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Abstract. Self-supervision has emerged as a propitious method for vi-
sual representation learning after the recent paradigm shift from hand-
crafted pretext tasks to instance-similarity based approaches. Most state-
of-the-art methods enforce similarity between various augmentations of a
given image, while some methods additionally use contrastive approaches
to explicitly ensure diverse representations. While these approaches have
indeed shown promising direction, they require a significantly larger num-
ber of training iterations when compared to the supervised counterparts.
In this work, we explore reasons for the slow convergence of these meth-
ods, and further propose to strengthen them using well-posed auxiliary
tasks that converge significantly faster, and are also useful for represen-
tation learning. The proposed method utilizes the task of rotation pre-
diction to improve the efficiency of existing state-of-the-art methods. We
demonstrate significant gains in performance using the proposed method
on multiple datasets, specifically for lower training epochs.

1 Introduction

The unprecedented progress achieved using Deep Neural Networks over the past
decade was fuelled by the availability of large-scale labelled datasets such as
ImageNet [12], coupled with a massive increase in computational capabilities.
While their initial success was contingent on the availability of annotations in
a supervised learning framework [33, 49, 24, 35], recent years have witnessed a
surge in self-supervised learning methods, which could achieve comparable per-
formance, albeit using a higher computational budget and larger model capaci-
ties [5, 7, 22, 4]. Early self-supervised approaches [53, 42, 20] aimed at learning
representations while solving specialized tasks that require a semantic under-
standing of the content to accomplish. While generative networks such as task-
specific encoder-decoder architectures [30, 54, 46] and Generative Adversarial
Networks (GANs) [21, 15] could learn useful representations, they were super-
seded by the use of discriminative tasks such as solving Jigsaw puzzles [42] and
rotation prediction [20], as the latter could be achieved using lower model capac-
ities and lesser compute. The surprisingly simple task of rotating every image by

⋆ Equal contribution.
Correspondence to: Sravanti Addepalli <sravantia@iisc.ac.in>

ar
X

iv
:2

21
0.

09
86

6v
1 

 [
cs

.C
V

] 
 1

8 
O

ct
 2

02
2

https://orcid.org/0000-0001-7238-4603
https://orcid.org/0000-0002-0882-9927
https://orcid.org/0000-0001-5807-1379
https://orcid.org/0000-0002-1926-1804


2 S. Addepalli et al.

Instance 
Similarity

Instance 
Similarity

Rotation 
Prediction✔✖✔

(a) (b) (c)

Fig. 1: We demonstrate noise in the training objective of instance-similarity based
learning tasks. Consider the three random crops shown in the input image. The two
crops in (a) are desirable, while the crops shown in (b) give an incorrect signal to the
network. Since the task of rotation prediction shown in (c) aims to predict the rotation
angle of each cropped image independently, there is no noise in the training objective.

a random angle from the set {0◦, 90◦, 180◦, 270◦}, and training the network to
predict this angle was seen to outperform other handcrafted task based methods
with a similar convergence rate as supervised training [20]. Compared to these
pretext task based methods, recent approaches have achieved a significant boost
in performance by learning similar representations across various augmentations
of a given image [23, 22, 5, 4, 7]. While these methods show improvements at
a low training budget as well, they achieve a further boost when trained for a
larger number of epochs [7], indicating that improving the convergence of such
methods can lead to valuable gains at a low computational cost.

In this work, we empirically show that a key reason for the slow convergence
of instance-similarity based approaches is the presence of noise in the training
objective, owing to the nature of the learning task, as shown in Fig.1. We fur-
ther propose to strengthen the recent state-of-the-art instance-similarity based
self-supervised learning algorithms such as BYOL [22] and SwAV [4] using a
noise-free auxiliary training objective such as rotation prediction in a multi-
task framework. As shown in Fig.4, this leads to a similar convergence rate as
RotNet [20], while also resulting in better representations from the instance-
similarity based objective. We further study the invariance of the network to
geometric transformations, and show that in natural images, rotation invariance
hurts performance and learning covariant representations across multiple rotated
views leads to improved results. We demonstrate significant gains in performance
across multiple datasets - CIFAR-10, CIFAR-100 [34] and ImageNet-100 [50, 12],
and the scalability of the proposed approach to ImageNet-1k [12] as well.

Our code is available here: https://github.com/val-iisc/EffSSL.

https://github.com/val-iisc/EffSSL
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2 Related Works

2.1 Handcrafted Pretext task based methods

Discriminative pretext tasks use pseudo-labels that are generated automatically
without the need for human annotations. This includes tasks based on spatial
context of images such as context prediction [13], image jigsaw puzzle [42] and
counting visual primitives [43].

RotNet: Rotation prediction, proposed by Gidaris et al. [20], has been one
of the most successful pretext tasks for the learning of useful semantic repre-
sentations. In this approach, every image is transformed using all four rotation
transformations, and the network is trained to predict the corresponding rotation
angle used for transforming the image. Due to its simplicity and effectiveness,
the rotation task has been used to improve the training of GANs [21, 6] as well.

Multi-task Learning: Doersch and Zisserman [14] investigated methods
for combining several pretext tasks in a multi-task learning framework to learn
better representations. Contrary to a general multi-task learning setting, in this
work we aim to improve instance similarity based tasks such as BYOL [22] and
SwAV [4] using handcrafted pretext tasks. We empirically show that the training
objective of instance-similarity based tasks is noisy, and combining it with the
well-defined objective of rotation prediction leads to improved performance.

2.2 Instance Discriminative approaches

Recent approaches aim to learn similar representations for different augmen-
tations of the same image, while generating diverse representations across dif-
ferent images. Several works achieve this using contrastive learning approaches
[44, 25, 5, 23, 39], where multiple augmentations of a given image are considered
as positives, and augmentations of other images are considered as negatives.
PIRL [39] and MoCo [23] maintain a queue to sample more negatives.

SimCLR: The work by Chen et al. [5] presents a Simple Framework for
Contrastive Learning of Visual Representations (SimCLR), that utilizes exist-
ing architectures such as ResNet [24], and avoids the need for memory banks.
The authors proposed the use of multiple data augmentations and a learnable
nonlinear transformation between representations to improve the effectiveness of
contrastive learning. Two independent augmentations for every image are consid-
ered as positives in the contrastive learning task, while the augmentations of all
other images are considered as negatives. The network is trained by minimizing
the normalized temperature-scaled cross entropy loss (NT-Xent) loss.

BYOL, SimSiam: While prior approaches relied on the use of negatives for
training, Grill et al. [22] proposed Bootstrap Your Own Latent (BYOL), which
could achieve state-of-the-art performance without the use of negatives. The two
augmentations of a given image are passed through two different networks - the
base encoder and the momentum encoder. The base encoder is trained such that
the representation at its output can be used to predict the representation at the
output of the momentum encoder, using a predictor network. Chen and He [7]
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show that it is indeed possible to avoid a collapsed representation even without
the momentum encoder using Simple Siamese (SimSiam) networks, and that the
stop-gradient operation is crucial for achieving this.

Clustering based methods, SwAV: Clustering-based self-supervised ap-
proaches use pseudo-labels from the clustering algorithm to learn representa-
tions. DeepCluster [3] alternates between using k-means clustering for produc-
ing pseudo-labels, and training the network to predict the same. Asano et al.[1]
show that degenerate solutions exist in the DeepCluster [3] algorithm. To address
this, they cast the pseudo-label assignment problem as an instance of the optimal
transport problem and solve it efficiently using a fast variant of the Sinkhorn-
Knopp algorithm [10]. SwAV [4] also uses the Sinkhorn-Knoop algorithm for
clustering the data while simultaneously enforcing consistency between cluster
assignments by Swapping Assignments between Views (SwAV), and using them
as targets for training.

2.3 Relation with concurrent works

There has been some recent interest towards improving instance-similarity based
approaches by combining them with pretext tasks [29, 11] . In particular, Ki-
nakh et al. [29] show that the use of pretext auxiliary tasks in addition to the
contrastive loss can boost the accuracy of models like ScatNet and ResNet-18 on
small-scale datasets like STL-10 and CIFAR-100-20. Dangovski et al. [11] claim
that learning equivariant representations is better than learning invariant repre-
sentations, and hence the auxiliary rotation prediction task helps. Our work com-
plements these efforts, and highlights a key issue in the instance-discriminative
learning objective: the impact of noise in their slow convergence, and shows
that combining them with a noise-free auxiliary pretext task can significantly
improve their efficiency and effectiveness.

3 Motivation

The evolution of self-supervised learning algorithms from handcrafted pretext
task-based methods [53, 20, 42] to instance discriminative approaches [23, 22, 5,
4, 7] has indeed led to a significant boost in the performance of downstream tasks.
However, as shown in Fig.4, the latter require a larger number of training epochs
for convergence. In this section, we show using controlled experiments that the
slow convergence of instance-discriminative algorithms can be attributed to a
noisy training objective, and eliminating this noise can lead to improved results.

3.1 Impact of False Negatives in SimCLR

The contrastive learning objective in SimCLR [5] considers two augmentations
of a given image as positives and the augmentations of all other images in the
batch as negatives. These negatives could belong to the same class as the anchor
image, and possibly be as similar to the anchor image as the corresponding
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Table 1: Eliminating False Neg-
atives in contrastive learning across
varying levels of supervision (% La-
bels). Elimination of noise in the train-
ing objective leads to higher linear
evaluation accuracy (%) within a fixed
training budget.

% Labels SimCLR Ours Gain (%)

0 88.77 90.91 2.14
30 92.26 +3.49 93.94 1.68
50 92.93 +0.67 94.02 1.09
100 93.27 +0.34 94.15 0.88

Table 2: Eliminating False Posi-
tives in BYOL [22] across varying lev-
els of supervision (% Good Crops).
Elimination of noise in the training ob-
jective leads to higher linear evaluation
accuracy (%) within a fixed training
budget.

% Good Crops BYOL Ours Gain (%)

0 63.64 68.62 4.98
25 64.50+0.86 68.30 3.80
50 66.30+1.80 68.90 2.60
100 66.72+0.42 70.26 3.54

positive, leading to a noisy training objective. While the probability of same
class negatives is higher when batch size is higher than the number of classes,
this issue can occur even otherwise, when there exist negative images that are
more similar to the anchor when compared to the positive. Khosla et al. [28]
use supervision from labels in a Supervised Contrastive (SupCon) framework
to convert the same-class false negatives to additional positives, and show an
improvement over supervised learning methods.

In order to specifically study the impact of eliminating false-negatives, we
first perform experiments by using labels to avoid using the same class samples
as negatives. We do not add these eliminated negatives as positives, in order to
avoid excessive supervision. In Table-1 we present results of an experiment on
the CIFAR-10 dataset, where the same-class negatives in SimCLR are eliminated
using a varying fraction of labels. The fraction of labels serves as an upper bound
to the amount of noise reduction in the training objective, considering that other
sources of noise such as false-positives are still not eliminated. Using 30% labels,
we achieve a 3.49% increase in accuracy when compared to the SimCLR baseline
(0% labels case). It is also interesting to note that the boost in accuracy is highest
for 30% supervision and reduces as the fraction of labels increase. This indicates
that the network can possibly overcome the impact of noise more effectively when
the amount of noise is lower. Overall, we obtain 4.5% boost in the case where
all the labels are used. By jointly training SimCLR with the task of rotation
prediction (Ours), we achieve highest gains in the case of 0% labels or the no
supervision case, and significantly lower gains as the amount of labels increase.
We discuss this in greater detail in Section-5.2.

3.2 Impact of False Positives in BYOL

Since BYOL does not use a contrastive learning objective, it is not directly
impacted by noise due to false negatives. However, as shown in Fig.1(b), the
augmentations considered may not be similar to each other, leading to false
positives. Selvaraju et al. [48] show that unsupervised saliency maps can be
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used for the selection of better crops, and also as a supervisory signal in the
training objective. This leads to improved performance on scene datasets which
contain multiple objects. Inspired by this, we use Grad-CAM [47] based saliency
maps from a supervised ImageNet pre-trained network to select crops such that
the ratio of mean saliency score of the cropped image and that of the full image
is higher than a certain threshold (Details in Sec.S2). It is to be noted that
the only difference with respect to BYOL is in the use of supervised saliency
maps for the selection of crops. Alternatively, unsupervised saliency maps could
also be used for the same. We demonstrate results of this experiment on the
ImageNet-100 dataset in Table-2. We observe that by using saliency-maps for
crop selection, the accuracy improves by 3.08% for a fixed training budget. While
this experiment shows the impact of reducing the false positives in the BYOL
objective, it does not completely eliminate noise in the training objective, since
the saliency maps themselves are obtained from a Deep Neural Network, and
hence may not be very accurate.

4 Proposed Method

In this section, we examine the advantages of instance-discriminative approaches
and handcrafted pretext-task based methods, and further discuss our proposed
approach which integrates both methods to overcome their limitations.

The key ingredients for the success of a self-supervised learning algorithm
are (i) Well-posedness of the learning task; (ii) Extent of correlation between
representations that help accomplish the pretext task, and ideal representations,
whose quality is evaluated using downstream tasks.

The success of instance-similarity based approaches in achieving state-of-
the-art performance on downstream tasks indeed shows that the representations
learnt using such tasks are well correlated with ideal representations. However,
these methods require to be trained on a significantly larger number of training
epochs when compared to the supervised counterparts. As seen in the previous
section, a possible reason for the slow convergence of these methods is the noise
in training objective due to the presence of false positives and false negatives.
While it is possible to overcome this noise using additional supervision from
(unsupervised) pre-trained models, such as the use of saliency maps for crop
selection, these methods are not very successful as this supervisory signal is also
not perfect in practice. Moreover, this method assumes the availability of a net-
work which is pre-trained on a relevant dataset, which may not always hold true,
and hence adds to the training cost. We observe that the boost in performance is
not good enough to justify the additional computational overhead. If the same
computational budget is invested in the main self-supervised task, it leads to
better performance (Details in Sec.S2).

On the other hand, task-based objectives such as rotation prediction score
higher on the well-posedness of the learning task. In this task, a known random
rotation transformation is applied to an image, and the task of the network is to
predict the angle of rotation. Since the rotation angle is known a priori, there is
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Fig. 2: Schematic diagram illustrating the proposed approach. A pretext task such
as rotation prediction is combined with base methods like BYOL and SimCLR. For
methods like BYOL and MoCo, the derived network Mψ is a momentum-averaged
version of Mθ, and for methods like SimCLR, Mθ and Mψ share the same parameters.

very little scope for noise in labels or in the learning objective, leading to faster
training convergence.

In this work, we propose to enhance the convergence of instance-similarity
based approaches using pretext-task based objectives such as rotation predic-
tion. The proposed approach can be used to enhance many existing instance-
discrimination based algorithms (referred to as base algorithm) as shown in
Section-5. A schematic diagram of our proposed approach is presented in Fig.2.

We term the main feature extractor to be learned as the base encoder, and
denote it as fθ. Some of the self-supervised learning algorithms use an addi-
tional encoder, which is derived from the weights of the base encoder. We call
this as a derived encoder and represent it using fψ. It is to be noted that the
derived encoder may be also be identical to the base encoder, which represents
an identity mapping between θ and ψ. As proposed by Chen et al. [5], many
of the approaches use a learnable nonlinear transformation between the repre-
sentations and the final instance-discriminative loss. We denote this projection
network and its derived network using gθ and gϕ respectively. We note that the
base algorithm may have additional layers between the projection network and
the final loss, such as the predictor in BYOL [22] and SimSiam [7], which are
not explicitly shown in Fig.2.

An input image x is first subject to two augmentations a1 and a2 to generate
xa1 and xa2 . We use the augmentation pipeline from the respective base algo-
rithm such as BYOL or SimCLR. These augmented images are passed through
the base encoder fθ and the derived encoder fϕ respectively, and the outputs
of the projection networks gθ and gϕ are used to compute the training objec-
tive of the respective base algorithm. The augmentation xa1 is further trans-
formed using a rotation transformation t which is randomly sampled from the
set T = {0◦, 90◦, 180◦, 270◦}. The rotated image xa1,t is passed through the base
encoder fθ and projection network gθ which are shared with the instance-based
task. We represent the overall network formed by the composition of fθ and gθ
by Mθ, and similarly the composition of fψ and gψ by Mψ. The representation
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Mθ(x
a1,t) is input to a task-specific network hθ whose output is a 4-dimensional

softmax vector over the outputs in the set T . The overall training objective is
as follows:

L = Lbase + λ · 1

2B

B−1∑
i=0

2∑
m=1

ℓCE(hθ(Mθ(x
am,tk
i ), tk)) (1)

Here tk is sampled uniformly at random for each image from the set T . Lbase

represents the symmetric loss of the base instance-similarity based algorithm
used. We describe the base loss for BYOL [22] and SimCLR [5] in Sec.S1. λ is
the weighting factor between rotation task and the instance-similarity objective.
While the RotNet algorithm [20] uses all four rotations for every image, we
consider only two in the overall symmetric loss. Therefore, when compared to the
base algorithm, the computational overhead of the proposed method is limited
to one additional forward propagation for every augmentation, which is very low
when compared to the other components of training such as data loading and
backpropagation. There is no additional overhead in backpropagation since the
combined loss (Eq.1) is used for training.

5 Experiments and Analysis

In this section, we first describe our experimental settings (Sec.5.1), following
which we present an empirical analysis to highlight the importance of the auxil-
iary task towards improving the efficiency and effectiveness of the base learning
algorithm (Sec.5.2). We further compare the properties of the learned represen-
tations using different training methods and show that learning representations
that are covariant to rotation also aids in boosting performance (Sec.5.3). We
finally compare the results of the proposed method with the state-of-the-art
approaches in Sec.5.4.

5.1 Experimental Setup

We run our experiments either on a single 32GB V100 GPU, or across two
such GPUs unless specified otherwise. We train our models with ResNet-18 [24]
architecture on CIFAR-10 and CIFAR-100 [34] dataset and with ResNet-50 [24]
architecture on ImageNet-1k [12] dataset. Our primary evaluations are run for
200 epochs on CIFAR-10 and CIFAR-100, and 100 epochs on ImageNet-100
[12] dataset. We show additional evaluations across varying number of training
epochs in Sec.5.4. We describe the training hyperparameters in Sec.S4. We use
the respective base algorithm or the proposed approach to learn the base encoder
fθ, and evaluate its effectiveness by training a linear classifier over this, as is
common in prior works [5, 7, 22, 4]. In this step, the weights of the base encoder
are frozen. We additionally report results in a semi-supervised (Sec.5.4) and
transfer learning setting (Sec.S7) as well.
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Fig. 3: The plots demonstrate the impact of label noise in different training objectives
on CIFAR-10 dataset. The proposed method (+ Rotation) results in higher perfor-
mance boost when the amount of label noise in the base method is larger. Addition of
label noise to the rotation task reduces the gain in performance.

5.2 Robustness to Noise in the Training objective

As discussed in Section-3, instance-similarity based tasks such as SimCLR [5]
and BYOL [22] suffer from noise in the training objective, and eliminating this
noise can lead to significant performance gains in a fixed training budget. We ad-
ditionally report results of the proposed approach integrated with SimCLR and
BYOL in Tables-1 and 2 respectively, and obtain gains over the base approach
across varying settings of supervision levels. However, as can be seen from the
column Gain (%), the gains using the proposed approach reduce with increas-
ing levels of supervision. This is aligned with our hypothesis that the rotation
task helps in overcoming the impact of noise in the base instance-similarity task,
and therefore, when additional supervision already achieves this objective, gains
using the proposed approach are lower.

Label Noise in a Supervised Learning setting:We consider the task of
supervised learning using the supervised contrastive (SupCon) learning objec-
tive proposed by Khosla et al. [28]. The training objective is similar to that of
SimCLR [5] with the exception that same-class negatives are treated as posi-
tives. The authors demonstrate that this method outperforms standard super-
vised training as well. We choose this training objective as this is similar to
the instance-similarity based tasks we consider in this paper, while also having
significantly lesser noise due to the elimination of false negatives in training. As
shown in Fig.3a, even in this setting, the proposed method achieves 0.68% im-
provement, achieving a new state-of-the-art in supervised learning. In order to
highlight the impact of noise in training, we run a controlled set of experiments
by adding a fixed amount of label noise in each run. The plot in Fig. 3a shows
the trend in accuracy of the SupCon algorithm with increasing label noise. The
proposed method achieves a significant boost over the SupCon baseline consis-
tently across different noise levels. Further, as the amount of noise in training
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increases, we achieve higher gains using the proposed approach, indicating that
the rotation task is indeed helping overcome noise in the training objective.

We also consider a set of experiments where an equal amount of label noise
is added to the SupCon training objective and to the rotation prediction task.
We note that in majority of the runs (excluding the case of noise above 70%),
the accuracy is very similar to the SupCon baseline with the same amount of
noise. This indicates that the knowledge of true labels in handcrafted tasks such
as rotation prediction is the key factor that contributes to the improvement
achieved using the proposed approach.

We perform the experiments of adding label noise to the rotation prediction
task when combined with BYOL and SimCLR as well. As shown in Fig.3b we
find that the gains with the rotation prediction task drops considerably over
0−20% label noise, indicating that a similar amount of noise (∼ 20%) is present
in the BYOL/ SimCLR training objectives as well. Further, addition of rotation
prediction task helps marginally (0.47 − 1.38%) even with higher amount of
noise (30− 60%) in rotation annotations. This indicates that, while the rotation
prediction primarily helps by providing a noise-free training objective, it aids
the main task in other ways too. We investigate this in the following section.

5.3 Learning rotation-covariant representations

The task of enforcing similarity across various augmentations of a given im-
age yields representations that are invariant to such transformations. In sharp
contrast, the representations learned by humans are covariant with respect to
factors such as rotation, color and scale, although we are able to still correlate
multiple transformations of the same object very well. This hints at the fact that
learning covariant representations could help the accuracy of downstream tasks
such as object detection and classification.

In Table-3, we compare the rotation sensitivity and contrastive task accuracy
of representations at the output of the base encoder fθ, and the projection
network gθ. We follow the process described by Chen et al. [5] to obtain these
results. We freeze the network till the respective layer (fθ or gθ) and train a
rotation task classifier over this using a 2-layer MLP head. We measure the
rotation task accuracy, which serves as an indication of the amount of rotation
sensitivity in the base network. We further compute the contrastive task accuracy
on the representations learned, by checking whether the two augmentations of a
given image are more similar to each other when compared to augmentations of
other images in the same batch.

Interestingly, a fully supervised network is more sensitive to rotation (80.54%)
when compared to the representations learned using BYOL (73.4%). Chen et
al. [5] also show that rotation augmentation hurts performance of SimCLR.
These observations indicate that invariance to rotation hurts performance, and
reducing this lead to better representations. While RotNet has higher accuracy
on the rotation task, it does significantly worse on the instance discrimination
task, leading to sub-optimal performance compared to BYOL. In the proposed
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Table 3: Task Performance (%):
Evaluation of representations learned
using various algorithms on the task
of rotation prediction and instance-
discrimination.
Method

Linear
Rotation Acc Contrastive Acc
f(.) g(f(.)) f(.) g(f(.))

Supervised 94.03 80.54 - 46.36 -
BYOL 89.30 73.40 58.32 78.53 78.82
Rotation 84.00 93.69 93.46 31.61 1.52
BYOL+Rotation 91.89 93.73 93.54 72.85 67.81

Table 4: BYOL + Rotation with vary-
ing noise in the rotation labels.
Rotation prediction accuracy corre-
lates with linear evaluation accuracy.

Rotation
Linear

Rotation Acc Contrastive Acc
Noise f(.) g(f(.) f(.) g(f(.)

30% 89.93 91.88 91.78 73.42 64.25
50% 90.28 89.95 85.82 78.18 77.39
70% 89.75 80.49 67.26 78.55 77.31
80% 89.18 77.43 63.53 77.26 76.92

method, we achieve better rotation task accuracy with a small drop in the con-
trastive task accuracy when compared to BYOL. This also results in an overall
higher performance after Linear evaluation.

We also investigate rotation invariance for the experiments in Sec.5.2 with
BYOL as the base method, where noise is added to the rotation task. As shown
in Table-4, we find that as the amount of noise increases in the rotation task, the
amount of rotation invariance increases, leading to a drop in accuracy. Even with
50% noise in the rotation task, we achieve 16.55% boost in rotation performance,
leading to 0.98% improvement in the accuracy after linear evaluation. Since the
BYOL learning task possibly contains lesser noise compared to this, the gain in
performance can be justified by the fact that rotation-covariant representations
lead to improved performance on natural image datasets.

5.4 Comparison with the state-of-the-art

We compare the performance of the proposed method with the respective base-
lines in the setting of linear evaluation on CIFAR-10, CIFAR-100 (Table-5),
ImageNet-100 and ImageNet-1k (Table-6) datasets. We perform extensive hyper-
parameter search to obtain reliable results on the baseline methods for CIFAR-
10 and CIFAR-100, since most existing works report the optimal settings for
ImageNet-1k training alone. As shown in Table-5, although the performance of
Rotation prediction [20] itself is significantly worse that other methods, we ob-
tain gains of 2.14%, 2.59%, 3.6% and 2.14% on CIFAR-10 and 2.44%, 6.4%,
7.1% and 3.11% on CIFAR-100 by using the proposed method with SimCLR [5],
BYOL [22], SwAV [4] and SimSiam [7] respectively.

We present results on CIFAR-10 dataset with varying number of training
epochs in Fig.4a using BYOL as the base approach. Across all settings, we
obtain improved results over the BYOL baseline. The proposed method achieves
the same accuracy as the baseline in one-third the training time (shown using
blue dotted line) as shown in Fig.4a. We show the difference in accuracy with
respect to accuracy obtained with 50 epochs of training in Fig.4b, to clearly
visualize the convergence rate of different methods. It can be seen that the
proposed method has a similar convergence trend as the Rotation task, while
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Table 5: CIFAR-10, CIFAR-100: Accuracy (%) of the proposed method com-
pared to baselines under two evaluation settings - K-Nearest Neighbor (KNN)
classification with K=200 and Linear classifier training. The proposed method
achieves significant performance gains across all settings.

CIFAR-10 (200 epochs) CIFAR-100 (200 epochs)
Method KNN Linear KNN Linear

Rotation Pred. [20] 78.01 84.00 36.25 50.87
SimCLR [5] 86.37 88.77 55.10 62.96

SimCLR + Ours 88.69 90.91 57.09 65.40
BYOL [22] 86.56 89.30 54.37 60.67

BYOL + Ours 89.80 91.89 58.41 67.03
SwAV [4] 80.65 83.60 40.35 51.50

SwAV + Ours 85.26 87.20 50.09 58.60
SimSiam [7] 87.05 89.77 56.90 64.27

SimSiam + Ours 90.35 91.91 58.92 67.38
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Fig. 4: (a) Accuracy (%) after Linear layer training for BYOL [22], RotNet [20] and the
proposed method (BYOL+Rotation) on CIFAR-10. The proposed method achieves the
same accuracy as the baseline in one-third the training time (shown using blue dotted
line). (b) Gain in Top-1 Accuracy (%), or the difference between accuracy of the current
epoch and epoch-50. Plot (a) shows the improvement in effectiveness of the proposed
approach and plot (b) shows the improvement in efficiency or convergence rate.

outperforming BYOL in terms of Top-1 Accuracy, highlighting that integrating
these methods indeed combines the benefits of both methods.

We present results on ImageNet-100 dataset in Table-6. To limit the com-
putational cost on our ImageNet-100 and ImageNet-1k runs, we either use the
tuned hyperparameters from the official repository, or follow the settings from
other popular repositories that report competent results. Due to the unavail-
ability of tuned hyperparameters on this dataset for SimSiam, we skip reporting
results of this method on ImageNet-100. We achieve gains of 2.58%, 1.22% and
2.2% on BYOL [22], SimCLR [5] and SwAV [4] respectively in Top-1 accuracy.
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Table 6: ImageNet-100 and ImageNet-1k: Performance (%) of the proposed
method when compared to baselines under three evaluation settings - Linear
classifier training and Semi-Supervised Learning with 1% and 10% labels. The
proposed method achieves significant performance gains.

Method
Linear Acc

Semi-Supervised
1% labels

Semi-Supervised
10% labels

Top-1 Top-1 Top-5 Top-1 Top-5

ImageNet-100 (100 epochs, ResNet-18)

Rotation Prediction [20] 53.86 34.72 65.70 51.18 81.38
BYOL [22] 71.02 46.60 75.50 68.00 89.80
BYOL + Ours 73.60 56.40 83.50 72.30 91.40
SimCLR [5] 72.02 57.28 83.69 71.44 91.72
SimCLR + Ours 73.24 57.80 83.84 72.52 92.10
SwAV [4] 72.20 49.38 78.41 67.56 90.78
SwAV + Ours 74.40 52.02 80.01 69.68 91.43

ImageNet-1k (30 epochs, ResNet-50)

SwAV [4] 54.90 32.20 58.20 51.82 77.60
SwAV + Ours 57.30 32.80 59.12 53.80 78.54

We obtain the best results by integrating the proposed method with SwAV, and
hence report ImageNet-1k results on the same method, in order to demonstrate
the scalability of the proposed method to a large-scale dataset. We present the
result of 30-epochs of training on ImageNet-1k in Table-6. Using the proposed
approach, we obtain a boost of 2.4% in Top-1 accuracy over the SwAV baseline.
We present additional results on longer training epochs in Sec.S8.

Furthermore, we present results on ImageNet-100 dataset with varying num-
ber of training epochs in Fig.5. Using the proposed method, we achieve gains
across all settings with respect to the number of training epochs. We obtain
improved results over the base methods in semi-supervised learning (Table-6)
and transfer learning settings as well. We discuss the transfer learning results in
Sec.S7.

5.5 Integration with other tasks

In this work, we empirically show that combining instance-discriminative tasks
with well-posed handcrafted pretext tasks such as Rotation prediction [20] can
indeed lead to more effective and efficient learning of visual representations.
While we choose the Rotation prediction task due to its simplicity in implemen-
tation, and applicability to low resolution images (such as CIFAR-10), it is indeed
possible to achieve gains by using other well-posed tasks as well. In Table-7, we
report results on the ImageNet-100 [50] dataset by combining the base BYOL
[22] algorithm individually with Rotation prediction [20], Jigsaw puzzle solving
[42] and both. Although the Jigsaw puzzle solving task is sub-optimal when com-
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Table 7: Combining BYOL
with handcrafted pretext
tasks: Accuracy in (%) after
linear evaluation, of various
algorithms on ImageNet-100
dataset.

Top-1 (%) Top-5 (%)

RotNet (R) 53.86 81.26
Jigsaw (J) 42.01 72.10
BYOL 71.02 91.78
BYOL + R 73.60 92.98
BYOL + J 73.60 92.72
BYOL + J + R 74.72 92.94
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Fig. 5: Accuracy (%) after Linear layer train-
ing for BYOL and the proposed method
(BYOL+Rotation) for ImageNet-100. The pro-
posed method achieves significant gains over the
baseline in all settings.

pared to the Rotation prediction task, we achieve similar gains in performance
when these tasks are combined with BYOL. We obtain the best gains (3.7%)
when we combine both tasks with BYOL. This shows that the analysis on well-
defined tasks being able to aid the learning of instance-discriminative tasks that
are noisy is indeed generic, and not specific to the Rotation prediction task alone.

6 Conclusions

In this work, we investigate reasons for the slow convergence of recent instance-
similarity based methods, and propose to improve the same by jointly train-
ing them with well-posed tasks such as rotation prediction. While instance-
discriminative approaches learn better representations, handcrafted tasks have
the advantage of faster convergence as the training objective is well defined and
there is typically no (or very less) noise in the generated pseudo-labels. The
complementary nature of the two kinds of tasks makes it suitable to achieve the
gains associated with both by combining them. Using the proposed approach,
we show significant gains in performance under a fixed training budget, along
with improvements in training efficiency. We show similar gains in performance
by combining the base algorithms with the task of Jigsaw puzzle solving as well.
We hope that our work will revive research interest in designing specialized tasks,
so that they can be help boost the effectiveness and efficiency of state-of-the-art
methods.
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Supplementary material

S1 Background

We briefly discuss some of existing self-supervised learning approaches that have
been used for the analysis in this paper.

RotNet: Rotation prediction, proposed by Gidaris et al. [20], has been one of
the most successful pretext tasks for the learning of useful semantic representa-
tions. In this approach, the network is trained to predict one of the K rotations
which was used for transforming the input image xi. The authors found that
K = 4 with T = {0◦, 90◦, 180◦, 270◦} produced the best results. Every image
xi is transformed using all four rotation transformations xt1i , x

t2
i , x

t3
i and xt4i ,

and the network is trained to predict t1, t2, t3 and t4, which are the rotation
angles used for transforming xi. The base encoder fθ is trained by minimizing
the following loss function L:

LRotNet =
1

B

B−1∑
i=0

1

K

K−1∑
k=0

ℓCE(Mθ(x
tk
i ), tk) (S1)

Here, Mθ represents the network that takes as input rotated images xtki , and
outputs the softmax predictions over the four possible rotation angles.

SimCLR: The work by Chen et al. [5] presents a Simple Framework for Con-
trastive Learning of Visual Representations (SimCLR), which utilizes existing
architectures such as ResNet [24], and avoids the need for specialized architec-
tures and memory banks. SimCLR proposed the use of multiple data augmenta-
tions, and a learnable nonlinear transformation between representations and the
contrastive loss to improve the effectiveness of contrastive learning. The authors
find the following augmentations to be best suited for the contrastive learning
task - random crop and resize, random color jitter and random Gaussian blur.
These augmentations are applied serially to every image xi to generate two in-
dependent augmentations xa1i and xa2i , which are considered as positives in the
contrastive learning task. The 2(B − 1) augmentations of all other images in a
batch of size B are considered as negatives. The network is trained by minimiz-
ing the normalized temperature-scaled cross entropy loss (NT-Xent) loss with
temperature T as shown in Eq.(S2). The cosine similarity between two vectors
a and b is denoted as sim(a, b). The overall network formed by the composition
of the base encoder fθ and the projection network gθ is represented by Mθ.

LSimCLR = − 1

2B

B−1∑
i=0

2∑
m=1

log
exp(sim(Mθ(x

a1
i ),Mθ(x

a2
i ))/T )∑B−1

j=0

∑2
l=1 1[j ̸=i] exp(sim(Mθ(x

am
i ),Mθ(x

al
j ))/T )

(S2)

BYOL: While prior approaches relied on the use of negatives for training,
Grill et al. [22] proposed Bootstrap Your Own Latent (BYOL), which could
achieve state-of-the-art performance without the use of negatives. The two aug-
mentations xa1i and xa2i are passed through two different networks - the base
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network Mθ, and the derived network Mψ respectively. The weights of the base
network are updated using back-propagation, while the weights of the derived
network are obtained by computing a slow exponential moving average over the
weights of the base network. The base network is trained such that the represen-
tation of xa1i at its output can be used to predict the representation of the xa2i at
the output of the derived network, using a predictor network Pθ. The symmetric
loss that is used for training the base network is shown below:

LBY OL = − 1

2B

B−1∑
i=0

sim(Pθ(Mθ(x
a1
i )),Mψ(x

a2
i )) + sim(Pθ(Mθ(x

a2
i )),Mψ(x

a1
i ))

(S3)

S2 Eliminating false positives in self-supervised learning

As shown in Fig.1(b), two random augmentations of a given image may not al-
ways be similar to each other. The use of very small crops increases the likelihood
of obtaining augmentations which may be unrelated to each other. This leads to
false positives in instance-similarity based learning approaches. In Table-2, we
use Grad-CAM [47] based saliency maps to select crops such that mean saliency
score of the cropped image is greater than that of the full image. We describe
this method in more detail below.

Mean-saliency based cropping: We denote the saliency map of an image
using G(x), which is a probability map indicating the importance of each pixel
in the image. In order to select rectangular crops having high saliency score,
we first calculate the mean probability score P (x) for an image x of dimension
W ×H as follows:

P (x) =
1

W ·H

W∑
i=0

H∑
j=0

Gi,j(x) (S4)

For selecting a rectangular crop from the image, we randomly sample the top
left corner coordinates (l,m), width w, and height h from the valid range. These
values can be used to obtain a rectangular crop xa1 . We formulate the saliency
score of the crop xa1 as follows:

P (xa1) =
1

w · h

l+w∑
i=l

m+h∑
j=m

Gi,j(x) (S5)

The sampled crop is accepted only if P (xa1) > P (x). We repeatedly sample
until a valid crop is found, and restrict to a maximum of 10 tries. If no valid
crop is found, we use a random crop. We observe that 10 tries are sufficient to
find valid crops in most cases and random cropping is used for very few images.

Computational Budget: As shown in Table-2, with 50 epochs of training,
the accuracy on BYOL baseline is 63.64%, which increases to 66.72% with the
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use of supervised saliency maps. However, this method assumes the availability of
a network which is pre-trained on a relevant dataset, which may not always hold
true. Hence, the computational budget for training this reference network needs
to be considered too. We use fully supervised network trained for 90 epochs as
the reference model for generation of saliency maps. Therefore, the total budget
for the BYOL baseline is 140 epochs (50+90). As shown in Table-6, the accuracy
obtained by training the BYOL baselines for 100 epochs is 71.02% which is 4.3%
higher than the model that is trained for 50 epochs using saliency maps, with an
effective training budget of 140 epochs. This shows that while the use of saliency
maps from a pre-trained network helps improve accuracy, it is not a practical
option in cases where a model that is pre-trained on a related dataset is not
available a priori.

S3 Details on Datasets

We present our analysis and results across the following datasets: CIFAR-10,
CIFAR-100 [34] and ImageNet-100 [50], which is a 100-class subset of ImageNet
[12]. We do not present our main results on the full ImageNet dataset due to
computational limitations. However, we show the scalability of our approach to
ImageNet on a short training schedule of 30-epochs. Details of these datasets
are presented below:
CIFAR-10: CIFAR-10 [34] is a 10 class dataset comprising of 50, 000 images in
the training set and 10, 000 images in the test set. The dataset consists of RGB
images of dimension 32 × 32. The images in the train and test sets are equally
distributed across all classes.
CIFAR-100: CIFAR-100 [34] dataset consists of 50, 000 images in the training
set and 10, 000 images in the test set, equally distributed across 100 classes.
The dimensions and number of channels of images in CIFAR-100 is the same as
CIFAR-10.
ImageNet: ImageNet [12] is a 1000-class dataset consisting of around 1.2 million
images in the training set and 50, 000 images in the validation set. We consider
the validation set as the test set, since the true test set is held private. The
dataset consists of RGB images of dimension 224× 224.
ImageNet-100: ImageNet-100 is a 100-class subset of the ImageNet dataset.
We consider the same 100 class subset that was used by Tian et al. [50].

S4 Details on Training hyperparameters

We consider the following baselines for our experiments: SimCLR [5], BYOL
[22], SimSiam [7] and SwAV [4]. Since these papers primarily demonstrate re-
sults on the ImageNet dataset, using larger architectures and longer training
schedules, we perform extensive hyperparameter search to obtain strong results
for the baselines on the datasets considered. We use the ResNet-18 [24] archi-
tecture for all experiments other than the ImageNet-1k runs, where ResNet-50
was used. The dimension of features before the last fully-connected classification
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layer is 512, which is smaller than that of ResNet-50, where the dimension is
2048. We fix the batch size to be 512 in all our experiments. We discuss details
on hyperparameter tuning for obtaining strong baselines in Section-S4.1, and
describe the same for the proposed method in Section-S4.2.

S4.1 Details on the Baseline Implementation

SimCLR: For the SimCLR [5] baseline on CIFAR-10 and CIFAR-100, we per-
form a hyperparameter search for the learning rate, weight decay and the tem-
perature used in the loss. We tune the learning rate in the range of 0.1 to 1 with
a step size of 0.1, and the temperature in the range of 0.1 to 0.5 with a step size
of 0.1. For weight decay we search over the range { 5× 10−4, 1× 10−4, 1× 10−5,
1× 10−6 }. Finally, we use a learning rate of 0.5, weight decay of 1× 10−4 and
a temperature of 0.2 for all our experiments. Following the official implementa-
tion [5], we use cosine learning rate schedule with a warm-up of 10 epochs. For
the projection head, we use a 2 layer MLP with the hidden layer consisting of
512 nodes. The output is a 128-dimensional vector. We use batch normalization
layers [27] in the projection head. For ImageNet-100, we use the implementation
and tuned hyperparameters from the repository solo-learn [9].

BYOL: For BYOL [22] baselines on CIFAR-10 and CIFAR-100, we perform
a search for the learning rate and weight decay in the same manner as described
in the paragraph above. Additionally we tune the momentum τ of the target
network in BYOL [22] from the values { 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999 }.
Finally, we use a learning rate of 0.8 and weight decay of 1×10−4 for CIFAR-10
and CIFAR-100. We tune the learning rate for ImageNet-100 in the range 0.4 to
0.7 with a step size of 0.1. We finally use a learning rate of 0.6 and a weight decay
of 1 × 10−4 for ImageNet-100. We use τ of 0.95, 0.85 and 0.95 for CIFAR-10,
CIFAR-100 and ImageNet-100 respectively.

SimSiam: For the SimSiam [7] baselines, we use the implementation from
the repository [26], and perform a hyperparameter search for the learning rate,
weight decay and the number of projection layers used in the loss. We tune the
learning rate in the range of 0.03 to 0.1 with a step size of 0.01, and additionally
try 0.2 as well. For weight decay we search over the range { 6× 10−4, 5× 10−4,
4× 10−4, 3× 10−4, 1× 10−4, 1× 10−5, 1× 10−6 }. For the number of projection
layers, we consider two values, 2 and 3. Finally, for CIFAR10, we use a learning
rate of 0.07, weight decay of 4× 10−4 and number of projection layers as 2. For
CIFAR100, we use a learning rate of 0.05, weight decay of 5× 10−4 and number
of projection layers as 3. Following the official implementation [7], we use the
cosine learning rate schedule with a warm-up of 10 epochs. For the projection
head, the hidden layer is set to 2048 nodes and output is a 2048-dimensional
vector. For the prediction head, the hidden layer has 512 nodes and the output
is again a 2048-dimensional vector. We use batch normalization layers in the
projection and prediction heads similar to the official implementation [7].

SwAV: We use the code and hyperparameters from the official implementa-
tion [4]. For CIFAR-10, we search for the optimal number of prototypes over the
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values {10, 30, 50, 70, 90, 100, 120, 150}, ϵ over {0.01, 0.03} and queue over {0,
38, 384}. we finally set the number of prototypes to 100 without using a queue,
and set ϵ to 0.03. Since CIFAR-10 images are small in size (32x32), we do not
use the multi-crop strategy. We use the same settings for CIFAR-100 as well.
For ImageNet-100, we scale the default number of prototypes from the official
code [4] by a factor of 10 to 300, based on the scaling of number to classes from
1000 to 100. We use search for queue length in the range {0, 384, 1920, 3840}
and set it to 384 finally. For the ImageNet-1k runs, we skip the use of multi-crop
augmentations to speed up the training.

S4.2 Details on the Proposed Implementation

We use the same hyperparameters as the respective baselines for the implemen-
tation of the proposed method, and additionally tune only the value of λ (Eq.1),
which is the weighting factor used for the rotation loss. We use a 2 layer MLP for
the rotation prediction task and use batch normalization for the hidden layer.
For finding the best setting of λ, we tune for 1/(2 · λ) in the range 1 to 10 with
step size of 1, and for 2 · λ in the range 0 to 1 with a step size of 0.1. In order to
minimize computational overheads, we use the same value of λ as ImageNet-100
on ImageNet-1k as well.

For SimCLR, we use 2 · λ as 1 for CIFAR-10 and CIFAR-100, and 0.1 for
ImageNet-100. For BYOL, we use 1/(2 · λ) as 5 for CIFAR-10 and CIFAR-100,
and 6 for ImageNet-100. For SimSiam, we set the value of 2 ·λ to 0.1 for CIFAR-
10 and 0.2 for CIFAR-100. For SwAV, we set the value of 2·λ to 0.5 for CIFAR-10
and CIFAR-100, and 0.1 for ImageNet-100 and ImageNet-1k.

S4.3 Training Details of Linear Evaluation

The linear evaluation stage consists of training a linear classification layer on top
of the frozen backbone network. We do not update the batch statistics in this
stage. For linear evaluation on CIFAR-10 and CIFAR-100, we do not apply any
spatial augmentations to the images during training. We use the SGD optimizer
with momentum of 0.9. We train for 100 epochs with a batch size of 512. We
use a learning rate of 1.0 which is the best setting chosen from the range { 0.1,
0.5, 1.0, 1.5, 2.0 }. The same settings are used for ImageNet-100 BYOL linear
evaluation as well.

For SimSiam linear evaluation, we apply Random cropping and horizontal
flipping. We use the SGD optimizer with momentum over 100 epochs using a
batch size of 512, learning rate of 30.0 and momentum of 0.9, as recommended
by the authors [7]. Cosine scheduler with decay is employed without any warmup
for the training.

On ImageNet-100, we use the settings from the repository solo-learn [9] for
the linear evaluation of SimCLR [5]. For linear evaluation of SwAV models on
ImageNet-100 and ImageNet-1k, we use the settings from their official repository
[4], and use 30 epochs of training on ImageNet-1k.
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We use the same hyperparameters for the linear evaluation of the proposed
approach and the respective baselines.

S4.4 Training Details of Semi-supervised learning

We follow the semi-supervised training settings from [4, 36] for both 1% and
10% labels. Specifically, we train for 20 epochs with a batch size of 256. For the
setting of 1% labels, we use a learning rate of 0.02 for the backbone and 5.0
for the linear layer. For the setting of 10% labels, we use a learning rate of 0.01
for the backbone and 0.2 for the linear layer. We decay the learning rates by a
factor of 0.2 at epochs 12 and 16 in both the settings. We do not use weight
decay during the training.

S5 Ablation Experiments

In this section, we present additional experiments and results to highlight the
significance of various aspects of the proposed method.

Table S1: Rotation Angles: Ablation experiments to show the impact of the
rotation set (T ) used in the proposed approach. K-Nearest Neighbor (KNN)
classification accuracy (%) with K=200 and Linear evaluation accuracy (%) on
the CIFAR-100 dataset are reported for the baseline (BYOL [22]) and variations
in the proposed approach (BYOL + rotation).

Rotation Set (T ) |T | KNN Linear

ϕ (BYOL [22]) 0 54.37 60.67
{0◦, 180◦} 2 58.03 66.21
{90◦, 270◦} 2 53.86 62.96
{0◦, 90◦} 2 56.41 65.24
{0◦, 270◦} 2 56.29 65.04
{0◦, 90◦, 180◦, 270◦} 4 58.41 67.03
{45◦, 135◦, 225◦, 315◦} 4 57.60 65.50
{0◦, 45◦, ..., 270◦ 315◦} 8 57.54 67.25
{0◦, 30◦, ..., 300◦ 330◦} 12 55.43 63.61

S5.1 Impact of Variation in Rotation Angles

In the proposed method, we transform every input image using a rotation trans-
formation t(.) which is randomly sampled from the set T = {0◦, 90◦, 180◦, 270◦}.
We present results by varying the number of rotation angles in the set T with
BYOL [22] as the base approach in Table-S1. While the use of 8 rotation angles
results in the best results, we use 4 rotation angles (which results in marginally
lower accuracy after linear evaluation) due to the simplicity of implementation,
since rotation by multiples of 90◦ does not require additional transformations
such as cropping and resizing. The use of two rotation angles with T = {0◦, 180◦}
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leads to a drop of 0.82% in linear evaluation accuracy when compared to the
proposed method of using 4 rotation angles. However, this setting is still 5.54%
better than the BYOL baseline. Therefore, the surprisingly simple task of pre-
dicting whether an image is in the correct orientation, or turned upside down is
sufficient to boost the performance of the baseline method significantly. In the
two-angle prediction task, excluding the 0◦ rotation angle with T = {90◦, 270◦}
leads to a significant drop of 3.25% when compared to using T = {0◦, 180◦}.
We further note that using rotation transformations that are uniformly spaced
(T = {0◦, 180◦}) leads to better performance when compared to the use of
T = {0◦, 90◦} or T = {0◦, 270◦}.

These experiments show that the level of difficulty of the auxiliary task plays
a crucial role in the representations learned. The task should neither be too diffi-
cult (12 rotation angles), nor should it be too easy (2 rotation angles). Moreover,
since the test images would have 0◦ rotation angle, it helps to include this as
one of the classes in T .

Table S2: Effect of number of layers shared with the Rotation Task:
Ablation experiments to show the impact of number of layers shared with the
rotation task in the proposed approach. K-Nearest Neighbor (KNN) classification
accuracy (%) with K=200 and Linear evaluation accuracy (%) on the CIFAR-100
dataset are reported for the baseline (BYOL [22]) and variations in the proposed
approach (BYOL + rotation).

Layers shared with Rotation Task KNN Linear

None (BYOL [22] baseline) 54.37 60.67
First Convolutional layer (fθ) 50.36 52.50

+ Block - 1 (fθ) 50.98 52.84
+ Block - 2 (fθ) 51.75 54.85
+ Block - 3 (fθ) 52.77 58.31
+ Block - 4 (fθ) 58.29 66.06
+ Projection network (gθ) 58.41 67.03

S5.2 Impact of Number of Shared Layers across Tasks

In the proposed approach, we share the base encoder fθ and the Projection net-
work gθ between the instance-similarity task and the rotation task. We perform
experiments to study the impact of varying the number of shared layers between
the two tasks. The results of these experiments on the CIFAR-100 dataset with
BYOL [22] as the base method are presented in Table S2. The ResNet-18 ar-
chitecture consists of a convolutional layer followed by 4 residual blocks. As an
example, for the case where only Block-1 is shared between the two tasks, we
replicate the remaining part of fθ and gθ separately for the the rotation task.
Thus in this case, the rotation task only impacts Block-1 of the final base encoder
fθ. As shown in Table S2, increasing the number of shared blocks results in bet-
ter performance. In fact, sharing only the first few layers leads to a degradation



26 S. Addepalli et al.

in performance when compared to the BYOL baseline. This indicates that the
rotation task indeed helps improve the convergence of the overall network, and
is not merely helping with learning better filters in the initial layers, as was the
case in RotNet [20] training.

Table S3: Robustness to Image Augmentations: Ablation experiments to
show the impact of color jitter augmentation on the baseline (BYOL [22]) and
proposed method (BYOL + Rotation). K-Nearest Neighbor (KNN) classification
accuracy (%) with K=200 and Linear evaluation accuracy (%) on the CIFAR-10
dataset are reported. The proposed method is significantly more robust to the
absence of color jitter augmentation.

KNN Linear

BYOL [22] 86.56 89.30
BYOL (without Color Jitter) 82.21−4.35 85.90 −3.40

BYOL + Rotation 89.80 91.89
BYOL + Rotation (without Color Jitter) 88.52−1.28 91.28 −0.61

S5.3 Robustness to Image Augmentations

BYOL [22] is known to be more robust to image augmentations when compared
to contrastive learning methods such as SimCLR [5]. The authors claim that
although color histograms are sufficient for the instance-similarity task, BYOL
is still able to learn additional semantic features for the image even without
color jitter. We compare the impact of removing the color jitter augmentation
on the baseline (BYOL) and the proposed approach (BYOL + Rotation) on
CIFAR-10 dataset in Table-S3. We observe that addition of rotation task boosts
the robustness to such augmentations even further. The absence of color jitter
leads to a drop of 3.4% in linear evaluation accuracy of BYOL, whereas the
drop in accuracy for the proposed method without color jitter is only 0.61%,
which is significantly lower. This makes the proposed method suitable for fine-
grained image classification tasks as well, where the network needs to rely on
color information for achieving good performance.

S5.4 Exploring Different Loss Formulations for the Rotation Task

The proposed approach combines Cross-Entropy (CE) loss for the rotation task
with various instance-similarity based tasks as shown in Eq.1. We explore the
use of different loss formulations for the rotation task with BYOL [22] as the
base method on the CIFAR-10 dataset in Table-S4. We first replace the CE loss
for rotation with SupCon [28] loss, where all images with a similar rotation an-
gle are treated as positives, while the remaining images in the batch are treated
as negatives. This results in a significant drop of 1.7% in the Linear evalua-
tion accuracy. We observe a larger drop of 2.94% when the CE loss is replaced
with cosine similarity between two unique rotation augmentations sampled from
the transformation set T = {0◦, 90◦, 180◦, 270◦}. While the three approaches
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Table S4: Exploring Different Loss Formulations for the Rotation Task:
Ablation experiments to show the impact of different loss formulations on the ro-
tation task. K-Nearest Neighbor (KNN) classification accuracy (%) with K=200
and Linear evaluation accuracy (%) on the CIFAR-10 dataset are reported. We
additionally report the Rotation Task Accuracy (%) obtained by freezing the
base encoder fθ and training a 2-layer MLP for the rotation classification task.

KNN Linear Rotation Acc (fθ)

BYOL Baseline [22] 86.56 89.30 73.40
Ours (Classification with CE Loss) 89.80 91.89 93.73
Classification with SupCon [28] Loss 88.05 90.19 81.86
Minimizing cosine similarity between Rotation Augmentations 86.84 88.95 77.27
BYOL + Rotation Augmentation 74.32 79.70 66.61
Ours (BYOL + Rotation) + Rotation Augmentation 84.49 87.75 94.24

of minimizing CE loss, SupCon loss and cosine similarity between rotation aug-
mentations seek to cluster similarly rotated images together and repel others, we
find large differences in the representations learned. This shows that explicitly
enforcing fixed categories in the auxiliary task helps in building a global seman-
tic representation which is reinforced across training batches. This is exclusively
achieved in the minimization of CE loss since it considers specific rotation based
categories.

We study the impact of adding rotations from the set T = {0◦, 90◦, 180◦, 270◦}
as augmentations in the BYOL training pipeline. Contrary to the proposed ap-
proach, this would encourage representations that are invariant to rotation. This
leads to a large drop of 9.6% when compared to the BYOL baseline. This is con-
sistent with the observations by Chen et al. [5] that rotation as an augmentation
is not helpful in learning good representations. By including the rotation classi-
fication task in addition to this in the training objective, the accuracy improves
by 8.05%, although it is still lower than the BYOL baseline due to the inclusion
of rotation as augmentations which is contrasting to the rotation classification
objective.

We further compare the rotation sensitivity of representations at the out-
put of the base encoder fθ. Similar to the experiments in Section-5.3, we freeze
the network till the fθ and train a rotation task classifier over this using a 2-
layer MLP head. We measure the rotation task accuracy, which serves as an
indication to the rotation sensitivity of the base network. We observe that the
trend in accuracy on the linear evaluation task is similar to the rotation task
accuracy, indicating that rotation-covariant representations are better for down-
stream tasks. While the use of rotation augmentation along with rotation task
prediction achieves a very high rotation accuracy, its performance on the con-
trastive task is only 64.34%, which is significantly lower than the baseline and the
proposed methods (Ref. Table-3). Therefore, the accuracy on linear evaluation
task is also lower than these methods.



28 S. Addepalli et al.

S6 Reduction in Noise during training

To further demonstrate how the well-posedness of the rotation task reduces noise
during the training, we plot the Signal-to-Noise ratio (SNR) of the gradients.
For this, we follow Mitrovic et al. [40] and at each iteration, we compute the
ratio of the exponential moving average of mean and variance of the gradients,
and average it across all the parameters to obtain the SNR. Fig-S1 shows the
progression of SNR during training on CIFAR-10 with SimSiam [7] as the base
method. We find that our method indeed improves the SNR during training by
providing a noise-free supervisory signal and hence facilitates the learning of
representations in an efficient and effective way.

Fig. S1: Plot of SNR during SimSiam training on CIFAR-10 dataset. The use of rota-
tion task (SimSiam+Ours) reduces the noise in the gradients, leading to faster conver-
gence.

S7 Transfer Learning

In this section, we report results using a ResNet-50 architecture with a 30-
epoch training schedule. We perform the pretraining across 4 Nvidia Tesla V100
GPUs. We do not use multi-crop strategy in order to reduce the computational
overheads. For all the ImageNet-1k runs, we do not perform additional hyper-
parameter tuning for the proposed approach, and use the same value of λ that
was best in the SwAV ImageNet-100 runs (2 · λ = 0.1). Using the linear evalua-
tion training code and hyperparameters from the official SwAV repository for 30
epochs on the ImageNet-1k dataset, we achieve 54.9% accuracy using the SwAV
baseline, and 57.3% accuracy using the proposed method, resulting in a gain
of 2.4% (Table-S5). This shows that the proposed approach generalizes well to
large-scale datasets and larger model capacities as well.

Classification:We evaluate the generalization of the learned representations
to other datasets by training a linear classifier on the pretrained backbone after
freezing the weights of the backbone, as reported by Caron et al. [4]. We report
transfer learning results on CIFAR-10 [34], CIFAR-100 [34], Oxford 102 Flowers
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Table S5: Transfer Learning (Classification): Performance (%) after linear
evaluation on different datasets with a ResNet-50 backbone trained using SwAV
[4] and the proposed approach.

ImageNet CIFAR-10 CIFAR-100 Flowers Caltech Aircraft DTD Cars Food Pets SUN VOC Avg

SwAV [4] 54.90 86.22 64.18 83.53 80.91 38.78 69.79 31.65 59.41 70.73 52.48 76.33 64.08
SwAV + Ours 57.30 87.85 66.94 85.78 84.18 42.09 69.68 32.52 59.46 71.27 53.25 76.70 65.59

[41], Caltech-101 [19], FGVC Aircraft [38], DTD [8], Stanford Cars [32], Food-
101 [2], Oxford-IIIT Pets [45], SUN397 [52] and Pascal VOC2007 [17] datasets,
as is common in literature [31, 5, 16]. We use the code, hyperparameter tun-
ing strategy and validation splits from the official repository of Ericsson et al.
[16] for obtaining results on the SwAV baseline. For the evaluation of the pro-
posed method, we use the best hyperparameters obtained for baselines, in order
to highlight the gains obtained using the proposed approach more clearly. We
achieve better performance across most of the datasets, and similar performance
as the baseline on the DTD dataset [8]. This is possibly because the DTD dataset
is composed of textures only, and the images are rotation invariant. Therefore,
learning representations that are covariant to rotation does not help in this case.
Overall, we obtain an average improvement of 1.51% across all datasets.

Table S6: Transfer Learning (Object Detection): Performance (AP, AP50
and AP75) on Pascal VOC [17] dataset for the task of Object Detection using
Faster RCNN [18] FPN [37] with a ResNet-50 backbone that is pretrained using
SwAV [4] and the proposed approach. Pascal VOC07+12 trainval dataset is used
for training and VOC07 test is used for evaluation. We consider two settings for
evaluation: first with the ResNet-50 backbone being frozen, and second with the
backbone being updated during training (Finetune).

Method
VOC (Frozen) VOC (Finetune)

AP AP50 AP75 AP AP50 AP75

SwAV [4] 44.10 74.54 45.00 43.80 74.46 45.07
SwAV + Ours 45.12 75.37 46.67 45.19 75.17 46.67

Object Detection: We evaluate the generalization of the learned repre-
sentations to the task of Object Detection on the Pascal VOC dataset [17] using
Faster RCNN [18] with Feature Pyramid Network [37] as the backbone. Pas-
cal VOC07+12 trainval dataset is used for training and VOC07 test is used for
evaluation. We consider two settings for evaluation: first with the ResNet-50
backbone being frozen, and second with the backbone being updated during
training (Finetune). The training is done using the detectron2 framework [51]
and their hyperparameters, as used by Ericsson et al. [16]. As shown in Table-
S6, we obtain consistent gains across the metrics AP, AP50 and AP75 in both
evaluation settings.
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S8 Additional Results on ImageNet

In this section, we show additional results of the proposed method on Ima-
geNet using the ResNet-50 architecture. Table-S7 shows the model performance
for longer training epochs, highlighting that the proposed approach can indeed
scale to a longer training regime as well. We also achieve consistent gains of
around 2.5% over the SwAV baselines for 30 and 50 epoch runs with and with-
out multicrop, and across different batch sizes as shown in Table-S8.

Table S7: IN-1K: Improvements ob-
tained on longer training epochs

#Epochs Method Linear Acc (%)

35 SwAV + Ours 59.5
50 SwAV + Ours 61.9
100 SwAV + Ours 64.3

Table S8: IN-1K: Performance across
different settings

Method 30 ep, B256 50 ep, B1024
w/o Multicrop with Multicrop

SwAV 54.9 65.8
SwAV + Ours 57.3 68.3


