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On-site material inspection and quality analysis of food and agricultural produce require portable sensing systems. We report the
development of a miniaturized spectrometer with an integrated light source operating in the visible and near-infrared range, for
chemometrics based material-sensing applications. The proposed system uses off-the-shelf light source and detector. The electronic
circuit is designed, developed, and tested in-house. To validate the system’s usability, a set of classification experiments are carried
out with measured spectra from culinary white powders and medicinal pills. Several classification algorithms are used to build
predictive models and the best-suited ones give prediction accuracies of 80% and 92.6% respectively. A regression model built to
estimate the curcumin content in turmeric shows a coefficient-of-determination of 0.97 for prediction. With more than 90%
repeatability in the measured reflectance spectra, robustness of the device is demonstrated. Realization of a portable spectrometer,
along with a framework for building appropriate prediction models, is expected to spur the development of point-of-use material
sensing in the Vis-NIR range.
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There is a growing demand for on-site analysis of food and
agricultural produce for selecting quality produce and detecting
adulterants. This is advantageous from the viewpoint of saving time
and effort needed to procure quality samples. Remote farmlands and
agricultural zones that do not have laboratory facilities in their
vicinity will benefit highly from an on-site analysis.1 Another
example of on-site analysis is the different stages of a food-
processing value chain, where online assessment of process para-
meters is crucial for real-time quality monitoring. These demands
dictate the need for devices that meet the customer expectations on
performance, cost and form-factor.

Traditional laboratory techniques like High Performance Liquid
Chromatography (HPLC)2–4 and its coupling to mass spectroscopy
(LC-MS),5–7 spectrophotometric techniques8 by ASTA9 and X-ray
diffraction10 have been used as the gold standard for quality control.
However, such analyses require bulky instruments and expensive
chemicals, some are even toxic and hard to dispose effectively. In
addition, these methods require trained analysts to run the instrument
and the added time to generate and analyse them. Industries that rely
heavily on these tests for their manufacturing processes lose out on
precious time. Additionally, the chemicals used add to the woes of an
already vexing problem of waste management. A growing demand for
faster, on-site quality analysis of food and agricultural produce with
minimal sample preparation and chemical usage, has resulted in
adoption of chemometric based techniques. Thus, a portable instru-
ment that can capture the spectral signature of the materials and a
robust chemometric model for prediction are highly desirable for an
on-site analysis. We have focussed our work on building this portable
spectrometer due to prohibitively high cost of the existing spectro-
meters and the inability to customize their various features.

Recent developments in internet-of-things technologies along with
machine learning and cloud computing have renewed the interest in
spectrometer manufacturers for exploring avenues to miniaturize
spectrometers. A list of several miniaturized spectrometers reported
during the last decade are available in the.11–21 Although several
spectrometers are small in size, they require external radiation sources
that are mains-powered. This limits their usage on the field. For the
device reported in this work, the built-in light source allows for hassle

free on-site measurement. With an operating range of 400–1000 nm, the
spectrometer allows applications in the visible and near-IR range. Since
the reflectance spectra in the near-IR range represent the chemical
fingerprint of a material, the device can be used for material sensing
tasks, such as analysis of food products and pharmaceuticals.22–25 Test
results on reproducibility and robustness of the device is presented.
Among the reported applications26,27 of chemometrics, classification
and regression are two widely used tasks, each with widespread
applications. In this work, utility of the measured spectra from the
device is demonstrated for both the tasks. Two examples are shown to
demonstrate classification. (i) Classification of white culinary powders
by their common name, (ii) Classification of medicinal pills based on
their chemical composition. A regression task is undertaken to quantify
the curcumin content in powdered turmeric samples using partial least
squared regression (PLSR) analysis aided with spectral pre-treatment.

Materials and Methods

Two sets of powders are used to demonstrate classification from
their reflectance alone. The first set consists of six different white
culinary powders with a similar texture. Names of these powders are
listed in Table A·I of the appendix. The second set includes
medicinal pills of ten different chemical compositions. The com-
mercial names of the 36 pills from these ten categories are listed in
Table A·II of the appendix. Each of these pills are pounded to a fine
powder using a mortar and pestle.

For the task of prediction using regression analysis, the
pharmacologically active curcumin28 is quantified in powdered
turmeric samples. The curcuminoids are first quantified by high
performance liquid chromatography (HPLC), which serves as the
reference data for prediction. The sample set for this study includes
commercially procured turmeric powders as well as whole dry
roots directly collected from farmers and traders. These roots are
first manually cut into smaller pieces of 1 cm × 1 cm, followed by
grinding them into a fine powder using a kitchen grinder. This
powder is passed through a 250 μm industrial sieve to maintain
uniform particle size.

Experimental

The proposed device (6.5 cm × 2.5 cm × 6.5 cm) consists of a
spectrometer and an LED light source, placed next to each other in azE-mail: amruta@iisc.ac.in
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reflective arrangement. All the components of the device are encased
in a 3D printed thermoplastic holder. Figure 1a shows the complete
spectrometer along with two custom made sample holders con-
taining powdered samples. A schematic of the system with main
components is shown in Fig. 1b. The microcontroller ensures that a
set brightness level for the LED is maintained by regulating the
current flow through a MOSFET. Lighting of the LED and data
acquisition by the spectrometer are synchronized. The integrated
system connects to a computer via USB for power and communica-
tion, making it universal and simple to use. A Python-based interface
running on the computer, communicates the user commands to the
microcontroller and the spectrometer. Spectral data is acquired from
the device through the USB connection to the computer in CSV
format. It has a spectral resolution of 1 nm. The Python-interface
allows the user to adjust the different parameters, such as light
intensity, number of scans-to-average, and integration time. This
device is designed to scan and analyse powdered samples. These
samples are inserted into the slot on the side of the device. The
powdered sample is filled to the brim of the sample holder and the
excess is wiped off with a clean glass slide for a smooth surface on
the scanning area. In this work, fifteen scans are taken for each
sample, with the scans-to-average value set at 35 (this is the number
of times the spectrometer automatically scans a single inserted
sample and averages the reading to produce a single spectrum). After
each scan, the powdered sample is disturbed and levelled again to
mimic a fresh sample. The measurement time for each sample is less
than 2 s. There is also a provision for automatically setting the
integration time to have an optimal signal-to-noise ratio. Each
spectrum can be viewed as a graphical image and can be exported
in the text format that is used for further data processing.
Measurements carried out to test the light source and detector’s
characteristics are described in the results and discussion section.

Data analysis.—The acquired raw spectra from our device are
analyzed on two different platforms. To test the device’s ability to
distinguish materials based on their reflectance spectra alone, a
classification task is demonstrated with two example sets. The first
set includes classifying white culinary powders by their common
names (Table A·I). The second set includes assigning medicinal pills
to their respective chemical compositions (Table A·II). Classification
models are built with the readily available algorithms in
MathematicaTM (Table A·III).29 The model with the highest accu-
racy is selected to classify individual spectra to their respective
classes. The results are reported in terms of a confusion matrix and
percentage accuracy of the classification. Analysis and prediction
with a pre-trained model can be done in less than 5 s using
MathematicaTM. For predicting curcumin in turmeric, the spectral

data are analysed in UnscramblerTM (v.11). The correlation between
the processed spectra and the curcumin content from HPLC analysis
is examined by the partial least squared regression (PLSR) algo-
rithm. The model performance is reported with coefficient of
determination (R2) and root-mean-squared error of cross validation
(RMSECV).

Results and Discussion

The response of the LED light source is characterized with a well
calibrated spectrometer (Jaz, Oceanoptics) and is presented in Fig. 2.
The dominant peak between 400–500 nm corresponds to blue light.
The response is relatively flat beyond 700 nm. To characterize
repeatability of the detector, 15 scans are taken from four random
turmeric samples, keeping all the acquisition parameters constant.
Variations among the recorded intensities at different wavelengths
are depicted in Fig. 3a. Except for a few outliers close to 400 nm, the
variations are below 10%, showing 90% repeatability, which is
considered reasonable. As an example of raw measured reflectance
spectra, scans from medicinal pills are also presented here. Figure 3b
shows composition-wise (10 groups later used for classification)
averaged spectra of medicinal pills, with the inset showing the
zoomed-in view of the spectral features in the range 650–1000 nm.
The sharp peak between 400–500 nm is due to the higher intensity
corresponding to the characteristic peak from the light source as
described earlier. The variation in peak heights represent traits of the
composition groups.

Figure 1. (a) Image of the handheld spectrometer along with the sample holders containing barium sulphate (white) and turmeric powder (yellow). (b)
Schematic of the system showing different components.

Figure 2. Intensity of light from the LED (on Log scale) plotted against
wavelength.
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White powders.—The spectra of six culinary powders is col-
lected in the range of 400–1000 nm. Using the reflectance spectra
alone, a simple classification model is built to predict the six culinary
white powders by their common names (A-I of the appendix).
Fifteen scans are collected for each of the six powders and is divided
into a training set (10 scans each) and a test set (5 scans each). The
training set is processed using each of the nine readily available
algorithms (A-III of the appendix) in MathematicaTM. The models
are applied to the test dataset for validation and the resulting
accuracies are presented in Fig. 4a. Naïve Bayes algorithm is found
to have the best prediction accuracy of 80%, and the test-set
validation result for this model is presented as a confusion matrix in
Fig. 4b. The labels (A-F on the left y-axis and the top x-axis) refer to
the names of the culinary powders. The numbers on the right y-axis
and bottom x-axis represent the total number of actual and predicted
samples, respectively. In an ideal case, when all samples are
predicted as their actual classes, the off-diagonal numbers should
be zero. Percentage accuracy of prediction for each of the classes
(rows) are denoted on the right y-axis. The prediction is perfect at
100% for samples B, and F, followed by 80% for samples A, C and
E. Sample D has the least accuracy of 40%.

Medicinal pills.—To demonstrate another example of classifica-
tion of materials, 36 commercially available medicinal pills be-
longing to 10 different chemical composition groups are used. All
the names of the pills and their respective chemical compositions are
listed in A-II of the appendix. A classification model is built to
predict the composition of a sample pill from their reflectance

spectra alone (Fig. 3b). A similar approach is followed as that with
white culinary powders (Fig. 4). For model building, 15 scans (from
each pill) are divided into two sets of 12 and 3 as training and test
sets, respectively, to ensure each type of pill from all (composition)
categories are represented in the validation set. Thus, the total
number for scans in training and test sets are 432 (36 × 12) and 108
(36 × 3) respectively. The training set is processed using each of the
nine classification algorithms (A-III of the appendix). The neural
network algorithm is found to give the best accuracy of 92.6% as
shown in Fig. 5a. The validation result of the neural network model
in shown in Fig. 5b with a confusion matrix. The labels (A-J on the
left y-axis and the top x-axis) refer to the chemical compositions of
the medicinal pills. Here the diagonal numbers (representing correct
predictions) sum up to 100, implying 92.6% (100 correct predictions
out of 108) accuracy. Among the individual compositions, prediction
accuracies were reasonable with the worst case being 75% (compo-
sition E).

Reasonable accuracies from these classification tasks show that
the device can be used for identification of chemical nature of a
material. Applications can range from identifying adulteration in
food products to detection of counterfeit drugs.

Turmeric.—Figure 6a shows the raw Vis-NIR spectra of
turmeric samples over 650–1000 nm collected from the device.
The spectra for all the samples (n = 52) are recorded in diffused
reflectance mode, with a resolution of 1 nm. The spectra are all
similar in shape showing absorption bands around 900 nm (third
overtone of C–H stretching) and 950 nm (second overtone O–H

Figure 3. (a) Wavelength wise variations in the reflected intensity among 15 measured spectra each from 4 random turmeric samples with all acquisition
parameters remaining constant, (b) The average spectra for ten compositions (of pills) are depicted with inset showing the zoomed-in view of the spectra in the
range 650–1000 nm. Labels correspond to the compositions listed in Table A·II.

Figure 4. (a) Accuracy of prediction models for various methods used to classify white powders, (b) The confusion matrix for the best case of white powders
classification with Naive Bayes method. Labels correspond to the compositions listed in table A-F.
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stretching) and a faint band around 850 nm (third overtone of N–H
stretching).30 These raw spectra contain quantitative information on
the chemical constituents corresponding to three such bonds (among
others), namely, O–H bonds (found in water), C–H bonds (found in
CH2 and CH3) and N–H bonds (found in protein). However, it is
difficult to individually capture them due to the overtones and
combinations. Mathematical pre-treatments and chemometrics
methods are hence needed to extract useful information from the
raw spectra for better prediction of curcuminoids in the turmeric
samples.31 Multiplicative scatter correction (MSC) is used to correct
for baseline shifts caused by both amplification (multiplicative) and
off-set (additive) arising due to particle size or scattering of light

(Fig. 6b). This method is also believed to be the best suited for
correction of spectra where the scatter variation is large in
comparison to the chemical variation.32 The absorption bands are
amplified with the Savitzky-Golay first derivative filter along with
surfacing of a band at 680 nm and a shoulder peak at 750 nm
(Fig. 6c). The resulting data is smoothened with a deresolve step to
filter the noise in the processed signal (Fig. 6d).

We have built a predictive model for a wide range of curcumin
content, spanning over 1%–9%. For this model, the training data
consists of 52 samples with 15 scans each (total—780 spectra). The
raw spectra are subjected to a combination of pre-processing steps
(Fig. 6), to extract maximum useful information. The processed

Figure 5. (a) Accuracy of prediction models for various algorithms used to classify medicinal pills based on their chemical composition. (b) The confusion
matrix for the best case of medicinal pills with the neural network algorithm. Labels correspond to the compositions listed in table A-J.

Figure 6. Images representing the transformation of the turmeric spectra when subjected to a sequence of pre-processing steps. (a) Raw turmeric spectra from
the instrument. (b) MSC corrected spectra. (c) Spectra after the application of Savitzky-Golay filter. (d) Application of Deresolve filter to smoothen the data.

Journal of The Electrochemical Society, 2020 167 167515



spectra are correlated with reference HPLC values using PLSR
algorithm to quantify total curcuminoids in powdered turmeric
samples. The model yields a coefficient-of-determination (R2) of
0.90 at PLS factor 7. Cross validation is performed on a test data of
10 samples, which yields a root-mean-squared error of cross
validation (RMSECV) of 0.8.

The final validation results for the test samples (not a part of the
training model) are represented with a scatter plot as shown in Fig. 7.
The data points correspond to the mean of the predicted curcumin
value for the 15 scans taken for each sample. The error-bars
represent the standard deviation among them for a particular sample.
The higher the coefficient of determination (R2), the better the
correlation between the actual curcumin value and the predicted
value.33 The R2 is found to be 0.97, showing a strong correlation.
Based on the mean and standard deviation of prediction from 15
scans of a sample, the variation is found to be between 4%–20% for
the 10 test samples, which can be further improved with continued
addition of spectral data to the training set.

Conclusions

The results from this work show practical applicability of
miniaturized spectrometers in the Vis-NIR range, combined with
machine learning algorithms, to analyse different chemical composi-
tions and ingredients. The repeatability and the robustness of the
spectral acquisition from our device is also demonstrated. The
device performance is shown with two widely used classes of
chemometric techniques: classification and prediction. Culinary
white powders and medicinal pills are classified by their reflectance
spectra alone with an accuracy of 80% and 92.6% respectively. The
curcumin content in turmeric is predicted using regression analysis
and the coefficient of determination for the validation set is found to
be as high as 0.97. Future research and validation along with
enriched understanding of different machine learning algorithms is
needed to build stronger reliable models. Realization of a portable
spectrometer, along with a framework for identifying the best suited
prediction model, enables the point-of-use material sensing in the
Vis-NIR range.
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Appendix

Figure 7. Scatter plot showing the final predicted value of curcumin vs the
actual curcumin content from HPLC.

Table A·I. List of white powders used in this work, and the labels
used to represent them.

Labels White powders

A Baking powder
B Baking soda
C Calcium propionate (C6H10CaO4)
D Corn flour
E Icing sugar (C12H22O11)
F Maida
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Table A·II. List of pills used in this work, the composition family they belong to, and the labels used to represent them.

Labels Compositions Pill names

A Ranitidine Rantac, Rantac OD, Aciloc-150
B Omeprazole Omee, Lozone-20, Omez, Oskar-20, Ocid-20, OMD
C Rabeprazole Histac-RD, Cyra, Ecorab, Rabipot, Zinirab, Rbson
D Levocetirizine Levocet, Levocetirizine, Okacet-L
E Paracetamol Medomol-650, Crocin-650, Calpol-650, Dolo-650
F Metoprolol Succinate Promolet XL 25, Metol XL 25, Metolar 25
G Glimepiride, Metformin hydrochloride, Voglibose Glycomet Trio 1, Glucorul MV 1, Trivolib 1
H L-Throxine Thyorox 50, Eltroxin, Thyronome
I Amoxicillin, Potassium clavulanate Clavam 625, Clamp 625, Augmentin 625
J Magnesium hydroxide, Aluminium hydroxide Digene, Gelusil

Table A·III. List of methods used for classification and their
abbreviations used for labelling.

Method name Abbreviations

Decision tree34 DT
Random forest35 RF
Nearest neighbours36 NNs
Neural network37 NNk
Support vector machine38 SVM
Logistic regression39 LR
Naïve Bayes40 NB
Markov30 M
Gradient boosted trees41 GBT
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