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Schedule Based Temporal Difference Algorithms

Rohan Deb*!

Abstract—Learning the value function of a given policy from
data samples is an important problem in Reinforcement Learning.
TD()) is a popular class of algorithms to solve this problem.
However, the weights assigned to different n-step returns in
TD()\), controlled by the parameter )\, decrease exponentially with
increasing n. In this paper, we present a A-schedule procedure that
generalizes the TD()\) algorithm to the case when the parameter
A could vary with time-step. This allows flexibility in weight
assignment, i.e., the user can specify the weights assigned to
different n-step returns by choosing a sequence {)\;};>;. Based
on this procedure, we propose an on-policy algorithm — TD())-
schedule, and two off-policy algorithms — GTD()\)-schedule and
TDC()\)-schedule, respectively. We provide proofs of almost sure
convergence for all three algorithms under a general Markov
noise framework.

I. INTRODUCTION

Reinforcement Learning (RL) problems can be categorised
into two classes: prediction and control. The prediction problem
deals with estimating the value function of a given policy
as accurately as possible. Obtaining precise estimates of the
value function is an important problem because value function
provides useful information, such as, importance of being in
different game positions in Atari games ( [1]), taxi-out times at
big airports ( [2]), failure probability in large communication
networks ( [3]), etc. See [4] for a detailed discussion.

Evaluating the value function is an easy task when the
state space is finite and the model of the system (transition
probability matrix and single-stage reward function) is known.
However, in many practical scenarios, the state space is large
and the transition probability kernel is not available. Instead,
samples in the form of (state, action, reward, next-state) are
available and the value function needs to be estimated from
these samples. In the RL community, learning using the samples
generated from the actual or simulated interaction with the
environment is called model-free learning.

Monte-Carlo (MC) and one-step Temporal Difference (TD)
methods are popular algorithms for estimating the value func-
tion in model-free settings. The n-step TD is a generalization of
one-step TD, wherein the TD error is obtained as the difference
between the current estimate of the value function and the
n-step return, instead of the one-step return. These n-step
methods span a spectrum with MC at one end and one-step
TD at the other. The TD(\) algorithm takes the next logical
step of combining the n-step returns for different values of n.
A single parameter A\ decides the weight assigned to different
n-step returns, which decreases exponentially as n increases.
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A. Motivation and Contributions

In some situations, it is observed that n-step TD for some
intermediate values of n outperforms the same for both small
as well as large values of n (cf. Figure 7.2 of [5]). It’s
demonstrated empirically in [5] that neither MC nor one-step
TD performs the best in terms of minimizing the Mean-Squared
Error (MSE), because one-step TD is highly biased whereas
MC has high variance. As a result, intermediate values of n are
likely to achieve the lowest MSE. With the TD(\) algorithm,
we cannot combine only specifically chosen n step returns such
as one described above, as it assigns a weight of (1 — A\)A™
to the n-step return for each n. In this paper, we design a A-
schedule procedure that allows flexibility in weight assignment
to the different n-step returns. Specifically, we generalize the
TD(\) algorithm to the case where the parameter A depends on
the time-step. This produces a sequence {\;};>1. Using this
procedure, we develop an on-policy algorithm called TD(\)-
schedule and two off-policy algorithms called GTD(\)-schedule
and TDC(\)-schedule. We prove the convergence of all the
three algorithms under a general Markov noise framework.
Even though we consider the state space to be finite for ease
of exposition, our proofs carry through easily to the case of
general state spaces under additional assumptions. We point
out here that while the TD()\)-schedule and GTD(\)-schedule
algorithms are single-timescale algorithms with Markov noise,
the TDC(\)-schedule algorithm in fact involves two timescales
with Markov noise in both the slower and faster iterates. Our
proof techniques are more general as compared to others in
the literature. For instance, [6] prove the convergence of TD()\)
using the results of [7]. However, to the best of our knowledge,
there are no known generalizations of that result to the case of
two-timescale algorithms such as TDC(\)-schedule. Moreover,
unlike [6], our results can further be extended to the case
where the underlying Markov chain does not possess a unique
stationary distribution but a set of such distributions that could
even depend on an additional control process.

II. ON-pPOLICY TD(M\)-SCHEDULE

In this section, we precisely define the on-policy TD(\)-
schedule algorithm for an infinite-horizon discounted reward
Markov chain induced by the deterministic policy 7. We note
that though our results are applicable to Markov chains with
general state space, we restrict our attention to the case where
the state space is finite. Thus, the Markov chain can be defined
in terms of a transition probability matrix as opposed to a
transition probability kernel.

We assume that the Markov chain induced by the fixed policy
m is irreducible and aperiodic, whose states lie in a discrete
state space S. We can index the state space with positive



integers, and view S = {1,2,...,n}. Each state s € S has a
corresponding feature vector ¢(s) € R? associated with it. We
denote {s;|t = 0,1,...} as the sequence of states visited by
the Markov chain. The transition probability matrix P induced
by the Markov chain has (4,5)!" entry, denoted by p;;, as
probability of going from state s, =i to s;+1 = j. Also, the
scalar Ry11 = r(8s, St41) represents the single-stage reward

obtained when the system transitions from state s; to state s;4.
Since the state space is finite, sup, |R¢+1| < oo almost surely.

We let v € (0,1) be the discount factor. The value function
V7™ .S — R associated with this Markov chain is given by
V™ (s) = EL YooV Resilso = s} The above expectation is
well-defined because the single-stage reward is bounded as
mentioned above. We consider approximations of V" : S — R
using function Vj : & x R?* — R, where Vj is a linear function
approximator parameterized by 6, i.e., Vy(s) = 07 ¢(s). Our
aim is to find the parameter § € R? to minimise the Mean
Squared Error (MSE) between the true value function V7(+)
and the approximated value function Vjy(-) for a given 6, where

MSE(6) = d"(s) [V"(s) = Va(s)]* = V" =Val|B. (1)
seES

Here, {d™(s)}scs represents the steady-state distribution for
the Markov chain and the matrix D is a diagonal matrix of

dimension n X n with the entries d™(s) on its diagonals.

Minimising MSE with respect to 6 by stochastic-gradient
descent gives the update equation for 6 as,

Orr1 =0 + [V (s¢) — Vo(se)]p(se), ()

where 0 is the value of parameter 6 at time ¢. We now motivate
the main idea of the paper. We propose an algorithm where
the user can assign the weights to different n-step returns
to estimate V™ (s;). We use the discounted-aware setting as
described in Section-5.8 of [5] to define the return, which is
used as an estimate of V7™ (s;).

GrO0) = (1= 7)[A11 Resa]
+ (1 =) [A21 (Res1 + Vo(st41))
+ Ao (Rit1 + Riyo)]
+ 72 (1 = 7)[As1 (Reg1 + Vo(se41))
+ Asa(Riq1 + Riqo + Vo(Se42))

+ Asg(Riq1 + Riqo + Reqs)] + -+
(3)

The above equation is interpreted as follows: the episode ends in
one step with probability (1 — ), in two steps with probability
4(1 — =), in three steps with probability 4?(1 — ) and so
on. When the episode ends in one step, bootstrapping is not
applicable and thus the flat return R;,, is weighed by A1 = 1.
When the episode ends in two steps, the following two choices
are available: bootstrap after one step (R;+1+ Vp(s1+1)) or use
the flat return (R;41 + Riy2). We weight these two quantities
by A2y and Ao respectively under the constraint that As; and
Ao are non-negative and sum to 1. Similarly, when the episode
ends in 3 steps, we have three choices: bootstrap after one step,

bootstrap after two steps or take the flat return. We weight
these three quantities by A1, Ags and A3 respectively, under
the constraint that these three weights are non-negative and
sum to one, and so on. These weights can be summarized in a
matrix as below, where each A;; € [0, 1] and weights in each
row sum to one.

1 0 0 0---
Ay Ay 0O O---
A=1As; Ass Asz 0---

To obtain an online equation for G?(')(H) —Va(st), we add and
subtract Vp(sy11) to all the terms starting from R;y1 + Ryyo
in (3). We notice that, on RHS, the coefficient of R;,; is 1.
Similarly, the coefficient of Vjy(sy1) is v (See Appendix Al
of [8] for details). Hence,

Gi\(')(g) —Vo(st) = Req1 +vVo(ser1) — Va(st)
+ A2 {(1 — 7)(Ri+2)

A
+y(1—7) TZ(RH_z + Vo(si+2))

Ass
+ @(sz + Rt+3)}

+ o= Vo(si41)}

To write the above equation recursively, we notice that we
need to have the additional constraint Azs + A3z = Ags. In
general we must ensure that A ;1 +A;; = Aj_q ;1 Vj > 2.
Setting A2 = A1 and using the above constraint, we obtain
Aoy = (1—)\1). Further, setting A3z = Ao, A3 = )\1(1—)\2)
(to ensure that Ags + Azz = Aga), we obtain As; = (1 — Ap).
We refer to the user-specified sequence )\;,j € N as the A-
schedule hereafter. The weight matrix A can be constructed
from the user specified A-schedule as below:

1 0 0 0
(1—=Xp) A1 0 0
A~ (IT=X1) A1(1=X9) A1 0
(T=X1) A(1—=2X2) AAa(l—N3)
Thus,

GM(0) = Vo(se) = Revr +1Va(se+1) = Va(st)
+ A {1 = ) (Ret2) +v(1 =)
(1= A2)(Riva + Vo(siy2)) + Aa(Rita + Riys)]
+ ... = Vo(se41)}
= 8+ YAGE = Vo(sean)]
=0 + YA10i41 + Y A1 A2bpp0 + -
where, ¢; is the TD-error defined as 0; = Ryy1 +Vy(st41) —
Vo(st). The superscript [A; :] in the return defined above

denotes that the two-step flat return is weighed by Ay, the
three-step flat return is weighted by A; Ao, etc., whereas the
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superscript [A2 :] denotes that the two-step flat return is
weighted by Ao, the three-step flat return by A;\3, etc. Then,
fort =0,1,..., the TD()\)-schedule algorithm updates 6 as
follows:

t -k
Oir1 = 0y + 02z, where z; = Z (H fy)\j)qﬁ(sk). )
0 j=1

k=

Here {a}+>0 is the sequence of step-size parameters and 6
is the initial parameter vector. We make some key observations
here: (1) If A; =1 for j < mn and A\; = 0 for j > n, for some
n > 0, then we obtain the n-step TD algorithm. (2) If A\; =1
Vj € N, then we obtain the MC algorithm. (3) If A\; = A
Vj € N, then we obtain the TD(\) algorithm.

For the remaining part of the paper, we only consider A-
schedules where 3L > 0 such that A\; = 0 for all j > L.
We denote the return associated with such a schedule by
G,[s’\l:’\L](G). The equation of z; then reduces to

t

S

k=t—L

ik
T1 | ésw)-

j=1

®)

We point out that z; can’t be written recursively in terms of
zt—1 unlike TD()) and therefore using schedules of the form
as described above becomes essential to avoid explosion of
space. Note that we need to store the last L states to compute
the eligibility trace z;. The algorithm for TD(\)-schedule is
given below:

Algorithm 1 TD()\)-schedule
1: Input: Policy =, step-size sequence {cy}¢>1, lambda-
schedule {\;}~_, and the feature map &(-).
2: Initialize 6y and sg randomly, z < 0.
3: for t=1,2,3,... do
4:  Choose an action a; ~ 7(+|s¢—1)
5:  Perform action a; and observe reward R;,; and next
state S;y1.

6:  Compute the eligibility trace as in (5).
70 0 = Ry 4+ y9(s141)70 — ¢(s:)70

8: 0 <+ 0; + 10 2¢

9: end for

A. EqualWeights schedule

As already mentioned, it has been seen empirically that
n-step TD performs better for some intermediate values of n.
If for a particular problem, n-step TD achieves low MSE for
some n; < n < ny (cf. Figure 7.2 of [5]), then it makes sense
to combine only these n-step returns instead of all the n-step
returns with exponentially decreasing weights. The TD(\)-
schedule algorithm lets us do this. Suppose, we want to assign
equal weights to all n-step returns for n; < n < ng. We can
achieve this by selecting a A-schedule as follows:

1 if i < nq
1fn1§z§n2
if 2 > na.

A\ =

1
no—1i+1

We call this schedule EqualWeights(n1, ng). To take an example
consider EqualWeights(3,5). The A-schedule is given by A; =

1, /\2 = 1, /\3 = %, )\4 = %, /\j = O7 v.] >5 and
the associated weight matrix is:
[1 0 0 0 0 0 0...]
01 0 0 0 0 0
0 0 1 0 0 0 0
A=1o 0 1/3 2/3 0 0 0
0 0 1/3 1/3 1/3 0 0

We notice that when the episode length > 5, the above matrix
assigns equal weights to 3-step, 4-step and 5-step TD returns.
When the episode length < 3, it takes the Monte Carlo return.
Such an arbitrary weight assignment to n-step returns is not
possible with TD(A). Appendix A5 of [8] reports evaluation
with the EqualWeights schedule on some standard MDPs.

III. OFF POLICY GRADIENT A\—SCHEDULE ALGORITHMS

While TD(\)-schedule is an on-policy algorithm, we now
present a couple of off-policy algorithms that are based on the
A-schedule procedure. We first describe the off-policy setting
briefly. The agent selects actions according to a behaviour
policy pp : Sx A — [0, 1], while we are interested in computing
the value function V™ associated with the target policy 7 :
S x A — [0,1]. Let d“(s), s € S denote the steady-state
probabilities for the Markov chain under the behaviour policy
w and let the importance sampling ratio p; = ZEZ;E:;, where
a; is the action picked at time-step ¢. Along the lines of per-
decision importance sampling (Section 5.9, [5]), we obtain the
off-policy A-schedule return as

GP0) — Vi(s0) = pedi + Y A1pepes1dein
=+ +’}/L)\1 .o .)\Lpt .. -Pt+L5t+L-

We now obtain the Off-Policy TD()\)-schedule algorithm by
defining the eligibility vector z; and the update equation for 0
as below:

t

>

k=t—L

9t+1 = 0 + ot 0t 24, wWith z; =

t—k
pi( T pe-s92 ) éls0). ©
j=1

We observe that the above algorithm diverges on Baird’s
Counterexample ( [9]) (See Appendix A5 of [8]). Gradient
based algorithms [10] are observed to converge in the off-
policy setting. Inspired by this, we develop two gradient-based
schedule algorithms, GTD()\)-Schedule and TDC()\)-Schedule,

as described below.
We note that the A-schedule return defined in (3) can also
be written as below (See Appendix A2 of [8]):

GMAEN0) = Rewr + 7 [(1 = 2)Valser) + MGRE(0)]
@)
Next we define the value function associated with state s as

VT(s) =E[GRH0)]se = 5,7) 2 (TMVT) (s). 8)
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Here, T7-*1:AL] denotes the A-schedule Bellman operator. The
objective function .J() on which gradient descent is performed
is the Mean Squared Projected Bellman Error defined as
follows:

J0) = (Vo - HT”’“““]VeIIQD
2 9
_ de, ( HTﬂ',[/\l )\L]%( )) ’ )

where d*(s) is the visitation probability to state s under
the steady-state distribution when the behaviour policy p is
followed and D,, is an n x n diagonal matrix with d*(s) as

its s** diagonal entry. We also define

5t[)\1:>\L](9)
)b = Zd“

As with [10], using these definitions, the Projected Bellman
Error is expressed as the product of three expectations in the
following lemma. The proofs of the results below are provided
in Appendix A3 of [8].

2 G 0) - 0" ¢y, (10)

P;réi)q:)\L |: >\1 ALl ( )¢t|St — S,W] . 3D

Lemma IIL1. The objective function J(0) = ||Vy —
7™ PeAlVy| |2 can be equivalently written as J(6) =

T
(Prsl A 0)0r) B, [007] 7 (PEoP ™ 0)5:)

The above lemma gives an expression for the objective
function. However, the expectation is with respect to the target
policy m, but needs to be computed from samples of the
trajectory generated by the behaviour policy p. Secondly, the
above is a forward-view equation and needs to be converted
to an equivalent backward view. Theorem III.2 converts the
expectation with respect to 7 to an expectation with respect to
w. In order to do so, as in [10], we define the following terms:

GE’\“)‘L]”’(G) = Pt (Rt—H + 7((1 — A1) Vo(st41)

(12)
+ MG 0))),

5 (0) £ G (60) — 07

Theorem HL2. P7o[ ) (0)¢, = B, [o{"17(0),].

Theorem II1.4 converts the forward view into an equivalent
backward view using the lemma below.

1) W [pmlélff“]”’(f))dn} =
E, [ptflﬁ/)\lé po ALl P(0)r— 1]

Lemma

Theorem 1III.4. Define the eligibility trace vector
t —i

Zt = Zz —I [Pt <H§:1Pt—j’Y>\]) (251] . Then,
Ey 00 2(0)00] = By [51(0)20)

Using the above results, we can express the objective function
as:

J(0) = B, [5:(0)2]" E [¢:67] " E[5(6)2], hence,

[bes?]
=E [(¢: — vp111)% | E

E[6:(0)z¢]
(6167 B [5,(0)2] -

—%VJ(G) = —VE [6,(0)2 | E

We keep a stationary average for the second and third
expectations in a parameter vector w and sample the terms in
the first expectation. We call the resultant algorithm GTD())-
schedule whose iterates are as given below:

Orp1 =0 + ((¢t - 7¢t+1)Ztth) )
W41 = Wy + Pt (5t(9t)2’t - ¢t¢tth) .

Next, as with [10], an alternative is to express the gradient
direction as:

(13)

—5VI(6) = (E[6:67] +E (90 — v — 67
E[¢:07]  E[6:(0)z]
=E[0:(0)2] — (E [(vhe41 — d1)2f + 467 ])
(B [0e7] " E[6:(0)z4))

As before, we maintain a stationary estimate for the last two
terms and sample the remaining terms to obtain the iterates
for TDC()\)-schedule:

Or1 = 0 + ar (6:(6:)2¢)
— oy (Y1 — Po)zf we + b wy)
W1 = we + B (5t(9t)2t - ¢t¢tth) .

Appendix A5 of [8] compares GTD())-schedule and TDC()\)-
schedule with GTD and TDC.

(14)

IV. CONVERGENCE ANALYSIS

Our proof technique differs significantly from other refer-
ences in the asymptotic analysis of our algorithm. In particular,
we follow the ordinary differential equation (ODE) based
analysis under Markov noise for single and multiple timescale
algorithms (cf. [11], [12], [13] and [14]). We begin with the
convergence analysis of the TD(A)-Schedule algorithm. Starting
from some initial state sy, we generate a single infinitely
long trajectory (sg, $1,...). Suppose at time ¢, value of the
parameter 6 is 6;. We consider a linear parameterisation of
the value function as Vp(s;) = ¢ 6;, where ¢, = ¢(s;). After
the transition from state s; to s;;1, we evaluate the temporal
difference term and update the parameter 6; according to (4),
assuming the product H;lzn =1 vn

As mentioned above, we only consider A\ schedules where
3L > 0 such that A\; = 0 for all j > L. With such a choice
of schedule, we need to store only the last L states. We make
the following assumptions:

Assumption 1. The step-sizes o are positive and satisfy
Y, =o00and Y, af < co.

Assumption 2. There exists a distribution d"(j),j € S such
that lim;_, oo P(s¢ = j|so = i) = d™(j) Vi, j.

Assumption 3. The matrix ® has full rank, where ® is an
n x d matrix where the s'" row is ¢(s)T.
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Let X; = (S¢t—r,8t—L41s---55t,8¢+1). Clearly X; is a
Markov chain because s;y2 only depends on s;;;. Note that
z; 18 not included in the Markov chain as it can be constructed
from X;. The steady state version of the Markov chain can
be constructed from s;, -oo < t < 00, whose transition
probabilities are given by P. We then let

t

a= Y

T=—00

t

>

T=t—L

1:[ ’7)‘j¢(57')

j=1

t—1
H ’)//\j(b(ST) =
j=1

We use Ey[-] to denote the expectation with respect to the
steady-state distribution of X;. Now, we can write d:2; as:
5tzt = A(Xt)ﬁt + b(Xt), Where, b(Xt) = Zth+1 and
A(Xy) = z(vofy — ¢f). Let D be the diagonal matrix
with d™(s), s € S as it’s diagonal elements. Further, let
A =TFEo[A(Xy)] and b = Eq[b(X})].

Proposition IV.1. The matrix A is negative definite.

Proof. See Appendix A4 of [8]. O

A. Convergence of TD(\)-schedule

We now present a result from Chapter 6 of [11] (see also
[12]) that gives the stability and convergence of a stochastic
approximation recursion under Markov noise. Let S denote
the set in which the process {X;} takes values in.

Theorem IV.2. Consider the following recursion in R%:

0t+1 = Gt 4+ (673 (h(@t, Xt) + Mt+1) . (15)

Consider now a sequence {t(n)} of time points defined as
Jollows: t(0) = 0, t(n) = Zz;é ak, n > 1. Now define the
algorithm’s trajectory 0(t) according to: 0(t(n)) = 0,, Vn,
and with (t) defined as a continuous linear interpolation on
all intervals [t(n),t(n + 1)]. Finally, consider the following
assumptions:

B1) h: R* x S — R? is Lipschitz continuous in the first
argument, uniformly with respect to the second.

For any given 0 € RY, the set D(0) of ergodic occupation
measures of {X,} is compact and convex.

{M;}+>1 is a square-integrable martingale difference
sequence. Further, E [||[Myi1]|?|F] < K(1 + [|6:]?),
where Fy = 0 (0, X, Mm,m < t), t > 0.

The step-size sequence {a}i>o satisfies oy > 0,V
Further, 72y = 00 and Yoo g 0 < o0.

Let h /h(@, x)v(dz).

(B2)

(B3)

(B4)

(B5) h(9,v) =

h(ch, v(ch
I C o))
c

(i) The limit hoo(0,v) = lim he(6,v) exists uniformly
on compacts. e
There exists an attracting set A associated with the
differential inclusion (DI) 0(t) € H(0(t)) where
H) = co({hoo(0,v) : v € D(0)}) such that

_ A .
sup,e |[ull < 1 and B1(0) = {x [ |lz|| < 1} is
a fundamental neighborhood of A.

Also,

(ii)

Under (B1)-(B5), {0(s +-), s > 0} converges to an internally
chain transitive invariant set of the differential inclusion H(t) €
h(0(t)), where h(9) = {h(0,v) | v € D(0)}. In particular,
{6:} converges almost surely to such a set.

We now present our main result on the TD()\)-schedule
algorithm.

Theorem IV.3. Under Assumptions 1-3, the TD(\)-schedule
algorithm given by (4) satisfies 0; — 0 2 —A~'b almost
surely as t — oo.

Proof. See proof of Theorem 4.3 in [8]. ]
B. Convergence of GTD(\)—-schedule and TDC()\)—schedule

We make the following assumption for the convergence
analysis of GTD(\)-schedule.

Assumption 4. The step-size sequence [3; satisfies 3; > 0,
Vt, >, By =00 and Y, B} < co. Further, we assume g—’; =
n Vk > 0.

Theorem IV.4. Under Assumptions 1-4, {0;} in the GTD()\)-
Schedule iterate given in equation (13) converges almost surely
to —A~1.

Proof. See Appendix A4 in [8]. O

We now make the following assumption for the convergence
analysis of TDC(\)-schedule.

Assumption 5. The step-size sequence [3; satisfies 3; > 0,
Vt, >, Bt =00 and Y, 87 < oc. Further, we assume, =
0 as k — oo.

The TDC(\)-schedule update rule can be rewritten in the
form:

0111 = O + ah(Op, we, Xy),
Wig1 = Wi + Prg(0r, we, X)),

where h: R x R4 x S — R% and g : R x R x § — R are
defined as h(@t,wt, Xt) = A(Xt)ﬁt + b(Xt) — A(Xt)th —
C(X¢)we and g(0r, we, Xi) = A(Xe)0; + b(Xy) — C(Xy)wy,
respectively. Our analysis here is based on stability and
convergence results of two-timescale stochastic approximation
from [13] and [14].

Define functions h, g : R? x R? — R? according to

(16)

h(0,w) = /h(e, w, X)v(dX) = A0 +b— ATw — Cw,

g0, w) = /g(Q,w,X)V(dX) = A0 +b—-Cw,

respectively, with A, b, C' as before. We shall first present below

the main result for which we need the following assumptions:

(C1) The functions h(0,w,X) and g(¢,w,X) are Lipschitz
continuous in (¢, w) for given X € S.

(C2) {a:} and {p;} are step-size schedules that satisfy:

Oét,ﬁt > O, Vt, Zt Qp = Zt ﬁt = OO,Et(Oé? +6752) < 00,

) t
tl—lgloa_o'
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g(co
(C3) The sequence of functions g.(6,w) 2 g(ch, cw)

;> 1,
satisfy g. — goo uniformly on compacts for some g, :
R? — RZ. Also, the limiting ODE () = goo (0, w(t)),
i.e., with 6(¢) = 6, has a unique globally asymptotically
stable equilibrium A, (6) where Ao, : R? — R? is
Lipschitz continuous. Further, Ao (0) = 0, i.e., w(t) =
Goo(0,w(t)) has the origin in R? as it’s unique globally
asymptotically stable equilibrium.

The functions h.(6) = M, ¢ > 1 satisfy h, —
heo as ¢ — oo uniformly on compacts for some h :
R? — R%. Also, the limiting ODE 6(t) = h(6(t)) has
the origin in R? as it’s unique globally asymptotically
stable equilibrium.

The ODE w(t) = g(6,w(t)) has a globally asymptotically
stable equilibrium A(6) (uniformly in ), where \ : R —
R? is Lispchitz continuous.

The ODE 6(t) = h(0(t), A(0(t))) has a globally asymp-
totically stable equilibrium 6*.

(C4)

(C5)

(Co)

We now state the key result.

Theorem IV.5. Under (C1)-(C6), the recursions (16) satisfy:
(@) sup,, (||0n || + [[wn|]) < oo and (b) (0, wn) — (67, A(67))
almost surely.

We now have our main result for TDC(\)-schedule.

Theorem IV.6. Under Assumptions 1-3 and 5, the TDC(\)-
schedule algorithm given by (14) satisfies 0; — 0* = —A~1b
almost surely as t — oo.

Proof. See proof of Theorem 4.6 in [8].

V. RELATED WORK AND CONCLUSION

Recent work by [15], [5] and an earlier work by [4] provide
a comprehensive survey of TD based algorithms. However,
for the sake of completeness we discuss some of the relevant
works. TD(\) with variable A presented in Chapter 12 of [5]
and [16] come close to our algorithms. However, the parameter
A in those algorithms is a function of state. Moreover, such a
A-function does not give arbitrary weights to different n-step
returns. In fact, to the best of our knowledge, no other variant of
TD has looked into letting the user assign weights to different
n-step returns. However, our A-schedule procedure allows this
by choosing appropriate A schedules. State-dependent A can
be derived as a special case of our A-schedule procedure by
letting A1 = A(st), Ao = A(s¢41), etc.

The convergence proofs presented in our paper differ from
the proofs presented earlier in the TD(A)-literature and require
much less verification since they are based on the ODE method.
Our two-timescale proof is novel in that such a proof under the
Markov noise setting has not been presented before. Providing
the proof of two-time scale iterates under Markov noise as here
has been mentioned in [10] as future work. We also mention
that our proofs are presented under fairly general conditions
and could be generalized further for a more general state-
valued process. These proofs also work for the case where

the underlying Markov process does not possess a unique
stationary distribution that can in turn also depend on the
underlying parameters. See remarks in Appendix A6 of [8] for
some further discussions on the proof techniques.

Our work calls in for a comparative analysis of bias variance
trade-off of all these variants of TD algorithm. Devising
and comparing different A-schedules is left for future work.
Another possible direction would be to extend the schedule-
based algorithms to the control setting, for instance, through
SARSA()N) ( [5]) or actor-critic methods ( [17], [18]).
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