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Abstract The ASPIRE program, which is based on the
Landau singularities and the method of Power geometry to
unveil the regions required for the evaluation of a given Feyn-
man diagram asymptotically in a given limit, also allows for
the evaluation of scaling coming from the top facets. In this
work, we relate the scaling having equal components of the
top facets of the Newton polytope to the maximal cut of given
Feynman integrals. We have therefore connected two inde-
pendent approaches to the analysis of Feynman diagrams.

1 Introduction

The present work is a sequel to Ref. [1] which presents a
novel approach to the Method of Regions [2—7] (MoR) based
on the analysis of Landau equations associated with given
Feynman diagrams. The algorithm also allows us to compute
the scalings of ‘top facets’ which in this work are related in
some cases to the maximal cuts of these Feynman diagrams,
thereby allowing us to study generalized unitarity in a novel
manner to be further explained below.

The description of elementary particle physics through
perturbative quantum field theory has been very successful.
One expresses the field theoretical amplitudes as an expan-
sion in Feynman integrals. The calculation of Feynman inte-
grals with various scales is very difficult. One needs to, very
often, calculate higher order loop corrections to these multi-
scale Feynman integrals, in order for having better predic-
tions for the field theoretical observables.

MoR is one of the useful methods for the evaluation of the
multi-scale Feynman integrals. This method uses the hier-
archies between various scales of the problem to construct
a small expansion parameter, performs Taylor expansion in
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each of the regions, and evaluates the integral in each of the
regions. The final result consists of the sum of the contribu-
tions coming from all the regions.

MoR had been successfully applied in many examples.
The foundation and generalization of MoR had been dis-
cussed in Ref. [8]. Very recent progress towards the proof of
MoR can be found in Ref. [9], where Lee—Pomeransky repre-
sentation of Feynman integrals [ 10] had been used to describe
MoR. In another recent work [11], MoR had been employed
in a systematic way to evaluate two-loop non-planar diagram
appearing in the Higgs pair production cross-section at the
next-to-leading order.

The identification of the regions for a multi-scale multi-
loop Feynman integral in a given limit is a non-trivial task.
The automatic identification of the regions based on geomet-
rical approach can be found in Ref. [12]. The program had
been named as ASY. The potential and Glauber regions were
undetected in the first version. This issue had been fixed in
Ref. [13]. ASY had been implemented inside FIESTA [14]
to reveal the regions and numerically evaluate the expansion
of the given integral with certain accuracy.

The Mathematica program ASPIRE [1] is based on an
alternative formalism, which also unveils the regions asso-
ciated with a given multi-scale Feynman integral in a given
limit. The construction begins with the finding of the sum
of Symanzik polynomials of first and second kind. One then
finds the Grobner basis of the Landau equations. By map-
ping the Grobner basis elements to the origin, co-ordinate
axes, co-ordinate planes, one obtains a set of linear transfor-
mations. All the transformations are applied to the sum of
the Symanzik polynomials, which are then analyzed within
the framework “Power geometry” [15-17]. For all of the
obtained polynomials, one finds the support of the corre-
sponding polynomials. The convex hull of the support then
gives the Newton polytope. One finds the normal vector for
the facets of the polytopes based on certain conditions. The
set of unique normal vectors gives the desired set of scalings
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required for the asymptotic expansion of Feynman integrals
in given limits.

While analyzing a given Feynman diagram within the
framework ASPIRE, two types of facets of the Newton poly-
topes had been considered. For a given sum(polynomial), the
bottom facet of the Newton polytope is defined to be the facet
for which the points other than the vertices of that facet lie
above that facet. On the other hand, top facet is the opposite
case. The mathematical definitions of bottom and top facet
are given in the Appendix A.2 and also we give a detailed
description of this discussion for a one loop vertex diagram
in Sect. 2.3.

The scalings from the bottom facets with the considera-
tion of small expansion parameter lead to the well known case
of “Regions” [1,12,13]. In this work, we explore the com-
plementary case, i.e., we consider top facet scaling with the
freedom of choosing the expansion parameter to be large.
The set of Landau equations [18,19] for a given Feynman
integral while combined with Bruno’s theorem [15-17] in
Power Geometry implies that the top facet scalings with equal
components correspond to the case of maximal cut of the
given integral. We explore the correspondence between the
parametric integrals constructed based on the scalings hav-
ing equal components of the top facets and the maximal cut
for given Feynman diagrams.

The discontinuity due to the Landau singularities is given
in terms of cut Feynman diagrams, by replacing the Feyn-
man propagators by delta functions [20]. A Feynman diagram
is said to be maximally cut when all of its propagators are
replaced by Dirac-§ functions, i.e., all the internal lines are
put on-shell.

The cut Feynman integrals had been studied in a series
of works [21-29]. These studies show various mathematical
structures of the cut Feynman integrals. In Refs. [24,25],
some conjectures on the relation of these cut integrals
with co-products of multiple polylogarithms in Hopf alge-
bra give an interesting way to compute original Feyn-
man integrals without doing actual integration, but eval-
uating the comparatively easier cut integral. This method
actually relies on the possibility of expressing the original
Feynman integral and the cut Feynman integral in terms
of multiple polylogarithms. In Refs. [26,27], cut Feyn-
man integrals had been evaluated in a systematic approach
using Baikov-Lee representation. Maximal unitarity cut has
been connected to the dimensional recurrence relations for
multi-component integrals in Ref. [28]. In a recent work
[29], maximal cuts of Feynman diagrams have been ana-
lyzed based on multi-dimensional residues in a geometric
way.

In this paper, we use the method of residues [21] to eval-
uate the cut integrals. The main idea is the equivalence of
evaluating the original Feynman integral with cut propaga-
tors replaced by Dirac-§ functions and evaluating the integral
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of the residue of original Feynman integral at the singulari-
ties due to cut propagators. The evaluation of the residues
involves deforming the integration contour to include the
poles or singularities in Leray’s multivariate residue calcu-
lus. Right now the method of residues has been worked out
only on one loop Feynman integrals. The extension for more
than one loop case is a future research work. We use the
results directly from literature for the one loop cases that
we study and for the two loop case we solve the prob-
lem in two parts, i.e., evaluating the results for the one
loop case and then applying it to solve the two loop prob-
lem by directly using the Dirac-6 functions inside the inte-
gral.

Lastly, we derive the cut integrals in Feynman parametric
form for the one loop case in order to have a study of the
correlation between general cuts and the top integrals with
unequal scalings as the loop momentum representation of
this kind of top integrals is not expressible in a general form.

The organization of this paper is the following:

In Sect. 2, we review the basics of Power Geometry and
discuss the method to obtain the asymptotic solution of a
given finite algebraic sum. For a generic Feynman inte-
gral, the Feynman parametric form of the integral in terms
of Symanzik polynomials has been discussed in Sect. 2.2.
In Sect. 2.3, we present brief description of the Mathe-
matica program ASPIRE. In Sect. 2.4, we discuss the cor-
respondence of the top facet scalings with equal compo-
nents to the maximal cut of Feynman diagrams. We show
the consideration of the limit of large mass is justified in
Sect. 2.5. In Sect. 3, we derive the one loop generaliza-
tion of correlation of the maximal cut to the top facet inte-
gral with equal components using the large mass expan-
sion limit. In Sect. 4, we present the generalized one loop
formula for the top facet scalings with equal components.
Two one loop diagrams and a two loop non-planar diagram
have been analyzed in Sect. 5. We conclude in Sect. 6.
We present in Appendix A the description of Mathemat-
ica notebooks, the comparison of ASPIRE and ASY for
the given examples, and the basic mathematical formu-
lae used in this work. In Appendix B we give the Feyn-
man parametric form of the cut integrals in the one loop
case.

2 Formalism

In this section, we review the frameworks which have been
considered during the analysis for obtaining the connection
between the scalings with equal components of top facets
and the maximal cut Feynman integrals. The framework
ASPIRE uses Power geometry [15-17] to find the Regions
required for the evaluation of Feynman diagrams by expand-
ing asymptotically in each of the Regions. We start this
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section with the basic definitions used in Power geometry
and the way to get the asymptotic solutions for a given
sum (polynomial), analyzed in the framework Power geom-
etry.

2.1 Power geometry and the asymptotic solutions for a
given sum

Let us consider a finite sum g(Q) = Y. grQF, where

Q= (1,2, ...,0n), R = (r1,r2,...,r,) € R" and gg
are the constant coefficients. By QR, we mean the terms
of oy’ o

Below we give few definitions which are necessary, when
one deals with the method of Power geometry.

e Support of the sum:
The set of vector exponents, R = (ry,r2,...,7r,) € R?
is called the support S(g) of the given sum g(Q) =
> grOX.

e Newton polytope :
The convex hull of the support is called the Newton poly-
tope. It consists of generalized facets F;d., where d is the
dimension of the facets and the label j stands for the j-th
facet. For our case, we always consider d = 2.

e Truncated sum:
Each of the generalized facets l";l corresponds to a sum
g;’ = > gr0OR, where R € F;’ Ns(g). gw? is called the
truncated sum.

e Normal cone:
We consider the dual space, R to the space R". We
define the scalar product ¢; = (R, S), where R € R"
and § € R}. The set of all points S for which ¢; becomes
maximum for all the points R € F?, is called the normal

cone of the generalized facet 'Y Tn our case, as we deal
with d = 2, we consider only the outward normal vector
to each of the facets.

e Cone of the problem :
The set of points, S € R such that the curves of the form
of the Eq. (2) that fill the space («1, a2, ..., ay), to be
studied is called the cone of the problem.

Bruno’s Theorem:
If curve

ay = a;x*' (1 + o(1)),
ay = axx*2(1 + o(1)),

ay = apx™ (1 + o(1)),
(1)

where a; and s; are constants, lie in the set G as x — oo and
the vector {s1, 52, ...,85,} € U ;1 , then the first approximation

a; = a1x’, ap = arx®?, ..., a, = a,x* of Eq. (1) satisfies
the truncated sum g;f =0.

One wishes to obtain the set G = {Q : g(Q) = 0} near
singular points Q = Qy, or singular curves C, or singular
surfaces S consisting of the singular points. Below we discuss
the steps for obtaining the solution set g for each of the facets
of the Newton polytope:

1. Certain transformations Q (a1, a2, ..., &,) — Q' (o], o,
..., a)) need to be performed in order for mapping the
singular points, singular curves, and singular surfaces
to the origin, co-ordinate axes, and co-ordinate planes
respectively.

2. Find g(Q’) and the corresponding support S(g).

3. Obtain the Newton polytope for g(Q’) and the outward
normal vectors {s1, $2, ..., s,} for each of the facets.

4. The Bruno’s theorem 1 then gives us the desired solution
set G at the leading order.

We see that the normal vector for each of the facets of the
Newton polytope, resulting from a given sum or polynomial,
gives an asymptotic solution according to Bruno’s theorem 1.

2.2 Parametric representation of Feynman integrals

For the sake of completeness, we here briefly discuss para-
metric representation [10,30-32] of a generic Feynman dia-
gram.

Consider a Feynman diagram having L loop momenta
(1, 1o, ...,11), E external momenta (p1, p2, ..., pg) inthe
generic form,

L lei m )
[T T o
i=1 (irrZ) a=1

[(n1,n2, ..., nm) = (eVE 1 26)E

2)

where D, = Af{li.lj + 2B£(kl,-.pk + C4 are the given set of
propagators. A, B arerespectively L x L, L x E matrices and
C are constants. The parameter p is arbitrary having mass
dimension 1. We put © = 1 throughout our calculations.
One can express Eq. (2) in the following form,

o) = (€7E)E
XF((n1+n2+~“+nm)—L7d)

Hozna
x /]‘[dZaza"fl(S(l - )
o o

(%_(’11"1‘”2'5‘“"5‘")71))

I(ny,no, ..

F

((L+1)D
2

3

— (ot tng))
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where U/ and F are the Symanzik polynomials, of degree L
and L + 1 respectively.

In this work, we use the parametric representation for a
generic Feynman diagram to construct the integrals based on
certain scalings, coming from the top facets (Eq. (5)) of the
Newton polytopes.

2.3 The Mathematica program: ASPIRE

The Mathematica program “ASPIRE” had been developed
to isolate the regions associated with multi-scale, multiloop
Feynman diagrams in a given kinematic limit. The formalism
of ASPIRE is based on the consideration of singularities of
the given Feynman integral and the associated Landau equa-
tions and analysis of the sum of the Symanzik polynomials
of first and second kind using Power geometry.

The program ASPIRE has the following steps:

1. For a given multi-scale Feynman integral in a given limit,
find the Symanzik polynomials U/, F.

2. Find the Grobner basis of the Landau equations{ F, gTZ},
where «; are the alpha parameters.

3. Map the Grobner basis elements to origin, co-ordinate
axes, coordinate planes via linear transformations.

4. Construct G = U + F polynomials under the considera-
tion of the obtained linear transformations, as mentioned
in the previous step.

5. Find the support of each of the G polynomials.

6. Find the convex hull of the obtained support. Thus one
obtains the Newton polytopes.

7. Look for the normal vectors corresponding to each of the
facets of the Newton polytopes.

8. The set of the components of the valid normal vectors
then gives the set of desired regions.

If for a given sum, one constructs Newton polytope with the
vector exponents 7, and ¥ is the outward normal vector to
the facets of the polytope, then bottom facets of the Newton
polytope are those facets which satisfy the following condi-
tions,

v = ¢ for the points on the facets. 4
v > ¢ for the points which lie above the facets. @

The top facets of the Newton polytope are defined as,

for the points on the facets. )

=c
< ¢ for the points which lie below the facets.

Itis important to note that we consider the expansion parame-
ter x to be small (i.e. x — 0) while we consider the analysis
for finding the scalings from the bottom facets of the Newton
polytope. In the case of top facets, we choose the expansion
parameter to be large (i.e. x — 00).

@ Springer
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Fig. 1 A one loop vertex diagram . The internal solid lines have mass
m and the wavy line is massless

It is well known that the scalings coming from bottom
facets are the regions which are required for the asymptotic
expansion of the Feynman integrals in the given limit.

Below we consider a one loop vertex diagram considered
in [2] as an example to demonstrate the above discussion:

Figure 1 corresponds to the following Feynman integral,

1 2)_/ dPk 1
TR (g ) (- 47 )
(6)

In this case, we have g = p1 + p2, p = % and two Kine-

matic invariants g2 and m2. We construct expansion parame-

2
ter x = m? — % to expand the integral in terms, which have

certain power in x.
We find the Symanzik polynomials &/, F using the Math-
ematica code UF.m [33] with the following command,

UF [“‘}* {* ((e+2) *mz) - ((k* o) ,m2> , f<kfp>2},

{q2—>qq,pq—)O,p2—>x,m2—>x+%}:|, @)

which gives,

U=ar+ar+a3 (3
1
F = a—qa% ~ 5991
+ %a% + xalz + 2xo0 + th%, )

where a1, o and a3 are the alpha parameters.
We now find the Landau equations, encoding the location
of singularities of the integral,

F =0, (10)
aF
— =0, where i=1,2,3. (11)
30[,'
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The Grobner basis of the Landau equations are,

{qqxon, x (a1 + @2), qq (a1 — a2)}

We map the Grobner basis elements to the origin, co-ordinate
axes with the following transformations,

Tl = {a; = a1, a0 = a2, a3 — a3} (12)
o) o)

T2:{a1—>a1+7,a2—>?,a3—>a3} (13)

T=fo > Ta> S ranw > a (14)

In this example, we discuss the analysis with the trans-
formation 7'1 only. Analysis with the other two transfor-
mations (72 and 73) can be found in the ancillary file
OneloopVertex.nb. The G polynomial for the transfor-
mation T'1 is given by,

o
Q—Ot1+4

+a—qo{% + xa2 + o3

1
oz% + xa% + oy — zqqaloq + 2xajon
(15)

We compute the support of G by extracting the vector expo-
nents of each of the terms,

(16)

”
Il

o~ or~roco~0OO0

cCoo R, —~, O NN~

SN~~~ oo

—oo0oCcoco0ooOo

The co-ordinates of the points are considered in (x, o1, @2, @3)-

space. We assign label for each of the points of the support
S as {1(0,1,0,0),2(0,2,0,0),3(1,2,0,0),4(0,0, 1, 0),
5(0,1,1,0),6(1,1,1,0),7(0,0,2,0), 8(1, 0, 2,0), 9(0, 0,
0, 1)}. The convex hull of the points of S gives the facets
of the Newton polytope,

NP = (17)

N 9 W R R DR WD NN
O 0 O O 0 J 0 O 0 J W
0O 0 0 \O O J W\

A O I N e e e

We now find the normal vector for each of the facets of the
Newton polytope with the following considerations:

1. The component of the normal vector corresponding to the
x-axis( i.e. zeroth component) should be non-zero.

2. The facets which satisfy Eq. (4) have been labelled as
“surf — —17(i.e. bottom facets). and the facets which
satisfy Eq. (5) have been labelled as “surf — 17(i.e. top
facets).

3. One obtains “Null” when the zeroth component of the
normal vector is zero.

We obtain the following normal vectors corresponding to
the facets of NP,

Null
Null
Null
{v(l) - 0,v(2) — 0,v(3) = 0,c — O, surf — —1}
fv(1) » -1, v2) - -1, v3) > —1,¢c —» —1,surf — 1}
{fv(1) - 0,v(2) - 0,v(3) —> 0,¢c — O, surf - —1}
Null
{fv(1) > —-1,v2) » —1,v(3) - —1,¢c > —1,surf - 1}
Null
Null
Null

(18)

We see that with the transformation 7'1, only one region
{0, 0, 0} is isolated. With other two transformations 72, T'3,
two other regions {1/2, 0, 0} and {0, 1/2, 0} are recovered.
There is one more scaling {—1, —1, —1}, which comes from
the top facets of the Newton polytope. In this paper, we con-
struct the parametric integral using Eq. (2.2) for the top facet
scalings having equal componentsi.e. {—1, —1, —1, ..., —1}
and find the correspondence of the top facet scalings having
equal components to the maximal cut of given Feynman dia-
grams.

2.4 Top facet scaling with equal components and the
maximal cut Feynman diagram

Consider a generic Feynman integral,

; _ de- 1 19

where m; is the mass of ith internal line, and p; are the exter-
nal momenta. The momenta ¢; are the linear combination of
loop momenta k; and the external momenta p;. In Feynman
parametric form, Eq. (19) can be written as,

5(1- %))

(2 (q _m])>2 "

(20)

I(m pl)—fl_[d jl_lan/z

@ Springer
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The Landau singularities are given by,

Y ajlg; —m3 =0 21
J

Each of the facets of the Newton polytope corresponds to an
asymptotic solution in the alpha parameter space according
to Bruno’s theorem 1. We choose the expansion parameter,
x — oo for the top facets. This means we are moving far
away from the origin.

The scalings {s1, s2, ..., s;} coming from the top facets
of the polytopes imply the asymptotic solutions of the form
fop ~ x%,ap ~ x%2, ... o ~ x%}. The scalings can be
given a constant shift. If S = {s1,82,...,5;} is a scaling
coming from one of the facets of the Newton polytope, then
5'/ = §+A = {sy +a,s2+a,...,s; +a} corresponds to
the same scaling S.

The expansion parameter x being large, the top facet scal-
ing with equal components essentially gives,

a’j;éo,

Thus, for the top facet scaling having equal components, one
has

for all j (22)

qu_ — m? =0, forallj (23)

This is the on-shell condition for the all the internal lines of
the given diagram and hence the case of the maximal cut for
the given diagram.

This analysis motivates us to express the maximally cut
diagram in terms of the integrals constructed from the scal-
ing(with equal components) of the top facet of the Newton

polytope.

2.5 An important remark on the top facet scaling
{—1,—-1,..., -1}

The top scaling {—1, —1, ..., —1} corresponds to a set of
Symanzik polynomials U;, F; which can be obtained from
the original Symanzik polynomials &/, F by simply putting
g*> — 0 with non-zero m? in the original ¢/, . This argu-
ment has been checked for all of the examples we have con-
sidered, and hence the consideration of this top facet in the
large-m? limit is justified.

We demonstrate the above conclusion with an example of
a two loop self energy diagram,

L2 P d) = d%k1d%;

The Symanzik polynomials for the integral is,

U=ara3 + ara3 + as503 + ajag

—+ o044 + o5 + s + a0 (25)
F = (01301% + omoc% + ot5oz% + a%al

+ 0(20[1 + Ol%o[] + 2003001

+ 20401 + 2030040

+ 200501 + 3azasay + 3asasag + 0[20[%

+ azai + azag + a3a§ + a4a§ + a§a3

+ a%om + 20003004 + a§a5 + a§a5 + afoz5 + 30305

+ 3apagas + 2a3a4a5>m2

+ ( — 0003 — (04003 — Q4003 — (RO5(03

2
— Q40503 — Q| OR04 — OO0 — a1a4a5)q (26)

While looking for the/, F for the top facet{—1, —1, ..., —1}
we consider the limit m? to be large and ¢> — 0.
We have implemented this consideration in the function
getLOUF in ASPIRE program. Using this function, we
obtain the following Symanzik polynomials for the top
facet{—1, —1, ..., —1},

Uy = aja3 + apaz + asas + ooy + aoay

+ajas + onos + agos 27
Fr = <a3a12 + 054(){12 + asa% + a%al + aial

+ agal + 2apa301 + 2apa401 + 2030401

+ 2005001 + 335 + 3aqas0 + Olzot%

+ azo& + azag + 0530% + 0540{% + a%og

+ a%ou + 203004 + a%cx5 + a%a5 + aias

+ 3aza3as + 3405 + 2“30!4&5)1112, (28)

which exactly match with the I/, F in the limit g> — 0.
We also identify the location of the points on the Newton
polytope of G = U + F which give rise to U, F;. Thus we
confirm that the top facet{—1, —1, ..., —1} corresponds to

the limit where g2 can be neglected with respect to m?,

1

()2 (kf —m?)((q — k1)? = m2) (k5 —m?)((q — k2)> — m?) (k1 — k2)? —m?)

(24)

@ Springer
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U =u (29)
.Ft = F|q2*>0’m2#0 (30)

In the following section, we describe the method of evaluat-
ing the cut integrals for Feynman diagrams.

2.6 Brief description of the method of evaluation of cut
Feynman diagrams

In this section, we give a brief review of the recent work
[21] for the evaluation of cut Feynman diagrams. We use this
method for all of our calculations regarding the evaluation of
cuts of Feynman diagrams.

We start with Leray’s Multivariate Residues which states
that an integrand (differential form of weight n) which is of
the form given by,

d

o= AP+, (31
Sn

has residues defined by

Ressw] = ¥s. (32)

and the following equation holds

/ w=2mi /Ress[a)]. (33)
So o

where A is the generalization of cross product in higher
dimensions, ¥ is a differential form of weightn—1, s is equiv-
alent to the propagator, S is the singularity zone, o C § and
8o is the set of points which form a small circle around every
pointon ¢ butnotbelonging to S called as the “Tubular neigh-
borhood” or “Leray coboundary” which “wraps around” o.
One loop Feynman integrals can be written as

1P = f ol (34)
where the integrand is of the form

p e dPk
= PR DD, )
with D; = (k — q;)° — m? +i0.
In order to get the residue of the Feynman integral we have
to write the integrand Eq. (35) in the form of Eq. (31). This
can be acheived by a Jacobian transformation from & to D
after which the integrand can be written in a form

D 2_C eyEE

H, (D—0c)/2
= e (¥ Grame)

dQUp_e 1 dD;
X D2 HD_ [ D. |’ (36)
jgc jec 7

w

where the factor ' = (41)/(—1) accounts for the Euclidean/
Minkowski space respectively, C is the set of cut propaga-
tors and c is the total number of cut propagators, d<2 is the
angular part of the differential d°k in the remaining D — ¢
dimensions, Gramc and Hc are given by

Gramc =det((qi — qx) - (qj — qx))i,jeC\(+}>
He =det((qi — k) - (qj — k)i jec\(x) 37

with {x} € C. Thus using Eq. (32) gives

dQD—c

Resclw,)] = 27¢ e 7D

’

)<D—c>/2 1_[ 1
D.
itc V) 1¢
(38)

1 , Hc
VW He H Gramc

where the notation [.]¢ indicates that the expression inside
square brackets should be evaluated on the locus where the
cut propagators vanish.

As discussed earlier, the integral of the residue is actually
equivalent to the cut integral and hence we can write the cut
integral corresponding to Eq. (34) as

e G (g YOOy
anT WY, " Gramc s, inD/2
! mod i 39)
| | - - i
a2 2 ’

1
where  Yc = det <—(—(61i — )+ mi+ m%))
2 © /i jeC
(40)

In the following section, we discuss the generalization at one
loop for the maximal cut integrals and the correlation with
the top facet {—1, —1,..., —1}.

3 A formula of correlation between maximal cuts and
top integral for the one loop case

3.1 Unequal masses

The top integral with scaling {—1, —1, ..., —1} simplifies to
all g/s — 0 in the original loop momentum representation
of top facet integrals. This is because all the «_s are of equal
scaling and the Symanzik polynomials are homogenous in
the variables «s and hence we just neglect the terms with
prefactor ql.2 compared to m,2

@ Springer



1131 Page 8 of 24

Eur. Phys. J. C (2020) 80:1131

Using Eq. (4.10) of [21] we have the one loop Feynman
integral given by

In = (_l)n

HTIH(D=2=)) yie /-oo ,

,
a1 D—n+1

Tz F( 7)o

(1 >]¥
t]

. @D
/ T,-)

Since we have all the external momenta equal to zero using
Eq. (4.8) of [21] we have the top integral

n]/()

K520 (D=2=]) yge /-oo 5
0

(=1=1s=1} _ 11
1 =(=1 71”21F(D_£l+1)
L D3
1_[/ zj (1—tp] 2 7
2—|—mn 1 j=0 2—|—m
(42)

The ¢; integration is trivial using Beta functions. For the r?
integral first we can do the partial fraction expansion for the
denominator and then integrate. Doing this we get

) .
22’}:«)([)_2_/)@756
n—1
== D—n+1
7T T (P

nzl 7 cosec ( )(m%)% n=2 12 (%)
X
i= 0(“ —oj7é,( m; +m)>

A B VP I

(43)

After using the Legendre duplication formula and some sim-
plification we get,

D-2

e L ()"

X
. . \
r(z) = (H;l-z(l),j;si(_miz + mb)

(44)

This is the general formula for one loop top integrals with
unequal masses and scaling having equal components. Using
Eq. (3.31) of [21] we have the maximal cut for the one loop
integral given by

_, P D27y /2] gvEe

O N/ A

(D—n)/2
w (=2 (45)
’ Gramy,

where we have used ¢ = n i.e. the number of cut propa-
gators are equal to the total number of propagators. Here

IMC —

@ Springer

r(o-1-j’

Gramy, and Y, are the Gram and modified Cayley determi-
nants respectively which are complicated functions of the
external propagators and internal masses. So the correlation
here is not so obvious as there is no visible proportionality.

7 P12 i) AT (D /2)cosec (BF)

(=20 (P VY,

5 M/ Y, (D—n)/2
Gram,y,

S s
X Z L

i=0 (]_[J 0.ji (=] +m2))

MC _

(46)

But if we explicitly put the top conditioni.e. all g/s = 0in the
maximal cut then we are able to get the correlation in form
of proportionality. For Eq. (42) if we evaluate the maximal
cut using Cauchy’s theorem of sum of residues we get

n—2 .
22 '=0(D—2—.I)eyEe
=D

rr21"

(5%

) 52
XZ (=mi)

i= (HJ 0]7&( m; +m2)>

n—2 T2 D-l-j
) .
i r«o-1-j

which simplifies to

()"
, (48)
P8 & (T i )

eVE

€=

This equation cannot be obtained simply by substituting all
gq/s = 0in Eq. (45) as it gives a zero Gram determinant in the
denominator. So comparing Eqgs. (44) and (48) we can see
a direct correlation in the form of proportionality and hence
the correlation equation becomes

D
A R e b} L2 ncosec( > )]MC (49)

3.2 Equal masses

Now for the case in which all the masses are equal Eq. (42)
gets modified to

n—2 .
zzj:o(D*Z*])eyEe 00
/ dr?
0

—1}= _ln
=D n%F(D—;H)
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; D3-j / dPk I 1 55
(r +m2)" l_[/dt, [;(1—1p] >, inP2 L L2 = p2ya

(50)
Integrating this gives

b2 (n-8)

o (51

Now from Eq. (50) we will evaluate the maximal cut with top
conditions imposed again using the method of residues. This
time we have a pole of order n, so using Cauchy’s theorem
for higher order residues, we get,

DTS20 gyee 1 (D 2) (—m?) 7

C _ (_1\n
- ( 1) ﬂr D—n+1 F(n)F (D+2—2n)
( 2 ) 2

T 2

n—2 r2(b=1=j
an(D<—1 )) (52)

and after simplification we get,

C n eV (—m
=D oy (53)
L (=5=)
So the correlation equation becomes
=t P cosec (—n(Dz—Zn)) e
(54)

4 A general formula for the top integrals in the one loop
case

In this section we derive a general formula of top integrals
with scaling {—1, —1, ..., —1} without using parameteriza-
tion. As discussed earlier these kind of the top integrals have
effectively all external momenta g; = 0, we have the fol-
lowing loop momentum representation for this class of top
integrals in the one loop case.

In order to find a result for this we use the method in Ref.
[34]. Now consider an Gaussian integral of the form

:/ d® exp|: Za,(kz—mz)i| (56)

Here o5 are positive parameters. Expanding the exponential
function we will get

( 1)21 Oal n—1

R l—[ o /del—[(k2 2
i=0

(57)

- ¥

ap,ay,...,ap—1=0

Now using the definition

n—1
=) a (58)
i=0

we get Eq. (56) rewritten as
de ) n—1 )
= / in—D/zexp —ak —l—Zai(m,-) (59)
i=0

We can evaluate this Gaussian integral in D dimensions and
the result is

1 n—1
= —55exp [Z o (m%)} (60)
=0

Now we can expand the exponential to get

1 a]’(mz)fl
I=—55 Z ]‘[ (61)

J0sJ1sees jn—1=0 i=0

Now if we take the multinomial expansion in « using Eq. (58)
we get

o 1
D2 = — b7
T (The)
]rH»l
- Z I —D/2) H (62)
Jusdnt 1 jan—1=0

Substituting this in Eq. (61) we get
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n—1 J1+]n+t( 2)]1

I'(1-D/2) ]_[ (63)

1

J0sJ1sees jan—1=0

Jﬂ+l'

Now if we put the constraint that j; + j,+; = a; then we get

2 Ji
F(l—D/Z)H (m) (64)

i=0 Ji ‘]n-i—z :

<)

J0sJ1sees jon—1=0

Comparing Egs. (57) and (64), we get

dPk 2 a iy a
/ND/ZH(k m)J—( 1) ’OIHF(1+ak)

x ), TU-D/
J0sJ1sees jan—1=0
n_l 2y ji
m*
< [T (65)
i=0 JilJnyi!

So this is the general result for the top integrals with scaling
{—1,—1, ..., —1} irrespective of equal or unequal masses.
The required results for each case can be derived by analytic
continuation of a/s to their negative values well described in
Ref. [34].

5 Examples

In this section, we evaluate the parametric integral for the
top facet scaling with equal components and find their cor-
respondence to the maximal cut for a two point one loop
diagram, a three point one loop diagram, and a non-planar
two loop diagram.

5.1 Two point one loop diagram

We consider the following integral in dimension D = 4 —2e,

dPk 1
I 2’ 2 — YE€ / ,
@m = | nn =k — 7 — )
(66)
where ¢ is the external momentum and m is the mass of both
2
internal lines. The expansion parameter is x = m?> — %.
The symanzik polynomials are
U=ua+a (67)
F=lga?s Ly
= —q’a? 20? — —q*aja
q 1 4q 2 2‘] 102
—i—xal + xoz2 + 2xaj00, (68)

@ Springer

where o and o are the alpha parameters.
Using ASPIRE, we find that the above diagram has only one
top facet scaling {—1, —1}.

5.1.1 Parametric integral from the top facet scaling

{_ 1 s T 1}
We compute the Symanzik polynomials using the top facet
scaling {—1, —1},
U=oa+a, (69)
F = x(er +a)? (70)
The integral for the scaling {—1, —1} is obtained by sub-

stituting the expressions of U, F (Eq. (69) and Eq. (70)) in
Eq. (2.2),

D\ [! !
o _oer (s 2) [ [

5(1 — oy —az)(ag —i—()lz)2 b

(x(a) + @222

>\
= e"ET (€) <m — Z) (71)

In the limit m? >> qz, we find

€
15170 = erere) (m?) (72)
This is exactly equal to Eq. (51) for n=2.

5.1.2 The maximal cut integral

The maximal cut for this diagram is obtained by putting
both of the two internal lines simultaneously to be on-shell
(Fig. 2), i.e. we substitute a delta function for both of the
propagators. Thus,

dPk
e = / ixD/2 S(k* —m*)8((k — @)* —m*)  (73)

In Eq. (39) the quantity inside the square bracket is unity
because there are no propagators which are not cut for this
case and we have ¢ = n = 2 with D = 4 — 2¢ as usual, thus
we obtain the maximal cut for the Fig. 3,

IMC

1
= imeEe : w fe e / 48 2
/1Y Gramc im2—e
(74)
Using Eqgs. (37) and (40) for this case we have,

Gramc = ’q2| = q2
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Fig. 2 A two point one loop diagram

k—q

k

Fig. 3 The maximal cut of two point one loop diagram

and
2
v m2 _117 + m2 q2(4m2 _ qz)
C = 2 =
_47 +m2 m2 4

Also the angular part of the integration is given by'

27 (3-2¢)/2
f dQ 2e =

'3 —2¢€)/2)
Thus from Eq. (74), after using the duplication formula of
gamma function? we obtain the final result for the maximal
cut,

@Am?> —g*)'=¢ T2 —e)

JP2Gm? —q5) TG~ 2¢)

IMC = pevE€

(75)

5.1.3 Correlation between I'=1~1 and 1M€

We obtain the following relation:

1
Mc _ 2172€r Q2 —€) [4m? — ¢?\?2 J-1-1) (76)
TEOrG—20 " 42

Using Eq. (54) the correlation for this case is

17070 = (—1)'¢x cosec (—me) IMC (77)

I This formula is according to the convention followed in [21] which
is stated in Eq. (137).

2 Gamma function duplication formula:

r(2n) = %22"—11‘(;1)1*@ + %)

P1

P2
Fig. 4 A one loop triangular diagram
5.2 A one loop scalar triangular diagram
We consider the triangular diagram (Fig. 4) in the limit p% =

0, p5 = 0 and 2p;.p> = Q. The integral in this limit is
given by,

2 2 eree D
102, D) = s [ P
1
X
(k2 = 2p1.k) (K = 2pr. ) (k* — m?)
(78)
The expansion parameter is m—z
The Symanzik polynomia1Qs in this given limit are,
U=a+aoy+ a3 (79)
F = xa% + xaja3 + xop03 + Q2a1a2 (80)

The top facet scalings, obtained from ASPIRE are {—1, —1,
—1} and {0, 0, —1}.

5.2.1 The integral for the scaling {—1, —1, —1}

The Symanzik polynomials for the scaling {—1, —1, —1} in
the limit m2 > Q2 are

U=ua +a+ a3 81)
F = xa3z(a) + o2 +a3) (82)
The integral is given by,

[(—1,—1,—1}

D 1 1
=e’ET (3 - — do doy
2)Jo 0
1

{xas(on + @z +a3)} 772
(a1 + oy +a3)P3

D 1 l1—ay
=eVE°T (3—5) x%73/ dozl/ doy
0 0

D_3
X (l—a; —ap)2

x/ day §(1 —a] —ap —a3)
0
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Fig. 5 Maximal cut of the triangular diagram

m2\"TC e
=eET(1 — 2 —_— 83
e <Q2> (@) & @
While looking for the Symanzik polynomials ¢/, F, we con-
2
siderm? — x.Butas our expansion parameter is 25, in order
for writing the result Eq. (83) in terms of expansion param-
. . . . 2
eter with correct consideration, we substitute x = % X Q2.

After some simplification this is exactly equal to Eq. (44) for
n=3.

5.2.2 The maximal cut
In the maximal cut condition (Fig. 5), all the propagators are

replaced by Dirac Delta function and hence the cut integral
is given by

dPk
C
I%iangle = e’"e / K %
17T
x8(k> — 2p1.k)s (k> — 2pr. k)8 (k* —m?) (84)

As in the previous case here also we have the angular part
trivial to solve withc =n =3, D =4 — 2¢ and

0o _2m
Voo| @ o m|o_mQNQ+m)
7o 2 4
2
T Tom
and
2
0o -< (0%)?
Gramc = ) = —
_QT 0 4

Thus using Eq. (39) we obtain the expression for the maximal
cut of this diagram,

eVEE
4T (1 —€) m202(m? + Q02)
( 4m?(0? + mz))‘f
e
Here we have used the following result for the angular inte-
gration:

Triangle —

(85)

27.[176

/dQl—Ze == m (86)
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5.2.3 Correlation between top and cut integrals

For this diagram, we find between I{=1=L=1 and M€

Triangle
to be the following,
MC e(l —e) m
ITriangle = _ N2
4 1 —e)'l +¢) QO
1
2 2\ "27¢€
(e I (87)
Q2

The maximal cut with top condition imposed can be found
out using Eq. (48) and using Eq. (49) the correlation for this
case is given by

- Dn
1{71,71,*1} — (_])¥7[ cosec <T) [%zc;mgle (88)

5.3 The integral for the top facet {0, 0, —1}

For this diagram, we have the other top facet {0, 0, —1}. The
corresponding Symanzik polynomials are,

U=+ (89)
F = Q2a1a2 + m2a1a3 + m2a2a3 90)

So we construct the integral,

1{00—1}_f dot1/ da2/ das(ay +ap) P/

a1a2+m aloz';+m aray
xXe @ty on

We obtain,

[(=D/2+2)I'%(D/2 — 1) (QHP/?2

710.0,-1) _
(D -2) m2

92)

5.4 A non-planar two loop diagram

Let us consider a non-planar two loop triangular diagram
Fig. 6. This diagram had been considered in Ref. [26,35]
with p% =0, p% # 0. The integral is defined to be the
following,
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b1

Fig. 6 A non-planar two loop diagram

dPk, dPk
2 2 _ 2 1 2
’<‘1”"’D)—‘”E€/m—o/zm—wz

1

where the integral measure is given by,

. e da,
/D“_H/ INTEAE 9

with the consideration of the analytic regulators ;. We con-
sider §; — 0 while evaluating the parametric integral for the
obtained scaling.

Thus, we construct the parametric integral for the scaling
{-1,-1,-1,—-1, -1, -1},

1

k1 — p2(ka — p1)2 — m2)(ky + p)2 (G

3
—ky + p2)? —m?) (k) — k2)? — m2) (k5 — m?) ©3)

We consider the limit p? = 0, p? = 0, 2p1.p2 = ¢* and
construct the expansion parameter ’;’—22
The Symanzik polynomials are,

U = a100456 + 20345 + 030045 + 34506, 94)
F = xo4se (345 + oo (a3 + a45)
+ae (a3 + a5) + a102456)

— % (w035 + a1 (a3 + o3 (02 + 045))) 95)

where k.. =o; +oj o+ ...
The integral has two top facet scalings {—1, —1, —1,
—1,—1,—1}and {0, —1, 0, —1, —1, —1} for this given limit.

5.4.1 The integral for the scaling
{_11 _la _lv _15 _17 _1}

The Symanzik polynomials are given by,

U = 0456 + 00345 + 3045 + 0345006, (96)
F = xap456 (01002456 + 20345 + 0300456 + ags6) ,  (97)

InRef. [11], four point functions in the high energy limit have
been calculated in a systematic way using MoR. While cal-
culating the integrals using MoR, there are regions for which
one cannot just use the dimensional regularization, extra ana-
lytic regulators [6,36] are necessary to regularize the contri-
butions from those regions. After obtaining the regions, the
parametric integrals have been calculated using the following
representation,

F

Laramerric = f Do UL o, (98)

oo
______ _b  _Z
JASLEt Bl S P B l}zeZVEG/ ||d(¥iu2 e U
0
i=1

o 6
=€2VE€/ [ [ deti (r3erase
0

i=1

+angass) " PPers - (100)
We make the following change of variables,
o — 7123, @2 — 222425, o3 —> z1(1 — z3),
a4 = 22 (1 —z4) (1 —z6), a5 > 22 (1 — 24) 26,
a6 — 2224 (1 — z5) (101)

The Jacobian of the above transformations is z; Z% (1 — z4) za.
The limits of the new integration variables are the following:

72 € [0, o0],
z5 € [0, 1],

z3 € [0, 1],
and zg € [0, 1]

z1 € [0, o],
z4 € [0, 1],

We get,

2}’Eef dm/ dzz/ dzaz1z3 (1 — z4) za{z2

(22 (1 — za) za + 21)} P72 (102)

We perform the zj-integral with the help of the following
formula,
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a'TMARL (g + DE(=1 —ny —n))
I'(=n2)

o0
[ dz 7" (a+2)" =

0
(103)

Thus, we obtain,

[T R . e?ECT ()T (D)2 — 2)
T'(D/2)

00 1
D - 3-D)2 _
dzyz3 Pe m/ dzszy D1 — 24)3 7P
0

(104)
InD=4-—2¢3

Lol eMVET (—e)I' (2 +26)?(2 4 €)
o Q2 — e 4+ 2¢)

<m2 ) —2—-2¢
X [—
q2

2 —2-2¢
(%) (105)
The maximal cut integral (Fig. 7) is given by

5.5 The maximal cut

MC 2ype del 2 2
Inonplanar =e inD/QS(kl)S((q — k1))

de2
X iZD/2

x 8((p2 — k2)* —mH8((q — ki — k2)* — m?)

x 8((ki + ko — p2)* —m*)8 (k3 — m%]
(107)
We will evaluate the expression inside the square bracket first

which is equal to the maximal cut for a massive box diagram
using Eq. (39). This gives,

PIC = e [k (D3 ((g — k1))
nonplanar — inD/2 1 q 1
o rm—e) 1 Yc - (108)
(1 —2¢) /Yc \ Gram¢ ’
where,

(ki—q)-(ki—q) (q—k1)-(p2—k1) (q—k1)-(p2)
Gramc = |(@—k)-(p2—k1) (p2—k1)-(p2—k1) (p2)-(p2—k1)

(@—k)-(p2)  (p2)-(p2—k1) p3
and

m? m?—L(ki—q).(k1—q) m?—%(ki—p2).(k1—p2) m?— P22

m?—1(ki—q).¢k1—q) m? m?—LLPL m? =% (ky—p1).(k1—p1)
Yo = 2 1 2 p1-p1 2 2 kpkg (109)
m —j(kl—[’z)-(kl—ﬁz) m-——5— m m —ZT
. ki .k
m?— P22 m? =3 (ki—p1).(ki=p1) m? =1L m

dPk; dPk,
Ir%i%lanar = ?Ee / m—DﬂmTﬂa(k%)a((q — kl)z)
x 8((p2 — k2)* —mH8((q — ki — k2)* — m?)
x 8((ky +ka — p2)* — m*)8(k3 —m?)
(106)

We can evaluate this integral by first using the maximal cut
of the box integral involving k> as the loop variable and then
doing remaining integration of k| variable with the acquired
result:

3 We thank Sumit Banik for the independent check of the analytic
expression for this parametric integral using a suitable form of the
Method of Brackets.
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Now to carry out this integral, without loss of generality we
can select our frame and parametrize the loop momentum as
follows:

q= \/;2(1, 0,0p-2), p2 = \/17%(04, Va2 = 1,0p_),

ki = (kyo, k1] cos @, |ki|sin€ 1p_2) (110)
where 0 € [0, 7] and |k| > 0, and 1p_, ranges over unit
vectors in the dimensions transverse to ¢ and p;. Momentum
conservation fixes the value of « in terms of the momentum
invariants to be

22
o = M (111)
2\q%\/p3
In D dimensions, we have
dPky = dkio |ki|P > dlki|d¢ sin6; d6,
x sin6,d6s ... sin® 3 0p_3dop_3 (112)
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Fig. 7 The maximal cut of the non-planar two loop diagram

Thus in D = 4 — 2¢ dimensions after doing the ¢ inte-
gration in the remaining D — 2 dimensions we get
dPk 8(k?) = dkyo dlki| d cos 6 8(kiy — |ki]?)
27 1—e
X —_—
' —e)
Thus Eq. (108) becomes:

k1 |>~2€(sin9) "% . (113)

262]/136 00 00
MC
Lyonplanar = — /0 dk10/0 dlky|
1 2-2€ (i —2¢
k 0
x/ dcosea(k%o—|k1|2)| l|r (sin 9)
. (1—2e¢)
5 8(q* — 2kiov/q* + k3y — ki 1%)
VYe

Y, —€

x ¢ (114)
Gramc

Now the integrations in kjo and |k | are trivial owing to the

existence of the delta functions.* Thus after performing these

integrations and enforcing the condition p% = p% =0, we

get,

2 eve a
Ir%r?lanar = ( 612) 372
p (1 —2¢)
1

2
x/ dcosb <m2 + q—(l — 00520))
-1 16

_l_.

1

x (1-cos?0) (115)
Performing the change of variables
cost =u (116)
we get,

Mc B A e2veE \/»2 —3-2¢
nonplanar — (1 —2¢) q

(117)

4 Here we have enforced the condition ko > O for evaluating the delta
function (see for reference Eq. (3.6) in [24]).

We finally obtain,
g _Ametre Ja S rA/2)T/2 - €
nonplanar F(l — 26) q 1"(1 — 6)

1

2\ "2°¢€
2, 1
x(m +16>

2
q
Fil1/2 /21 —€; ———
X2 1( /2+€1/ € q2+16m2)
(118)

5.6 Correlation between [{=1=1L.=L=L=1=1} and the
maximal cut
For the non-planar diagram Fig. 6 in the given limit, we obtain

the following relation :

e 47T (1/2)F(1/2 — T (2 — )T + 2¢)
Tnon—planar = F(1— T (1 —26)T(—e)T (2 +26)T2(2 + €)

3 1
5+€ —5—€
5 m2\ 2 - qz 2
q? 16m?

2

q
xoF1 |1/24¢€,1/2;1 —€¢; ———
21(/ / q2—|—16m2)

[l L=L=1 =11

(119)

Once again we will find out the maximal cut with top condi-
tion imposed. Here since we do not have the general formula-
tion of the maximal cut for more than one loop we will eval-
uate the maximal cut with zero external momenta using the
method of residues particularly for this case. Using Eq. (106)
the maximal cut integral with top condition imposed is given
by

e v [OK a0
nonplanar inD/2 1 1
de2 2 2
X [/7,'711)/26(1(2 —m-)

X 8((k1 + k)® — mD)((ky + ka)® — mD)s(E —m?)
(120)

We will do the inner one loop integral using the method of
residues [21]. The integration variable here is k> and k; can
be considered as a constant for the inner integration. Here we
can see that the four propagators are of two kinds and hence
using the method of residues the integral becomes
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Mc _
nonplanar —

S(kD)S (kD)

2(4D—11) ZVEG/ del
21— (D %) inD/2

X Resrzz_mz

D-2

(rz)T D=3
Res, _7 [1o(1—19)] 2
fo=1p (r2 + m2)2 B(%(IO _ TO)2

0—3—,/
-2

x ]‘[ / di; [1;(1—1))] (121)
The innermost integration is again trivial using beta func-
tion. Now the pole at #yp = Ty is of order two. Hence using
Cauchy’s theorem of residues for higher order poles, after
eliminating the denominator we have to differentiate the
quantity inside once with respect to 7o and then take the limit
to — Tp. Doing all this we get

Here we have done the differentiation with respect to » rather
than 2 and then divided by 2r after differentiation as both
the processes yield the same result but its easier to evaluate
using the previous method. Once again we are going to use
parametrization used in [21] and the method of residues to
find out the above integral with residue at k% =0,

MC D p-12P=2(p — 3)¢2vEE€
Inonplanar =(=h 7T (D —1)
D-1
(k3 + 4m2) (4 - (0 -6)k3)
X Reskz_o 3
1= 2 2
@ % (k] +am2)

(125)

So we see that the pole here is of order Q*TD and hence after

(@D=5)(1y _ 2\, 2VE€ D -
Ir%r?planar _2 : (o - 31)6 T / fl Dk/lza(k%)a(k%) e]iminating the term (k2)¥ we have to take the derivative
w2l (%) o of order 752 with respect to k7. Doing this we get,
D2 D5
1 =270) () 7 1T = To)l 2 - ,
xReso__, 02 Bg 21 m2) IMC[ (_1)D+l 2°P7(7 — D)(D — 3)e~VES (mZ)—6+D
122 nonplanar ﬂF(%)F(%TD)F(D—I)

(122) (126)
Using D = 4 — 2¢ and after some simplification this

becomes,

2 27ETB+ 20T B+ O (L4 €)(1 — 2€)e?E€

Inonplanar = (_1)5 % 2) e (127)

(1 =26 T (5—-26)T (3 — 2e)

Now using section (4.1) of [21] we have

Again comparing with Eq. (105), we find that there is a
correlation in the form of proportionality between the two
integrals as the power of m? is equal in both cases and hence
after some simplification the correlation becomes,

2rky —m? —k%—r2
By =4rk; and Ty = arky (123)
Jt L) (s 2 22T (1 = 26)T'(5 — 26)['(—2€) 4y

(5 + 2¢)

(128)

nonplanar

Again the pole at r> = —m? is of order two and hence we
will do the same process again to find out the residue which
gives

(—1)"T (D — 3)e¥e€ [ dPk,
Inonplanar = 71’2F (Dz_l) / D/28(k )5(k )
2 27l _ 2
(k +4m?) 2 (4m> — (D — 6)k}) (124)

k3 (k3 + 4m )
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5.7 The integral for the top facet {0, —1,0, —1, —1, —1}

In this case, we compute the integral for the other top facet

{0, —1,0, —1, —1, —1}. The Symanzik polynomials are,
U = a1300456 (129)
F = onase(—q onas + m a1302456) (130)

The integral is given by,
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I{O,—I,O,—l,—l,—l}

_ I'(=D/24+2)I*(D/2 — DI'(=D/2 4 4) (—¢»)P/>~2

6T (D —2) (m2)—D/2+4
(131)

6 Discussion and conclusion

We have considered given multi-scale Feynman diagrams in a
given limit and obtained the scalings required for the asymp-
totic expansion of the diagram. The exploration here, which
is based on Landau equations, allows us going beyond the
bottom facet results. Furthermore, ASY and ASPIRE were
concerned with unveiling the regions. Here Landau equations
permit us to explore the consequences of the asymptotic anal-
ysis of the Feynman graphs combined with the corresponding
maximal cuts.

We have brought two independent approaches together,
and the existence of the top facets is important to study as
it is closely related to the bottom facets on which the MoR
rests. Thus it is imperative to study the consistency of the
theory, which required us to study the cut technology.

A two point one loop diagram, a one loop triangular dia-
gram, and a two loop non-planar diagram have been studied.
For these examples, we have found that the integral con-
structed based on the top facet scaling (with equal compo-
nents) of the Newton polytope has the correspondence with
the maximal cut of the corresponding Feynman diagrams,
having the following form in D = 4 — 2e,

(132)

where m; are the masses of the internal lines, and Q ; are the
external momenta.

For the one loop cases, we have derived a generalized for-
mula for the top facet 7{=1-=1:=1--=1} and find a generalized
expression for the correlation factors using the formalism of
[21]. For going beyond one loop, it might be helpful to con-
sider the generalization of [21] up to higher loop orders.

The top facet having equal components essentially corre-
sponds to the limit where ¢ can be neglected with respect
to m?2, and with this criterion imposed on the maximal cut of
the given Feynman integrals, we find that both (the maximal
cut and the top facet with equal components) give rise to the
same power of m? (Egs. (49), (54) and (128)), also the same
form of the result for the unequal masses case in one loop
(Eq. (49)). Thus we find that the maximal cut in the asymp-
totic limit is exactly proportional to the top integrals having
equal components for all of the studied examples.

(133)

where m; are the masses of the internal lines and Q ; are the
external momenta.

The observed proportionality indicates a deep sense of
correlation between top integrals and maximal cut. From the
Landau equations, the on-shell condition of all propagators,
i.e., the maximal cut condition, is possible only when all
s # 0. Since in the integration domain of e/s this corre-
sponds to all the points in the domain except the point where
all /s = 0 that is the origin, for the top integral whose inte-
gration domain includes all the points including the origin,
the result is not much different from that of the maximal cut
except the prefactors which are functions of €. This propor-
tionality of the result and similarity in the integration domain
is the correlation between the top integral and maximal cut.

The prediction of correlation can also be obtained from
the fact that for a meromorphic function (the integrand of
the Feynman integral in our case), the integral over it for a
single variable in a complex plane is related to the residues
of the singularities inside the contour integral [37]. Though
this reasoning is not mathematically rigorous but definitely
throws some light on the reason behind the correlation in the
form of proportionality.

We have also computed the other top facet integrals
obtained in the examples we have considered. For this kind
of top integrals, a loop momentum representation is not eas-
ily expressible as some /s are non leading in comparison
to others. That’s why we have found out an alpha paramet-
ric representation for cuts for the one loop case (Eq. (172))
in order to correlate with those other scalings in alpha rep-
resentation in Appendix B if possible in a future research
project.

The general formula of cuts for more than one loop is
yet to be found in the literature. So for more than one loop
case, we have to specifically evaluate the maximal cut and
the top integral for each case and find out whether there is
a correlation. We have worked out a two loop example and
found out that the kind of proportionality that we have for the
one loop cases also exists for this particular two loop example
(Eq. (128)). We are not sure that this is true for every other
many loop example, for that we need a generalization of cuts
to the many loop cases, which is a future research project.

The limit of expansion parameter tending to infinity is
equivalent to the asymptotic expansion of a given Feynman
diagram in the large mass expansion. There are prescriptions
in the literature to deal with the large mass expansion in
the language of expansion by sub-graphs [6,7,38,39]. Imple-
mentation of such a prescription in the framework ASPIRE
is a topic of future investigation.

In this work, we have taken up the subject of the top facets
that have arisen in the ASPIRE algorithm (note that the ASY
algorithm can also be used to generate ) as a result of asymp-
totic analysis and Landau equations. In order to test the con-
sistency of the asymptotic expansion, which in the context of
the bottom facets leads to MoR, we have carried out a detailed
study and have linked it to the hitherto unrelated topic of cut
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Feynman diagrams. In the previous sections, we have given
a thorough exposition of all the aspects of our study, pointing
out the strengths as well as topics to be studied in the future.
This is a novel approach that has been used to study features
of one-loop integrals in their entirety as well as a non-trivial
two-loop integral. This would be the first of what could be a
series of explorations using these seemingly unrelated meth-
ods. Also, it is conceivable that one could relate results from
the asymptotic analysis to those coming from the studies of
Hopf Algebras [24] as in the case of Feynman integrals with
multiple polylogarithms and via dispersion relations.
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A Appendix
A.1 Brief description of the ancillary files

In Table 1, we present the description of Mathematica note-
books used in this work.

A.2 Comparison of the scales obtained using ASPIRE and
ASY

In this section, we summarize the technical aspects of our
consideration for the bottom and top facets of the Newton
polytope obtained from the sum of the Symanzik polynomials
with suitable linear tranformations.

The bottom facets are those facets of the Newton polytope
for which

7.0 =c, for the points 7 lying on the facets,

@ Springer

7.0 > ¢, for the points 7 lying above the facets,

where 7 are the vector exponents of the terms of a given sum
for the construction of the Newton polytope and v are the
normal vectors corresponding to the facets of the Newton
polytope.

m2

For bottom facets, we consider the limit x = e — 0

(i.e. m? <« ¢?) and g> — 1. This is the well-known case
of “Regions”.

The top facets are those facets of the Newton polytope for
which

F.0 =c, for the points 7 lying on the facets.

F.U < ¢, for the points 7 lying below the facets.
For the case of top facets, we utilize the freedom of consid-
ering the other possibility to take the expansion parameter

X = % — oo (ie. m?> qz) and we do not impose the

constraint g> — 1 while computing the Symanzik polyno-
mials. This corresponds to the expansion of the Feynman
graphs in the large mass limit.

It is trivial to see that the limit x = ’;Lz — 0 1is equivalent

to the limit x = ZTZZ — 00 and vice versa. This implies
one can transform the bottom facets into top facets with the
transformed limits and vice versa.

We here present in the Table 2 the explicit comparison
of the scaling coming from the bottom and top facets using
ASPIRE and ASY for the given examples.

It immediately turns out that the scalings for the bot-
tom and top facets as obtained from the package ASY and
ASPIRE match exactly for the given examples.

A.3 Hypergeometric Function , Fi (a, b; c; x)

The hypergeometric function ; F (a, b; c; x) is given by,

o
b n
JFi(a, by = 3 B X (134)
=0 (c)n nl!
where (a), = % is the Pochhammer symbol. In the

integral representation,

r
2Fi(a,b;c; x) = ﬁ
1
x/ uP7N 1 = w71 = xu) " du,
0

(135)

where Re(b), Re(c) > 0.
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Table 1 Description of

X . File name
Mathematica notebooks used in

Description

this work Oneloop Vertex.nb

TwoPointOneLoop.nb
ScalarTriangle.nb

TwoLoopNonPlanar.nb

A one loop vertex integral has been analyzed
A two point one loop diagram has been analyzed
A scalar triangular diagram has been analyzed

A non-planar two loop triangle diagram has been analyzed

Table 2 Comparison between ASPIRE and ASY for the given examples

Diagrams ASPIRE ASY
Scaling from Scaling from
Bottom facet Top facet Bottom face Top facet
Two point one loop {00}, {—-1,—-1} {0,0}, {0,0}
{(—12,—1} {0,172},
(- 1,— 1/2} {0,— 1/2}
One loop triangle {0,0,0 }, {—-1,—-1,—1}, {0,— 1}, {0,0,0},
{—10,—1}, {0,0,—1} {0,0, 0} {0,0,— 1}
{0,—1,—1} {0,1, 0}
Two loop non— planar {0,— 1,0,0,0,— 1}, {0,— 1,0,—1,— 1,— 1,}, {0,— —1,0,— 1}, {0,0,0,0,0,0},
{—1,—1,0,— 1,— 1,0}, {-1,-1,—1,—1,—1,—1} {0,— —1,—1,—1}, {0,— 1,0,— 1,— 1,— 1}
(- 1,— 1,0,0,— 1,— 1}, {o, 1,0,0,0,— 1},
{0,00000} {0, 1,— 1,— 1},
{0,— —1,0— 1}, {000 — 1,0},
{0,0,0, — 1,0}, {000000}
{0,— 1—1—1} {0,0,1,0,0,1},
{0,0, —1=1,-1) {0,0,1,1,0,0}
A.4 Angular integration parametrization
According to the convention followed in Eq. (A.1) in [21] 1 1 do
which states that AB /0 @A+ (1 —a)B)? (139)
dPKE = dcflk”dec%lkJ_ .
1 If we put A = 1 this becomes
= Edc—lk”dQD_C(kﬁ)w—C“dei (136)
1 ! do
where k| and k| are the parallel and perpendicular compo- 7= / @i d_wB)? (140)
nents to the set of cut propagators, the angular part of the 0
integration is given by Now consider an integral
27 (D+D/2
/dQD T T(D+1)/2) (37 aA (141)
AB
instead of the conventional
27 D/2 Lets say we have the on-shell condition A = 0 like that of a
/ dip = T(D/2) (138)  cut integral then this integral becomes

B Cuts in alpha parametrization for the one loop case

In this section we write the cuts in alpha parametrization in
case of one loop. Consider the following expression in alpha

2m‘/5(A)%A _ i (142)

Bx

where By is B evaluated when A = 0. Also this is exactly
equal to the case when we evaluate the residues at singularity
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A=0.

%’ dA  2mi
c, AB By

where C4 is the contour integral encircling the singularity at
A. Now using Eq. (139) to Eq. (143) we get

(143)

) zzy;gw_z_,-)em c—1
Ccln = (_1)

7T () i

s(1 —

D-3—j 00 D=2 1 D=3—j
H[fj,p(l—fj,p)]T/o ar? (1) ? Hfo dij [1;(1—1p)] 2

n—1
1=0 ap)

n—1 S (1 _ Z;:()l al)
x H,/ dak 2 2 n—2 ne
an—l(r +m, )+ Y0 Bt — le))
(147)

Now using Eq. (145) we get the cut integral with the method
of residues

D2 n—2 D3—j

j=c

n—1 .1
X 1_[/ dock
k=00

n»
Oln 1(r2 4+ m? 1)+Z,2 001]2[312]C+Z,1 cajtf jl]c(tjl—[le]c)>

(148)

Zni/S(A)% =?§

2mi

2mi / . de
By 0 (a+(1—a)BA>2

§£cA fo (aA + (1 (@A + (1 —a)B)?

(144)

Thus we have

ﬁ;A _/() (ozA—I—(l —(X)B)2

Thus we see the effect of evaluating the residue at A = 0 or
finding out the cut integral with cut at A isto set A = 1 and
replacing the other propagators with there values evaluated
at A = 0 in alpha parametrization. Now consider the one
loop integral Eq. (41)

/ da
0 (@+(1—a)By)?
(145)

"2(p—2—j 2
b=y B e [ ()
n%r(—D}”“) 0 r2+m?_
1 ]0—23—./
t]( —tj)
X , (146)
l—[ f j (1 — TJ)

Applying Feynman parametrization we get

Z’; (2](D 2— j)eype 9] D2
L= (D" D—n+1 / dr? (r2) ’
7T F( 7)) Jo

D-3—j
2

n—-2 .1
XH/ d[j[[j(l—lj)]
j=0"0
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Here t; ,, [Bj]. are the corresponding values of ¢;, B; in
the locus of cut respectively and c is equal to the number of cut
propagators. Now changing to Schwinger parametrization we
get

2 .
22’}:0([)*2*1)6}/56

Cely = (=1)"—=
. 7T (P )
c—1 D—3—j o D=2
Xl_[[tj,p(l_tj,p)] 2 [) drz(rz) :
D—3—j
xl_[/ dtj[tj(1—tp)] 2
n—1 .~
X 1_[/ dsk
k=00
c—1
xexp | = | suc1(r? +mi_) + Z sj2[Bjale
j2=0
e
+ Y silBjile (b1 — [Tinle) | | (149)

jl=c

To get the alpha parametrization form we need to integrate
out the loop momentum variables. Thus re-expressing the
integral so as to do the integration in r and ¢; variables first
we get
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22".:(2)(D—2—j) YE€ ﬁ [ | ]1)7237]'
o tiop(=1jp)
T F(D —n+1

I'(n) j=o
n—1 .~
X 1_[[ dspexp | —
k=00

(E SjZ[BjZ]c):|
j2=0
n—2

00 72
X/ Hf dtjl
0
1

Celp = (=1)"

jl=c
D=3—j

x [t (1 =1;n] 2
X exp [— (sn,l (r2 + mﬁ_l)

n—2
+ Z sj1Bjile (tj1 — [le]c))i| ,

jl=c

(150)

Now for j; > ¢ the [B;]. are not independent of k£ (the
loop momentum) since in the formula of [Bj1]c, Eq. (4.4) of
[21], for j1 < ¢ we have Y;; which demands all propagators
with j < j1 to be cut. As this is not true for the j > c this
formula is not valid and we use the usual formula Eq. (4.4)
of [21] to represent the propagator. Now since we have k¥ in
the integrand we have to go back to the original co-ordinate
system consisting of k¥ as the integration variable. For this
we first go back from #; to 6;. After doing all these changes
we get

22, n(D -2- /)eyge c—1 D-3—j
2

Cely = (=1)" [ —15,0] 2

73T (2 Tw) o

n—1 00 c—1
X ]_[ dsy exp | — Z sj2[Bj2le
k=00 j2=0

xﬁ H/d@,l

Jjl=c

n—1
X [sinejl]szfjl exp |: (Z i1 ((kE - qul)z m?l)):|

jl=c
(151)

Contrary to the original set of variables where we had n
vaiables here we only have n-c variables with the remain-
ing c variables (6,0 < j < ¢ — 1) now being constant. If
we define a vector k' given by

c—1
K =r l_[ sinf; (cos b, cos B4 sinb, ...,
j=0

n—2 n—2
X 1_[ sinf;, 1p_py1 1_[ sin6;
j=c j=c

cosB,_2

(152)

the differential volume for this D-c dimensional vector is
given by

D—n+1 c—1

/dD_Ck’ = I H[sin@-]D_C /‘<>oallf1’D_”_1
r (D—é1+1) J 0

j=0
7 h—=2 )
x/ [Ta¢; [sin6;]° 7> (153)
0 i
So substituting in Eq. (151) we get
2 X 520(D=2-)) ype
CcIn = (_1)n D
w2I'(n)
c—1 Do3—j n—1 s
xl_[ t”,(l—t”,)] Tz 1_[/ dsy
j=0 k=00
c—1
xexp| = X spalBjle
j2=0
c—1
X H[sm@ 1~ D/dD_Ck’rC
n—1
X exp | — ZSJ" ((kE_qJEI)2_m51) ,
jl=c
(154)

We are now successful in writing the integration variables in
a way that the new co-ordinate system is similar in represen-
tation to the original k£ one but it is still not exactly the same
as k’ # k. For making the variables exactly equal we will
define one more ¢ dimensional vector given by

c—2

, COS B 1_[ sin 0,
j=0

k" =r | cos6p, cos b sinfy, ...
(155)

This vector is perpendicular to &/, has the angular part con-
stant and summing it together with k" gives k©

KE =k + k" (156)
Also we have
(kE)2 (k )2+ (k//)2 r . r2x2 +i’ Y2
22 y? 2 y?
’
=rX<1+p>=|k|<l+p> (157)
where
=[K'|, rY =k"| (158)
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with
c—1
x* = [lsin6;1%,
j=0
c—1 j—1
Y2 =" | lcos;1* [ [Isin6:)* | . (159)
j=0 k=0

So the argument of the exponential in Eq. (154) becomes

n—1

Zsf ((kE _ qE)Z
Jj=c

n—1
2) — kE)? ZSJ'

—okE. +Zs]((qE)2+m2)

n—1
2.8i4)
j=c
n—1
|k|2<l+) Zs, 2" D sjaf
j=c

n* nf
=2k Do sjaf |+ D syt +m))
j=c j=c

— 1/2
/2 Y2 = / Y2 / /
=W\ 1+ 55 dosi| -2k z I+ ) —2W

Jj=c
—1
Zs,qj cosao—f—Zs/((qJ) —|—m)

j=c Jj=c

(160)

with Z being a constant. Using Eq. (155) and Eq. (4.1) of
[21] it is given by

-1 -1
Z = ZSJ CX: (q]l cos 0; hmn@k)

j=c i=0

(161)

In the last step in Eq. (160) we have used the definition of dot
product for the third term to write it as a product of modulii of
the vectors participating in the dot product and the angle o
between them. Now using all the substitutions we can write
Eq. (154) as

22, ()(D 2— J)eyEe

D
7 2I(n)

Celp = (_1)n

c

1 ) /2
D—3—j B Y2
x [T, =10] 2 x7P <1 + )

n

o0
X [ dsy
0

k=0

n—1 c—1
x exp [— (Zsj<<qf>2 +m+ Y sjz[szlcﬂ

j=c j2=0
X/dDiEk, |k/‘c
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~
Il
- o

y2 n—1 y2 1/2
x exp | — k’2(1+2) s 2|k|Z(l+ )
X =
cosao):|

Here X and Y are constants with respect to integration
varaibles and hence we have taken them out of the integra-
tion. Now baring the new variable ¢y we can see that the
integration is entirely in terms of k’ variable. To do this inte-
gration we will again go back to the spherical co-ordinate
system of k' but now We will re-orient k¥’ such that the angle
between k' and Y ' i=c ls; j qk F is ap. To do this we define the
new co-ordinate system such that

aOD—L‘—l) and

[D—c]-2
1p—c—(1D-c)+1 1_[ sinaj

j=0

n—1

ZWI

Jj=c

2|k (162)

n—1
2 sia) =
j=

n—1

E
> sid;
Jj=c

|D—c]-3
sinaj,
Jj=0

(163)

So we see that the dot product of these two vectors will give
rise to the required term in the argument of the exponential.
Also the other terms in the exponent will not be affected
since they are just products of modulus of the k’ vector with
constants which are rotationally invariant. Now Eq. (162) can
be rewritten as

—1 P +(D—c)—1 —
QX Goy (D=2 ) SHUDZEDZL o] D-3—j

() (W) 1_!)[’111’(1 —1j.p)]

j=i
% c/2n—1 .
« x¢D (1 + F) l_[/ dsy
k=070
n—1 c—1
x exp [— (Zs,-((qf)2 +mi+ Y s,-z[Bﬂ]Cﬂ

Ccly = (_l)n

j=c j2=0
|D—c]—-2
x/ dlk'| |k |1P~! ]_[ f daj
0
x [sinaj]D e

x exp [— (|k’|2 (1+ —) ("le,)

Y2 1/2 n—1
—2W|Z<1+F> —2|K'| Zs,«qf cosag | |, (164)

j=c

Finally we are in a stage to do the integration. First we will do
the angular integrations. Here the o integration can be done
in terms of hypergeometric o F functions or Bessel functions
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and for the remaining angular variables the integration is
trivial. After integration we have

Py H(D=2—) oVEE

Cely = (*1) D—1

7 2 I'(n)

— D-3-j y2 L/Zn 1
]_[ tp—t; )] 2 x7P <1+2> / dsy

_ c—1
X exp |:— (ZSJ((QJ )2 +m2)+ Z SJZ[BJQ]C):|

j2=0
x/ diK'| 1K' \P~ 127
0

r(2)
2
D—c
xoF1 |

n—1
2 E
#1254
j=c

Y2 n—1
xexp | — \k/\z (1 + X2> Zsj-
j=c
1/2
Y2
=20k’ Z (1 + x2> )} ,

After expanding the hypergeometric o F function using its
definition we can integrate the k' variable using hypergeo-
metric | F| functions and we have the following result

(165)

| 2500220 e ¢
CCIH = (_1) - b—1

[1j.,p(1 = 1j.p)]

D1
2 I'(n) j=0
c=D
Y2 Son—1 L D
-D D—c
x X¢ <l+ﬁ) H/o dsy w2
k=0
n—1 c—1
xexp | =D s;(@+m)+ Y splBjle
j=c j2=0

2] (0 ) (552)

D/2
m=0 (Z;’;(l Sj) r'm+1HI (D*CerZm)

D+1+42,
|z res
P 1/2
(Z5zts))

(D+1+2m 3 Z )
x 1 F) M-
2 2 n—1
j:csl)
2m

r D+2m D+ 1 VA
+ ( 22 ) 1F1 ( R —
(Z_[:c S.f)

Now if we rewrite it in a standard Schwinger parametrization
form then we get the following form of the generalized U and
F polynomials in the cut case.

(166)

F (s) c—1
o) = Zs,((qW +md)+ Y 518l
j=c j=0
] 2R (O ) (2gte)
= 0 Fom+ 1 (2=g:2m)

D+1+2m
Z T (72 )

()"

P D+1+2m.3. VA
X111 5 »Ey P
Zj:c‘s]

X

r( 22m
)
D+2m 1 Z
><1F1( LY (Z"-_ls]'))]:| (167)
Jj=c
n—1
U'(s) = (Zv/) (168)
j=c

Here we can take D = d —2¢ with d being an integer in order
to have a proper representation of divergences occuring due
to ¢ > D. Now let us check the validity of these equations
by checking whether they match the uncut case when ¢ = 0.
When ¢ = 0 we have ¥/ = 0 and hence Y = Z = 0, also
k' = k¥ and hence X = 1. Inserting all this in Egs. (167)
and (168) we have

n—1

52; ]Z% s; (@) +m?)
&[] (S5))
m:0 Ln+1)
(Z?;(l) siqy )2

- ZS ((g; 0’ +m2) - W (169)

U'(s) = nz_:lsj (170)
=0

which is exactly equal to the U and F polynomial equations
for the uncut integral in the one loop case. Also the cut integral
becomes

—1
(=1)"evee 00 ds
Colp = —F—— ]_[/0 ( k

1
72 () k=0 ”_(1) ]>D/2

2
nol (Z1zyssaf)
Jj=0"J7j
xexp | = [ D sj(qf)? +mf) -

Jj=c ' (Zn—o ‘1)
(171)
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And now after some simplification we can construct the Feyn-
man parametrisation equation for the cut integral given by

Cely = (=1)"

1 .
2 _Cj=()(D_2_])eyE€ c—1 D—3—j

3
[tjp(1=1;,)] 2
=0

D n—1 s
xF(n—3>l[£/O doy,

§(1=Y"")a;
x ( —! 0 j> (172)
F'()""2U" ()P

D—1

w2 I'(n)

where U’(«) and F'(«) are given by Egs. (167) and (168)
with « in place of s.
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