ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Analyzing the dominant SARS-CoV-2 transmission routes toward an ab initio disease spread model

Chaudhuri, S and Basu, S and Saha, A (2020) Analyzing the dominant SARS-CoV-2 transmission routes toward an ab initio disease spread model. In: Physics of Fluids, 32 (12).

[img]
Preview
PDF
phy_flu_32-12_2020.pdf - Published Version

Download (1MB) | Preview
Official URL: https://doi.org/10.1063/5.0034032

Abstract

Identifying the relative importance of the different transmission routes of the SARS-CoV-2 virus is an urgent research priority. To that end, the different transmission routes and their role in determining the evolution of the Covid-19 pandemic are analyzed in this work. The probability of infection caused by inhaling virus-laden droplets (initial ejection diameters between 0.5 μm and 750 μm, therefore including both airborne and ballistic droplets) and the corresponding desiccated nuclei that mostly encapsulate the virions post droplet evaporation are individually calculated. At typical, air-conditioned yet quiescent indoor space, for average viral loading, cough droplets of initial diameter between 10 μm and 50 μm are found to have the highest infection probability. However, by the time they are inhaled, the diameters reduce to about 1/6th of their initial diameters. While the initially near unity infection probability due to droplets rapidly decays within the first 25 s, the small yet persistent infection probability of desiccated nuclei decays appreciably only by O(1000s), assuming that the virus sustains equally well within the dried droplet nuclei as in the droplets. Combined with molecular collision theory adapted to calculate the frequency of contact between the susceptible population and the droplet/nuclei cloud, infection rate constants are derived ab initio, leading to a susceptible-exposed-infectious-recovered-deceased model applicable for any respiratory event-vector combination. The viral load, minimum infectious dose, sensitivity of the virus half-life to the phase of its vector, and dilution of the respiratory jet/puff by the entraining air are shown to mechanistically determine specific physical modes of transmission and variation in the basic reproduction number R0 from first-principles calculations. © 2020 Author(s).

Item Type: Journal Article
Publication: Physics of Fluids
Publisher: American Institute of Physics Inc.
Additional Information: The copyright for this article belongs to the Author(s).
Keywords: Air conditioning; Calculations; Cell proliferation; Drops; Probability; Rate constants; Sensitivity analysis; Transmissions; Viruses, Basic reproduction number; Droplet evaporation; First-principles calculation; Molecular collisions; Persistent infection; Research priorities; Susceptible population; Susceptible-exposed-infectious-recovered, Diseases
Department/Centre: Division of Mechanical Sciences > Mechanical Engineering
Date Deposited: 10 Jan 2023 04:57
Last Modified: 10 Jan 2023 04:57
URI: https://eprints.iisc.ac.in/id/eprint/78967

Actions (login required)

View Item View Item