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Abstract: We extend the analysis of [1] to study the Regge trajectories of the Mellin
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dimensions and one type of correlators of chiral fishnet theory in 4 dimensions. We develop
a systematic procedure to perturbatively study the Regge trajectories and subsequently
perform the spectral integral. Our perturbative method is very generic and in principle
can be applied to correlators whose perturbative Regge trajectories obey some structural
conditions which we list down. Our d dimensional results reduce to previously known results
in d = 4 for 0-magnon and 1-magnon. As a non-trivial check, we show that the results
for 1-magnon correlator in d = 8, when evaluated using the exact techniques in [1, 2] are
in perfect agreement with our d dimensional perturbative results. We also perturbatively
compute the Regge trajectories and Regge-Mellin amplitudes of the chiral fishnet correlator
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1 Introduction

Computations in N = 4 SYM is in general quite technically challenging. Recently there
is a renewed interest in the γ−deformed strongly twisted N = 4 SYM called the fishnet
theory which is far simpler [2–5]. The fishnet theory enjoys integrability in the planar limit
and also conformal symmetry. In the double scaling limit the scalar, fermions and gauge
field decouple thereby breaking the supersymmetry and the R-symmetry (for more details
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refer to [6–9]).1 This serves as a playground for studying a host of physical phenomenon
which would not have been possible in the parent theory. It is interesting to study the
Regge trajectories of correlators in these theories since the exact correlation functions
are known [1, 2]. The Regge limit for a scattering process in a theory is defined as a
special kinematic limit of 2→ 2 scattering of particles in which the Centre of Mass (COM)
momenta is taken to be large. In terms of Mandelstam variables s, t and u, this corresponds
to large s at fixed t. Regge theory is a study of the analytic properties of the S-matrix, more
precisely the classification of singularities of the S-matrix in the complex angular momenta
plane [17]. Historically Regge theory has been the organizational tool for studying the
theory of strong interactions where it was found that strongly interacting particles had
linear Regge trajectories [18]. There are quite a few examples attesting to this fact. This
can be seen from known examples in QCD [19], the Virasoro-Shapiro amplitude in type
II superstring theory [20]. In general the Regge amplitude scales with the Mandelstam
invariants as

ARegge ∝ sJRegge (1.1)

For CFTs the meaning of a “S-matrix” is somewhat ambiguous. However, it was shown
that conformal correlators, which naturally obey partial conformal wave decomposition,
show similar analogous behaviour leading to the study of “Conformal Regge theory” [21–
23]. This was initially motivated as studying the implications of the Regge limit of flat
space S-matrix in the AdS, for the respective conformal correlators. However, irrespective
of the existence of a bulk dual such a study can be undertaken (See [22] for a detailed
review). In the context of CFTs most notable study of Regge trajectories have been done
for N = 4 SYM [22]. For the general dimensional fishnet theories under consideration,
we find that for the 0, 1−magnon cases, in the weak coupling, the leading Regge theory
is dominated by, JRegge = 0,−d

4 respectively while the chiral fishnet theory correlator has
J = 0. In the language of the formal Regge theory, this merits the interpretation that the
S-matrix is dominated at this resonance by a particle of negative spin, which we believe is
a signature of the inherent non-unitarity of the theory.

Before venturing into the details on the present work, we would like to provide a very
brief introduction to the fishnet theories we are considering. In general dimensions,2 [24–27]
is given by a proposed lagrangian (in d-dimensions) of a bi-scalar theory [4, 5, 28] which is
a generalization of the four dimensional theory, given by,

L = Nc tr
[
X̄(−∂µ∂µ)ωX + Z̄(−∂µ∂µ)d/2−ωZ + (4π)d/2ξ2X̄Z̄XZ

]
. (1.2)

The theory is however not complete at the quantum level without the double trace coun-
terterms [5, 28, 29], given by,

Ldt = (4π)d/2
(
α2

1(tr (X2)tr (X̄2) + tr (Z2)tr (Z̄2))

− α2
2(tr (XZ)tr (X̄Z̄) + tr (XZ̄)tr (X̄Z))

)
. (1.3)

1Also see [10–16] for more related work.
2The 4d theory is obtained from the double-scaling limits of the strongly γ twisted N = 4 SYM. The

resulting theory is integrable in the planar limit and non-unitary.
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A generalization of the bi-scalar model in four dimensions is chiral fishnet (χ−fishnet)
theory which includes three complex scalars and three fermions as explained in [4, 7].3

This gives the full three coupling generalization of the bi-scalar model, with the lagrangian
(see [31]),

Lφψ = Nctr
(
−1

2∂
µφ†j∂µφ

j + iψ̄α̇j (σ̃µ)αα̇∂µψjα
)

+ Lint ,

Lint = Nctr
[
ξ2

1φ
†
2φ
†
3φ

2φ3 + ξ2
2φ
†
3φ
†
1φ

3φ1 + ξ2
3φ
†
1φ
†
2φ

1φ2 + i
√
ξ2ξ3(ψ3φ1ψ2 + ψ̃3φ

†
1ψ̃2)

+ i
√
ξ1ξ3(ψ1φ2ψ3 + ψ̃1φ

†
2ψ̃3) + i

√
ξ1ξ2(ψ2φ3ψ1 + ψ̃2φ

†
3ψ̃1)

] (1.4)

The fishnet theory is conformal and hence we can use the familiar machinery of CFT to
determine the dynamics.

In this work we will compute the Regge limit of the fishnet theory in Mellin space
using the technique of conformal Regge theory discussed in [22] for the general d conformal
fishnet theory and the chiral fishnet theory. The corresponding study for 4d conformal
fishnet theory was taken in [1]. Let us fiirst define what the mellin amplitude is; the Mellin
representation of the connected part of the four-point conformal correlator is,

G(u, v) = 1
(4πi)2

∫ i∞

−i∞
dsdt ut/2v−(s+t)/2µ(s, t)M(s, t) , (1.5)

whereM(s, t) is the Mellin amplitude and

µ(s, t) = Γ
(∆34 − s

2

)
Γ
(
− ∆12 + s

2

)
Γ
(
s+ t

2

)
Γ
(
s+ t+ ∆12 −∆34

2

)
Γ
(∆1 + ∆2 − t

2

)
Γ
(∆3 + ∆4 − t

2

)
, (1.6)

is the measure with ∆ij = ∆i −∆j . The Mellin amplitude admits a partial wave decom-
position [32],

M(s, t) =
∞∑
J=0

∫ ∞
−∞

dνbJ(ν2)γ(ν, t)γ(−ν, t)ζ(∆i, t)Pν,J(s, t, {∆i}) , (1.7)

where Pν,J(s, t) is the Mack polynomial,

γ(ν) =
Γ(∆1+∆2+J+iν−h

2 )Γ(∆3+∆4+J+iν−h
2 )Γ

(
h+iν−J−t

2

)
√

8πΓ(iν)
, (1.8)

and
ζ(∆i, t) = 1

Γ(∆1+∆2−t
2 )Γ(∆3+∆4−t

2 )
. (1.9)

This will be the focal point of our analysis. We consider the t-channel decomposition with
∆1 = ∆4 and ∆2 = ∆3. In [22], the Regge limit of the mellin amplitude was studied and

3See also [30].
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it was shown that this formalism is equivalent to studying the Regge limit of the position
space correlator [21]. In Mellin space the Regge limit is defined as large s and fixed t

behaviour of the Mellin amplitude [22],

lim
s→∞

Pν,J(s, t) = sJaJ , where aJ = (2− h− iν + J)J(2− h+ iν + J)J
(h+ iν − 1)J(h− iν − 1)J

. (1.10)

The factor aJ becomes 1 for general ν and integer J . In Regge theory of scattering am-
plitudes, the partial waves of the highest spin exchange dominates- this is apparent in the
mellin language as the mack polynomial contributes sJ for each J . Naively the sum over
spins seems divergent but this can be taken care of by the “Sommerfeld-Watson” trans-
form. This step is technical and we refer the readers to section 3 of [1] for a self-contained
review of the summation procedure. The basic procedure involves, converting the sum
over J in (1.7) to a contour integral over J and then deforming the contour to analytically
continue the spin to the complex plane. For convenience we write down the Regge Mellin
amplitude for general d Fishnet correlators,

M(n)
± (s, t) = 1

2πi

∮
dJ

π

sinπJ

∫ ∞
−∞

dν
(
s

4

)J
eiπJ/2ν sinhπν ζn(∆i, t)

×
(−1)−JΓ(h+J)Γ(h+J−iν)Γ(h+J+iν)Γ

(
h−J−t−iν

2

)
Γ
(
h−J−t+iν

2

)
2π2(h+1)Γ(J+1)Γ

(
h+J−∆12−iν

2

)
Γ
(
h+J+∆12−iν

2

)
Γ
(
h+J−∆34+iν

2

)
Γ
(
h+J+∆34+iν

2

) bnJ(ν)P±J ,

(1.11)

where,

ζn(∆i, t) = 1
Γ
(

∆1+∆2−t
2

)
Γ
(

∆3+∆4−t
2

) , P±J =

cosπJ/2 ,+(even spin)
−i sin πJ/2 ,−(odd spin)

. (1.12)

bnJ(ν) is the spectral function for respective correlators of the theories we are considering
and contains the dynamical information, ∆ij = ∆i−∆j and for the exchanged operator ∆ =
h+ iν with h = d

2 . The Regge trajectories are given by the poles of the spectral function,

bnJ(ν). (1.13)

That the term eJπ/2P±J takes care of (s → −s) in the Sommerfeld-Watson transform
and from now on we will dispense with this term by writing out the (s → −s) term
separately. Further, the factor (−1)J can be taken care of by overall sign for even and odd
spins separately.

Summary of results. Following [1], we extend the analysis to few more examples in-
cluding d-dimensional extensions of the 0, 1−magnon cases in [3] and chiral fishnet theories
in four dimension in [31]. We observe that in general dimensions as for the chiral fishnet
theory, obtaining exact analytical solutions J(ν, ξ) for the Regge trajectories as a function
of the coupling−ξ is rendered almost impossible due to complexity of the spectral func-
tion. Nevertheless one can obtain the Regge trajectories depending on whether ν > ξ or
ν < ξ. The precise dependence of ν on coupling depends on the details of the theory being
considered. These two regimes offer tractable solutions to the spectral function which can
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be shown to be analytic continuations of each other in certain cases where closed form
polynomial solutions in principle can be found. Further, we can use the different regimes
of the solutions to reduce the Mellin amplitudes. From here on, we will discuss the leading
Regge trajectories for the theories under consideration. Without further ado, we will dive
into the main findings of the work.

General d fishnet theory: 0-magnon

For 0-magnon in generalised d dimensional fishnet theory, we are dealing with the four
point correlators 〈Tr (X(x1)X(x2)) Tr

(
X̄(x3)X̄(x4)

)
〉 where the operator X has dimension

∆ = d/4. The definitions “inner” and “outer” solutions have been defined in section 2. In
short, since we are working in weak coupling, there are broadly two regimes of the coupling
ξ, relative to the integrand ν, where we perturbatively evaluate the Regge trajectories.
The inner solution corresponds to the regime ν < ξα while the outer region corresponds
to ν > ξα (where the exponent α depends on the type of correlator we are looking at). A
more precise definition is given below (2.2).

• Regge trajectories: Outer solution. The outer solution for ν > ξ2 is,

J
(0)
o± (ν) = ±iν + α1±ξ

4 +
∞∑
k=2

αk(±ν)ξ4k . (1.14)

with the coefficients are dimension dependent and the first few are given by,

α2(±ν) = −F1(±iν)
2 α2

1± , α3(±ν) = F2(±iν) + 3F1(±iν)2

8 α3
1± ,

α4(±ν) = −F3(±iν) + 12F1(±iν)F2(±iν) + 16F1(±iν)3

48 α4
1± .

(1.15)

where Fr(ν) is given explicitly in (1.30) and α1± = Γ(h)Γ(iν)/(2Γ(h± iν)).

• Regge trajectories: Inner solution. The inner solution for ν ≤ ξ2 is,

J
(0)
i± (x) = α̃1±ξ

2 +
∞∑
k=2

α̃k(x)ξ2k , ν = xξ2 , x < 1 , (1.16)

with the coefficients given by,

α̃2(x) =−Hh−1
2 (α̃2

1±+x2) ,

α̃3(x) =
(α̃2

1±+x2)
8α̃1±

[
(Hh−1)2(x2+3α̃2

1±)+Hh−1,2(α̃2
1±−x2)

]
,

α̃4(x) =−
α̃2

1±+x2

24
[
6Hh−1Hh−1,2α̃

2
1±+Hh−1,3(α̃2

1±−3x2)+2(Hh−1)3(3x2+4α̃2
1±)
]
.

(1.17)

where α̃1± = ±
√

1− x2 and Hn,r is the generalized harmonic number of order r of n.
The outer solution serves as a reference to determine the correct radius of convergence
for the inner solution which determines the limits of the integral to be computed for the
Mellin amplitude.
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• Regge-Mellin Amplitude. Finally, from conformal Regge theory, the final Mellin
amplitude for the leading Regge trajectory can be written as a perturbative expansion
in coupling,

M(0)
+ = 2

∫ 1

−1
dy
∞∑
k=0

Ak(L, y)e
Ly
√

1− y2

yk+1 ξ2k+2 , L = ξ2 log s4 . (1.18)

this is a perturbative expansion of the Mellin amplitude obtained for ξ → 0, s → ∞ and
L = ξ2 log(s/4) = constant. The functions Ak(L, y) are given by,

A0(L,y) = Γ3(h)
(2π)1+4hΓ4

(
h
2

)
A1(L,y) = A0(L,y)

2

[
Hh−1−y

(
ψ(0)(h)(L−4y)+2yψ(0)

(
h−t

2

)
+4yψ(0)

(
h

2

)
+γL

)]
.

(1.19)

where γ is Euler-Mascheroni constant.

General d fishnet theory: 1-magnon

For 1-magnon case, we consider the four point correlator 〈Tr(X(x1)Z(x1)X(x2))
Tr(Z̄(x3)X̄(x4)Z̄(x4))〉. The dimensions are ∆1 = d/2 and ∆2 = d/4. We have two
distinct cases for even and odd spin. For even spin, the solution for the leading Regge
trajectory are,

• Regge trajectories: Outer solution. The outer solution for ν > ξ is,

J
(1e)
o± (ν) = −h2 ± iν + β1±ξ

2 +
∞∑
k=2

βk(±ν)ξ2k . (1.20)

with the coefficients given by

β2(±ν) = −
β2

1±
2 G1(±iν), β3(±ν) =

β3
1±
8
[
G2(±iν) + 3G1(±iν)3

]
,

β4(±ν) = −
β4

1±
48

[
G3(±iν) + 12G2(±iν)G1(±iν) + 16G1(±iν)3

] (1.21)

The functions Gr(ν) are given by (1.30) and β1± = Γ(h/2)Γ(iν)/(2Γ(h/2± iν)).

• Regge trajectories: Inner solution. The inner solution for ν < ξ

J
(1e)
i± (x) = −h2 + β̃1±ξ +

∞∑
k=2

β̃k(x)ξk , ν = xξ2 , x < 1 , (1.22)

where the coefficients are given respectively by,

β̃2(x) =−1
2(β̃2

1±+x2)Hh
2−1, β̃3(x) =

(β̃2
1±+x2)
8β̃1±

[(
Hh

2−1

)2
(3β̃2

1±+x2)+Hh
2−1,2(β̃2

1±−x2)
]

β̃4(x) =− 1
24(β̃2

1±+x2)
[(
Hh

2−1

)3
(8β̃2

1±+6x2)+6Hh
2−1Hh

2−1,2 β̃
2
1±+Hh

2−1,3(β̃2
1±−3x2)

]
.

(1.23)

where β̃1± = ±
√

1− x2 and Hn,r is the generalized harmonic number of order r of n.
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• Regge-Mellin Amplitude. The reduced Mellin amplitude is then,

M(1)
+ =

∫ 1

−1
dys−

h
2

√
1− y2eQy

∞∑
k=0

Bk(Q, y)ξ2+k + (s→ −s) , Q = ξ log s4 . (1.24)

this is a perturbative expansion of the Mellin amplitude obtained for ξ → 0, s → ∞ and
L = ξ log(s/4) = constant. The functions Bk(Q, y) given by,

B0(Q,y) =−
csc
(
πh
2

)
Γ
(
h
2

)
Γ
(

3h
4 −

t
2

)2

2(4h+3)π4hΓ
(
1− h

2

) ,

B1(Q,y) =B0(Q,y)
(
−y
(
H−h2

+ψ(0)
(3h

4 −
t

2

))
− 1

2Q
(
ψ(0)

(
h

2

)
+γ
)

+πy cot
(
πh

2

))
(1.25)

Similarly for 1-magnon odd spin case,

• Regge trajectories: Outer solution. For ν > ξ,

J
(1o)
o± (ν) = −h2 + λ±ξ

2 +
∞∑
k=2

λk(ν)ξ2k , (1.26)

with the coefficients given by,

λ2(ν) = −
λ2

1±
2 G1(iν), λ3(ν) =

λ3
1±
8
[
G2(iν) + 3G1(iν)3

]
,

λ4(ν) = −
λ4

1±
48

[
G3(iν) + 12G2(iν)G1(iν) + 16G1(iν)3

]
,

(1.27)

where the functions Gr(ν) are given in (1.30) and λ1± = −Γ(h/2)Γ(iν)/2Γ(h/2± iν).

• Regge trajectories: Inner solution. The inner solution is given by,

J
(1o)
i± (x) = −h2 + λ̃±ξ +

∞∑
k=2

λ̃k(x)ξk , ν = xξ , x < 1, (1.28)

with the first few coefficients given by,

λ̃2(x) =−1
2(λ̃2

1±+x2)Hh
2−1, λ̃3(x) =

(λ̃2
1±+x2)
8λ̃1±

[(
Hh

2−1

)2
(3λ̃2

1±+x2)+Hh
2−1,2(λ̃2

1±−x2)
]

λ̃4(x) =− 1
24(λ̃2

1±+x2)
[(
Hh

2−1

)3
(8λ̃2

1±+6x2)+6Hh
2−1Hh

2−1,2 λ̃
2
1±+Hh

2−1,3(λ̃2
1±−3x2)

]
.

(1.29)

where λ̃1± = ±i
√

1 + x2 and Hn,r is the generalized harmonic number of order r of n.

• Regge-Mellin amplitude. Finally, the Mellin amplitude for odd spin can be shown to
be the analytic continuation of the even spin result for ξ → iξ.

The functions Fr and Gr are given by,

Fr(z) := (r − 1)!Hh−1,r + (−1)r−1
[
ψ(r−1)(h+ z)− ψ(r−1)(z)

]
,

Gr(z) := (r − 1)!Hh
2−1,r + (−1)r−1

[
ψ(r−1)

(
h

2 + z

)
− ψ(r−1)(z)

]
.

(1.30)
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Chiral fishnet theory in d = 4

For the chiral fishnet theory, we consider correlation functions
〈Tr[φ1(x1)φ1(x2)]Tr[φ†1(x3)φ†1(x4)]〉 The dimension of these operators are ∆ = 1.
There are two coupling constants κ and ω. We work in the limit κ → 0, ω → 0 with κ/ω
held constant.

• Regge trajectories: Outer solution. The outer solution is,

J
(c)
o±(ν) = ±iν + γ1±ω

4 +
∞∑
k=2

γk(±ν)ω4k . (1.31)

the first few coefficients in the expansion are given by

γ2(±ν) =
γ1±

(
γ1±(3−3(ν2±3iν))−2z4

(
3ψ(1)

(
± iν

2 +1
)
−3ψ(1)

(
± iν

2 + 1
2

)
+π2

))
6(ν2±iν)

γ3(±ν) = γ1±
36ν2(ν∓i)2

[
3γ1±

{
6γ1±(1+ν(ν(−9+ν(ν∓5i))+5i))+z4

(
4π2(−1+ν(ν∓4i))

+12(−1+ν(ν∓4i))ψ(1)
(
± iν2 +1

)
−12(−1+ν(ν∓4i))ψ(1)

(
± iν2 + 1

2

)

+3ν(ν∓i)
(
−ψ(2)

(
± iν2 +1

)
+ψ(2)

(
± iν2 + 1

2

)
+12ζ(3)

))}

+4z8
(

3ψ(1)
(
± iν2 +1

)
−3ψ(1)

(
± iν2 + 1

2

)
+π2

)2
]
, (1.32)

where γ1± = − 2
(ν2±iν) and we have used κ = zω and z ≥ 0.

• Regge trajectories: Inner solution. The inner solution is,

J
(c)
i± (x) = δ̃1±ω

2 +
∞∑
k=2

δ̃k(x)ω2k (1.33)

with first few coefficients δ̃k, k ≥ 2 given by

δ̃2(x) = − δ̃
2
1
2 − 2x2, δ̃3(x) =

(
δ̃2

1 + 4x2
) (
δ̃2

1 + 6z4ζ(3)
)

2δ̃1
,

δ̃4(x) = − 1
120

(
δ̃2

1 + 4x2
) [

75δ̃2
1 + 60x2 + z4

{
30
(

12ζ(3) + ψ(2)(1)− ψ(2)
(1

2

))
+ 7π4

}]
,

(1.34)

where δ̃1± = ±2
√

1− x2 and we have used κ = zω and z ≥ 0.
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• Regge-Mellin amplitude. We obtain the perturbative expansion of the Mellin ampli-
tude for ω → 0, s→∞ and Q = ω2 log(s/4) = constant,

M(c)
+ (s, t) = 2

∫ 1

−1
dx Γ

(
1− t2

)2√
1−x2e2qx

×
(

ω2

128π9x
+ ω4

128π9x2

(
−2qx−2x2ψ(0)

(
1− t2

)
+4x2+1

)
+ ω2

384π9x3

(
8ω4

(
x
(
6q2x−6q

(
2x2+1

)
+x

(
π2
(
2x2+1

)
+6
))

+3x2
(

2xψ(0)
(

1− t2

)(
2q+xψ(0)

(
1− t2

)
−4x

)
+
(
2x2−1

)
ψ(1)

(
1− t2

))
+3
)

+9κ4ζ (3)(x(q+x)−1)
)

ω4

7680π9x4

(
−κ4

(
180ζ (3)

(
−2x

(
−2q2x+q

(
3−2x2

)
+2x3+x

)
+2x2 (2x(q+x)−1)ψ(0)

(
1− t2

)
+3
)

+7π4x2 (2x(q+x)−1)
)

−320ω4
(

2q
(
2q2+π2+3

)
x3−

(
6q2+π2+3

)
x2+6x4 (2x(q−2x)+1)

×ψ(0)
(

1− t2

)2
+3x2

(
2x
(
2x2−1

)
(q−2x)+1

)
ψ(1)

(
1− t2

)
+2x4ψ(0)

(
1− t2

)(
6q (q−2x)+

(
6x2−3

)
ψ(1)

(
1− t2

)
+π2

(
2x2+1

))
+4
(
π2−6

)
qx5+6qx+4x6ψ(0)

(
1− t2

)3
+
(
4x2−3

)
x4
(
ψ(2)

(
1− t2

)
+12ζ (3)

)
−8π2x6+12x4−3

)))
+(s→−s)+O

(
ω10,ω6κ4,ω2κ8

)
(1.35)

The remainder of the paper is organized as follows. In section 2, we discuss general prin-
ciples for perturbative evaluation of the Regge trajectories in generalized fishnet theories
in d-dimensions. Specifically, we focus on the issues regarding the convergence of the so-
lutions and solutions appropriate for different perturbative regimes. In section 3 we apply
the general principles to the d-dimensional 0-magnon case including details of the Regge
trajectories, the Mellin amplitudes and further analysis. In section 4 we perform the same
analysis for the 1-magnon case separately for even and odd spin. In section 5, we extend
the logic to chiral fishnet theory in four dimensions. This is a bit involved due to multiple
couplings but give rise to interesting observations. We finish the work with conclusions
in section 6 and point out some future directions. In the appendix B, we point out the
integrals required for the inner and outer solutions. Specifically, we point out the subtleties
involved in the choice of contour manipulations, such as Wick rotation and analytic contin-
uation. In appendix C, we do the same for the chiral fishnet theory. Finally in appendix D,
we provide some details of the integrals needed for the perturbative computations of the
Mellin amplitudes.
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2 Perturbative Regge trajectories: general principles

In this section we give a general outline of perturbative analysis for obtaining Regge tra-
jectories in the d-dimensional conformal fishnet theory. Generically, the spectral func-
tions (1.13) are very complicated functions of spin J , the spectral representation parameter
ν and the coupling constant ξ of the theory. The Regge trajectories are yielded by the poles
in spin J of the spectral function bnJ(ν) which, for d-dimensional fishnet theories, has the
generic structure (

E
(n)
h+iν,J

)p
1− χnE(n)

h+iν,J

(2.1)

where E(n)
h+iν,J is the eigenvalue of the graph-building operator Ĥ(n) for n-magnon graph.

One has p = 1, 2 for 0 and 1 magnon graphs respectively and χ0 = ((4π)hξ2)2, χ1 =
(4π)hξ2. For a self-contained review of these structures the readers are referred to section 3
of [1]. However, often E(n)

h+iν,J contains transcendental or hypertranscendental functions like
gamma function, polygamma function etc., making it almost always impossible to obtain
exact expression of the Regge spin J as a function of the scaling dimension (∆ = h + iν)
as well as the coupling ξ. To circumvent this, we will work perturbatively and obtain an
expression for the Regge spin perturbative in ξ with expansion coefficients as functions of ν.
This kind of perturbative analysis was first initiated in [1] for studying Regge theory of two
magnon correlators in 4d conformal fishnet theory. We formalize the argument presented
there in this section.

Essentially there are two extreme regions of couplings where we can consider the per-
turbative expansion in ξ. One is the weak coupling region, ξ → 0, and another is the strong
coupling region ξ →∞. In this work, we will focus on the weak coupling limit only. In the
following, we will chalk out the basic principles of perturbative evaluation for the Regge
trajectories using abstract arguments. Explicit evaluations based on this abstract analysis
will be presented for various cases in subsequent sections.

In the weak coupling region we can consider following generic perturbation series
about ξ = 0

JRegge =
∞∑
k=0

fk(ν) ξαk (2.2)

where α > 0 is non-universal and depends on the spectral function of the correlator we
are looking at. Due to the range of integration of ν, (∞,+∞), there is a slight subtlety in
the perturbative expansion. We can distinguish two distinct regions for ν: |ν| � h(ξ) and
|ν| < h(ξ) for some h(ξ) (which is, again, non-universal and depends on the correlator),
giving rise to two distinct perturbative representations of J in the regions above.

First we consider the region of ν where ν � ξ. We observe that, the Regge spin JRegge

satisfies (
E

(n)
∆,JRegge

)1−p
[(
E

(n)
∆,JRegge

)−1
− χn

]
= 0, p ≥ 1. (2.3)

Now, this has two solutions: one is provided by the pole(s) of E(n)
∆,JRegge . This solution is

independent of the coupling ξ. Let us call this Regge trajectory to be J (n)
f (ν) for later
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reference. The subscript f is to denote the fact that, in the free limit i.e., ξ → 0, this is the
only solution that is there. Therefore, we will call J (n)

f free Regge trajectory. The other
solution which, clearly, depends upon the coupling is given by the solution of the equation4

χnE
(n)
∆,JRegge = 1. (2.4)

We have χn ∼ ξ2q, q being either 1 or 2. Then, for (2.4) to have a solution for JRegge in
the limit ξ → 0 one must have that, in the perturbative expansion of E(n)

∆,JRegge ,5 in ξ there
is a term ∼ ξ−2q as ξ → 0. Essentially, we are looking for singular behavior of E(n)

∆,JRegge

in the limit ξ → 0. This can be achieved by considering the ansatz in (2.2) to be a weak
coupling perturbation about the free Regge trajectory J (n)

f :

J (n)
o (ν) := J

(n)
f (ν) +

∞∑
k=1

fk(ν)ξαk. (2.5)

Now, α can be determined by the pole structure of E(n)
∆,JRegge . Assuming J = J

(n)
f to be a

simple pole (which is true for all of our cases), it is straightforward to obtain

α = 2q . (2.6)

Using this ansatz into the left hand side of (2.4) and expanding the same about ξ = 0
assuming ν to be non-perturbative, one solves for {fp(ν)} by solving (2.4) order by order
in ξ. The fact that JRegge

ξ is a pole of the spectral function manifests itself as a pole in
f1(ν) with residue proportional to ξ−2pq i.e., one has the following structure for the spectral
function (1.13), (

E
(n)
∆,J(n)

o

)p
1− χnE(n)

∆,J(n)
o

= ξ−2pq Bo(ν)
[f1(ν)]p−1 [f1(ν)− F (ν)] (2.7)

where, it turns out that, Bo(ν) can be solely expressed in terms of to the residue of E(n)
∆,J

at J = J
(n)
f . Also, F (ν) is actually the same residue but some ν-independent numerical

factor! The readers are referred to appendix A for the detailed analysis. Also Note that,
this pole structure, (2.7), also account for the Regge spin J (n)

f (ν) by virtue of the pole at
f1(ν) = 0. This is expected by construction of J (n)

o .
The perturbative expression (2.4) can’t be valid over the entire range of ν ∈ (−∞,∞).

Especially, near ν → 0 this perturbation series can’t hold good simply because now ν and
ξ are comparable. Therefore, the assumption of ν being non-perturbative does not hold
good in this domain. In order to estimate the radius of convergence, we perform a ratio
test. The perturbative expansion converges as long as

lim
k→∞

∣∣∣∣fk+1(ν)
fk(ν)

∣∣∣∣ ξ2q < 1. (2.8)

4Note that, for this solution we are assuming quite justifiably (E(n)
∆,JRegge )−1 6= 0.

5We use the ansatz in (2.2) into E(n)
∆,JRegge to obtain a weak coupling perturbative expansion of the latter.
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This is true for any |ν| ∼ O(1). However, as |ν| becomes less than unity there will come a
point where this condition will fail to hold good. This is determined by investigating the
ratio |fk+1(iν)/fk(iν)| in the limit ν → 0. In particular, say, we have

lim
ν→0
k→∞

∣∣∣∣fk+1(ν)
fk(ν)

∣∣∣∣ ∼ |ν|−b, b > 0. (2.9)

Then the perturbative expansion will break down if

|ν|−b ξ2q & 1. (2.10)

Thus, we can’t use the perturbative expansion in (2.5) for |ν| ∼ O
(
ξ2q−b

)
. To proceed

further, let us introduce the scaling relation

ν = x ξ2q−b (2.11)

so that now the entire region of ν is labelled by that of x and we are interested into two
regions: |x| < 1 and |x| > 1. We will call the former to be inner region and the latter outer
region. In the outer region we can use (2.5) with α = 2q but in the inner region we will
need to use a new perturbation expansion. In general with the scaling behaviour (2.11)
we have,

1− χnE(n)
h+ix ξ2q−b,JRegge = 0 (2.12)

For x 6= 0, |x| < 1 we can consider the perturbative ansatz for JRegge solving (2.12) above
to be

J
(n)
i (x) = J

(n)
f (0) +

∑
k=1

hk(x)ξk(2q−b). (2.13)

Here, the subscript i denotes that this perturbative ansatz is valid in the inner region.
We will, hereafter, call this solution by the name inner solution and the perturbative
expression (2.5) by the name outer solution.6As before, the Regge pole structure of the
spectral function manifests itself into a pole of the spectral function in h1(x). Thus, in the
inner region the spectral function has the structure(

E
(n)
h+ix ξ2q−b,J

(n)
i

)p
1− χnE(n)

h+ix ξ2q−b,J
(n)
i

≡ ξ−2pq Bi(x)
[h1 −Hf (x)]p−1 [h1 −Hξ(x)] (2.14)

Here, the pole at h1 = Hf (x) corresponds to the J (n)
f (x) while, h1 = Hξ(x) corresponds to

the inner solution J (n)
i (x). We will now consider zero magnon and one magnon correlators

in the d-dimensional Fishnet theory for our explicit calculation. It is also worth mentioning
that, abstract arguments above have been laid out keeping in mind the structure of the
spectral function, (2.1), for d-dimensional Fishnet theories. However, similar arguments
can also be put into use, if required, for other structures of the spectral functions. For
instance, this has been done for our analysis of Regge trajectories in chiral fishnet theories.

6Hence the extra o in the subscript!
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3 Zero magnon correlator in d-dimensional fishnet theory

In the zero-magnon case we have ∆1 = ∆2 = ∆3 = ∆4 = h
2 . Putting these into (1.11) we

have for zero-magnon correlator,

M(0)
± (s, t) =

±1
2πi

∮
dJ

π

sinπJ

∫ ∞
−∞

dν

(
s

4

)J
ν sinhπν ζ0(∆i, t)

×
Γ(h+J)Γ(h+J−iν)Γ(h+J+iν)Γ

(
h−J−t−iν

2

)
Γ
(
h−J−t+iν

2

)
2π2(h+1)Γ(J+1)Γ

(
h+J−iν

2

)2
Γ
(
h+J+iν

2

)2
E

(0)
∆,J

1−χ0E
(0)
∆,J


±(s→−s), (3.1)

with ζ0(∆i, t) = Γ
(
h−t

2

)−2
. In general d, the eigenvalue of the zero-magnon graph building

operator is given by eq. (C.7) of [3]

E
(0)
h+iν,J = c4π2h

Γ
(
J−iν

2

)
Γ
(
J+iν

2

)
Γ
(

2h+J−iν
2

)
Γ
(

2h+J+iν
2

) (3.2)

and the spectral function is given by (2.1) with χ0 = (4π)2hξ4, p = 1,

E
(0)
h+iν,J

1− χ0E
(0)
h+iν,J

. (3.3)

Note that, E(0)
h+iν,J as well as the spectral function is invariant under ν → −ν. Thus, if

JRegge(ν) is a Regge trajectory so is JRegge(−ν). Now, we see that the spectral function is
in terms of Gamma functions thereby, making the exact evaluation of the Regge trajectories
difficult. So we will follow the analysis chalked out in section 2 to investigate the Regge
theory in the weak coupling limit ξ → 0.

3.1 Evaluation of Regge trajectories

We initiate determination of Regge trajectory in the weak coupling limit following section 2.
First, observe that the free Regge trajectory J (0)

f is given in this case by

J
(0)
f±(p) = ±iν − 2p, where

0 ≤ p ≤ h− 1, h ∈ Z≥0,

p ≥ 0, h ∈ Z≥0 + 1
2 .

(3.4)

Clearly, J (0)
f±(0) corresponds to the leading Regge trajectory for all h. We will concentrate

our attention upon the leading Regge trajectory from hereon.

Outer solution. For perturbative evaluation of the leading Regge trajectory, we will
follow the analysis chalked out in section 2. First, we will consider the outer solution.
Observing that J (0)

f±(0) is a simple pole of E(0)
h+iν,J , we consider the perturbative solutions

J
(0)
o± (ν) = ±iν + α1±ξ

4 +
∞∑
k=2

αk(±ν)ξ4k . (3.5)
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the first few coefficients in the expansion (3.5) are given by,7

α2(±ν) = −F1(±iν)
2 α2

1± , α3(±ν) = F2(±iν) + 3F1(±iν)2

8 α3
1± , (3.6)

α4(±ν) = −F3(±iν) + 12F1(±iν)F2(±iν) + 16F1(±iν)3

48 α4
1± . (3.7)

with the definition

Fr(z) = (r − 1)!Hh−1,r + (−1)r−1
[
ψ(r−1)(h+ z)− ψ(r−1)(z)

]
, (3.8)

where ψ(n)(z) is the usual polygamma function andHn,r is the generalized harmonic number
of order r of n.8 Note that we have two leading outer solutions. Using the solutions (3.5),
the pole structure of the spectral function manifests as

E
h+iν,J(0)

oξ

1− χ0Eh+iν,J(0)
oξ

= ξ−4 (4π)−2hB(h,±iν)/2
[α1± −B(h,±iν)/2] , (3.9)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b). This has a simple pole at α1± = B(h,±iν)/2. While
evaluating the Mellin amplitude we have to take into account both J (0)

oξ+(ν) and J (0)
oξ−(ν).

Inner solution. Now, we will move onto evaluation of the inner solution. Following the
analysis of section 2, we find out that the inner region corresponds to |x| < 1 with ν = xξ2.
Thus the perturbative expression for the inner solution turns out to be

J
(0)
i (x) =

∞∑
k=1

α̃k(x)ξ2k , (3.10)

where first few coefficients α̃k(x), k ≥ 2 are expressed as

α̃2(x) = −Hh−1
2 (α̃2

1 + x2) , α̃3(x) = (α̃2
1 + x2)
8α̃1

[
(Hh−1)2(x2 + 3α̃2

1) +Hh−1,2(α̃2
1 − x2)

]
,

α̃4(x) = − α̃
2
1 + x2

24
[
6Hh−1Hh−1,2α̃

2
1 +Hh−1,3(α̃2

1 − 3x2) + 2(Hh−1)3(3x2 + 4α̃2
1)
]
.

(3.11)
7To clear notational cluttering, we have used the a rescaling of c

(2π)h
√

2
Γ(h) c→ 1.

8 The generalized harmonic number of order r of n is defined by

Hn,r :=
n∑
k=1

1
kr
.

The special case r = 0 gives Hn,0 = n and the special case r = 1 corresponds to the usual harmonic number
Hn i.e.,

Hn :=
n∑
k=1

1
k
.
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The spectral function takes the form,

E
h+ixξ2,J

(0)
i± (x)

1− χ0Eh+ixξ2,J
(0)
i± (x)

= ξ−4 (4π)−2h(
α̃1 −

√
1− x2

) (
α̃1 +

√
1− x2

) . (3.12)

The poles are at α̃1 = α̃1± := ±
√

1− x2. Thus, analogous to the outer region, we have
contribution of two Regge trajectories in the region ν < ξ2. They are given by J (0)

i+ (x) for
α̃1 = α̃1+ and J (0)

i− (x) for α̃1 = α̃1+

3.2 Evaluation of Mellin amplitude

Now, we turn to evaluating the zero-magnon Mellin amplitude as given in (3.1). Let us
start by rewriting the expression for the Mellin amplitude as following:

M(0)
± (s, t) = ±ζ0(∆i, t)

∫ ∞
−∞

dν

∮
dJ

2πi M
(0)(J, ν)

(
s

4

)J E
(0)
h+iν,J

1− χ0E
(0)
h+iν,J

± (s→ −s) (3.13)

with

M (0)(J, ν) := πν sinh(πν)
Γ(h+ J)Γ(h+ J + iν)Γ(h+ J − iν)Γ(h−J−t+iν2 )Γ(h−J−t−iν2 )

2π2(h+1) sin(πJ)Γ(1 + J)Γ(h+J+iν
2 )2Γ(h+J−iν

2 )2 .

(3.14)
The contour integral over J is supposed to pick up the contribution of Regge pole by

virtue of Cauchy’s integral formula. But we have already seen that, the pole structure of
the spectral function manifests itself as a pole in the expansion coefficient of the lowest
power of the ξ in the perturbative expression for the Regge trajectory. Thus, we can change
the integration variable from J to this coefficient, let us call the coefficient generically δ,
so that now we consider a contour integral over this expansion coefficient δ rather than
J itself. This change of variable will naturally introduce a Jacoboian of transformation.
Thus, the integral over J(δ) can be recast as,

∮
dJ

2πi M
(0)(J, ν)

(
s

4

)J E
(0)
h+iν,J

1− χ0E
(0)
h+iν,J

→
∮

dδ

2πi Θ(δ)M (0)(J(δ), ν)
(
s

4

)J(δ) E
(0)
h+iν,J

1− χ0E
(0)
h+iν,J
(3.15)

where δ is the said coefficient which, in the present case, is α1 for outer solution and α̃1
for inner solution. Further, Θ(δ) is the Jacobian of transformation given by

Θ(δ) := ∂J

∂δ
. (3.16)

Now, we turn our attention towards the ν integral. We will divide the ν integration
domain into inner and outer regions and perform the integrals accordingly followed by
combining them at the end. Accordingly, we will call these inner integral and outer integral
respectively. Thus, the ν integral can be expressed,

I(0)(ξ, s, t) =
∫ ∞
−∞

dνF(J, ν) =
(∫ −ξ2

−∞
+
∫ ∞
ξ2

)
dνFouter +

∫ ξ2

−ξ2
dνFinner , (3.17)
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where

F(J, ν) = ζ0(∆i, t)
∮

dδ

2πi Θ(δ)M (0)(J(δ), ν)
(
s

4

)J(δ) E
(0)
h+iν,J

1− χ0E
(0)
h+iν,J

(3.18)

Here, Finner is obtained by using J (0)
i± for F(J, ν) and Fouter by putting J (0)

o± into the same.
In can be shown that the full integral (3.17) can be reduced to the following (based on
some unproven but not improbable assumptions regarding analytic continuation of inner
and outer solution as argued in appendix B),

I(0)(ξ, s, t) = 2ξ2ζ0(∆i, t)
∫ 1

−1

ydy√
1− y2

[
Φ(0)

+

(√
1− y2

)]
. (3.19)

Where Φ(0)
+ (
√

1− y2), Θ(0)
i (α̃1+) and M (0)(J, ν) has been defined in the (B.13), (B.8)

and (3.14) respectively. For convenience of the reader we reproduce the expressions from
the appendix here.

Φ(0)
+ (
√

1−y2) := Θ(0)
i (α̃1+)M (0)

(
J
(0)
i+ (

√
1−y2),

√
1−y2

) (
s

4

)J(0)
i+ (
√

1−y2)
[
±(4π)−2h

2ξ4y

]
,

Θ(0)
i (α̃1+) :=

∂J
(0)
i+ (

√
1−y2)

∂α̃1+

= ξ2
[
1−H1

h−1α̃1+ξ
2+ ξ4

8α̃2
1+

+H2
h−1((1−y2)2+3α̃4

1+)+(H1
h−1)2(9α̃4

1+

+4(1−y2)α̃2
1+−(1−y2)2)+O(ξ6)

]
, (3.20)

where α̃1+ = y. The final Mellin amplitude is given by

M(0)
+ (s, t) = ζ0(∆i, t)I(0)(ξ, s, t) + (s→ −s). (3.21)

Note that M(0)
− (s, t) is zero because of the fact that the correlator is symmetric under

s→ −s. In the limit

ξ → 0, s→∞, L = ξ2 log s4 → Constant

one finds the generic structure

M(0)
+ (s, t) =

∫ 1

−1
dy
∞∑
k=0

Ak(L, y) e
Ly
√

1− y2

yk+1 ξ2k+2 + (s→ −s) (3.22)

where, we have introduced L = ξ2 log(s/4). The first three coefficients A0, A1 and A2 are
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given as following,

A0(L,y) = Γ3(h)
(2π)1+4hΓ4

(
h
2

)
A1(L,y) = A0(L,y)

2

[
Hh−1−y

(
ψ(0)(h)(L−4y)+2yψ(0)

(
h−t

2

)
+4yψ(0)

(
h

2

)
+γL

)]
A2 (L,y) = A0 (L,y)

48

(
6y
(
ψ(0) (h)2

(
L2y−L

(
6y2+1

)
+16y3

)
+4γLy2ψ(0)

(
h−t

2

)
+2y

(
−ψ(1) (h)(y (L−8y)+2)+

(
2y2−1

)
ψ(1)

(
h−t

2

)
+
(
2−4y2

)
ψ(1)

(
h

2

))
+2ψ(0) (h)

(
2y2 (L−4y)ψ(0)

(
h−t

2

)
+γL(y (L−2y)−1)

)
+Lψ(1) (h)

+4y3ψ(0)
(
h−t

2

)2)
+48y3ψ(0)

(
h

2

)(
ψ(0) (h)(L−4y)+2yψ(0)

(
h−t

2

)
+γL

)
+96y4ψ(0)

(
h

2

)2
−12ψ(1) (h)+π2

(
L
(
2y2−1

)
y+4y2+2

)
+6γ2Ly (y (L+2y)−1)

)
(3.23)

One can easily determine the higher order terms. Now we would like to point out that, the
integrand (3.22) has singularity at y = 0. Thus the integral (B.44) has to be considered in
the sense of Cauchy principal value integral. The integrals to be done are∫ 1

−1
dy y−n

√
1− y2eLy, n ∈ Z≥. (3.24)

These integrals can be expressed in terms of Bessel function Jµ(L) and modified Struve
functions Lν(L).9

3.3 Agreement with d = 4 results for 0-magnon

In this section we show explicitly that our d dimensional results in the limit d→ 4 match
with results obtained in [1] and thereby [2]. Since we have used a rescaling here of the
factor c for convenience, it is better to reproduce d = 4 answer for clarity. For d = 4,
spectral function takes the values

E
(0)
∆,J

1− χ0E
(0)
∆,J

∣∣∣∣∣∣
d=4

= 1
64π4 ((J2 + ν2) ((J + 2)2 + ν2)− 4ξ4) (3.25)

The leading Regge poles are at

J± = −1 +
√

2
√
ξ4 − ν2 − ν2 + 1 (3.26)

The Regge poles are exact in coupling and hence the Mellin amplitude in the limit in
the limit

ξ → 0, s→∞, ξ2 log s4 → Constant

9See appendix D.
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is evaluated along the same lines as [1]. For brevity we just reproduce the answer here,

M(0)
+, d=4(s, t) = 2

∫ 1

−1
dy

ξ2√1−y2eLy

512π9y
−
ξ4√1−y2eLy

(
y(L−4y)+2y2ψ(0) (1− t

2
)
−1
)

1024π9y2

+ ξ6√1−y2eLy

12288π9y3

(
3L2y2+6y2

(
2yψ(0)

(
1− t2

)(
L+yψy(0)

(
1− t2

)
−4y

)
+
(
2y2−1

)
ψ(1)

(
1− t2

))
−6L

(
2y3+y

)
+2
(
2y2+1

)(
π2y2+3

)))
(3.27)

where we have done the scaling ν = ξ2√1− y2. In the limit d→ 4 (3.22) exactly matches
with (3.27). Note that apriori this was not clear that this can happen since the integral
in (3.27) is an exact manipulation without breaking up into “inner” and “outer” regions.
Let us take a moment to emphasise the non-triviality of this check in the sense that the
integral over the d-dimensional case involved jacobian of a non-trivial transformation due
to perturbative evaluation of the Regge pole where as such things were completely absent
for the non-perturbative analysis done in [1] and [2]. This also serves as a non-trivial check
of our assumption about analytic continuation made in the appendix B.

4 One magnon correlator in general d fishnet theory

For the one magnon case we have ∆1 = ∆4 = h, ∆2 = ∆3 = h
2 . Putting these into (1.11),

one obtains

M(1)
± (s, t) =

[
±1
2πiζ1(∆1, t)

∮
dJ

π

sin πJ

∫ ∞
−∞

dν
s

4
J
eiπJ/2 ν sinh πν

×
Γ(h+ J)Γ

(
h+J−iν

2

)
Γ
(
h+J+iν

2

)
Γ
(
h−J−t−iν

2

)
Γ
(
h−J−t+iν

2

)
2π2(h+1)Γ(J + 1)Γ

(
h+2J−2iν

4

)
Γ
(

3h+2J−2iν
4

)
Γ
(
h+2J+2iν

4

)
Γ
(

3h+2J+2iν
4

)
×

(
E

(1)
∆,J

)2

1− χ1E
(1)
∆,J

]
± (s→ −s) (4.1)

with ζ1(∆i, t) = Γ
(

3h−2t
2

)−2
and χ1 = (4π)hξ2. M(1)

+ (s, t) is the one relevant to even

spin while M(1)
− (s, t) for odd spin. In general d, the eigenvalue of the one-magnon graph

building operator is given by (C.14) of [3]

E
(1)
h+iν,J = c2πh(−1)J

Γ
(
h+2J−2iν

4

)
Γ
(
h+2J+2iν

4

)
Γ
(

3h+2J−2iν
4

)
Γ
(

3h+2J+2iν
4

) . (4.2)

Regge trajectories are given by the poles of the spectral function(
E

(1)
h+iν,J

)2

1− (4π)hξ2E
(1)
h+iν,J

. (4.3)
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As in the zero magnon case, the spectral function is in terms of Gamma functions thus
making the exact evaluation of the Regge trajectories difficult. Therefore the analysis of
section 2 will be followed as usual.

4.1 Evaluation of the Regge trajectories

First, the free Regge trajectory is given by

J
(1)
f (p;±iν) = −2p− h

2 ± iν, p ∈ Z≥, s.t.

0 ≤ p ≤ h
2 , h ∈ Z≥0 ;

p ≥ 0, h ∈ Z≥0 + 1
2 .

(4.4)

E
(1)
h+iν has simple poles in these locations. The leading trajectory in this family is given

by p = 0. The free Regge trajectories are same for even and odd spins. Now, we turn to
evaluation of the coupling dependent Regge trajectory. As in the zero magnon case we will
consider only the leading trajectory in the following analysis.

I. Even spin

For even spin we have10

E
(1e)
h+iν,J = c2πh

Γ
(
h+2J−2iν

4

)
Γ
(
h+2J+2iν

4

)
Γ
(

3h+2J−2iν
4

)
Γ
(

3h+2J+2iν
4

) . (4.5)

Using the fact that J (1)
f is simple pole of E(1)

h+iν,J we reach the following expressions for the
inner and outer solutions.

Outer solution. The outer solution is given by the perturbative expression

J
(1e)
o± (ν) = −h2 ± iν + β1±ξ

2 +
∞∑
k=2

βk(±ν)ξ2k (4.6)

where the first few members of the sequence {βk(±ν) : k ≥ 2} can be expressed as11

β2(±ν) = −
β2

1±
2 G1(±iν), β3(±ν) =

β3
1±
8
[
G2(±iν) + 3G1(±iν)3

]
,

β4(±ν) = −
β4

1±
48

[
G3(±iν) + 12G2(±iν)G1(±iν) + 16G1(±iν)3

]
.

(4.7)

where we have defined the function

Gr(z) := (r − 1)!Hh
2−1,r + (−1)r−1

[
ψ(r−1)

(
h

2 + z

)
− ψ(r−1)(z)

]
. (4.8)

10The superscript “1e” is to label that we are considering even spin case. Similarly, we will use “1o” to
denote the odd spin case.

11We have used the rescaling
2(2π)h

Γ
(
h
2

) c→ 1.

We will stick to this scaling for the rest of the analysis of one magnon case.
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Using this, the pole structure of the spectral function manifests as(
E

(1e)
h+iν,J(1e)

o± (ν)

)2

1− χ1E
(1e)
h+iν,J(1e)

o± (ν)

=
2−4h−1π−2hΓ

(
h
2

)2
Γ(±iν)2

ξ4β1±

(
2β1±Γ

(
h
2 ± iν

)2
− Γ

(
h
2

)
Γ(±iν)Γ

(
h
2 ± iν

)) . (4.9)

Note that, the pole at β1± = 0 corresponds to the free theory poles (it is immediately seen
that β1± = 0 leads to vanishing of (4.7)). The other non-trivial pole is given at

β1± = 1
2B

(
h

2 ,±iν
)
, (4.10)

where B(a, b) = Γ(a)Γ(b)/Γ(a+b). In summary we have two sets of Regge poles depending
on β1±.

Inner solution. Next, we turn toward the inner solution. Following the argument of
section 2, it is straightforward to obtain that, the inner region corresponds to |x| < 1 with
ν = xξ. Then, the perturbative expression for the inner solution is given by

J
(1e)
i (x) = −h2 +

∞∑
k=1

β̃k(x)ξk (4.11)

with first few coefficients β̃k, k ≥ 2 given by

β̃2(x) = −1
2(β̃2

1 + x2)Hh
2−1, β̃3(x) = (β̃2

1 + x2)
8β̃1

[(
Hh

2−1

)2
(3β̃2

1 + x2) +Hh
2−1,2(β̃2

1 − x2)
]

β̃4(x) = − 1
24(β̃2

1 + x2)
[(
Hh

2−1

)3
(8β̃2

1 + 6x2) + 6Hh
2−1Hh

2−1,2 β̃
2
1 +Hh

2−1,3(β̃2
1 − 3x2)

]
.

(4.12)

x-dependence appears in the form of functional dependence upon x2 which is in perfect
harmony with the symmetry of the spectral function under iν → −iν. The pole structure
is manifested as,(

E
(1e)
h+ixξ, J(1e)

i± (x)

)2

1− χ0E
(1e)
h+ixξ, J(1e)

i± (x)

= (4π)−2h

ξ4
(
β̃1 −

√
1− x2

) (
β̃1 +

√
1− x2

) (
β̃1 − ix

) (
β̃1 + ix

) . (4.13)

The β̃1 = ±ix poles correspond to the free Regge trajectory, which can be easily seen by
observing that in (4.12), all β̃k(x)→ 0 for this choice. The nontrivial pole is now given at

β̃1 = β̃1± := ±
√

1− x2 . (4.14)

We will denote the inner solution with β̃1 = β̃1± by J1e
i±.

– 20 –



J
H
E
P
1
2
(
2
0
2
0
)
1
1
7

II. Odd spin

For odd spin we have

E
(1o)
h+iν,J = −c2πh

Γ
(
h+2J−2iν

4

)
Γ
(
h+2J+2iν

4

)
Γ
(

3h+2J−2iν
4

)
Γ
(

3h+2J+2iν
4

) . (4.15)

Now, we can follow the same procedure as in the even spin case to obtain the inner and
outer solutions.

Outer solution. The outer solution is given by

J
(1o)
o± (ν) = −h2 + λ1±ξ

2 +
∞∑
k=2

λk(±ν)ξ2k (4.16)

where the first few members of {λk(±ν) : k ≥ 2} is given by,

λ2(±ν) = −
λ2

1±
2 G1(±iν), λ3(±ν) =

λ3
1±
8
[
G2(±iν) + 3G1(±iν)3

]
,

λ4(±ν) = −
λ4

1±
48

[
G3(±iν) + 12G2(±iν)G1(±iν) + 16G1(±iν)3

]
,

(4.17)

Gi(iν) being defined in (4.8). The pole structure of the spectral function manifests itself as(
E

(1o)
h+iν,J(1o)

o± (ν)

)2

1− χ1E
(1o)
h+iν,J(1o)

o± (ν)

=
2−4h−1π−2hΓ

(
h
2

)2
Γ(±iν)2

ξ4λ1±

(
2λ1±Γ

(
h
2 ± iν

)2
+ Γ

(
h
2

)
Γ(±iν)Γ

(
h
2 ± iν

)) (4.18)

As in the even spin case, the pole at λ1± = 0 corresponds to the free Regge trajectory J (1)
f .

The non-trivial pole is at
λ1± = −1

2B
(
h

2 ,±iν
)
, (4.19)

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

Inner solution. Similar to the even spin case, one obtains that, the inner solution region
corresponds to |x| < 1 with ν = xξ. Thereby, one has the perturbative expression for the
inner solution

J
(1o)
i (x) = −h2 +

∞∑
k=1

λ̃k(x)ξk (4.20)

with first few coefficients λ̃k, k ≥ 2 given by

λ̃2(x) = −1
2(λ̃2

1 + x2)Hh
2−1, λ̃3(x) = (λ̃2

1 + x2)
8λ̃1

[(
Hh

2−1

)2
(3λ̃2

1 + x2) +Hh
2−1,2(λ̃2

1 − x2)
]

λ̃4(x) = − 1
24(λ̃2

1 + x2)
[(
Hh

2−1

)3
(8λ̃2

1 + 6x2) + 6Hh
2−1Hh

2−1,2 λ̃
2
1 +Hh

2−1,3(λ̃2
1 − 3x2)

]
.

(4.21)
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Again, as in the even spin case, x-dependence appears in the form of functional dependence
upon x2 which is in perfect harmony with the symmetry of the spectral function under
iν → −iν. The pole structure is now manifested as,(

E
(1o)
h+ixξ, J(1o)

i (x)

)2

1− χ0E
(1o)
h+ixξ, J(1o)

i (x)

= (4π)−2h

ξ4
(
λ̃1 − i

√
1 + x2

) (
λ̃1 + i

√
1 + x2

) (
λ̃1 − ix

) (
λ̃1 + ix

) (4.22)

The poles at λ̃1(x) = ±ix correspond to the free Regge trajectory. The non-trivial poles
are at

λ̃1 = λ̃1±(x) := ±i
√

1 + x2 . (4.23)

We will denote the inner solution with λ̃1 = λ̃1± by J1o
i± . Before proceeding further we

would like to make a few comments.

1. While evaluating the Mellin amplitude, we will always consider the non-trivial poles.
Specifically, We will not consider the contribution of the free Regge trajectories
J

(1)
f (0;±iν).

2. There is an important connection between the even spin Regge trajectory and the
odd spin Regge trajectory. From expressions of the Regge trajectories above, it is
straightforward to observe that,

J
(1e)
o± (ν) ξ→iξ−−−−→

ν fixed
J

(1o)
o± (ν), J

(1e)
i± (x) ξ→iξ−−−−→

x→−ix
J

(1o)
i± (x). (4.24)

where, J (1e)
i± (x) := J

(1e)
i

(
β̃1±=±

√
1−x2

)
, and J

(1o)
i± (x) := J

(1o)
i

(
λ̃1±=±i

√
1+x2

)
.

This connection can be explained as following. The eigenvalue of the graph building
operator can be written as

E
(1e)
h+iν,J = +E(iν, J), E

(1o)
h+iν,J = −E(iν, J) (4.25)

with

E(iν, J) := c2πh
Γ
(
h+2J−2iν

4

)
Γ
(
h+2J+2iν

4

)
Γ
(

3h+2J−2iν
4

)
Γ
(

3h+2J+2iν
4

) . (4.26)

The corresponding spectral functions thus turn out to be(
E

(1e)
h+iν,J

)2

1− χ1E
(1e)
h+iν,J

= E(iν, J)2

1− ξ2(4π)hE(iν, J) ,

(
E

(1o)
h+iν,J

)2

1− χ1E
(1o)
h+iν,J

= E(iν, J)2

1 + ξ2(4π)hE(iν, J) .

(4.27)

Clearly, (
E

(1e)
h+iν,J

)2

1− χ1E
(1e)
h+iν,J

ξ→iξ−−−−→
ν fixed

(
E

(1o)
h+iν,J

)2

1− χ1E
(1o)
h+iν,J

. (4.28)

This can be seen as an “analytic continuation” in complex ξ plane. From this, the
relations in (4.24) follow at once. Since the outer solution is expressed in terms of
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ν and ξ, only analytic continuation in ξ suffices. On the other hand, in the inner
solution the relevant variables are ξ and x. Since x = ν/ξ, x needs to be analytically
continued in the opposite sense of that of ξ to keep ν fixed. The choice of phase is
very important for defining the analytic continuation between the inner solutions. To
be specific, under this choice of phase J (1e)

i+ analytically continues to J (1o)
i+ and J (1e)

i− to
J

(1o)
i− . If we want to define the opposite analytic continuation i.e., from J

(1o)
i± to J (1e)

i±
then, we need to consider the opposite phase i.e., under the choice ξ → −iξ, x→ ix

one obtains J (1o)
i± → J

(1e)
i± .

4.2 Evaluation of Mellin amplitude

For the evaluation of the Mellin amplitude, we will follow the procedure laid out in details
for zero magnon case in section 3.2. Main arguments of the analysis does not alter; Only
changes are in explicit functional forms. This is almost immediately obvious since for the
even case, the inner and outer solutions are structurally similar to that of the 0-magnon
and satisfy the same crucial transformation properties (see (B.11) and (B.22)). Thus, we
just give the final expressions here. For future reference let us express the expression for
the Mellin amplitude as

M(1)
± (s, t) =

[
±1
2πiζ1(∆1, t)

∮
dJ

π

sin πJ

∫ ∞
−∞

dν

(
s

4

)J
M (1)(J, ν)

(
E

(1)
∆,J

)2

1− χ1E
(1)
∆,J

]
± (s→ −s)

(4.29)

where

M (1)(J, ν) (4.30)

= ν sinh πν
Γ(h+ J)Γ

(
h+J−iν

2

)
Γ
(
h+J+iν

2

)
Γ
(
h−J−t−iν

2

)
Γ
(
h−J−t+iν

2

)
2π2(h+1)Γ(J + 1)Γ

(
h+2J−2iν

4

)
Γ
(

3h+2J−2iν
4

)
Γ
(
h+2J+2iν

4

)
Γ
(

3h+2J+2iν
4

)
I. Even spin

For even spin, the Mellin amplitude is given by

M(1)
+ (s, t) = 2ζ1(∆i, t)ξ

∫ 1

−1
dy

y√
1− y2 Φ(1)

+ (
√

1− y2) + (s→ −s) (4.31)

where, Φ(1)
+ (
√

1− y2) is obtained analogous to Φ(0)
+ (
√

1− y2) and is given by

Φ(1)
+ (
√

1−y2) := Θ(1)
i (β̃1+)M (1)

(
J
(1)
i+ (

√
1−y2),

√
1−y2

) (
s

4

)J(1)
i+ (
√

1−y2)
[

(4π)−2h

2ξ4y

]
,

Θ(1)
i (β̃1+) :=

∂J
(1)
i+ (

√
1−y2)

∂β̃1+
= ξ

[
1−β̃1+ξHh

2−1+ ξ2

8β̃2
1+

{(
Hh

2−1

)
2
[
9β̃4

1++4β̃2
1+

(
1−y2

)

−
(
1−y2

)2
]
+H(2)

h
2−1

[
3β̃4

1++
(
1−y2

)2
]}

+O(ξ3)
]
,

(4.32)
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where β̃1+ = y, M (1)(J, ν) and J
(1)
i+ (x) are given in (4.30) and (4.11) respectively. The

integrand is then evaluated in the limit

ξ → 0, s→∞, Q = ξ log s4 → Constant

to give,

M(1)
+ (s, t) =

∫ 1

−1
dy s−

h
2

√
1− y2eQy

∞∑
k=0

Bk(Q, y)ξ2+k + (s→ −s) (4.33)

where,

B0(Q,y) =−
csc
(
πh
2

)
Γ
(
h
2

)
Γ
(

3h
4 −

t
2

)2

2(4h+3)π4hΓ
(
1− h

2

) ,

B1(Q,y) =B0(Q,y)
[
−y
(
H−h2

+ψ(0)
(3h

4 −
t

2

))
− 1

2Q
(
ψ(0)

(
h

2

)
+γ

)
+πy cot

(
πh

2

)]
(4.34)

and so on. One can systematically obtain higher order terms in ξ expansion above. Thus,
one is left with doing integrals of the form∫ 1

−1
dxxn

√
1− x2eQx, n ∈ Z≥ . (4.35)

These integrals can be expressed in terms of modified Bessel functions of first kind, Iµ(Q).12

II. Odd spin

To deal the odd spin case, we can exploit the analytic continuation between the even spin
Regge trajectory and the odd spin Regge trajectory that we delineated towards the end of
section 4.1. So, what one needs to do is to consider the monodromies ξ → iξ, x → −ix
to the even spin Mellin amplitude integrals at the very first following up with the usual
analysis. The final effect of this is to just take the analytic continuation of the final ξ
dependent answer under ξ → iξ. To be little bit more explicit, if the even spin Mellin
amplitude from (4.31) is given, generically, by

M(1)
+ = M(ξ, s, t) + (s→ −s) (4.36)

then the odd spin amplitude is given by

M(1)
− = M(iξ, s, t)− (s→ −s). (4.37)

We conjecture this and verify this with an explicit calculation for d = 4 and d = 8 in
the next subsection where the Regge poles are exactly known.13

12See appendix D.
13One might think that (4.37) should come with a -ve sign because the odd Mellin measure also has a

(−1)J . But note that given the integrated result, we can only do ξ → iξ.
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4.3 Agreement with d = 4 and d = 8 results for 1-magnon

In this subsection we explicitly compute d = 4 and d = 8 exact Regge trajectories and com-
pute perturbative Regge Mellin amplitudes (both odd and even) of one magnon correlators
following [1] and match it explicitly with the higher dimensional result.

I. Even spin

First we consider the even spin. The spectral function relevant for our discussion is given
by (4.5),

(E(1e)
d=4)2

1−16π2ξ2E
(1e)
d=4

= 1
256π4 ((J+1)2+ν2)(J(J+2)+ν2−ξ2+1)

(E(1e)
d=8)2

1−256π4ξ2E
(1e)
d=8

= 1
4096π8(J−iν+2)(J−iν+4)(J+iν+2)(J+iν+4)

× 1
(2J(J+6)ν2+J(J+6)(J(J+6)+16)+ν4+20ν2−4ξ2+64) (4.38)

The exact Regge poles can be listed as follows.

Jd=4,e
± = −1±

√
ξ2 − ν2, Jd=8,e

± = −3 +
√

1− ν2 ± 2
√
ξ2 − ν2 (4.39)

We note that, the Regge poles for the d = 8 case is essentially that of the type we encounter
in d = 4 0-magnon. The Mellin amplitude can be calculated according to the techniques
outlined in [1]. In the limit

ξ → 0, s→∞, Q = ξ log s4 → Constant

We get the Mellin amplitudes as follows

M(1)
+, d=4 (s, t) =

∫ 1

−1
dy
√

1−y2eQy

×
(
− ξ2

2048π9 + ξ3

2048π9 yψ
(0)
(3

2−
t

2

)
− ξ4

24576π9

(
6y2ψ(0)

(3
2−

t

2

)2
+
(

6y2−3
)

×ψ(1)
(3

2−
t

2

)
+π2

(
2y2+1

)))
+(s→−s)

M(1)
+, d=8 (s, t) =

∫ 1

−1
dy
√

1−y2eQy

×
(
− ξ2

524288π17s2 +
ξ3 (Q+2yψ(0) (3− t

2

)
+2y

)
1048576π17s2 − ξ4

12582912π17s2

(
3Q2

+12(y (Q+2y)+1)ψ(0)
(
3− t

2

)
+24Qy+12y2ψ(0)

(
3− t

2

)2

+6
(
2y2−1

)
ψ(1)

(
3− t

2

)
+4
(
π2−6

)
y2+2π2+24

))
+(s→−s) (4.40)

This is in perfect agreement with (4.33) and (1.25) in the limit d = 4 and d = 8.
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II. Odd spin

For odd spin the spectral functions become,

(E(1e)
d=4)2

1−16π2ξ2E
(1o)
d=4

= 1
256π4 ((J+1)2+ν2)(J(J+2)+ν2+ξ2+1)

(E(1e)
d=8)2

1−256π4ξ2E
(1o)
d=8

= 1
4096π8(J−iν+2)(J−iν+4)(J+iν+2)(J+iν+4)

× 1
(2J(J+6)ν2+J(J+6)(J(J+6)+16)+ν4+20ν2+4ξ2+64) (4.41)

The Regge poles are given by,

Jd=4,o
± = −1± i

√
ξ2 + ν2, Jd=8,o

± = −3 +
√

1− ν2 ± 2i
√
ξ2 + ν2 (4.42)

Following [1], the Mellin amplitude in the Regge limit can be evaluated. The integrals can
also be done following [1]. The integrated amplitude is given by14

M(1)
−, d=4(s, t) = ξ2

8192π8Q2s

×
(

2ξJ2(Q)
(

2Qψ(0)
(3

2−
t

2

)
+3ξψ(0)

(3
2−

t

2

)2
+ξ
(
3ψ(1)

(3
2−

t

2

)
+π2

))
−QJ1(Q)

(
π2ξ2+ξ2

(
2ψ(0)

(3
2−

t

2

)2
+ψ(1)

(3
2−

t

2

))
−4
))
−(s→−s)

M(1)
−, d=8(s, t) = ξ2

4194304π16Q2s2

(
4ξJ2(Q)

(
ξ
(
2Q2+π2−6

)
+ψ(0)

(
3− t

2

)(
ξ
(
Q2+6

)
+2Q

+3ξψ(0)
(
3− t

2

))
+2Q+3ξψ(1)

(
3− t

2

))
+QJ1(Q)

(
ξ
(
Q(ξQ+4)−2π2ξ

)
−2ξ2

(
2ψ(0)

(
3− t

2

)(
ψ(0)

(
3− t

2

)
+3
)

+ψ(1)
(
3− t

2

))
+8
))
−(s→−s)

(4.43)

The integrals of (4.33) and (1.25), can be done using the integrals in appendix D and,
subsequently, using the identity

Iν(iz) = iνJν(z), ν ∈ Z≥ (4.44)

we obtain perfect agreement with d = 4 and d = 8 results using the proposal for odd spin
Mellin amplitude (4.37).

5 Regge theory of chiral fishnet theories in d = 4

In the second part of our work, we will study Regge amplitudes of one of the chi-
ral fishnet theories first studied in [31]. More precisely we study the correlator
〈Tr[φ1(x1)φ1(x2)]Tr[φ†1(x3)φ†1(x4)]〉. We first show that the perturbative analysis of the
previous section holds and then reproduce the answer via an independent perturbative

14Note that one has to be careful about the -ve sign coming from (−1)Jodd in the Mellin measure (1.11)
(which translates to the overall -ve sign of the Mellin amplitude in (4.1).
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calculation. These serves as a concrete check for our formalism. We begin by quoting the
Mellin amplitude relevant for our purpose (1.11) with ∆i = 1 and h = 2 but instead of the
general d spectral function for 0 and 1 magnon, we have the relevant spectral function for
the chiral fishnet correlator.

M(c)
± (s, t) =

[
±1
2πi

∮
dJ

∫ ∞
−∞

dν

(
s

4

)J
eiπJ/2M (c)(J, ν) ζc(∆i, t)bcJ(ν)

]
± (s→ −s), (5.1)

where the Mellin measure and the spectral function ([31]) are given by,

M (c)(J,ν) = π

sinπJ ν sinhπν ζc(∆i, t)

×
Γ(h+J)Γ(h+J−iν)Γ(h+J+iν)Γ

(
h−J−t−iν

2

)
Γ
(
h−J−t+iν

2

)
2π2(h+1)Γ(J+1)Γ

(
h+J−iν

2

)2
Γ
(
h+J+iν

2

)2 , (5.2)

bcJ (ν) = 1/
(

256π4
(
−ω4+

(
J2+ν2)((J+2)2+ν2

)
16(J+1)ν

(
(J+1)ν+iκ4

(
−ψ(1)

(1
4 (J+iν+2)

)

+ψ(1)
(1

4 (J+iν+4)
)

+ψ(1)
(1

4 (J−iν+2)
)
−ψ(1)

(1
4 (J−iν+4)

)))))
(5.3)

with ζc(∆i, t) = Γ
(

2−t
2

)−2
and the coupling parameters κ, ω are defined by the relations

κ4 = ξ2
2ξ

2
3 , ω4 = (ξ2

2 − ξ2
3)2. (5.4)

Here, ξ2, ξ3 are the couplings used to write the χ−fishnet Lagrangian in (1.4).

5.1 Evaluation of Regge trajectories

The exact evaluation of Regge trajectories is not possible for this case and we proceed to
evaluate the trajectories perturbatively as in the general d fishnet theory. Since there are
two coupling constants κ and ω, we work in the limit κ→ 0, ω → 0 with κ

ω held constant.
We note that the leading free Regge trajectories are given by

J
(c)
f± = ±iν (5.5)

Outer solution. We begin by evaluating the outer solution which we evaluate pertur-
batively with the following ansatz

J
(c)
o±(ν) = ±iν + γ1±ω

4 +
∞∑
k=2

γk(±ν)ω4k . (5.6)
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the first few coefficients in the expansion (5.6) are given by

γ2(±ν) =
γ1±

(
γ1±(3−3(ν2±3iν))−2z4

(
3ψ(1)

(
± iν

2 +1
)
−3ψ(1)

(
± iν

2 + 1
2

)
+π2

))
6(ν2±iν)

γ3(±ν) = γ1±
36ν2(ν∓i)2

[
3γ1±

{
6γ1±(1+ν(ν(−9+ν(ν∓5i))+5i))+z4

(
4π2(−1+ν(ν∓4i))

+12(−1+ν(ν∓4i))ψ(1)
(
± iν2 +1

)
−12(−1+ν(ν∓4i))ψ(1)

(
± iν2 + 1

2

)

+3ν(ν∓i)
(
−ψ(2)

(
± iν2 +1

)
+ψ(2)

(
± iν2 + 1

2

)
+12ζ(3)

))}

+4z8
(

3ψ(1)
(
± iν2 +1

)
−3ψ(1)

(
± iν2 + 1

2

)
+π2

)2
]
, (5.7)

where we have used κ = zω and z ≥ 0. Using this, the pole structure of the spectral
function (5.3) becomes

bCI
J

(c)
o±(ν)

= − 1
128π4ω4 (2 + γ1±(ν2 ± iν)) (5.8)

The poles are at γ1± = − 2
(ν2±iν) . Analogous to previous cases, we consider J (c)

o+(ν) corre-
sponding to γ1+ and J (c)

o−(ν) corresponding to γ1−.

Inner solution. The inner solution region corresponds to |x| < 1 with ν = 2xω2.
Thereby, one has the perturbative expression for the inner solution

J
(c)
i± (x) =

∞∑
k=1

δ̃k(x)ω2k (5.9)

with first few coefficients δ̃k, k ≥ 2 given by

δ̃2(x) = − δ̃
2
1
2 − 2x2, δ̃3(x) =

(
δ̃2

1 + 4x2
) (
δ̃2

1 + 6z4ζ(3)
)

2δ̃1
,

δ̃4(x) = − 1
120

(
δ̃2

1 + 4x2
) [

75δ̃2
1 + 60x2 + z4

{
30
(

12ζ(3) + ψ(2)(1)− ψ(2)
(1

2

))
+ 7π4

}]
,

(5.10)

where we have used κ = zω and z ≥ 0. Using this, the pole structure of the spectral
function (5.3) becomes

bCI
J

(c)
i± (x)

= 1
64π4ω4

(
δ1 − 2

√
1− x2

) (
δ1 + 2

√
1− x2

) (5.11)

The poles are at δ̃1 = δ̃1± := ±2
√

1− x2. Analogous to previous cases, we consider J (c)
i+ (x)

corresponding to δ̃1 = δ̃1+ and J (c)
i− (x) corresponding to δ̃1 = δ̃1−.
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5.2 Evaluation of Mellin amplitude

For the evaluation of the Mellin amplitude, we will follow the procedure laid out in details
for zero magnon case in section 3.2. This is again due to the fact that the inner and outer
solutions satisfy the transformation properties as that of 0-magnon (see (B.11) and (B.22)).
Thus, we just give the final expressions here.

M(c)
+ = 4ζ1(∆i, t)ω2

∫ 1

−1
dy

y√
1− y2 Φ(1)

c (
√

1− y2) + (s→ −s) (5.12)

where,15 Φ(c)
+ (
√

1− y2) i is given by

Φ(c)
+ (
√

1− y2) := Θ(c)
i (δ̃1+)M (c)

(
J
(c)
i+ (

√
1− y2),

√
1− y2

) (
s

4

)J(c)
i+ (
√

1−y2) [ 1
256π4ω4y

]
,

Θ(c)
i (δ̃1+) :=

∣∣∣∣∣∣∂J
(c)
i+ (δ̃1+,

√
1− y2)

∂δ̃1+

∣∣∣∣∣∣ = ω2 − yω4 + ω6
(

3
(
5y2 − 4

)
z4ζ(3)

y2 − y2

2 + 2
)

+ ω8
(

7y3

2 + y

(
−12z4ζ(3)− 7π4z4

60 − 6
))
(5.13)

where δ̃1+ = y, M (c)(J, ν) and J
(c)
i+ (x) are given in (5.2) and (5.9) respectively. The

integrand is then evaluated in the limit

ω → 0, s→∞, Q = ω2 log s4 → Constant

to give,

M(c)
+ (s, t) = 2

∫ 1

−1
dx Γ

(
1− t2

)2√
1−x2e2qx

×
(

ω2

128π9x
+ ω4

128π9x2

(
−2qx−2x2ψ(0)

(
1− t2

)
+4x2+1

)
+ ω2

384π9x3

(
8ω4

(
x
(
6q2x−6q

(
2x2+1

)
+x

(
π2
(
2x2+1

)
+6
))

+3x2
(

2xψ(0)
(

1− t2

)(
2q+xψ(0)

(
1− t2

)
−4x

)
+
(
2x2−1

)
ψ(1)

(
1− t2

))
+3
)

+9κ4ζ (3)(x(q+x)−1)
)

ω4

7680π9x4

(
−κ4

(
180ζ (3)

(
−2x

(
−2q2x+q

(
3−2x2

)
+2x3+x

)
+2x2 (2x(q+x)−1)ψ(0)

(
1− t2

)
+3
)

+7π4x2 (2x(q+x)−1)
)

−320ω4
(

2q
(
2q2+π2+3

)
x3−

(
6q2+π2+3

)
x2

+6x4 (2x(q−2x)+1)ψ(0)
(

1− t2

)2
+3x2

(
2x
(
2x2−1

)
(q−2x)+1

)
ψ(1)

15The extra factor of 2 is due to the fact that we had chosen ν = 2xω2 for the inner solution compared
to ν = xξ2 for the 0-magnon case.
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×
(

1− t2

)
+2x4ψ(0)

(
1− t2

)(
6q (q−2x)+

(
6x2−3

)
ψ(1)

(
1− t2

)
+π2

(
2x2+1

))
+4
(
π2−6

)
qx5+6qx+4x6ψ(0)

(
1− t2

)3

+
(
4x2−3

)
x4
(
ψ(2)

(
1− t2

)
+12ζ (3)

)
−8π2x6+12x4−3

)))
+(s→−s)

+O
(
ω10,ω6κ4,ω2κ8

)
(5.14)

Although we donot explicitly list the integrated results here, it can be obtained using
integrals listed in appendix D

5.3 Alternative perturbative method for Regge amplitude

In this section we evaluate the Mellin amplitude (5.1) in a different perturbative approach.
Note that we can rewrite the spectral function (5.3) as follows

bcJ(ν) = 1
256π4 (a0(ν, J) + l0(ν, J)) (5.15)

where a0(ν, J) is the spectral function corresponding to the 0-magnon like spectral function
and l0(ν, J) are given by

a0(ν,J) =−ω4 +
(
J2 +ν2

)(
(J+2)2 +ν2

)
l0(ν,J) = iκ4

16(J+1)ν
(
J2 +ν2

)(
(J+2)2 +ν2

)(
−ψ(1)

(1
4(J+ iν+2)

)
+ψ(1)

(1
4(J+ iν+4)

)
+ψ(1)

(1
4(J− iν+2)

)
−ψ(1)

(1
4(J− iν+4)

)) (5.16)

Therefore we try to solve the Mellin amplitude as perturbation expansion in κ about
0-magnon. To be precise let us first write down the relevant Mellin amplitude.

M(c)
± (s, t) =

[±1
2πi

∮
dJ

∫ ∞
−∞

dν

(
s

4

)J
eiπJ/2M (c)(J, ν) ζc(∆i, t)

( ∞∑
k=0

ck(J, ν)
a0(J, ν)k+1

)]
± (s→ −s) (5.17)

where M (c)(J, ν) is given by (5.2). We have also expanded the spectral function bcJ(ν)
about zero-magnon as follows

bcJ(ν) =
∞∑
k=0

ck(J, ν)
a0(J, ν)k+1 , ck(J, ν) = l0(J, ν)k (5.18)

For the rest of the section let us focus onM(c)
+ (s, t).

5.3.1 k = 0

For k = 0, this is the usual 0-magnon case. The spectral function corresponding to 0-
magnon (a0(ν, J)), given by (5.16), has poles at,

J±1,2 = −1±
√

1− ν2 ± 2
√

4ω4 − ν2 . (5.19)
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The leading Regge poles are,

J±1 = −1 +
√

1− ν2 ± 2
√

4ω4 − ν2 . (5.20)

For the zeroth order case, (5.17) reduces to the 0-magnon case. Defining ν = 2ω2√1− x2,
the amplitude becomes (This manipulation has been outlined in [1] and for convenience
worked out in appendix C corresponding to higher orders of k),

I0 = 4ω2
∫ 1

−1
dx

(
x

256π4
√

1− x2
16M(J(x), x)

(4 (J + 1) (J (J + 2) + 4ω4(1− x2)))

)
|Res J=J1

+

+ (s→ −s) (5.21)

with the explicit form of M(J, ν) given by M(J, ν) =
(
s
4
)J
eiπJ/2M (c)(J, ν) ζc(∆i, t). The

contribution from the 0-th order case is denoted by I0 and for convenience and its explicit
expression is given in (C.19)Note that the factors of ψ(i) (1− t

2
)j should be dropped to get

the momentum space amplitude of [2] These integrals can be easily done (see [1, 2]). We
will present the integrated results shortly.

5.3.2 k ≥ 1

For k ≥ 1, the evaluation of this integal becomes difficult since we have multiplicity of poles
as is evident from (5.17). Nevertheless, in appendix C, we argue that the general form for
the integral can be brought to the following form

Ik =
[

1
2πi

∮
dJ

∫ ∞
−∞

dν

(
s

4

)J
eiπJ/2M (c)(J, ν) ζc(∆i, t)

(
ck(J, ν)

a0(J, ν)k+1

)]
+ (s→ −s)

= 4ω2
∫ 1

−1
dx

(
x

256π4
√

1− x2
16k+1(l0(J(x), x))kM(J(x), x)

((J − J+
1 )(J − J−1 )(J − J+

2 )(J − J−2 ))k+1

)
|Res J=J1

+

+ (s→ −s) (5.22)

where for k = 1, 2 i.e. the first two corrections given by I1 and I2 are given in (C.20)
and (C.21) respectively. Adding up I0, I1 and I2 (from (C.19), (C.20), (C.20) respectively),
we explicitly obtain perfect agreement with (5.14). This is a non-trivial check of our
formalism.

6 Conclusions

In this work, we have extended the analysis of Regge trajectories of Mellin amplitudes for
the connected part of 4-d 0, and 1-magnon fishnet correlators initially studied in [2] and [1],
to general dimensional 0 and 1-magnon fishnet correlators ([5]) and also one of the chiral
fishnet correlators studied in [31]. We note the salient features of our computation.

• Unlike d = 4 biscalar fishnet theory, the Regge poles for these cases cannot be solved
exactly and we needed to resort to perturbative evaluation of the Regge trajecto-
ries at weak coupling. The perturbative regge poles are given in (3.10) and (3.5)
for 0-magnon correlator, (4.6) and (4.11) for the even spin Regge trajectory for 1-
magnon correlator, (4.16) and (4.20) for the odd spin Regge trajectory for 1-magnon
correlator, (5.6) and (5.9) for the chiral fishnet correlator.
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• We have also been able to find closed-form expressions (perturbative in respective
couplings) for the Mellin-Regge amplitudes for all these cases after doing the spectral
integral. To be precise, we find that for the general dimensional 0-magnon and 1-
magnon correlators, the Regge trajectories scale as 1 and s−

d
4 respectively at weak

coupling while for the chiral fishnet correlator it scales as 1.

• In order to do the respective spectral integrals over ν, we extend the machinery used
in [1] to study 2-magnon Regge trajectories perturbatively in d = 4. The method
turns out to be quite general and just dependent on the generic features of the Regge
poles and is one of the main results of this paper (see (3.22), (3.23) for 0-magnon
amplitude, (4.33), (4.34) and section 4.2 for 1-magnon amplitude and finally (5.14)
for the Mellin-Regge amplitude for chiral fishnet theory correlator).

• We have several crosschecks of our results also; for 0 and 1-magnon correlators we
can explicitly compute closed-form expressions for Regge poles in d = 4 and d = 4, 8
respectively and can explicitly derive an exact expression for the spectral integral
following the techniques in [1] and [2]. These exact integrals, when evaluated per-
turbatively, are in perfect agreement with our d-dimensional results. The explicit
comparisons have been made in subsection 3.3 for the 0-magnon and subsection 4.3
for 1-magnon correlator. We want to emphasize that this is a non-trivial check since
the perturbative technique is structurally different from the exact analysis.

• For chiral fishnet correlator, this analysis is complicated by the fact that there are two
couplings (κ and ω) in the theory. We can obtain perturbative Regge trajectories in
the special limit κ→ 0, ω → 0 with κ/ω held constant. From observing the generic
structure of the Regge poles, we are able to use our general method (used to compute
the 0 and 1-magnon correlators, in general, d fishnet theory) to compute the spectral
integral. We also note that the spectral function for the chiral correlator can be
rewritten as a perturbation expansion in κ about a 4-d 0-magnon spectral function
with coupling constant ω. This resulting spectral integral (perturbative in κ) can be
exactly evaluated in ω. This analysis, done in subsection 5.3, facilitates an entirely
different way of evaluating the spectral integral for the chiral fishnet correlator. In the
limit, κ → 0, ω → 0 with κ/ω held constant, we obtain perfect agreement between
our two methods.

The computation of the general fishnet theories in d dimensions and for multiple cou-
plings reveal some features which are worth exploring in the future.

• The computation makes it clear that we do not need to solve the spectral function
exactly in order for the perturbative computation of leading Regge trajectory. We
can start by computing the solutions of the regge trajectory perturbatively from the
start regardless of dimensions and other complexities. This begs the question, how
can our technology be used to find the sub-leading Regge trajectory and amplitude.
In the context of d = 4 fishnet theory, this has been explored in a nice paper very
recently [33]. Their analysis is restricted to d = 4 where closed-form expression for
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the conformal blocks, used in their computation, is known. For general d dimensions,
it remains an open question to find sub-leading Regge trajectory in general and in
particular for the Fishnet theory.

• This computation forms the basis against which the computations of diagrammatic
perturbation theory can be compared. The presence of transcendental functions of
Mellin variables translates into purely transcendental contributions of the cross ratios.

• An n-magnon case is suppressed by s−α contribution, followed by a series expansion
in Log[s] in the Regge limit. For the leading order in s, one can ask the following
question: whether the contributions can be re-summed into something which can be
interpreted in terms of the cross channel contribution as happens in conformal Regge
bootstrap.

• In principle, this study of Regge trajectories can be extended to 2-magnon correlators
in general d fishnet theory [3, 5] and also the 2nd type of chiral fishnet correlator [31].
The immediate challenge for extending this to the 2 magnon correlator in the general
dimension is the fact that closed-form expressions for the spectral function is not
known and would involve extending the 4d analysis in appendix C.4 of [3] to general
d dimensions.

• For the chiral correlator of the type 〈Tr[φ1(x1)φ†2(x2)]Tr[φ†1(x3)φ2(x4)]〉 studied
in [31], we find that our techniques do not go through. Explicitly, the general method
developed here involved evaluating the integral at weak coupling ξ say. For this pur-
pose we found perturbative Regge trajectories corresponding to the regions ν < ξα

(inner solution) and ν > ξα (outer solution). The coefficient α is non-universal and
depends on the theory. It has to be estimated by a ratio test of the outer perturbative
solution in order to determine where exactly the perturbation series breaks down. In
particular, we were unable to find such a region or the “α” for the chiral correlator
of the second type. We hope to address these issues in the future.
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A Details of perturbative evaluation of Regge trajectories

In this appendix, we offer some detailed analysis of the general principles for obtaining the
outer solution, which we chalked out in section 2. In particular, we detail out one possible
abstract argument for how one can reach (2.7) starting with the perturbative ansatz (2.5)
which we rewrite here for convenience

J (n)
o (ν) = J

(n)
f (ν) +

∞∑
k=1

fk(ν) ξαk, α > 0 (A.1)
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where, recall that, J (n)
f (ν) is assumed to be a simple pole (this is satisfied by both 0 and

1-magnon correlators in generalized fishnet theory) in J of E(n)
∆,J with ∆ = h+ iν. In doing

so, we will work under certain assumptions. One can try to see that, to what extent these
assumptions can be relaxed and generalized. However, we do not engage ourselves with
that task! Further, consider the series

P1(ν) :=
∞∑
k=1

fk(ν) ξαk, α > 0 (A.2)

converging pointwise to L1(ν) on a domain D over real ν by ratio test

lim
k→∞

∣∣∣∣fk+1(ν)
fk(ν)

∣∣∣∣ ξα < 1 ∀ ν ∈ D. (A.3)

The implication of this convergence criterion has been discussed in section 2 itself. We
will not go into that. We will only use the fact that this series converges. Now, consider
the series

P2(ν) :=
∞∑
k=1

Ak(ν) ξαk (A.4)

where,
Ak(ν) := fk+1(ν)

f1(ν) . (A.5)

A straightforward application of the ratio test (A.3) implies that, if P1(ν) converges point-
wise on D so does P2(ν). Let, P2(ν) converges to L2(ν). We assume that,

L2(ν) < 1 ∀ ν ∈ D. (A.6)

First, we will evaluate α. To do so, we need to consider the pole structure of E(n)
∆,J ≡ E

(n)
ν (J)

in J . Since J (n)
f (ν) is a simple pole of E(n)

ν (J), there exists an annular region16 in complex
J-plane where E(n)

ν (J) admits a Laurent series representation of the form

E(n)
ν (J) = R(ν)

J − J (n)
f (ν)

+
∞∑
k=0

ck(ν)
(
J − J (n)

f (ν)
)k

(A.7)

where, R(ν) is residue of J (n)
f (ν) at J = J

(n)
f (ν). Now, in this representation we will use

the ansatz J (n)
o (ν) in place of J . Under what condition one can do this is tightly connected

to the convergence property of the power series P1. For the purpose of evaluation of α,
we will fix our attention to the singular piece of the Laurent expansion. In particular, this
piece can now be expressed as

R(ν)
J − J (n)

f (ν)
= ξ−α

R(ν)
f1(ν) [1 + P2]−1 (A.8)

Now, since we have assumed that P2 converges to L < 1 we can expand [1 + P2]−1 as

[1 + P2]−1 = 1− P2 + 2P 2
2 + . . . (A.9)

16All regions are defined to be open connected sets in the usual metric topology of C.
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resulting in the following expression for the singular piece:

R(ν)
J − J (n)

f (ν)
= ξ−α

R(ν)
f1(ν)

[
1− P2 + 2P 2

2 + . . .
]
. (A.10)

Then, it is straightforward to observe that,

E(n)
ν

(
J (n)
o (ν)

)
= ξ−α

R(ν)
f1(ν) +O(ξ0). (A.11)

Next, we need to solve (2.4) which we reproduce here (with new notations) for convenience

χnE
(n)
ν

(
J (n)
o (ν)

)
= 1. (A.12)

Putting χn = (4π)qhξ2q into this, we have

(4π)qhξ2q−αR(ν)
f1(ν) +O(ξ2q) = 1 (A.13)

Since q > 0, it is evident that, one will have a solution to above if and only if

α = 2q. (A.14)

Next, we look into (A.13) more closely. Let us write down the O(ξ2q) terms explicitly.
From the Laurent expansion (A.7) and (A.10), it is straightforward to obtain

E(n)
ν

(
J (n)
o (ν)

)
= ξ−2qR(ν)

f1(ν) [1− P2 + 2P 2
2 + . . . ] +

∞∑
k=0

ck(ν)P k1 . (A.15)

Using this into (A.12) above along with the expression for χn one has

R(ν)
f1(ν) [1− P2 + 2P 2

2 + . . . ] + ξ2q
∞∑
k=0

ck(ν)P k1 = (4π)−qh (A.16)

This equation above breaks effectively into two equations

R(ν)
f1(ν) = (4π)−qh (A.17)

R(ν)
f1(ν) [−P2 + 2P 2

2 + . . . ] + ξ2q
∞∑
k=0

ck(ν)P k1 = 0. (A.18)

Solving (A.17) one gets
f1(ν) = (4π)qhR(ν) (A.19)

and using (A.2) and (A.4), one can solve (A.18) order by order in ξ to obtain

ξ2q : f2(ν) = f1(ν)2 c0(ν)
R(ν) ,

ξ4q : f3(ν) = −f1(ν)3
[
c1(ν)
R(ν) + 2

(
c0(ν)
R(ν)

)2]
. (A.20)
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One can proceed further in this manner. The important structural point coming out of
this is that, the coefficient function fk≥2(ν) is proportional to f1(ν)k. At this point, it
is worth the mention that, this structural simplicity is consequence of the simplicity of
the equation (A.12). To be specific, this kind of equation arises in the Regge study of
n-magnon correlator of normal Fishnet theories. But, the same is not true, for example,
for chiral fishnet theories in d = 4 which has been studied in section 5. In particular, we
would like to draw attention of the reader to the (5.7) which clearly doesn’t conform to
the simplistic structure of (A.20).

Finally, we have all the ingredients to reach (2.7). In particular, we want to show that
the Regge pole structure of the spectral function (2.1) is manifested as a pole in f1(ν). To
do so, we substitute (A.15) into the spectral function to obtain[

E
(n)
ν

(
J

(n)
o (ν)

)]p
1− χnE(n)

ν

(
J

(n)
o (ν)

) = ξ−2pq [R(ν)]p

[f1(ν)]p−1 [f1(ν)− (4π)qhR(ν)] (A.21)

where we have used the coefficients {fk : k ≥ 2} expressed in terms of f1(ν) (thus, us-
ing (A.18)) but leaving f1(ν) as it is. Now we have reached (2.7) with

Bo(ν) = [R(ν)]p, F (ν) = (4π)qhR(ν). (A.22)

B Inner and outer integral 0-magnon general d

In this section we outline in detail how to arrive at (3.19). Recall from (3.17) that,

I(0)(ξ, s, t) =
∫ ∞
−∞

dνF(J, ν) =
(∫ −ξ2

−∞
+
∫ ∞
ξ2

)
dνFouter +

∫ ξ2

−ξ2
dνFinner , (B.1)

where

F(J, ν) = ζ0(∆i, t)
∮

dδ

2πi Θ(δ)M (0)(J(δ), ν)
(
s

4

)J(δ) E
(0)
h+iν,J

1− χ0E
(0)
h+iν,J

, (B.2)

and we have assumed that we have perturbatively solved for the Regge pole J as a functions
of δ (hence the jacobian and the integration over δ). For convenience, M(J, ν) and Θ(δ)
are given by (3.14) and (3.16),

M (0)(J, ν) = πν sinh(πν)
Γ(h+ J)Γ(h+ J + iν)Γ(h+ J − iν)Γ(h−J−t+iν2 )Γ(h−J−t−iν2 )

2π2(h+1) sin(πJ)Γ(1 + J)Γ(h+J+iν
2 )2Γ(h+J−iν

2 )2

Θ(δ) = ∂J

∂δ
. (B.3)

Here, Finner is obtained by using J
(0)
i± (x) (3.10) into F(J, ν) and Fouter by putting

J
(0)
o± (ν) (3.5) into the same. Now, we will focus upon the inner and outer integrals in-

dividually. Let us define the inner and outer intgralas as follows

I(0)
i =

∫ ξ2

−ξ2
dνFinner I(0)

o :=
(∫ −ξ2

−∞
+
∫ ∞
ξ2

)
dνFouter (B.4)
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I. Inner integral

Let us start by investigating the inner integral. In the integral we make the change of
variable ν → xξ2 and write the integral as

I(0)
i :=

∫ ξ2

−ξ2
dνFinner = ζ0(∆i, t)ξ2

∫ 1

−1
dx

∮
dJ

2πi M
(0)(J, x)

(
s

4

)J E
(0)
h+ixξ2,J

1− χ0E
(0)
h+ixξ2,J

(B.5)

where the solution for J (0)
i± (x) is given by (3.10)

J
(0)
i (x) =

∞∑
k=1

α̃k(x)ξ2k , (B.6)

where first few coefficients α̃k(x), k ≥ 2 are expressed as

α̃2(x) = −Hh−1
2 (α̃2

1 + x2) , α̃3(x) = (α̃2
1 + x2)
8α̃1

[
(Hh−1)2(x2 + 3α̃2

1) +Hh−1,2(α̃2
1 − x2)

]
,

α̃4(x) = − α̃
2
1 + x2

24
[
6Hh−1Hh−1,2α̃

2
1 +Hh−1,3(α̃2

1 − 3x2) + 2(Hh−1)3(3x2 + 4α̃2
1)
]
.

(B.7)

Next, we make the change of variable J → α̃1 and introduce the required Jacobian

Θ(0)
i (α̃1±) :=

∂J
(0)
iξ (α̃1±,x)
∂α̃1±

(B.8)

= ξ2
[
1−H1

h−1α̃1ξ
2+

H2
h−1(x4+3α̃4

1)+(H1
h−1)2(9α̃4

1+4x2α̃2
1−x4)

8α̃2
1

ξ4

− α̃1
6 (H3

h−1(α̃2
1−x2)+3H1

h−1H
2
h−1(2α̃2

1+x2)+(H1
h−1)3(7x2+8α̃2

1))ξ6+. . .
]
.

We also use the pole structure of the spectral function in terms of α̃1±, given by (3.12),

E
h+ixξ2,J

(0)
i± (x)

1− χ0Eh+ixξ2,J
(0)
i± (x)

= ξ−4 (4π)−2h[
(α̃1 −

√
1− x2)(α̃1 +

√
1− x2)

] . (B.9)

Putting everything together we have,

I(0)
i = ζ0(∆i, t) ξ2

∫ 1

−1
dx

∮
dα̃1
2πiΘ(0)

i (α̃1, x) M
(
J

(0)
i (α̃1, x), x

)(s
4

)J(0)
i (α̃1,x)

×
[

ξ−4(4π)−2h

[α̃1(x)2 − (1− x2)]

]
.

(B.10)

The contour integration over α̃1(x) will pickup contributions from two poles at α̃1 =
α̃1± := ±

√
1− x2. Recall that, we defined J (0)

i± (x) := J
(0)
i (α̃1 = α̃±, x). Further, we note

that, J (0)
i± (x) as well as Θ(α̃1 = α̃1±, x) are even under x → −x. Also, from (B.3), it is

straightforward to observe that

M (0)
(
J

(0)
iξ±(−x),−x

)
= M (0)

(
J
(0)
i± (x), x

)
(B.11)
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Now, doing the contour integral over α̃1 by picking up the residues at the poles of the
spectral function, and exploiting the invariance of each individual term under x→ −x, we
can write the resulting integral over x as

I(0)
i = 2ζ0(∆i, t)ξ2

∫ 1

0
dx
[
Φ(0)

+ (x) + Φ(0)
− (x)

]
(B.12)

where,

Φ(0)
± (x) := Θ(0)

i (α̃1±)M (0)
(
J
(0)
i± (x), x

) (s
4

)J(0)
i± (x)

[
± (4π)−2h

2ξ4
√

1− x2

]
. (B.13)

Next, we make another variable change x =
√

1− y2. The reason for doing this will be
clear later. Under this change of variable one has J (0)

i+ (−y) = J
(0)
i− (y). After this change of

variable, we have

I(0)
i = 2ζ0(∆i, t)ξ2

∫ 1

0

ydy√
1− y2

[
Φ+

(√
1− y2

)
+ Φ−

(√
1− y2

)]
. (B.14)

We will not attempt to write any explicit expression for this integral and will come back
to it only after considering the outer integral.

II. Outer integral

Next, we turn to the outer integral

I(0)
o := ζ0(∆i, t)

(∫ −ξ2

−∞
+
∫ ∞
ξ2

)
dνFouter (B.15)

= ζ0(∆i, t)
(∫ −ξ2

−∞
+
∫ ∞
ξ2

)
dν

[∮
dJ

2πi M
(0)(J,ν)

(
s

4

)J ( Eh+iν,J
1−χ0Eh+iν,J

)
+(ν→−ν)

]
.

where M(J, ν) is given by (B.3) and the outer solution J (0)
o± (ν) is given by (3.5)

J
(0)
o± (ν) = ±iν + α1±ξ

4 +
∞∑
k=2

αk(±ν)ξ4k , (B.16)

the first few coefficients in the expansion (3.5) are given by,

α2(±ν) = −F1(±iν)
2 α2

1± , α3(±ν) = F2(±iν) + 3F1(±iν)2

8 α3
1± , (B.17)

α4(±ν) = −F3(±iν) + 12F1(±iν)F2(±iν) + 16F1(±iν)3

48 α4
1± . (B.18)

With the definition

Fr(z) = (r − 1)!Hh−1,r + (−1)r−1
[
ψ(r−1)(h+ z)− ψ(r−1)(z)

]
, (B.19)

where ψ(n)(z) is the usual polygamma function and Hn,r(z) is the generalized harmonic
number of order r of n (see footnote 8). Next, as in the inner integral, we make the change
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of variable J → α1 along with the required Jacobian

Θ(0)
o (α1±) :=

∣∣∣∣∣∣∂J
(0)
o± (ν)
∂α1±

∣∣∣∣∣∣
= ξ4

[
1− α1±F1(±iν)ξ4 + 3(F2(±iν) + 9F1(±iν)2

8 α2
1±ξ

8

− F3(±iν) + 12F1(±iν)F2(±iν) + 16F1(±iν)3

16 α3
1±ξ

12 + . . .

]
.

(B.20)

Therefore, we have finally

I(0)
o = ζ0(∆i, t)

(∫ −ξ2

−∞
+
∫ ∞
ξ2

)
dν (B.21)

×
[ ∮

dα1+
2πi Θ(0)

o (α1+)M (0)
(
J

(0)
o+ (ν), ν

)(s
4

)J(0)
o+ (ν)

(
ξ−4 (4π)−2hB(h, iν)

[2α1+ −B(h, iν)]

)

+
∮
dα1−
2πi Θ(0)

o (α1−)M (0)
(
J

(0)
o− (ν), ν

)(s
4

)J(0)
o− (ν)

(
ξ−4 (4π)−2hB(h,−iν)

[2α1− −B(h,−iν)]

)]
.

where under ν → −ν, we have the following transformations

α1+ → α1−, J
(0)
o+ (−ν)→ J

(0)
o− (ν), M (0)

(
J

(0)
o+ (−ν),−ν

)
→M (0)

(
J

(0)
o− (ν), ν

)
(B.22)

Note that this is qualitatively different from the transformation properties in the inner
integral. Now, we can do the contour integral over α1± using Cauchy integral formula.
After doing this integral and using the transformation formulae (B.22) under ν → −ν, we
can cast the resulting ν integral in the form

I(0)
o = 2ζ0(∆i, t)

∫ ∞
ξ2

dν
[
Ψ(0)

+ (ν) + Ψ(0)
− (ν)

]
(B.23)

where,

Ψ(0)
± (ν) := Θ(0)

o (α1±)M (0)
(
J

(0)
o± (ν), ν

)(s
4

)J(0)
o± (ν)

[
(4π)−2h

2ξ4 B(h,±iν)
]
,

α1± = B(h,±iν)
2

(B.24)

Further, it is straightforward to observe that, α1+ = α∗1− and J (0)
o+ (ν) = J

(0)
o− (ν)∗. Thus,

quite evidently, we have Ψ(0)
− (ν) = Ψ(0)

+ (ν)∗ using which, one obtains at once

I(0)
o = 4ζ0(∆i, t)<

[∫ ∞
ξ2

dνΨ(0)
− (ν)

]
. (B.25)

Now, we introduce the variable y defined by ν2 = (ξ4 + y2). Then changing the variable of
integration from ν to y we have,

I(0)
o = 4ζ0(∆i, t)<

[∫ ∞
0

dy
y√

ξ4 + y2 Ψ(0)
− (
√
ξ4 + y2, y)

]
. (B.26)

We observe that, although there is a similarity in structure between the expression for the
inner integral (B.14) and this outer integral, there are still some differences.
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A. Wick Rotation and choice of Contour. We start by Wick rotating y in the
integral of (B.26). The direction in which we intend to close the contour is dictated by the
behavior of the integrand at infinity. To do so first we will analyze large s behaviour of the
integrand. From (3.5),

J
(0)
o− (ν) = −iν − 1

8ξ
4B(h,−iν)

×
[
−4 + ξ4(ψ(0)(h− iν) + ψ(0)(h)− ψ(0)(−iν) + γ)B(h,−iν)

]
+O(ξ12) (B.27)

where, now, we have used the value of α1− at the pole of the spectral function, (3.9). Next,
we put ν =

√
ξ4 + y2 into the above expression followed by rearranging the series in powers

of the coupling ξ to obtain the generic structure,

J
(0)
o− (y) ≡ J−(y) =

∞∑
k=1

ak(y)ξ2k. (B.28)

Further, in the limit y →∞ we observe that,

J−(y) ∼ −iy. (B.29)

Therefore, (
s

4

)J−(y)
∼
(
s

4

)−iy
, y →∞ (B.30)

In the Regge limit s→∞, we close the contour for the integral of (B.26) in the lower half
plane so that the integral over the infinite circular arc C(see below) can be dropped off.
The precise contour arrangement is as shown in figure 1. From (B.26) we have,∫ ∞

0
dy

y√
ξ4 + y2 Ψ(0)

−

(√
ξ4 + y2, y

)

=
∫ −i∞

0
dy

y√
ξ4 + y2 Ψ(0)

−

(√
ξ4 + y2, y

)
− 2πi

∑
{yP }

Res.
y=yP

[
y√

ξ4 + y2 Ψ(0)
−

(√
ξ4 + y2, y

)]
(B.31)

where {yP } are any poles of yΨ(0)
− (
√
ξ4 + y2, y). We need to tackle contributions from

these poles.

B. Pole contribution. Clearly, the poles that will give any contribution towards the
second piece of the above integral must have the generic structure,

yP = <(yP ) + i=(yP ), =(yP ) > 0. (B.32)

From which it follows readily that,

Res.
[

y√
ξ4 + y2 Ψ(0)

−

(√
ξ4 + y2, y

)]
y=yP

∼
(
s

4

)−=(yP )+i<(yP )
. (B.33)
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<(y)

=(y)

C

yP

Figure 1. Contour Prescription for I(0)
o .

In the limit s → ∞, the above residue is exponentially suppressed due to =(yP ) > 0. So,
these pole contributions can be dropped off in this limit. Thus we can write,∫ ∞

0
dy

y√
ξ4 + y2 Ψ(0)

−

(√
ξ4 + y2, y

)
=
∫ −i∞

0
dy

y√
ξ4 + y2 Ψ(0)

−

(√
ξ4 + y2, y

)
(B.34)

where, now, the equality is modulo exponentially suppressed pole contributions. Now, we
can make the change of variable y = −iY to obtain,

I(0)
o = −4<

∫ ∞
0

dY
Y√

ξ4 − Y 2 Ψ(0)
−

(√
ξ4 − Y 2, Y

)
. (B.35)

Next, we can divide this integral into two parts as∫ ∞
0

dY
Y√

ξ4 − Y 2 Ψ(0)
−

(√
ξ4 − Y 2, Y

)

=
∫ ξ2

0
dY

Y√
ξ4 − Y 2 Ψ(0)

−

(√
ξ4 − Y 2, Y

)
+
∫ ∞
ξ2

dY
Y√

ξ4 − Y 2 Ψ(0)
−

(√
ξ4 − Y 2, Y

)
.

(B.36)

C. On the integral contribution from the interval [ξ2,∞). We observe the func-
tional dependence of Ψ(0)

− and J
(0)
o− on ν; both are functions of iν.17 Further, we are

interested in physical, i.e t ∈ R. Then, one obtains straightforwardly that, Ψ(0)
− ∈ R for

Y > ξ2.18 But, the factor
√
ξ4 − Y 2 is purely imaginary for Y > ξ2. Therefore,

<
[∫ ∞

ξ2
dY

Y√
ξ4 − Y 2 Ψ(0)

−

(√
ξ4 − Y 2, Y

)]
= 0. (B.37)

17The ν sinh(πν) term in M(J, ν) can be written as −iν sin(iπν).
18To see this use ν =

√
ξ4 − Y 2. For Y > ξ2, then ν is purely imaginary. From (B.27), it readily follows

then, J(0)
o− ∈ R for Y > ξ2. Then, from (3.14) (B.20) and (B.24), it follows at once that Ψ(0)

− ∈ R for physical
t and Y > ξ2.
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Putting together all these three arguments above, we finally reach

I(0)
o = −4ζ0 (∆i, t) <

[∫ ξ2

0
dY

Y√
ξ4 − Y 2 Ψ(0)

−

(√
ξ4 − Y 2, Y

)]
. (B.38)

So far we have carried out the calculation, formally, using the outer solution. In principle,
in the region Y ∈ [0, ξ2], the outer solution is not valid. We argue that an unique analytic
continuation exists that maps J (0)

o− for Y ∈ [ξ2,∞) to s J (0)
i− for Y ∈ [0, ξ2] and consequently

Ψ(0)
− (
√
ξ4 − Y 2) gets analytically continued to Φ(0)

− (
√
ξ4 − Y 2). Therefore we can write,

I(0)
o = −4ζ0 (∆i, t)

∫ ξ2

0
dY

Y√
ξ4 − Y 2 Φ(0)

−

(√
ξ4 − Y 2

)
, (B.39)

where, we have used the fact that, Φ(0)
− (
√
ξ4 − Y 2) is real for Y > ξ2. In order to re-

late (B.39) to (B.12), let us now look at the following inner integral

ζ0(∆i, t)ξ2
∫ 1

0
dxΦ(0)

− (x) (B.40)

With the following change of variables x =
√
ξ4−X2

ξ2 , this becomes

ζ0 (∆i, t) ξ2
∫ 1

0
dxΦ(0)

− (x) = ζ0 (∆i, t)
∫ ξ2

0

XdX√
ξ4 −X2 Φ(0)

−

(√
ξ4 −X2

)
(B.41)

Therefore we establish the d dimensional analogue of the d = 4 integral identities between
inner and outer integral of [1, 2]

I(0)
o = −4ζ0 (∆i, t) ξ2

∫ 1

0
dxΦ(0)

− (x) = −4ζ0 (∆i, t)
∫ ξ2

0

Y dY√
ξ4 − Y 2 Φ(0)

−

(√
ξ4 − Y 2

)
,

(B.42)

III. Combining I(0)
i and I(0)

o

Combining the inner integral I(0)
i , (B.14) and the outer integral I(0)

o , (B.42), we have

I(0) (ξ, s, t) = 2ζ0 (∆i, t) ξ2
∫ 1

0
dy

y√
1− y2

[
Φ(0)

+

(√
1− y2

)
− Φ(0)

−

(√
1− y2

)]
. (B.43)

Next, using J
(0)
i+ (−y) = J

(0)
i− (y) (this follows from putting α̃1± = ±y in (3.10)) and

Φ(0)
+ (
√

1− y2)|y→−y = Φ(0)
− (
√

1− y2), we can write

I(0)(ξ, s, t) = 2ζ0(∆i, t)ξ2
∫ 1

−1
dy

y√
1− y2 Φ(0)

+

(√
1− y2

)
. (B.44)

This is the final integral to be done. Finally let us address the argument behind the analytic
continuation J (0)

o− to J (0)
i− . This merits some amount of discussion since while we have not

been able to prove it rigorously, we have found compelling evidence for this being so. In
general for 0 magnon when h = k, k ∈ Z, we can immediately see from the spectral
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function (3.2) and (3.3), that the form of the denominator will be a polynomial in J . This
tells us that although the closed form expression for J is tedious to find, but in general,
since we know that the closed form solutions exist, there exist an analytic continuation
which maps J (0)

o− to J (0)
i− . This occurs for one magnon spectral function too (4.2) and (4.3)

for h = 2k. So atleast for these special choice of dimensions, we can see that this happens.
We prove it more explicitly by computing the Regge Mellin amplitudes in for d = 4 for 0
magnon and d = 4, 8 for 1-magnon at weak coupling using exact Regge poles a la [1, 2]
and match with our perturbative general d prediction.

C Chiral fishnet Regge integral

In this appendix we present the argument that (5.22) holds. We explicitly present the case
for k = 1 with the structural understanding that the argument can be generalised to higher
k. The Mellin amplitude for k = 1 is given by (5.22),

I1 = 4ω2
∫ 1

−1
dx

(
x

π4
√

1−x2
(l0(J(x), x))M(J(x), x)

((J−J+
1 )(J−J−1 )(J−J+

2 )(J−J−2 ))2

)
|Res J=J1

+
+(s→−s).

(C.1)
The residue can be evaluated with the poles at (5.19) but higher multiplicity. Contri-

bution from the leading Regge trajectory is given by,

I1 =
∑
J=J±

∫ ∞
−∞

dν
−iκ4

1024(J+1)4ν(J(J+2)+ν2)3

×
[
4(J+1)

(
J2+ν2

)(
J (J+2)+ν2

)(
(J+2)2+ν2

)(
−ψ(1)

(
J+iν+2

4

)

+ψ(1)
(
J+iν+4

4

)
+ψ(1)

(
J−iν+2

4

)
−ψ(1)

(
J−iν+4

4

))
M ′ (J (ν))+M (J (ν))

×
[
−(J+1)

(
J2+ν2

)(
J (J+2)+ν2

)(
(J+2)2+ν2

)
ψ(2)

(
J+iν+2

4

)
+(J+1)

(
J2+ν2

)(
J (J+2)+ν2

)(
(J+2)2+ν2

)
ψ(2)

(
J+iν+4

4

)
+(J+1)

(
J2+ν2

)(
J (J+2)+ν2

)(
(J+2)2+ν2

)
ψ(2)

(
J−iν+2

4

)
−(J+1)

(
J2+ν2

)(
J (J+2)+ν2

)(
(J+2)2+ν2

)
ψ(2)

(
J−iν+4

4

)
+8
(
J (J+2)ν−J (J+2)+ν3+ν2+2ν

)(
J2 (ν+1)+2J (ν+1)

+ν ((ν−1)ν+2)
)
ψ(1)

(
J+iν+2

4

)
−8
(
J (J+2)ν−J (J+2)+ν3+ν2+2ν

)
×
(
J2 (ν+1)+2J (ν+1)+ν ((ν−1)ν+2)

)
ψ(1)

(
J+iν+4

4

)
+8
(
J (J+2)ν−J (J+2)+ν3+ν2+2ν

)(
J2 (ν+1)+2J (ν+1)
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+ν ((ν−1)ν+2)
)
ψ(1)

(
J−iν+4

4

)
−8
(
(J (J+2)+2)ν+J (J+2)+ν3−ν2

)
×
(
(J (J+2)+2)ν−J (J+2)+ν3+ν2

)
ψ(1)

(
J−iν+2

4

)]]
(C.2)

J± = J±1 given by (5.19)

J± = −1 +
√

1− ν2 ± 2
√

4ω4 − ν2 (C.3)

andM(J(ν)) is given byM(J, ν) =
(
s
4
)J
eiπJ/2M (c)(J, ν) ζc(∆i, t) whereM (c)(J, ν) is given

by (5.2). Following [2] and [1], we can write this integral as

I1 = I+
1 + I−1 =

∫ ∞
−∞

dν

((
s

4

)J+

φ+(ν) +
(
s

4

)J−

φ−(ν)
)

(C.4)

where

φ± (ν) =−
iκ4 sinh[πν] csc(J±π)Γ(J±+2)Γ(J±−iν+2)Γ

(
−J±−t−iν+2

2

)
Γ(J±+iν+2)Γ

(
−J±−t+iν+2

2

)
2048(J±+1)4π9 (ν2+J± (J±+2))3ω2Γ(J±+1)Γ

(
J±−iν+2

2

)2
Γ
(
J±+iν+2

2

)2

×
(
−
(
−8
(
ν3+ν2+J± (J±+2)ν+2ν−J± (J±+2)

)(
(ν+1)J2

±+2(ν+1)J±

+ν ((ν−1)ν+2)
)
ψ(1)

(1
4 (J±+iν+2)

)
+8
(
ν3+ν2+J (J+2)ν+2ν

−J± (J±+2)
)(

(ν+1)J2
±+2(ν+1)J±+ν ((ν−1)ν+2)

)
ψ(1)

(1
4 (J±+iν+4)

)
+8
(
ν3−ν2+(J± (J±+2)+2)ν+J± (J±+2)

)(
ν3+ν2+(J± (J±+2)+2)ν

−J± (J±+2)
)
ψ(1)

(1
4 (J±−iν+2)

)
−8
(
ν3+ν2+J± (J±+2)ν+2ν

−J± (J±+2)
)(

(ν+1)J2
±+2(ν+1)J±+ν ((ν−1)ν+2)

)
ψ(1)

(1
4 (J±−iν+4)

)
+(J±+1)

(
J2
±+ν2

)(
ν2+J± (J±+2)

)(
(J±+2)2+ν2

)
ψ(2)

(1
4 (J±+iν+2)

)
−(J±+1)

(
J2
±+ν2

)(
ν2+J± (J±+2)

)(
(J±+2)2+ν2

)
ψ(2)

(1
4 (J±+iν+4)

)
−(J±+1)

(
J2
±+ν2

)(
ν2+J± (J±+2)

)(
(J±+2)2+ν2

)
ψ(2)

(1
4 (J±−iν+2)

)
+(J±+1)

(
J2
±+ν2

)(
ν2+J± (J±+2)

)(
(J±+2)2+ν2

)
ψ(2)

(1
4 (J±−iν+4)

))
ω2

−2(J±+1)
(
J2
±+ν2

)(
J2
±+2J±+ν2

)(
J2
±+4J±+ν2+4

)(
2π cot(J±π)ω2

+2ψ(0) (J±+1)ω2−2ψ(0) (J±+2)ω2−2ψ(0) (J±+iν+2)ω2

+2ψ(0)
(1

2 (J±+iν+2)
)
ω2+ψ(0)

(1
2 (−J±−t+iν+2)

)
ω2−2ψ(0) (J±−iν+2)ω2
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+2ψ(0)
(1

2 (J±−iν+2)
)
ω2+ψ(0)

(1
2 (−J±−t−iν+2)

)
ω2−2q

)
×
(
−ψ(1)

(1
4 (J±+iν+2)

)
+ψ(1)

(1
4 (J±+iν+4)

)
+ψ(1)

(1
4 (J±−iν+2)

)
−ψ(1)

(1
4 (J±−iν+4)

)))
(C.5)

We can explicitly check that

φ̃±(−ν) = φ̃±(ν), J±(−ν) = J±(ν) (C.6)

We now split the integration region in (C.2) as following,

I1 =
∫ 2ω2

−2ω2
dν

[(
s

4

)J+

φ+(ν) +
(
s

4

)J−

φ−(ν)
]

+
(∫ −2ω2

−∞
dν

(
s

4

)J+

φ+(ν) +
∫ ∞

2ω2
dν

(
s

4

)J−

φ−(ν)
)

+
(∫ −2ω2

−∞
dν

(
s

4

)J−

φ−(ν) +
∫ ∞

2ω2
dν

(
s

4

)J+

φ+(ν)
)

= I1,0 + I1,1 + I1,2

(C.7)

We can use transformation properties (C.6) to show

I1,0 = 2
∫ 2ω2

0
dν

[(
s

4

)J+

φ+(ν) +
(
s

4

)J−

φ−(ν)
]

(C.8)

Following [1, 2], we introduce the change variable ν2 − 4ω4 = x2 so that,

J± = −1 +
√

1− 4ω4 − x2 ± 2ix (C.9)

Following the argument outlined in the appendix A.1 of [1], it can now be shown that I1,1
and I1,2 can be rewritten in the following manner

I1,1 = I1,2 = 2Re
∫ ∞

0

x dx√
x2 + 4ω4

(
s

4

)J−

φ−(
√
x2 + 4ω4) (C.10)

Here we took into account that J+ and J− are conjugate to each other for real x such that
1− 4ω4− x2 > 0. We would like to wick rotate the contour in (C.10). Noting that in large
x limit we have,

J− ∼ −ix, x→∞ (C.11)

This suggests that we would like to close the x-contour in the lower half of complex x-plane
in (C.10). The contour that we will use is as below,
Now, referred to the above contour prescription, we have for (C.10),

2
∫ ∞

0

xdx√
x2+4ω4

(
s

4

)J−

φ−(
√
x2+4ω4) = 2

∫ −i∞
0

xdx√
x2+4ω4

(
s

4

)J−

φ−(
√
x2+4ω4)−O

(1
s

)
(C.12)
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<(x)

=(x)

C

xP

Figure 2. Contour Prescription for (C.12).

where {xP } are the poles of φ−(
√
x2 + 4ω4) in x.19 We introduce the “Wick Rotation”

x = −ixE and finally obtain from (C.12),

2Re
∫ ∞

0

xdx√
x2+4ω4

(
s

4

)J−

φ−(
√
x2+4ω4)∼ 2Re

∫ −i∞
0

xdx√
x2+4ω4

(
s

4

)J−

φ−(
√
x2+4ω4)

=−2Re
∫ ∞

0

dxE xE√
−x2

E+4ω4
φ−

(√
−x2

E+4ω4
)

(C.13)

The integrand has two square-root branch cuts [−∞,−2ω2) and [2ω2,∞) and deforming
the contour we should not cross the cut.
Next we split up (C.13),

− 2Re
∫ ∞

0

dxE xE√
−x2

E + 4ω4

(
s

4

)J−

φ−

(√
−x2

E + 4ω4
)

= −2Re
∫ 2ω2

0

dxE xE√
−x2

E + 4ω4

(
s

4

)J−

φ−

(√
−x2

E + 4ω4
)

− 2Re
∫ ∞

2ω2

dxE xE√
−x2

E + 4ω4

(
s

4

)J−

φ−

(√
−x2

E + 4ω4
)

(C.14)

Note that in the term in the second line of (C.14), the prefactor 1√
−x2

E+4ω4 is strictly

imaginary in the regime of integration while the quantity
(
s
4
)J− φ−

(√
−x2

E + 4ω4
)
is real

19Assuming that the poles that contribute have the generic structure,

xP = <(xP )− i=̄(xP ), =̄(xP ) > 0

, we immediately see that the residue is suppressed for =̄(xP ) > 0.

– 46 –



J
H
E
P
1
2
(
2
0
2
0
)
1
1
7

in the same regime. This leads to

− 2Re
∫ ∞

0

dxE xE√
−x2

E + 4ω4

(
s

4

)J−

φ−

(√
−x2

E + 4ω4
)

∼ −2
∫ 2ω2

0

dxE xE√
−x2

E + 4ω4

(
s

4

)J−

φ−

(√
−x2

E + 4ω4
)

(C.15)

Therefore (C.10) can be shown to be,

I1,1 = I1,2 = −2
∫ 2ω2

0

x dx√
−x2 + 4ω4

(
s

4

)J−

φ−(
√
−x2 + 4ω4) (C.16)

Putting everything together, (C.7) becomes

I1 = 2
∫ 2ω2

0
dν

((
s

4

)J+

φ+(ν)−
(
s

4

)J−

φ−(ν)
)

(C.17)

We now make a transformation of variables ν = 2ω2√1− x2 and note that J+(−x) =
J−(x) and φ+(−x) = φ−(x). The integral (C.17)can finally brought to the form (5.22) as
we had promised.

I1 = 4ω2
∫ 1

−1
dx

x√
1− x2

((
s

4

)J+

φ+(x)
)

(C.18)

We have explicitly verified that this manipulation works for I2 also and we believe
this will continue to hold true for higher values of k but we don’t have a more physical
argument to present except for structural observations.

C.1 Explicit form for the perturbative integrals

In this appendix, we list the explicit form for the integrals used in section 5.

I0 = 2
∫ 1

−1
dx
√

1−x2e2qxΓ
(

1− t2

)2( ω2

128π9x
+
ω4
(
−2qx−2x2ψ(0) (1− t

2
)
+4x2+1

)
128π9x2

+ ω6

384π9x3

(
x
(
6q2x−6q

(
2x2+1

)
+x

(
π2
(
2x2+1

)
+6
))

+3x2
(

2xψ(0)
(

1− t2

)(
2q+xψ(0)

(
1− t2

)
−4x

)
+
(
2x2−1

)
ψ(1)

(
1− t2

))
+3
)

− ω8

384π9x4

(
2q
(
2q2+π2+3

)
x3−

(
6q2+π2+3

)
x2+6x4 (2x(q−2x)+1)ψ(0)

(
1− t2

)2

+3x2
(
2x
(
2x2−1

)
(q−2x)+1

)
ψ(1)

(
1− t2

)
+2x4ψ(0)

(
1− t2

)(
6q (q−2x)

+
(
6x2−3

)
ψ(1)

(
1− t2

)
+π2

(
2x2+1

))
+4
(
π2−6

)
qx5+6qx+4x6ψ(0)

(
1− t2

)3

+
(
4x2−3

)
x4
(
ψ(2)

(
1− t2

)
+12ζ (3)

)
−8π2x6+12x4−3

)
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+ ω10

23040π9x5

(
4
(
−10

(
−6π2

(
q2−2

)
+36

(
q2−1

)
+π4

)
x6+60q

(
2q2+π2+9

)
x5

−30q
(
2q2+π2

)
x3+15

(
6q2+π2

)
x2+

(
30
(
q4−9

)
+15π2

(
2q2+1

)
+2π4

)
x4

−120
(
6+π2

)
qx7−90qx+38π4x8+45

)
+15x2

(
8x3ψ(0)

(
1− t2

)(
4q3

−6
(
−2qx2+q+4x3−3x

)
ψ(1)

(
1− t2

)
+2q

(
2
(
π2−6

)
x2+π2+3

)
+x

(
4x2−3

)(
ψ(2)

(
1− t2

)
+12ζ (3)

)
+2π2x

(
1−4x2

))
+8x3ψ(0)

(
1− t2

)2((
6q2+π2−6

)
x−12qx2+6q+

(
6x3−3x

)
ψ(1)

(
1− t2

)
+2π2x3

)
+4
(
x
(
6q2

(
2x2−1

)
x+6q

(
−4x4+2x2+1

)
+4π2x5+

(
−3−π2

)
x
)
−3
)
ψ(1)

(
1− t2

)
+32x4 (x(q−2x)+1)ψ(0)

(
1− t2

)3
+8x3

(
q
(
4x2−3

)
−8x3+7x

)
ψ(2)

(
1− t2

)
+96x3ζ (3)

(
q
(
4x2−3

)
−8x3+7x

)
+8x6ψ(0)

(
1− t2

)4
+6
(
1−2x2

)2
x2ψ(1)

(
1− t2

)2

+
(
8x6−8x4+x2

)
ψ(3)

(
1− t2

))))
+O

(
ω12

)
(C.19)

I1 = 2
∫ 1

−1
dx Γ

(
1− t2

)2√
1−x2e2qx

( 3κ4ω2

64π9x3 ζ (3)(x(q+x)−1)

− κ4ω4

7680π9x4

(
180ζ (3)

(
−2x

(
−2q2x+q

(
3−2x2

)
+2x3+x

)
+2x2

(
2x(q+x)

−1
)
ψ(0)

(
1− t2

)
+3
)

+7π4x2 (2x(q+x)−1)
)

+ κ4ω6

3840π9x5

(
2x3ψ(0)

(
1− t2

)(
7π4x2 (q+x)−180ζ (3)

(
−2q2x−2qx2+q+2x3

))
−7π4x3

(
−2q2x−2qx2+q+2x3

)
+60ζ (3)

(
2
(
9q2+π2+6

)
x4+q

(
6
(
q2−2

)
+π2

)
x3

−
(
12q2+π2−3

)
x2+2

(
π2−6

)
qx5+12qx+2

(
π2−6

)
x6−6

)
+360x5ζ (3)(q+x)ψ(0)

(
1− t2

)2
+90x2

(
2ζ (3)

(
2qx3−qx+2x4−2x2

+1
)
ψ(1)

(
1− t2

)
+5ζ (5)

(
4qx3−qx+4x4−2x2+1

))))
+O

(
κ4ω8

)
(C.20)

I2 = 2
∫ 1

−1
dx Γ

(
1− t

2

)2√
1− x2 (C.21)

×
(

9κ8√1− x2ω2ζ(3)2e2qx (2 (q2 − 4
)
x2 + 8qx3 − 5qx+ 4x4 + 4

)
128π9x5

)
+O(ω4κ8)
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D Details of various integrals

We note that in zero magnon and one magnon weak coupling case we finally are left with
evaluation of the integrals of the form

In(P ) =
∫ 1

−1
dxePx

√
1− x2xn , n ∈ Z (D.1)

Now we can generate all such integrals from the basic integral by repeated applications of
derivative (for non-negative n) or anti derivative (for negative n) with respect to L of the
following basic integral,

I0(P ) =
∫ 1

−1
dxePx

√
1− x2 = πI1(P )

P
(D.2)

where Iµ(L) is Modified Bessel function of first kind.
For non-negative n, we have the following differential relation,

In(P ) = dn

dPn
I0(P ), n ≥ 0 (D.3)

with n = 0 corresponds to no differentiation.
For example,

I1(P ) = d

dP
I0(P ) = π

I2(P )
P

(D.4)

On the other hand we note that for n < 0 the integrand is singular at x = 0. So in this case
the integral as such does not exist. However the integral can still be given meaning in the
sense of Cauchy Principal value. Thus we have the following integral under consideration,

Ĩn(P ) = P.V.
∫ 1

−1
dxePx

√
1− x2xn = lim

δ→0

[∫ δ

−1
+
∫ 1

δ

]
dxePx

√
1− x2xn, n ∈ Z− (D.5)

We can get this integral from I0(L) by repeated anti derivative operation i.e, repeated
indefinite integral w.r.t. L. Thus if we define,

L =
∫
dP (D.6)

then,

Ĩn(P ) = LnI0(P ) =
∫ P

dPn

∫ Pn
dPn−1 . . .

∫ P2
dL1 I0(P1) (D.7)

For example,

Ĩ−1(P ) =
∫ P

dP1I0(P1) = π

2P 1F2

(
1
2; 3

2 , 2; P
2

4

)
(D.8)

This can be expressed in terms of modified Bessel functions and modified Struve functions
as following,

Ĩ−1(P ) = π

2 (P (πLLL1(P ) + 2)I0(L)− (πPLLL0(P ) + 2)I1(P )) (D.9)

where, Iµ(z) is modified Bessel function of first kind and LLLν(z) is modified Struve function.
In general Ĩ−n(P ), n > 0 can be expressed in terms of Bessel functions and Struve functions.
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