortex. e reference wires were either positioned securely under the dura of the 
site of craniotomy or wrapped around titanium screws nearby. Neural recordings were done using commer-
cial hardware and soware (Blackrock Microsystems), customized to record simultaneous scalp EEG in addi-
tion to LFP and multiunit activity (MUA). For recording EEG, we used Ag-AgCl cup electrodes (Grass) secured 
on the parieto-occipital scalp in the vicinity of the implanted array using conductive paste (Nuprep, Weaver 
and Company). We recorded EEG from up to 7 electrodes in Monkey 1 and 5 electrodes in Monkey 2; an EEG 
electrode placed near the headpost served as reference and another EEG electrode placed frontally was used as 
ground. Raw signals were band-pass ltered between 0.3–500 Hz and digitized at 2 kHz to obtain the LFP and 
EEG. Multiunits were extracted by ltering the raw signal between 250–7500 Hz followed by an amplitude thresh-
old set at ~5 times the standard deviation of the signal. Multiunit waveforms were concurrently extracted and 
digitized at 30 kHz without any online sorting. More details of the surgery and recording setup can be found in 
our previous studies in which data (using dierent stimuli) from the same two monkeys were used37,39,40.

Visual stimuli. Stimuli were presented on a gamma-corrected LCD monitor (BenQ XL2411Z) at a resolution 
of 1280×720 and 100 Hz refresh rate using custom soware (Lablib, Mac OS X). Each experimental trial began 
with the presentation of a central white xation spot (0.1° radius), which the monkey was required to xate within 
a 2° window throughout the trial to get a juice reward. Aer a 1500 ms xation delay, two stimuli with a duration 
of 1500 ms each were presented with an interstimulus interval (ISI) of 1500 ms, for a total trial length of 6 sec.

We ran a series of stimulus presentations in two dierent experiments in both monkeys. In Experiment 1, we 
presented full-eld counterphase gratings (sinusoidal modulation, 50% duty cycle) at 6 dierent orientations (0°, 
30°, 60°, 90°, 120° and 150°) at 5 contrasts (0%, 12.5%, 25%, 50% and 100%) and 8 TFs (0, 1, 2, 4, 8, 16, 32 and 
50 Hz), with a spatial frequency of 4 cycles per degree (cpd). In Experiment 2, we presented plaid stimuli gener-
ated from a superposition of two oriented gratings with the same spatial frequency. Since the SSVEP amplitude 
response peaked in the ~8–16 Hz range in Experiment 1 (Fig. 1), we presented one grating of the plaid (“target” 
frequency) at either 16 Hz or 8 Hz, while the second grating varied in its frequency (“mask” frequency) around 
the target. At the 16 Hz target frequency, the mask frequency varied from 8 Hz to 24 Hz in steps of 2 Hz (n = 9), 
whereas at the 8 Hz target frequency, the mask frequency varied from 4 Hz to 12 Hz in steps of 1 Hz (n = 9). 
e orientation of the mask grating could be orthogonal to that of the target grating, or could dier from it in 
steps of 30°, resulting in 4 orientation conditions (parallel, 30° separation, 60° separation, orthogonal). e target 
frequency grating was xed at one of the 6 orientations from Experiment 1 and presented at either 0% or 25% 
contrast (chosen pseudorandomly), whereas the mask frequency grating was always presented at 25% contrast, 
allowing us to record grating and plaid responses in the same session. However, note that in this conguration, 
grating response was obtained only for one (mask) orientation (when the target grating was at 0% contrast): the 
response for grating at the target orientation was obtained from a dierent session. For example, in Fig. 6, only 
null grating (orange trace) and plaid (black) were obtained in the same session, but the preferred grating (blue)
was obtained from a dierent (usually adjacent) session. is did not seem to adversely aect our LFP analysis, 
since the LFP recorded at most sites remained stable over multiple days (with minor gain changes). However, it 
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was dicult to meaningfully compare the SSVEP MUA amplitude between conditions; for instance, to analyze 
any eects of cross-orientation suppression66 of mask frequency on the target frequency. e MUA responses in 
our study were anyway highly suppressed because of the use of full eld stimuli that were used to maximize the 
SSVEP responses in LFP and EEG.

Electrode selection and data analysis. Data extraction and analyses were performed using in-house 
scripts written in MATLAB (e MathWorks, Inc.). As in our previous reports37,39,40, for all LFP analysis, we 
used only those electrodes that gave consistent LFP responses and stable estimates of receptive elds across days 
(Monkey 1: n = 65, Monkey 2: n = 39). e receptive eld mapping procedure is explained in greater detail else-
where57,58. Briey, in each receptive eld mapping session, we ashed small grating stimuli pseudorandomly at 
various locations over a rectangular window tiling the part of the visual eld covering the aggregate receptive eld 
of the microelectrode array, while the animal maintained steady xation at a central white dot. Each stimulus 
was only briey presented at one of four dierent orientations, and LFP responses to each position were aver-
aged across orientations for every electrode. A two-dimensional Gaussian was t to the LFP responses of each 
electrode to obtain estimates of the receptive eld parameters (such as size and eccentricity) in each session, and 
electrodes which had unacceptable variability in their responses and ts across days were not used for further 
analysis.

For all analyses, we dened the analysis window as the 1-second period from 500 ms to 1500 ms aer stimulus 
onset (a frequency resolution of 1 Hz, allowing us to examine the SSVEP response at all TFs used), with baseline 
dened as the corresponding period just before stimulus onset (−1000 ms to 0).

For generating the MUA plots in Experiment 1 (Fig. 1a,c and top panels in Fig. 1e,f), we picked across sessions 
only those LFP electrodes which had a signal-to-noise ratio (SNR67) of at least 2, accumulated at least 2000 spikes 
during the recording, and showed a ring rate increase above a predetermined cuto (Monkey 1: 5 spikes/s, 
Monkey 2: 3 spikes/s) during the period from 500 ms to 1500 ms for the full contrast, static grating stimulus. 
Note that we used dierent cutos in the two monkeys because we observed that the spiking activity recorded in 
Monkey 2 was generally lower than that recorded in Monkey 1 (as in our previous report37, which used data from 
the same two monkeys in this study but a dierent microelectrode array in Monkey 1). is resulted in 20 and 12 
MUA electrodes across sessions for the two monkeys.

To estimate the MUA response for these electrodes (top panels of Fig. 1e,f), we obtained the mean spike counts 
during the analysis window across all trials for each condition and subtracted the corresponding mean spike 
counts during baseline. For obtaining the summary statistics of MUA tuning (Fig. 1f, top panel), we normalized 
the spiking response of each MUA electrode by the maximum across conditions and then averaged across all 
MUA electrodes.

We obtained the peristimulus time histogram (PSTH) for a MUA electrode by binning spikes across each 
trial in 10 ms bins and averaging across trials for each condition. For visualization, we smoothed the PSTH 
using a 11-point Gaussian kernel with a standard deviation of 10 ms (Figs. 1a,c and 6b,e). For the MUA plots in 
Experiment 2 (Fig. 6), we selected only those multiunits which had a 2F spiking component (during the analysis 
window) of at least 5 spikes/s for the 16 Hz target frequency and 10 spikes/s for the 8 Hz target frequency in the 
plaid condition where the mask grating counterphased at the same frequency as the target grating. e ring rate 
spectra (Fig. 6c,f) were obtained by taking the absolute value of the Fourier transform of the raw, non-smoothed 
PSTH for each multiunit in the analysis window and averaging across multiunits.

To generate stimulus contrast proles in Fig. 6, we rst created sinusoids at the two stimulus TFs. We assumed 
that the spiking response is linear in the input followed by a nonlinearity [the Linear-Nonlinear (LN) model25,68–70],  
and simply full-rectified the sinusoids; this also doubled the frequency responses, modelling complex cell 
responses to counterphase gratings25,71. Applying rectication to the sinusoids before adding them generated the 
prole that most closely resembled the PSTH for the orthogonal plaid condition (Fig. 6a,d), whereas rectication 
aer adding the sinusoids produced a prole that most closely resembled the PSTH for the parallel plaid condi-
tion (data not shown), consistent with an earlier model17.

To obtain an estimate of the LFP or EEG amplitude response (Fig. 1e,f, bottom panels; Figs. 2a; 5; 7a,d), we 
calculated SST(2*f) - SBL(2*f), where f is the TF of the grating (Experiment 1) or the target/mask grating in a 
plaid (Experiment 2), and SST(2*f) and SBL(2*f) are the magnitudes of the LFP or EEG amplitude spectrum 
at 2F during the analysis or baseline window respectively. We calculated the amplitude spectra SST and SBL by 
Fourier-transforming individual trial data during the analysis or baseline window respectively and averaging the 
absolute value across trials. For summarizing the results of LFP or EEG amplitude tuning, we simply averaged 
the responses (bottom panel of Fig. 1f) or spectra (Figs. 3c and 4c) for the same orientation condition across 
electrodes and sets.

SSVEP responses are known to have xed, idiosyncratic phase relationships with the stimulus, such that the 
signal-to-noise ratio of the SSVEP responses could, in theory, be improved by averaging the complex Fourier coef-
cients rather than their absolute values as we have done above. Reprocessing the SSVEP responses by taking the 
magnitude of the mean of Fourier-transformed data instead of the mean of the magnitude of Fourier-transformed 
data yielded similar results (data not shown).

We t the SSVEP responses from Experiment 1 to a dierence of exponentials function36,37, using an ordinary 
least-squares t. We determined the preferred TF for each t as the value of TF (resolution 0.1 Hz, maximum 
100 Hz) at which the dierence of exponentials peaked, allowing us to obtain a distribution of preferred TFs for 
each condition (Fig. 1e,f). If the preferred TF was less than 1 Hz, it was classied as low pass, otherwise it was 
classied as band-pass. e quality of t was quantied as the fraction of total variance in the data explained by 
the t37; the total variance was calculated by summing variances calculated separately for each contrast condition, 
such that values closer to 1 indicate very good ts to the data whereas values closer to 0 indicate poor ts.
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For the tuning comparison of MUA and LFP (Fig. 1g, le), we used only those electrode/condition combi-
nations across sessions in Experiment 1 which gave reliable estimates of both MUA and LFP amplitude tuning 
(t quality ≥ 0.75) for band-pass electrodes (preferred TF ≥ 1 Hz). Since we used the same t quality cuto for 
all contrasts, there were in general more electrodes at higher contrasts since MUA/LFP tuning is expected to be 
noisier at lower contrasts. We also applied the same cutos as above for choosing MUA electrodes, to compare 
the tuning for a reduced set of electrodes (Fig. 1g, right). Note that in this tuning comparison, the LFP electrodes 
recorded on dierent days were treated as independent data points (without averaging across days), for a fair 
comparison with the MUA electrodes which were less stable and likely independent across days given our chronic 
recording setup. Nevertheless, we did t LFP responses averaged across days and the resulting LFP tuning was 
qualitatively similar, except that we cannot meaningfully represent a comparison of LFP versus MUA tuning in a 
scatter plot (as in Fig. 1g).

Finally, we also averaged the preferred TF of the SSVEP responses separately for dierent contrasts in MUA, 
LFP and EEG, allowing us to compare tuning of SSVEP responses across scales (Fig. 1h).

Experimental design and statistical analysis. Our experimental design was aimed at presenting 
counterphase gratings and plaids sampling the orientation space in V1, with multiscale recording of SSVEP. 
Experiments in humans recording scalp EEG commonly average data over tens to hundreds of stimulus presenta-
tions. However, due to the sheer number of conditions in our experiments, we restricted the number of stimulus 
presentations (~10 per condition per monkey), which yielded good LFP but noisier EEG SSVEP.

e tuning of MUA and LFP (Experiment 1) was compared using a paired, one-tailed Wilcoxon signed-rank 
test for the null hypothesis that the dierences between preferred MUA TFs and preferred LFP TFs come from a 
zero-median distribution. Likewise, we compared the tuning of MUA and LFP separately for each monkey and 
contrast condition using a one-tailed Wilcoxon rank sum test for the null hypothesis that the preferred TFs of 
MUA and LFP come from distributions with equal medians.

To quantify the asymmetry of suppression (Experiment 2), we t a linear regression model (MATLAB func-
tion tlm) to the mean amplitude responses of the target frequency in each orientation condition separately for 
each monkey and each target frequency at 3 values of mask frequency both above and below the target frequency 
(Fig. 5; degrees of freedom = 4; slopes and associated signicance levels from a t-test for zero slope are indicated). 
We did not use the farthest anking conditions (8 and 24 Hz for the 16 Hz target, 4 and 12 Hz for the 8 Hz target) 
since they oen contaminated the target frequency responses at even harmonics.

Normalizationmodel. We adapted the normalization model which has been extensively used and applied 
in the context of V125,26,72. ere are several variations of the basic normalization model; we chose the one by 
Carandini and colleagues23 which was originally put forward to explain many aspects of simple cell responses in 
macaque V1, including responses in the joint contrast and TF space as in our Experiment 1. We t recorded data 
to the model in two stages.

In the rst stage, we averaged the SSVEP responses for each electrode across sessions from Experiment 1 and t 
the resultant mean amplitude responses for all non-zero contrast (c) and TF (f) conditions (4 contrasts × 7 TFs = 28  
conditions) to the following function23:
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e free parameters are the 7 amplitudes Lamp for each TF, time constants τ0 and τ1, and exponent n. e 
amplitude parameters Lamp characterize the TF tuning of the electrode at maximum contrast, and time constants 
τ0 and τ1 encapsulate the responsiveness of the neuronal population. We cannot explicitly attach any biophysi-
cal interpretation to these time constants or directly compare them to time constants obtained in other models 
of temporal response and gain control16,29,73,74, except noting that they may be thought of as “aggregate” meas-
ures of conductance at rest and at maximum contrast23. Finally, the exponent n captures any nonlinearities in 
the TF response generation process. We constrained all the model t parameters to be non-negative; addition-
ally, we constrained the exponent to be >1 (expansive nonlinearity). To compare tuning of SSVEP responses 
across scales, we t responses from MUA, LFP and EEG electrodes separately. Note that we did not t the phase 
responses as in the original model23, since phase advances could only be reliably observed for TFs around which 
most responses peaked (8 and 16 Hz).

In the second stage, we t the data from Experiment 2 using model parameters recovered in the rst stage to 
constrain the ts. e stimuli in Experiment 2 consisted of target and mask gratings at 25% contrast each (plaid 
condition), with orientations θTARGET and θMASK counterphasing at frequencies fTARGET and fMASK respectively, or 
only the mask grating at 25% contrast (grating condition) with orientation θMASK, counterphasing at fMASK. To 
proceed, we make a key assumption that for a given electrode, the time constants τ0 and τ1 and exponent n remain 
constant across sessions, with only a possible change in the amplitude parameter Lamp, due to potential dierences 
in the orientation used or other recording conditions (such as noise levels). is assumption made it possible to 
“bridge” the ts across the data from Experiments 1 and 2 using a common set of parameters, as described below.
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In the plaid condition, we aimed to characterize the suppression of the target frequency SSVEP due to the 
mask as a function of the dierence in TF (δf = fTARGET − fMASK) and the dierence in orientation (δθ = |θTAR-

GET − θMASK |). We expressed the target amplitude response R′(fTARGET) as a function of suppression arising from 
the mask using a variation of the plaid normalization model23 with the following equation:

σ δθ δ
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where S(δθ, δf) captures the suppression originating from the mask, and σ(f) is as dened in Eq. (2). If cMASK = 0 
(grating condition) or if S(δθ, δf) = 0 (no suppression), Eq. (3) reduces to Eq. (1). Under these assumptions, plug-
ging in time constants τ0 and τ1 and exponent n estimated from ts to Experiment 1 data (assumed to be the same 
for Experiments 1 and 2), allowed us to uniquely recover the amplitude parameter Lamp(fTARGET) from amplitude 
responses obtained in the mask-only grating condition of Experiment 2.

Without assuming any functional form for S(δθ, δf), we rst empirically estimated the overall magnitude of 
S(δθ, δf) from (3) by using the parameters obtained from the model ts in Experiment 1 as well as the amplitude 
Lamp recovered from the mask-only condition in Experiment 2. We normalized the empirical S(δθ, δf) using the 
maximum across conditions for each electrode and averaged across electrodes for each monkey (top row of 
Fig. 7b).

e linear regression ts to amplitude responses in dierent orientation conditions (Fig. 5) suggested that 
S(δθ, δf) can be modelled as a linear function of suppression originating from δθ and δf. Accordingly, we expressed 
this as:

δθ δ α β= + −S f f f( , ) ( ) (4)MASK TARGET

e parameter α is a measure of the mean “strength” of suppression acting on fTARGET across all values of fMASK. 
Greater the value of α, more is the mean suppression. e parameter β is a measure of the “asymmetry” of sup-
pression and has the eect of adjusting α to account for fMASK relative to fTARGET. e sign of β controls whether 
suppression is greater for fMASK > fTARGET or fMASK < fTARGET, whereas the magnitude of β controls the amount of 
this suppression. Small values of β close to 0 indicate that suppression is essentially independent of δf.

For each electrode, we averaged the TF amplitude response in the plaid condition across stimulus congurations 
having the same relative orientation (that is, averaging across dierent congurations of θTARGET and θMASK having the 
same δθ). We t the resultant mean amplitude response to the Eqs. (3) and (4) for TF conditions fTARGET ≠ fMASK (three 
fMASK frequencies each above and below fTARGET), using values of τ0, τ1 and n estimated from the ts to data from 
Experiment 1 and using Lamp(fTARGET) estimated from the mask-only grating condition from Experiment 2. Values 
of fMASK were in [10, 12, 14, 18, 20, 22] for fTARGET = 16 Hz, and in [5, 6, 7, 9, 10, 11] for fTARGET = 8 Hz. For each elec-
trode and response condition, we estimated tuned suppression parameters α and β using ordinary least-squares ts, 
allowing α and β to vary over the entire range. Using estimated parameter values, we obtained the tted S(δθ, δf) for 
each electrode and condition. To ascertain how the model behaves as a function of δθ and δf, we normalized S(δθ, δf),  
α and β separately using the maximum across conditions for each electrode and averaged across electrodes for each 
monkey [S(δθ, δf), bottom row of Fig. 7b; α and β, Fig. 7c].

We also tted the model to the occipital EEG electrodes in the two monkeys and observed that it explained the 
EEG amplitude responses reasonably well (Supplementary Fig. S7). Although our model focusses on explaining 
SSVEP amplitude response modulation, we did t the rst stage of the model to the selected MUA electrodes 
(n = 32) from individual sessions of Experiment 1 and found that it accounted for the MUA responses equally 
well (Supplementary Fig. S7). However, we were unable to t the full model to MUA responses from Experiment 
2 due to a number of limitations. First, we used full-eld stimuli to optimize the SSVEP amplitude in EEG which 
led to low MUA responses for gratings, and it was dicult to quantify further reduction in ring rates for plaids. 
Second, since we focused on the LFP, our plaid stimuli were not necessarily tuned to preferences of multiunits in 
a session. Finally, we could not always record MUA responses to all the target and mask combinations in the same 
session due to the large number of stimulus conditions or experimental constraints such as the animals’ unwill-
ingness to do the task for longer durations. However, we do note that it is possible for TF normalization of spiking 
activity to be dierent from that of LFP or EEG.

Data availability
e data that support the ndings of this study are available from the corresponding author upon reasonable 
request.
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