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Abstract
Let M be a complex manifold which admits an exhaustion by open subsets Mj each of
which is biholomorphic to a fixed domain � ⊂ C

n . The main question addressed here is
to describe M in terms of �. Building on work of Fornaess–Sibony, we study two cases,
namely M is Kobayashi hyperbolic and the other being the corank one case in which the
Kobayashi metric degenerates along one direction. When M is Kobayashi hyperbolic, its
complete description is obtained when � is one of the following domains—(i) a smoothly
bounded Levi corank one domain, (ii) a smoothly bounded convex domain, (iii) a strongly
pseudoconvex polyhedral domain inC2, or (iv) a simply connected domain inC2 with generic
piecewise smooth Levi-flat boundary. With additional hypotheses, the case when � is the
minimal ball or the symmetrized polydisc in C

n can also be handled. When the Kobayashi
metric on M has corank one and � is either of (i), (ii) or (iii) listed above, it is shown that M
is biholomorphic to a locally trivial fibre bundle with fibreC over a holomorphic retract of�
or that of a limiting domain associated with it. Finally, when � = � ×B

n−1, the product of
the unit disc � ⊂ C and the unit ball Bn−1 ⊂ C

n−1, a complete description of holomorphic
retracts is obtained. As a consequence, if M is Kobayashi hyperbolic and� = �×B

n−1, it is
shown that M is biholomorphic to �. Further, if the Kobayashi metric on M has corank one,
thenM is globally a product; in fact, it is biholomorphic to Z×C, where Z ⊂ � = �×B

n−1

is a holomorphic retract.
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1 Introduction

Let M be a complex manifold which is the union of an increasing sequence of open subsets
Mj each of which is biholomorphic to a fixed domain � ⊂ C

n . Then, it is of interest to
describe M in terms of �. In what follows, this problem will be referred to as the union
problem.

Among the simplest cases, � = B
n was considered by Fornæss and Stout in [8] who

showed that M is biholomorphic to B
n if M is an open subset of a taut complex mani-

fold. Subsequently in [7], Fornæss and Sibony investigated the union problem using the
infinitesimal Kobayashi metric FM (p, v) at p of M in the tangent direction v ∈ TpM (here
and henceforth by TpM we mean the holomorphic tangent space T 1,0

p M). Assume that � is
hyperbolic and�/Aut(�) is compact. Here, Aut(�) denotes the holomorphic automorphism
group of � with the standard compact open topology. It was shown that if there is a p ∈ M
such that FM (p, v) �= 0 whenever v �= 0, then M is biholomorphic to�. Furthermore, under
the same assumptions on �, it was also proved that the zero set of FM (p, ·) : TpM → R,
which is a complex vector subspace of TpM , has dimension independent of p; if this constant
dimension, called the corank of FM , is one, then there exists a closed complex submanifold
Z of � such that M is biholomorphic to a locally trivial holomorphic fibre bundle over Z
with fibre C. Behrens in [3] further extended the results of Fornæss and Sibony: If � ⊂ C

n

is C2-smooth strongly pseudoconvex and M is hyperbolic, then M is biholomorphic either
to � or to the unit ball Bn ⊂ C

n . Moreover, analogous results as in [7] were obtained for
strongly pseudoconvex domains � when M is non-hyperbolic. Behrens’ proof in the case
when M is hyperbolic crucially used Pinchuk’s scaling techniques and the fact that the model
domain at a strongly pseudoconvex boundary point is the ball. Related work on the union
problem can be found in [6] and [24].

The first objective of this work is to study the union problem for a broader class of
domains �, more specifically the Levi corank one domains inCn , smoothly bounded convex
domains in C

n , the strongly pseudoconvex polyhedral domains in C
2, the minimal ball,

simply connected domains in C
2 with generic piecewise smooth Levi-flat boundaries, and

the symmetrized polydisc. The definitions of all of them will be given later in Sect. 3. Note
that no assumption is made about the quotient �/Aut(�) and this is indeed non-compact
also for the minimal ball, whose boundary is not smooth but is devoid of nontrivial analytic
varieties; such non-smooth convex domains are dealt with here as well. When� is one of the
first four, then (it is well known and will be explained later that) � is amenable to scaling,
which when applied to a sequence {p j } in � converging to a boundary point p0, yields a
limit domain �∞. When � is a Levi corank one domain or a convex finite type domain, then
�∞ turns out to be a polynomial domain. Before moving on, a word about notation—the use
of the same symbol �∞ to denote the limit domains in all these cases will not lead to any
confusion since each of the various classes of domains listed abovewill be handled separately
later.

Theorem 1.1 Assume that in the union problem, M is a hyperbolic manifold.
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(i) If � ⊂ C
n is a bounded Levi corank one domain, then M is biholomorphic either to �

or to a limiting domain of the form

�∞ =
{
z ∈ C

n : 2Re zn + P2m (z1, z1) +
n−1∑
j=2

|z j |2 < 0
}
,

where m ≥ 1 is a positive integer and P2m (z1, z1) is a subharmonic polynomial of
degree at most 2m without any harmonic terms.

(ii) If � ⊂ C
n is a smoothly bounded convex domain, then M is biholomorphic either to

� or to a limiting domain �∞ associated with �.
(iii) If n = 2 and � ⊂ C

2 is a strongly pseudoconvex polyhedral domain, then M is
biholomorphic either to � or to �∞, where �∞ is a limiting domain associated with
�.

(iv) Let � =
{
z ∈ C

n : 1
2

(∑n
j=1 |z j |2 + ∣∣ ∑n

j=1 z
2
j

∣∣) < 1
}
be the minimal ball or more

generally any bounded convex domain whose boundary (is not necessarily smooth but)
does not contain nontrivial complex analytic varieties. If M is a priori known to be
complete hyperbolic, then M � �.

(v) If n = 2 and� ⊂ C
2 is a simply connected domain with generic piecewise C∞-smooth

Levi-flat boundary, then M is biholomorphic either to � or to the unit bidisc �2 ⊂ C
2.

(vi) If M is a bounded domain in C
n and � is the symmetrized polydisc, then either M is

biholomorphic to� or M admits a proper holomorphic correspondence to�n, the unit
polydisc in Cn, with each fibre having cardinality at most n!.

Theorem 1.2 Assume that in the union problem, M is a non-hyperbolic manifold. Then under
any of the hypothesis as in Theorem 1.1 (i)–(iii),

(i) The dimension of {v ∈ TpM : FM (p, v) = 0} is independent of p.
(ii) The zero set of FM is a vector bundle over M.
(iii) If the corank of FM is one, then M is biholomorphic to a locally trivial holomorphic

fibre bundle with fibreC over a retract of� or that of a limiting domain�∞ associated
with �.

Several remarks are in order. Note that the conclusion of Theorem 1.1 (iv) appears different
from the other cases considered due to the extra assumption about completeness of M . Also,
Theorem 1.1 (iv) does not address the case when M is not complete. The dichotomy in
Theorem 1.1 that M is biholomorphic either to � or to a domain �∞ arises from the two
cases that need to be considered—if ψ j : Mj → � are given biholomorphisms and z0 ∈ M
is a given fixed point then—first, when the orbit {ψ j (z0)} is compactly contained in � and
second, when some subsequence of {ψ j (z0)} (which we continue to denote by the same
symbols) accumulates at a boundary point p0 ∈ ∂�. In the latter case, scaling the domain �

along {ψ j (z0)} yields a sequence of domains � j that converge to �∞ in the local Hausdorff
sense. Observe that the scaled domains� j , thereby their limit�∞ in particular, depend only
on the geometry of ∂� near p0. This allows us to extend Theorem 1.1 with apparently far
less assumptions as in Theorem 8.1 mentioned in the last section.

Next, notice that ∂� can be a priori of infinite type in Theorem 1.1 (ii). Therefore, for
smoothly bounded convex domains �, in the case {ψ j (z0)} converges to p0 ∈ ∂�, there are
further two possibilities to be analysed—(I) ∂� is of finite type near p0, and (II) ∂� is of
infinite type near p0. As before, the general strategy is to scale the domain � with respect to
the sequence {ψ j (z0)} to get rescaled domains � j . The associated limiting domain �∞ is
hyperbolic convex in both the cases (I) and (II).
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Next, it follows from Theorem 1.1 that the symmetrized polydisc Gn cannot exhaust a
strongly pseudoconvex domain D. If it did, then either D would be biholomorphic to Gn or
there would be a proper correspondence between D and �n—both these scenarios would
lead to a contradiction (see [16, 30]).

Corollary 1.3 AC2-smooth strongly pseudoconvex domain D ⊂ C
n cannot be the union of an

increasing sequence of open subsets D j , each of which is biholomorphic to the symmetrized
polydisc Gn.

Let us now take � ⊂ C
2 to be a C∞-smoothly bounded strongly convex domain. Theo-

rem 1.1 then shows that M is biholomorphic to either � or B2 in case M is assumed to be
hyperbolic. On the other hand, if M is non-hyperbolic and the corank of FM is one, then by
Theorem 1.2, M is biholomorphic to a locally trivial holomorphic fibre bundle with fibre C
over a retract Z of� orB2 of dimension one. By Lempert’s work [23], one-dimensional holo-
morphic retracts in strongly convex domains are exactly the extremal maps for the Kobayashi
metric. Hence, there is a holomorphic map f : � → � or f : � → B

2 such that f (�) = Z
and f is an extremal map for the Kobayashi metric. By Lempert’s work again [22], f is a
complex geodesic and hence is an embedding, and thus Z is biholomorphic to �. In particu-
lar, Z admits solutions to both the additive and multiplicative Cousin problems, and thus by
the arguments used in the proving Corollary 4.8 of [7], it follows that M is biholomorphic
to � × C. This replaces the computation in Lemma 4.7 of [7] wherein Z is identified in
case � is Bn or �n . It is however rare for a domain to admit either holomorphic retracts or
Kobayashi extremals. And in fact, it is quite surprising that Bn admits holomorphic retracts
of all possible codimensions—see [33].

Corollary 1.4 Assume that in the union problem, n = 2 and � ⊂ C
2 is a C∞-smoothly

bounded strongly convex domain. If M is hyperbolic, then M is biholomorphic to either� or
B
2. If M is non-hyperbolic and the corank of FM is one, then M is biholomorphic to � ×C.

Observe that if � ⊂ C
2 is a C∞-smooth generic perturbation of B2, then � is a C∞-

smoothly bounded strongly convex domain that is not biholomorphic toB2. Hence, Corollary
1.4 generalises the above-mentioned result of [7] in dimension two.

As to what happens in case� is not strongly convex, particularly in the case whenM is not
hyperbolic seems rather challenging in general. With added assumptions such as �/Aut(�)

being compact, this is answered in general terms by the main theorem of [7] according to
which M is biholomorphic to a locally trivial fibre bundle over a retract of � provided M
has corank one, as already mentioned. However, pinning down M more precisely requires
determining the retracts of �. The simplest case in this regard namely when � = �n was
dealt by Heath and Suffridge who in [15] obtained a complete characterization of its retracts.
To study a simple case which does not factor into a product of one-dimensional domains and
not covered by the convex domains already dealt with by the above corollary or Theorem 1.2,
we take � = � ×B

n−1. By the main theorem of [7], describing M leads to determining the
retracts of � × B

n−1. The following result gives a description of all possible holomorphic
retracts of � ×B

n−1. Note that it suffices to determine the retracts of � ×B
n−1 that contain

the origin, fromwhich the general case follows using the automorphisms of�×B
n−1. Recall

that Aut(� × B
n−1) is isomorphic to Aut(�) × Aut(Bn−1) and hence every automorphism

of � × B
n−1 is a linear fractional transformation.

Theorem 1.5 Let Z be a holomorphic retract of�×B
n−1. Assume that Z contains the origin,

Z �= {0} and Z �= � × B
n−1. Then, Z is given as one of the following:
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(i) Z = {(w, c1w, . . . , cn−1w) : w ∈ �} where (c1, c2, . . . , cn−1) ∈ ∂Bn−1,
(ii) Z is the graph of a Bn−1-valued holomorphic mapping of �,
(iii) Z is the graph of a �-valued holomorphic function over a complex linear subspace of

B
n−1,

(iv) Z is the intersection of a linear subspace with �×B
n−1 of complex dimension at least

two.

Though the cases (particularly, (i) and (ii)) are not mutually exclusive, we have listed
them as above for later convenience in the proof of this theorem. Let us now continue with
the observation that identifying retracts is central to the union problem. Recall the following
facts about retracts: Let S ⊂ � be a topological space and S a retract of �. By writing i, r
for the inclusion and retraction, respectively, we get

S
i−→ �

r−→ S

from which r ◦ i = 1S , and hence r∗i∗ = 1 at the level of fundamental groups. This shows
that

i∗ : π1(S) → π1(�)

is injective (and r∗ is surjective–butwewill not need this). Therefore, if� is simply connected,
then S is also simply connected.

Corollary 1.6 For n = 2, under the hypothesis of Theorem 1.2 and with the additional
property that π1(�) = 0, the holomorphic retract Z ⊂ � given by this theorem must be
simply connected and hence Z is biholomorphic to � (since � is bounded).

This approach circumvents the need for complex geodesics and shows that retracts are
always simply connected if � is so. In particular, when � ⊂ C

2 is simply connected,
every retract is equivalent to the disc �. This argument can be applied in several cases: egg
domains in C

2 and the symmetrized bidisc (which is known to be contractible) included.
Thus, if � ⊂ C

2 (in the union problem) is a simply connected domain and amenable to
scaling, then M is biholomorphic to � × C if FM has corank one.

Let us now turn to the question: What happens if � has non-trivial topology? As an
example, let

� =
{
(z, w) ∈ C

2 : |z|2 + |w|2 + 1

|w|2 < R

}
(1.1)

for R > 2. Then, � is a non-contractible, smooth strongly pseudoconvex domain. Also, �
deformation retracts to � ∩ ({0} × C) which is a planar domain with fundamental group Z.
Hence, π1(�) = Z. Theorem 1.2 shows that if this � is taken to be the model domain, then
in case FM has corank 1, M is biholomorphic to a fibre bundle over a retract Z ⊂ � with
fibre C. Now,

i∗ : π1(Z) → π1(�) = Z

is injective and hence π1(Z) = 0 or Z. In the former case, Z is biholomorphic to � (in
which case we are back to the old situation). When π1(Z) = Z, then Z is biholomorphic to
either the punctured plane C

∗, or the punctured disc �∗, or an annulus. As Z is bounded,
C

∗ is not possible. So Z is biholomorphic to either �∗ or an annulus. Both these domains
admit a solution to the additive and multiplicative cousin problems and so it follows that M
is biholomorphic to Z × C.
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When the fundamental group of � ⊂ C
2 increases in complexity, it is difficult in general

to identify π1(Z) and argue as before. But the redeeming feature is that Z is a non-compact
Riemann surface and hence admits solutions to both the Cousin problems. So when � ⊂ C

2

is amenable to scaling, for example, as in Theorem 1.2, with non-trivial topology, then M is
biholomorphic to Z × C if FM has corank one.

We conclude this article with the question if the limit M in the union problem can be some
special type ofmanifolds. First, letPn be the standardn-dimensional complexprojective space
and Mj ⊂ P

n be an increasing sequence of open subsets each of which is biholomorphic
to B

n . The question that we would like to answer here is whether it is possible that M be a
quasiprojective variety in P

n?

Theorem 1.7 Let M ⊂ P
n be a quasiprojective variety that is the union of an increasing

sequence of open subsets M j ⊂ P
n, each of which is biholomorphic to a domain � ⊂ C

n. If
� is bounded and �/Aut(�) is compact, then M cannot be hyperbolic. Further, if � = B

n

or �n, then the corank of FM is at least 2.

A similar question is if M in the union problem can be the complement of a closed
complete pluripolar set in a Stein manifold X .

Theorem 1.8 Let M be the union of an increasing sequence of open subsets M j in a Stein
manifold X of dimension n, each of which is biholomorphic ot Bn. If M = X \ P for some
closed complete pluripolar set P in X, then the corank of FM is at least one. In particular,
M cannot be hyperbolic.

2 WhenM is hyperbolic

In this section, we present the proof of Theorem 1.1. Recall that M = ∪Mj is a hyperbolic
manifold where Mj ⊂ Mj+1 and Mj is biholomorphic to � for each j . Let ψ j : Mj → �

be a biholomorphic mapping. Fixing z0 ∈ M , we may assume that z0 ∈ Mj for all j , and let
p j := ψ j (z0). There are two cases to be examined:

(a) {p j } is a relatively compact subset of �, and
(b) {p j } has at least one limit point p0 ∈ ∂�.

In case (a), as the domain� is taut, after passing to a subsequence, {ψ j } converges uniformly
on compact subsets of M to a holomorphic mapping ψ : M → � and it follows that M is
biholomorphic to � (see, for instance, Lemma 3.1 of [25]). Thus, we are left with case (b).

3 Proof of Theorem 1.1 (i)–(iv)

3.1 Step I: scalingmethod and the stability of the Kobayashi metric

We briefly describe the scaling method for � when it satisfies any of the hypotheses (i)–(iv)
of Theorem 1.1 and establish that in each of these cases we have

Proposition 3.1 There exists a sequence of biholomorphic maps A j : � → � j where
� j ⊂ C

n are domains that converge in the local Hausdorff sense to a taut domain�∞ ⊂ C
n

and q j := A j (p j ) → q0 for some q0 ∈ �∞ which we will refer to as the base point. Further,
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the family of maps ψ̃ j := A j ◦ψ j : Dj → � j has a limit ψ̃ : M → �∞ and the Kobayashi
distances d� j satisfies the following stability property on ψ̃(M):

lim sup
j→∞

d� j

(
ψ̃(z1), ψ̃(z2)

) ≤ d�∞
(
ψ̃(z1), ψ̃(z2)

)
, (3.1)

for all z1, z2 ∈ M.

3.1.1 Scaling a Levi corank one domainÄ

Let � be a domain in C
n such that a smooth piece � ⊂ ∂� forms a pseudoconvex (real)

hypersurface in C
n of finite 1-type (in the sense of D’ Angelo, as always in this article).

Then, p ∈ � is said to be a Levi corank one boundary point of � if the Levi form of � has
at least (n − 2) positive eigenvalues at p. Also, every boundary point in a sufficiently small
neighbourhood of p would also be Levi corank one since this is an open condition. We say
that � is a Levi corank one domain if ∂� is smooth, pseudoconvex, of finite type and the
Levi form of ∂� has at least (n − 2) positive eigenvalues everywhere on ∂�.

To describe the scaling method, let � = {ρ(z, z) < 0} for some smooth defining function
ρ and the 1-type of p0 be 2m. By relabelling the coordinates if necessary, we assume that
(∂ρ/∂zn)(p0) �= 0. Then, there exists a neighbourhood U of p0 such that | ∂r

∂zn
(p)| ≥ c

for each p ∈ U where c is a constant. After a linear change of coordinates, we can find
coordinates z1, . . . , zn , and smooth functions b1, . . . , bn−1 on U such that

Ln = ∂

∂zn
, L j = ∂

∂z j
+ b j

∂

∂zn
, L jr ≡ 0, b j (p0) = 0, j = 1, . . . , n − 1,

which form a basis of CT 1,0(U ) and satisfy
[
∂∂r(p0)(Li , L j )

]
2≤i, j≤n−1 = In−2.

Observe that b j (p0) = 0 implies that the normal vector to ∂D at p0 is in the direction of
en = (0, . . . , 1). By [5], shrinking U if necessary, for each ζ ∈ U ∩ �, there is a global
coordinate map θζ—which is a holomorphic polynomial automorphism of the form

θζ (z) =
(
z1 − ζ1,Gζ (z̃ − ζ̃ ) − Q2(z1 − ζ1), 〈z − ζ, ν(ζ )〉 − Q1(

′z − ′ζ )
)

(3.2)

where Gζ ∈ GLn−2(C), z̃ = (z2, . . . , zn−1), Q1 is a polynomial, Q2 is a vector valued
polynomial, and ν = (∂ρ/∂z1, . . . , ∂ρ/∂zn)—so that the local defining function for θζ (�)

near the origin is represented by
{
z ∈ C

n : ρ(ζ ) + 2Re zn +
2m∑
l=2

Pl,ζ (z1, z1) + |z2|2 + . . . + |zn−1|2

+
n−1∑
α=2

∑
j+k≤m
j,k>0

Re
((
bα
jk(ζ )z j1z

k
1

)
zα

)
+ Rζ (z) < 0

⎫⎪⎪⎬
⎪⎪⎭

, (3.3)

where

Pl,ζ (z1, z1) =
∑
j+k=l

aljk(ζ )z j1z
k
1,
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are real valued homogeneous polynomials of degree l without harmonic terms and the error
function Rζ (z) → 0 as z → 0 faster than one of the monomials of weight 1. We will refer
to θζ as the centering map associated with ζ .

Now choose ζ j ∈ ∂� so that

ζ j = p j + (′0, ε j ), ε j > 0.

Let θζ j
be the ‘centering maps’ associated with ζ j ∈ ∂�. It follows from the explicit form

(3.2) of the automorphisms θζ j
that θζ j

(ζ j ) = (′0, 0) and

θζ j
(p j ) = (′0,−ε j/d0(ζ

j )
)
,

where d0(ζ j ) =
(
∂ρ/∂zn(ζ j )

)−1 →
(
∂ρ/∂zn(p0)

)−1
as j → ∞. Next, define

τ(ζ j , ε j ) = min
2≤l≤2m

(
ε j

‖Pl,ζ j (z1, z1)‖

)1/l

,

where ‖ · ‖ is the l∞-norm on the finite-dimensional space of polynomials on the complex
plane with degree at most 2m as a finite sequence of coefficients. Denote by �

ε j

ζ j : Cn → C
n

a dilation of coordinates given as follows:

�
ε j

ζ j (z1, z2, . . . , zn) =
(

z1
τ(ζ j , ε j )

,
z2

ε
1/2
j

, . . . ,
zn−1

ε
1/2
j

,
zn
ε j

)
.

The scaling sequence is defined by setting A j := �
ε j

ζ j ◦ θζ j
. Notice that

q j := A j (p j ) =
(′0,−1/d0(ζ

j )
)

→ q0 := (′0,−1/d0(p
0)),

and by [34], the scaled domains � j = A j (�) converge in the Hausdorff sense to

�∞ = {
z ∈ C

n : 2Re zn + P∞(z1, z1) + |z2|2 + . . . + |zn−1|2 < 0
}

where P∞ is a subharmonic polynomial of degree at most 2m without harmonic terms.
Further, it should be noted that if p j approaches p0 along the inner normal to ∂� at p0, then
the polynomial P∞ coincides with the polynomial of the same degree in the homogeneous
Taylor expansion of the defining function ρ around the origin.

3.1.2 Scaling a strongly pseudoconvex polyhedral domainÄ

A bounded domain � ⊂ C
n is said to be a strongly pseudoconvex polyhedral domain with

piecewise smooth boundary if there are C2-smooth real valued functions ρ1, . . . , ρk : Cn →
R, k ≥ 2 such that

• � = {
z ∈ C

n : ρ1(z) < 0, . . . , ρk(z) < 0
}
,

• for {i1, . . . , il} ⊂ {1, . . . , k}, the gradient vectors ∇ρi1(p), . . . ,∇ρil (p) are linearly
independent over C for every point p such that ρi1(p) = . . . = ρil (p) = 0, and

• ∂� is strongly pseudoconvex at every smooth boundary point,

where for each i = 1, . . . , k and z ∈ C
n ,

∇ρi (z) = 2

(
∂ρi

∂ z̄1
(z), . . . ,

∂ρi

∂ z̄n
(z)

)
.
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Since the intersection of finitely many domains of holomorphy is a domain of holomorphy,
it follows that the polyhedral domain � is pseudoconvex. The scaling method for a strongly
pseudoconvex polyhedral domain � ⊂ C

2 was introduced in [20] and the reader is referred
to it for the following: There exists a sequence of biholomorphic maps A j : � → � j from
� onto the domains � j such that � j converges in the local Hausdorff sense to a domain �∞
which is one of B2, the bidisc �2, or a Siegel domain of second kind given by

{
(z1, z2) ∈ C

2 : �z1 + 1 >
Q1(z2)

m2 ,�z2 > −1

}
, (3.4)

wherem > 0 and Q1 is a strictly subharmonic polynomial of degree 2, and q j := A j (p j ) →
q0 ∈ �∞. In particular, note that �∞ is taut.

3.1.3 Scaling bounded convex domains

Firstly, suppose ∂� is smooth. Then, as mentioned before, there are two cases to be consid-
ered:

(I) ∂� is of finite 1-type near p0, or
(II) ∂� is of infinite 1-type near p0.

Case (I) Assume that � is given by a smooth defining function ρ, p0 is the origin and has
type 2m, and that ∇ρ

(
(′0, 0)

) = (′0, 1). Following [13, 26] and [28], consider the domain

�q,ε = {
z : ρ(z) < ρ(q) + ε

}
,

for q ∈ � sufficiently close to ∂� and ε > 0. Choose snq,ε ∈ ∂�q,ε where the distance of q
to ∂�q,ε is realized. Denote the complex line containing q and snq,ε by Ln . Let τn(q, ε) =∣∣q − snq,ε

∣∣ and Hn be the complex plane through q orthogonal to Ln . Let sn−1
q,ε be the point in

Hn ∩ ∂�q,ε closest to q and τn−1(q, ε) = ∣∣q − sn−1
q,ε

∣∣. Denote the complex line containing
q and sn−1

q,ε by Ln−1. Next, let Hn−1 be the complex plane through q orthogonal to the C-
subspace spanned by Ln and Ln−1. Choose sn−2

q,ε ∈ Hn−1 ∩ ∂�q,ε closest to q and write
τn−2(q, ε) = ∣∣q − sn−2

q,ε

∣∣, and denote by Ln−2 the complex line containing q and sn−2
q,ε .

Repeating this process yields orthogonal lines Ln, Ln−1, . . . , L1. Let T q,ε be the translation
sending the point q to the origin and Uq,ε be a unitary transformation of Cn sending Li to
the zi -axis and siq,ε − q to a point on the Re zi -axis. It follows by construction that

Uq,ε ◦ T q,ε(q) = 0

and Uq,ε ◦ T q,ε
(
siq,ε

) = (
0, . . . , τi (q, ε), . . . , 0)

for all 1 ≤ i ≤ n.
For scaling � along {p j }, set ε j = −ρ(p j ) and let τ1(p j , ε j ), . . . , τn(p j , ε j ) and

s1, j , . . . , sn, j be positive numbers associated with p j and ε j as defined above. Define the
dilations

�
ε j

p j (z) =
(

z1
τ1(p j , ε j )

, . . . ,
zn

τn(p j , ε j )

)
,

the scaling sequence by setting A j = �
ε j

p j ◦ U p j ,ε j ◦ T p j ,ε j and the scaled domains � j =
A j (�). Note that � j is convex and q j := A j (p j ) = (′0, 0) ∈ � j for all j . Define q0 :=
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(′0, 0). By Section 10 of [35] (also see [11], Remark 10.2(3) of [35]), � j converges to

�0 =
{
(′z, zn) ∈ C

n : Re
( n∑
k=1

bkzk
)

+ P(′z) < 1
}

where bk are complex numbers and P is a real convex polynomial of degree less than or
equal to 2m. Furthermore, bn �= 0, which implies that �0 is biholomorphically equivalent
to

�∞ = {
(′z, zn) ∈ C

n : 2Re zn + P(′z) < 0
}
.

Case (II) When p0 ∈ ∂� is a point of infinite type, it follows from Proposition 6.1 of [35]
that there exist complex affine transformations A j of Cn such that (after possibly passing to
a subsequence) the domains � j = A j (�) converge to a convex domain �∞ in C

n . Also,
q j := A j (p j ) = q0 for some q0 ∈ �∞. Moreover, the limiting domain �∞ is complete
hyperbolic and hence taut.

3.1.4 Non-smooth case

We now deal with the case when smoothness properties of the boundary is not given but we
are instead given that ∂� does not contain any nontrivial (complex) analytic varieties. We
shall also assume that M is complete hyperbolic in this subsection. A good example of such
a domain (with non-smooth boundary) to keep in mind here is the minimal ball which is
defined as {z ∈ C

n : N (z) < 1} and is the unit ball with respect to the norm

N (z) = 1√
2

⎛
⎝

n∑
j=1

|z j |2 + ∣∣
n∑
j=1

z2j
∣∣
⎞
⎠

1/2

.

More information on this can be found in [14, 29] for example. Recalling that p j is the image
of z0 under the biholomorphisim ψ j : Dj → �, we shall modify the version of Frankel’s
scaling technique in Kim’s article [17] (cf. also [18]) to apply it to our situation. We shall
now do this in general (not just for the minimal ball), for a bounded convex domain � whose
boundary does not contain nontrivial complex analytic varieties, as described in the following
proposition.

Proposition 3.2 With notations and assumptions as just-mentioned, we have: there exists a
sequence {A j } ⊂ GLn(C) such that

(i) ‖A−1
j ‖ → 0 as j → ∞ and,

(ii) lim j→∞ A j (� − p0) = �̂ exists and is biholomorphic to �,

where the limit is taken in the sense of local Hausdorff convergence in Cn and where �− p0

denotes the translate � − p0 = {z − p0 : z ∈ �}.
Proof We contend that we may take A j to be the linear transformations A j : Cn → Tz0M
given by A j = [dψ j (z0)]−1. Let us break the proof into various steps in line with Kim’s
article [17] and define the affine-linear maps Ã j : Cn → Tz0M by

Ã j (z) = [
dψ j (z0)

]−1(
z − ψ j (z0)

)
,

and ϕ : Tz0M × Tz0M → Tz0M , the mid-point map ϕ(z, ζ ) = (z + ζ )/2. We may identify
the tangent space Tz0M to M at the fixed base point z0 with C

n , even if in a non-canonical
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manner; this will be useful in some of the computations in the proofs and may well be done
in what follows without further mention. Indeed, for the rest of this subsection, we work
with a fixed locally finite atlas A for M and all local calculations are to be understood in the
coordinates provided by charts ofA. The first step for the proof of the proposition is then the
following

Lemma 3.3 The sequence ω j : Mj → Tz0M defined by

ω j (z) = [
dψ j (z0)

]−1(
ψ j (z) − ψ j (z0)

)
,

forms a normal family; moreover, any subsequential limit of {ω j } is a biholomorphism of M
onto its image in Tz0M.

Note that ω j (z0) is the origin in Tz0M and to prove this lemma, it is enough to show that the
sequence of ‘sup-norms’ of their derivatives is bounded above uniformly on compact subsets
of M . To demonstrate this, first let K0 (which we may well assume contains the point z0) be a
compact subset of M ; then K0 ⊂ Mj for all large j andω j along with all their derivatives are
well-defined on K0 for all j � 1 as well. As in [17] then, choose another compact K ⊂ M
which contains K0 in its interior, and define the sequence of maps Fm : K × K → Mm for
all m large, by

Fm(z, ζ ) = ω−1
m ◦ ϕ ◦ (Am × Am) ◦ (ψm × ψm).

Note that all the Fm’s map the point z0 to the origin and as they map into � which being a
bounded convex domain is in particular complete hyperbolic (hence taut), {Fm} is a normal
family. Also note that we may rewrite the definition of the Fm’s to say that they satisfy the
following relations with respect to ωm :

(ωm ◦ Fm)(z, ζ ) = ωm(z) + ωm(ζ )

2
,

for eachm ∈ N. As in [17], we can show after some computations that we have the following
equations holding for the second-order derivatives of the l-th component function of ωm for
each l = 1, . . . , n,

1

2

∂2ωl
m

∂zk∂zi
(z) =

n∑
j=1

(
∂2F j

m

∂zk∂zi
− ∂2F j

m

∂ζ k∂zi

)
(z, z)

∂ωl
m

∂z j
(z). (3.5)

From this, it can be deduced that for all j , we have the following uniform bounds in terms
of the sup-norms on K , for some positive constant CK0 (independent of j):

‖d2ω j‖K0 ≤ CK0‖dω j‖K0 (3.6)

where the left-hand-side denotes themax of the sup-norms of the various second-order partial
derivatives of the component functions of the mapping ω j on K0 and likewise for the right;
indeed for the first derivative appearing on the right, we shall work with the equivalent norm
given by the maximum of the operator norms |dω j (z)|op for z varying in the compact K0.
More importantly, while the constant CK0 may seem to depend on the chart in which we
obtained the previous equality, note that we may assume it to be independent of the chart
owing to the fact that each point of M lies at most in a finite number of charts of the atlas
A and so, we may take CK0 to be the maximum of the constants arising when working with
different charts containing z as in (3.5); in essence, while the magnitudes of various partial
derivatives depend on the coordinate chart, the fact that an inequality of the form (3.6) holds
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is independent of the chart. From this, we now further derive the following uniform bound
on the first derivatives of the ω j ’s to get the normality of {ω j }.

Lemma 3.4 For some positive constant C ′
K0

depending only on K0 and not on j , we have
‖dω j‖ ≤ C ′

K0
for all j .

Proof First note that it suffices to show this only for those compacts which are closures (inM)
of relatively compact open connected subsets of M (because we may always exhaust M by a
sequence of relatively compact subdomains, by considering for instance, balls with respect
to the Kobayashi distance centred at a fixed point and of a strictly increasing sequence of
radii; the relative compactness of such balls is guaranteed by the complete hyperbolicity ofM
and their connectedness by the fact that the Kobayashi distance is inner). We shall therefore
henceforth assume that all compacts considered in the remainder of this proof are of this
kind (i.e., is the closure of a relatively compact subdomain of M) and thereby in particular,
connected; we shall also assume that such compacts contain the chosen base-point z0.
Now, letUz denote a relatively compact neighbourhood of the point z ∈ K0 where we have a
holomorphic chart. As the Uz’s form an open covering of K0 as z runs through K0, we may
extract a finite subcover whose union U in particular then, is a relatively compact subset of
M containing K0; observe thatU is also connected. Let K1 = U and pick any point z′ ∈ K0.
Let γ = γ z(t) be any path within U which joins z0 to z′. Cover this path by finitely many
relatively compact domains in M say N -many, labelled B0, B1, . . . , BN−1 where each Bk

(for 0 ≤ k ≤ N − 1) is the biholomorphic image of a ball in C
n of some radius less than

1/4CK1 where CK1 is the constant coming from (3.6) applied to K1; we may well assume
that these domains are labelled so that they form a chain Bk ∩ Bk+1 �= φ for all k.
We start with the first ball B0 centred at the base-point z0 where we have dω j (z0) = identity
and consequently |dω j (z0)|op = 1 for all j ; here | · |op denotes the operator norm of the
linear operator given by the derivative Dω j (z0). Then, identifying B0 with its image in C

n

for conciseness in writing by suppressing the chart maps involved, we have

|dω j (z)|op ≤ |dω j (z) − dω j (z
0)|op + |dω j (z

0)|op
≤ ‖d2ω j‖B0

|z − z0| + |dω j (z
0)|op

≤ CB0
‖dω j‖B0

|z − z0| + |dω j (z
0)|op

Then using the fact that |dω j (z0)|op = 1 as already noted and more importantly, the fact
that z ∈ B0 – thereby that |z − z0| < 1/4CK1 < 1/2CK1—we may derive from the above
inequality by taking supremum over z ∈ B0 and thereafter transposing a term on the right of
the inequality to the left, that

‖dω j (z)‖B0

2
≤ |dω j (z

0)|op = 1.

That is, we have for all j that |dω j (z)|op ≤ 2 holds for all z ∈ B0, in particular at a point
z1 ∈ B0 ∩ B1. We run the above argument again, now for z in the ball B1 and z0 replaced by
z1 i.e., apply (3.6) as before to get

|dω j (z)|op ≤ |dω j (z) − dω j (z
1)|op + |dω j (z

1)|op
≤ ‖d2ω j‖B1

|z − z1| + |dω j (z
1)|op

≤ CK1‖dω j‖B1
|z − z1| + |dω j (z

1)|op
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Now use the fact that z, z1 both lie in B1 means that the distance |z − z1| (as measured in the
local holomorphic chart) between them is at most 2/4CK1 to get

‖dω j (z)‖B1

2
≤ |dω j (z

0)|op = 2.

That is, we have for all j that |dω j (z)|op ≤ 22 holds for all z ∈ B1. Proceeding inductively
and running the above (only finitely many times) argument for each of the balls Bk , we
conclude for all z in their union that for all j , we have |dω j (z)|op ≤ 2N . In particular, we
have this holding for z′, the terminal point of γ . But then as z′ was an arbitrarily chosen point
of γ , we get that for all j , we have

‖dω j‖K0 ≤ 2N .

Note that N depends on K0: it may be thought of as the minimum number of balls of radius
1/4CK1 required to cover K1(which was essentially a thickening of K0); however, it is
independent of j and so we are done. ��

Hence, we conclude thatω j forms a normal family of holomorphicmappings. To complete
the proof of Lemma 3.3, we still need to show that every subsequential limit ω of the ω j ’s
gives a holomorphic embedding of � (again in Tz0M � C

n). This can be seen as follows.
Firstly, assume after passing to a subsequence that the ω j ’s converge uniformly on compacts
to ω. Note that as the ω j ’s are all holomorphic embeddings of the subdomains Dj of M , their
Jacobian determinants are all nowhere vanishing on � to which when we apply Hurwitz’s
theorem, we deduce (by noting also that ω j (z0) = 0 and dω j (z0) = identity) that the
Jacobian determinant ofωmust be nowhere vanishing aswell, thereby (by the inverse function
theorem) that ω is an open map. However, the uniform convergence of the ω j ’s on compact
subsets of M actually implies that ω is (globally) one-to-one i.e., ω is a biholomorphism of
M onto ω(M) ⊂ Tz0M . Moreover, it can be shown that:

Lemma 3.5 Every eigenvalue of dψ j (z0) and ‖dψ j (z0)‖ tend to 0 as j → ∞.

Proof We intend to prove this by contradiction and since the norm of a linear operator
dominates the magnitude of all the eigenvalues, we may suppose (to obtain a contradiction)
that there exists a vector v ∈ Tz0M such that for all j � 1, we have the lower bound:

lim
j→∞ ‖dψ j (z0)v‖ ≥ ε > 0. (3.7)

Let f : � → M be any (non-constant) analytic disc passing through z0 and �0 a small
disc about 0 ∈ � such that the ψ j ’s for all j � 1 are all well-defined on the image f (�0).
The sequence of analytic discs ψ j ◦ f is then well-defined for all j � 1 on �0 and being
mapping into the bounded domain �, admits a subsequence, that converges uniformly on
compact subsets of �0 to a holomorphic map � : �0 → �. Since �(0) = p0 ∈ ∂� and
� is taut, � must map �0 entirely into ∂�, which however we know does not admit any
non-constant analytic disc. Therefore, � must be constant. But then, this contradicts the fact
‖�′(0)‖ ≥ ε > 0, as follows from (3.7), and finishes the proof. ��

As the next step, we show

Lemma 3.6 After possibly passing to a subsequence of {ω j } which we may well assume (by
the foregoing) to be convergent to a holomorphic embedding ω : M → Tz0M, we have that
the sequence of domains in Tz0M given by their images, namely {ω j (Mj )}, converges as
j → ∞ in the local Hausdorff sense to ω(M); also, ω(M) is convex.
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Proof Let us begin by remarking that to show containment of compacts as in the definition
of local Hausdorff convergence, it suffices to restrict attention to those K which are closures
of relatively compact domains in M , indeed a sequence of such compacts which form an
exhaustion ofM . Getting to the verification of the asserted convergence of the imagesω j (Mj )

more precisely now, fix a pair of such compacts K1, K2 ⊂ ω(M) with K1 contained in the
interior K 0

2 of K
0
2 .Weneed to show that K1 ⊂ ω j (Mj ) for all j � 1. For this, firstwrite K1 =

ω(S1), K2 = ω(S2) for some S1, S2 ⊂ M . As ω is a holomorphic embedding, it follows that
S1, S2 are also compact and S1 is contained in the domain S02 , the interior of S2 (it may also be
noted that S1, S2 ⊂ Mj for all j � 1). As ω j ’s are all holomorphic embeddings in particular
open maps, we observe that we may follow the arguments of proposition 5 of chapter-5 of
[27] applied to the mappings ω j restricted to S02 , to conclude that ω j (Mj ) � ω(S1) = K1 for
all j � 1, finishing one half of the verification. To complete the proof of the asserted local
Hausdorff convergence then, we now conversely fix a compact K ⊂ Tz0M with the property
that K ⊂ ω j (Mj ) holds for all j � 1; indeed, observe that for this part of the argument,
we may assume as well that K is contained in the interior U of the intersection of all the
ω j (Mj )’s. We shall show now that K ⊂ ω(M). To this end, write K = ω j (S j ) for S j ⊂ Mj

(it may be noted that as each ω j is an embedding, the S j ’s are compact, though this is not
needed here). Fix any k ∈ K ; note then that we have for all j � 1, points s j ∈ S j with
ω j (s j ) = k. We observe that the complete hyperbolicity of M forces {s j } to be compactly
contained in M ; indeed,

dM (s j , z
0) ≤ dMj (s j , z

0) ≤ dω j (S j )(ω j (s j ), ω j (z
0)) = dω j (Mj )(k, 0) ≤ dU (k, 0).

Note that by in the above chain of inequalities on the Kobayashi distances of the various
associated domains, the right most member is independent of j , showing that the s j remains
within a fixed distance of the base point z0 in M . Thus by completeness of M , after passing
to a subsequence, we may assume s j → s0 ∈ M thereby, ω(s0) = limω j (s j ) = k and
hence, k ∈ ω(M). As k was an arbitrary point of K , this finishes the proof of K ⊂ ω(M)

and therewith of the asserted local Hausdorff convergence.
For the remaining assertions about convexity, note that from the definition of the ω j ’s,

particularly from ψ j (Mj ) = � for all j , we have

ω j (Mj ) = [
dψ j (z0)

]−1
(� − p j ) (3.8)

where as we know p j → p ∈ ∂�. While the above equation makes the convexity of the
ω j (Mj )’s—which are affine-linear images of � by (3.8)—apparent, their local Hausdorff
convergence to ω(M) established above, then ensures the convexity of ω(M) as well. ��

Finally, we show

Lemma 3.7 The sequence of holomorphic mappings σ j : Mj → Tz0M defined by

σ j (z) = [
dψ j (z0)

]−1(
ψ j (z) − p0

)
(3.9)

is a normal family. Moreover, any subsequential limit is a holomorphic embedding of M into
Tz0M.

Proof For the proof of this lemma, first note the relation between the maps σ j defined here
and the ω j ’s that we had earlier:

σ j (z) = ω j (z) + [
dψ j (z0)

]−1
(p j − p0)
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which means in particular that for each j , the difference between σ j (z) and ω j (z) is inde-
pendent of z. This yields the normality asserted in the lemma as soon as we can establish
that the sequence of points [dψ j (z0)]−1(p0 − p j ) (where as we know, p j = ψ j (z0)) in
Tz0M , is a bounded sequence. To argue this by contradiction, we suppose that this sequence
is unbounded and after passing to a subsequence (which we shall tacitly keep doing wherever
required in the remainder of this proof) assume that

lim
j→∞

∥∥∥[
dψ j (z0)

]−1
(p0 − p j )

∥∥∥ = ∞.

We claim that a similar statement (more precisely (3.10) below) holds for all other points
t ∈ ∂� as well. To see this claim, first recall Lemma 3.5 according to which, the minimum
modulus of the eigenvalues of the linear operators A j = [dψ j (z0)]−1 diverges to infinity.
Thismeans that the A j ’s diverges uniformly on compacts ofCn\{0}; considering in particular,
the sequence of points t− p j togetherwith its limit t− p0, which are all contained (compactly)
within C

n \ {0}, we deduce that: for each point t ∈ ∂� for t �= p also, we have that

lim
j→∞

∥∥∥[
dψ j (z0)

]−1
(t − p j )

∥∥∥ = ∞. (3.10)

Note that as t varies in the compact set ∂�, the points appearing in the above, namely
Ã j (t) = [ψ j (z0)]−1(t − p j ) for each fixed j , runs through the boundary of the domain
[dψ j (z0)]−1(�− p j ) i.e., the image of ∂� under the map Ã j . But then equation (3.8) gives
the following relation of this to the boundary of the images of ω j ’s, namely

∂ω j (Mj ) = [
dψ j (z0)

]−1
(∂� − p j ).

Therefore, by what we noted above from (3.10), ω j (Mj ) converges in the local Hausdorff
sense, to the entire C

n i.e., ω(M) = Tz0M � C
n which however is impossible as M is

hyperbolic and ω was already verified to be a holomorphic embedding. Thus, we conclude
the existence of a point t0 ∈ ∂� such that for some positive constant C we have

∥∥ Ã j (t
0)

∥∥ ≤ C (3.11)

for all j ; here, as we know Ã j are the affine-maps given by Ã j (z) = A j (z − p j ) =
[dψ j (z0)]−1(z − p j ). As the A j ’s diverge uniformly on compacts of Cn \ {0}, it follows
that the only point t0 ∈ ∂� which can satisfy (3.11) is t0 = p0. Therefore, Ã j (p0) =
[dψ j (z0)]−1(p0− p j ) is a bounded sequence, which was what was pending to be established
to obtain the normality of the family σ j ’s as noted at the outset. Recalling (3.9), we also get
that every subsequential limit of the σ j ’s is a biholomorphism of M onto σ(M), since the
same is true of the ω j ’s by Lemma 3.3. ��

Lemma 3.8 We have for all j that

A j (� − p0) = σ j (Mj )

Proof We unravel the set on the left-hand-side as follows by using the following definition
of the difference between a pair of subsets A, B in C

n : A − B = {a − b : a ∈ A, b ∈ B}.
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Then,

A j (� − p0) = [
dψ j (z0)

]−1
(� − p0)

= [
dψ j (z0)

]−1(
ψ j (Mj ) − p0

)

= [
dψ j (z0)

]−1
((

ψ j (Mj ) − ψ j (z0)
) + (

ψ j (z0) − p0
))

= ω j (Mj ) − (ω j − σ j )(Mj )

= σ j (Mj )

The penultimate equality follows by noting that [dψ j (z0)]−1(ψ j (Mj )−ψ j (z0)) = ω j (Mj ),
by using the linearity of [dψ j (z0)]−1 and, the fact that (ω j −σ j )(z) is actually independent of
z with the images of these constant maps forming the sequence [dψ j (z0)]−1(ψ j (z0) − p0).
��
This essentially finishes the proof of Proposition 3.2. The assertion in the proposition that
the scaled domains A j (� − p0) converges in the local Hausdorff sense to a domain �̂ ⊂
Tz0M � C

n now follows from the last lemma combined with the fact about normality of the
σ j ’s as in lemma 3.6; that �̂ is biholomorphic to � itself follows from the fact that the limits
of {σ j } are holomorphic embeddings. ��
We define the scaling maps by A j z := A j (z − p0), and set � j := A j (�) and �∞ := �̂.
Note that�∞, being biholomorphic to the bounded convex domain�, is complete hyperbolic
and hence taut. Also, by Lemma 3.7,

q j := A j (p j ) = A j (p
j − p0) = [

dψ j (z0)
]−1(

ψ j (z0) − p0
) = σ j (z

0),

converges after passing to a subsequence, to some q0 ∈ lim σ j (Mj ). By Lemma 3.8,
lim σ j (Mj ) = lim A j (� − p0) = �̂ = �∞ and so q0 ∈ �∞, as well.

This finishes the description of scalings for various classes of domains and we are now
ready to provide

Proof of Proposition 3.1 The normality of the mappings ψ̃ j follows from the proof of Theo-
rem 3.11 of [34] (when � is a Levi corank one domain), Lemma 3.1 of [11] (when � is a
convex finite type domain), Proposition 4.2 of [35] (for convex infinite type domains and the
minimal ball). Moreover,

ψ̃ j (z0) = A j ◦ ψ j (z0) = A j (p j ) → q0, (3.12)

by construction, and so the tautness of �∞ forces that the uniform limit ψ̃ is a holomorphic
mapping from M into �∞.

We now prove (3.1) and one of the key ingredient is the stability of the infinitesimal
Kobayashi metric, i.e.,

F� j (·, ·) → F�∞(·, ·) (3.13)

uniformly on compact sets of �∞ × C
n . The above statement is established by examining

the limits of holomorphic mappings f j : � → � j that almost realize F� j (·, ·). It is known
that { f j } is normal on � (refer Theorem 3.11 of [34] for Levi corank one domains �, [11]
and Proposition 4.2 of [35] for convex domains �, and the fact that � j ⊂ 2�∞ for all large
j for strongly pseudoconvex polyhedral domains �). Hence, we conclude that, after passing
to a subsequence, if necessary, { f j } converges to a holomorphic mapping f : � → �∞.
Then, the uniform limit f provides a candidate in the definition of F�∞(·, ·).
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Fix ε > 0 and let γ : [0, 1] → �∞ be a piecewise C1-smooth path in �∞ such that
γ (0) = ψ̃(z1), γ (1) = ψ̃(z2) and

∫ 1

0
F�∞ (γ (t), γ̇ (t)) ≤ d�∞

(
ψ̃(z1), ψ̃(z1)

) + ε/2.

Notice that the trace of γ is compactly contained in�∞ and hence, the trace of γ is contained
uniformly relatively compactly in � j for all large j . Moreover, it follows from (3.13) that

∫ 1

0
F� j (γ (t), γ̇ (t)) ≤

∫ 1

0
F�∞ (γ (t), γ̇ (t)) + ε/2 ≤ d�∞

(
ψ̃(z1), ψ̃(z2)

) + ε/2,

and consequently that

d� j

(
ψ̃(z1), ψ̃(z2)

)
≤

∫ 1

0
F� j (γ (t), γ̇ (t)) ≤ d�∞

(
ψ̃(z1), ψ̃(z2)

) + ε/2,

which, in turn, implies that

lim sup
j→∞

d� j

(
ψ̃(z1), ψ̃(z2)

) ≤ d�∞
(
ψ̃(z1), ψ̃(z1)

)

as required.
Note that for convex infinite type domains and the minimal ball, Theorem 4.1 of [35]

guarantees the stability of the integrated Kobayashi distance under scaling, thereby rendering
(3.1). ��

3.2 Step II

Weestablish that ψ̃ : M → �∞, where ψ̃ is a limit of ψ̃ j = A j ◦ψ j given byProposition 3.1,
is a biholomorphisim. The most natural candidate for the inverse of ψ̃ is a limit, if exists, of
the backward scaling sequence

φ̃ j :=
(
ψ̃ j

)−1 =
(
A j ◦ ψ j

)−1 : � j → Mj ⊂ M . (3.14)

However, it is not a priori evident that this sequence has a limit as the target domain D
need not be taut and this is the principal difficulty in proving that ψ̃ is invertible. So first
we establish that ψ̃ is injective which will enable as to identify M with ψ̃(M) which is a
subdomain of the taut domain�∞ and eventually to get hold on a limit of the above sequence.

To see that ψ̃ is injective, let z1 and z2 be any two points in M and dM (·, ·) denote the
integrated Kobayashi distance on M . Then for each j ,

dM (z1, z2) = dM
(
φ̃ j ◦ ψ̃ j (z1), φ̃ j ◦ ψ̃ j (z2)

)
. (3.15)

The distance decreasing property of the holomorphic mappings implies that

dM
(
φ̃ j ◦ ψ̃ j (z1), φ̃ j ◦ ψ̃ j (z2)

)
≤ d� j

(
ψ̃ j (z1), ψ̃ j (z2)

)
, (3.16)

and the triangle inequality yields

d� j

(
ψ̃ j (z1), ψ̃ j (z2)

)
≤ d� j

(
ψ̃ j (z1), ψ̃(z1)

)
+d� j

(
ψ̃(z1), ψ̃(z2)

)
+d� j

(
ψ̃(z2), ψ̃ j (z2)

)
.

(3.17)

Note that the terms d� j

(
ψ̃ j (z1), ψ̃(z1)

)
and d� j

(
ψ̃(z2), ψ̃ j (z2)

)
converge to 0. Indeed,

observe that ψ̃ j (z1) → ψ̃(z1) and the domains� j converge to�∞. As a consequence, there
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is a small Euclidean ball B
(
ψ̃(z1), r

)
centred at ψ̃(z1)which contains ψ̃ j (z1) for all j large

and which is contained in � j for all j large, where r > 0 is independent of j . It follows that

d� j

(
ψ̃ j (z1), ψ̃(z1)

)
≤ C |ψ̃ j (z1) − ψ̃(z1)|,

where C > 0 is independent of j and consequently that

d� j

(
ψ̃ j (z1), ψ̃(z1)

)
→ 0

as j → ∞. A similar argument shows that

d� j

(
ψ̃(z2), ψ̃ j (z2)

)
→ 0

as j → ∞. Finally, by Proposition 3.1, the middle term d� j

(
ψ̃(z1), ψ̃(z2)

)
on the right

hand side of the inequality (3.17) is dominated by d�∞(ψ̃(z1), ψ̃(z2)). Therefore, combining
the inequalities (3.15), (3.16) and (3.17) and letting j → ∞ gives

dM (z1, z2) ≤ d�∞
(
ψ̃(z1), ψ̃(z2)

)
.

The hyperbolicity of M guarantees that z1 = z2 whenever ψ̃(z1) = ψ̃(z2). Hence, ψ̃ : M →
�∞ is injective.

We now prove that ψ̃ is surjective by verifying that the inverse scaling sequence φ̃ j

possesses a limit that serves as an inverse to ψ̃ . Since M is biholomorphic to ψ̃(M) ⊂ �∞
and�∞ is taut, we can considerM as a submanifold of some taut manifoldM ′ and therefore,

φ̃ j =
(
ψ̃ j

)−1 : � j → Mj ⊂ M ⊂ M ′

admits a subsequence that either converges uniformly on compact subsets of �∞ to a holo-
morphic mapping φ̃ : �∞ → M ′ or diverges uniformly on compact subsets of �∞. Since
φ̃ j (q j ) = z0 and q j → q0, the latter case cannot occur. Keeping the same notation {φ̃ j } for
this convergent subsequence, we have φ̃ : �∞ → M ⊂ M ′. We claim that φ̃ : �∞ → M
and to prove our claim it is enough to show that φ̃ is an open map. Being the limit of a
sequence of biholomorphic maps we know that by Hurwitz’s Theorem either the Jacobian of
φ̃ is never zero or identically zero on�∞. Thus, the claim would be verified once we exclude
the second possibility and for this all that is required is to produce an open set in φ̃(�∞).
In fact, we will now show that if G ⊂⊂ M1 is an open set then G ⊂ φ̃(�∞). Indeed, let
z ∈ G. Then, z ∈ D j for all j and let w j = ψ̃ j (z) ∈ � j . Then, w j → w0 = ψ̃(z) ∈ ψ̃(G).
Recalling that ψ̃ : M → �∞ is an injective holomorphic map, first we have ψ̃(G) is an open
subset of �∞ so that w j ∈ ψ̃(G) for all large j , and second we also have ψ̃(G) ⊂⊂ �∞ so
that φ̃ j converges uniformly on ψ̃(G) to φ̃. Therefore,

z = φ̃ j (w j ) → φ̃(w0) ∈ φ̃(�∞).

This proves that G ⊂ φ̃(�∞) and hence our claim. Now it is immediate that the sequence
{ψ̃ j ◦ φ̃ j } of the identity mappings converges to ψ̃ ◦ φ̃ on �∞, i.e.,

ψ̃ ◦ φ̃(z) = lim
j→∞ ψ̃ j ◦ φ̃ j (z) = z,

for z ∈ �∞. In particular, �∞ ⊂ ψ̃(M) and this proves the surjectivity of ψ̃ . Thus, M is
biholomorphic to �∞ which completes the proof of Theorem 1.1 (i)–(iv).
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3.3 Proof of Theorem 1.1 (v): whenÄ has generic piecewise smooth Levi-flat
boundary

A bounded domain � ⊂ C
n is said to have generic piecewise smooth Levi-flat boundary

if there exists a neighbourhood U of � and C∞-smooth real valued functions ρ1, . . . , ρk :
U → R, k ≥ 2 such that

• � = {
z ∈ U : ρ1(z) < 0, . . . , ρk(z) < 0

}
,

• for {i1, . . . , il} ⊂ {1, . . . , k}, dρi1 ∧ · · · ∧ dρil �= 0 for every point p such that ρi1(p) =
. . . = ρil (p) = 0,

• for {i1, . . . , il} ⊂ {1, . . . , k}, ∂ρi1 ∧ · · · ∧ ∂ρil �= 0 for every point p such that ρi1(p) =
. . . = ρil (p) = 0, and,

• ∂� is Levi-flat at every smooth boundary point.

The main reference and motivation comes from [10], wherein the authors use the c/k-
invariant (with respect to �2) to show that if � ⊂ C

2 is a simply connected domain having
generic piecewise smoothLevi-flat boundary and non-compact automorphismgroup, then the
c/k-invariant along the non-compact orbit approaches 1 and consequently� is biholomorphic
to�2. For a bounded convex domain� ⊂ C

n with piecewiseC∞-smooth Levi-flat boundary,
scaling method is known thanks to K.T. Kim (see [19]), and the ideas therein can be adapted
for the Union problem for such domains. However, without the convexity assumption, i.e.,
for a bounded domain � in C

n with generic piecewise smooth Levi-flat boundary, scalings
do not seem plausible and therefore S. Fu and B. Wong appeal to the c/k-invariant.

To recall the definition of the c/k invariant on a complex manifold X , let p ∈ X and
z1, . . . , zn be local holomorphic coordinates centred at p. Set

CX (p) = sup
{| det f ′(p)|2 : f ∈ O(X ,Bn), f (p) = 0

}
,

KX (p) = inf
{| det g′(0)|−2 : f ∈ O(Bn, X), g(0) = p

}
,

(3.18)

where f ′(p) and g′(0) are the Jacobian matrices computed in the coordinates z in X and the
standard coordinates in C

n . It is evident that

cX (p) = CX (p)

(
i

2

)n

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

kX (p) = KX (p)

(
i

2

)n

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

(3.19)

arewell-defined nonnegative (n, n)-forms on X known, respectively, as the Carathéodory and
Kobayashi-Eisenman volume forms on X . Moreover, if kX is positive everywhere (which is
the case if X is hyperbolic, see [1] for example), then the ratio cX (p)/kX (p) = CX (p)/KX (p)
is a well-defined function of p ∈ X that is invariant under biholomorphisms and is referred
to as the c/k-invariant or the quotient invariant. By an application of the Schwarz lemma,
cX (p)/kX (p) ≤ 1 for all p ∈ X and it is well known that if cX (p0)/kX (p0) = 1 for some
point p0 ∈ X , then X is biholomorphic to Bn (see [12]). Note that the c/k-invariant can also
be defined with respect to the unit polydisc �n , simply replacing B

n by �n in (3.18) and
(3.19), and this variant of the invariant also enjoys the same properties. To distinguish the
two variants, we will refer to them as the Bn-variant and �n-variant.

We first prove a stability property of the volume forms that will be used in the sequel.
In what follows CX (p) and KX (p) will always mean the coefficients of cX (p) and kX (p),
respectively, as in (3.19) in some fixed coordinate chart centred at p. The following result
concerns the behaviour of the volume forms for monotone sequences of increasing domains:
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Lemma 3.9 Let X j ⊂ X j+1 be an exhaustion of X. Then, cX j (·) → cX (·) and kX j (·) →
kX (·) for both the Bn-variant and �n-variant.

Proof We give the proof for the �n-variant of volume forms. The proof for the Bn-variant
is exactly the same. Fix p ∈ X and a coordinate chart centred at p. The inclusions X j ⊂
X j+1 ⊂ X implies that {CX j (p)} is a decreasing sequence with a lower bound CX (p).
Therefore, it is enough to show that CX (p) is the infimum of this sequence. Recall that the
extremals for the Carathéodory volume form always exist since the definition involves maps
into �n . Let f j : X j → �n be a sequence of extremals for X j at the point p of X , i.e.,

| det
(
f j

)′
(p)|2 = CX j (p).

The family { f j } is uniformly bounded and hence there is a subsequence { f jk } that converges
uniformly on compact subsets of X to f : X → �n with f (p) = 0. The maximum principle
shows that f (X) ⊂ �n and hence | det f ′(p)|2 ≤ CX (p). It follows that for any given ε > 0
we have

CX jk
(p) = | det

(
f jk

)′
(p)|2 ≤ | f ′(p)|2 + ε ≤ CX (p) + ε

for all large j establishing that CX (p) = inf CX j (p) and hence the convergence
lim j→∞ CX j (p) = CX (p) as required.

To work with the Kobayashi-Eisenman volume forms, as before note that {KX j (p)} is a
decreasing sequence with a lower bound KX (p), and we show that it is the infimum of this
sequence. Let ε > 0 and consider a holomorphic mapping f : �n → X with f (0) = p that
almost realizes KX (p), i.e.,

KX (p) ≤ det | f ′(0)|−2 ≤ KX (p) + ε.

Fix δ ∈ (0, 1) and define the holomorphic mapping g : �n → X by setting g(w) = f (δw).
Since the image f (δ�n) is compactly contained in X , it follows that g : �n → X j for j
large and hence it follows that

KX j (p) ≤ |g′(0)|−2 = δ−2n | det f ′(0)|−2 ≤ δ−2n (KX (p) + ε)

for j large. Letting δ → 1 yields

lim sup
j→∞

KX j (p) ≤ KX (p) + ε, (3.20)

and hence KX (p) = inf KX j (p) as required. ��
Now let� be as in Theorem 1.1 (v) and recall that we are in case (b), i.e., p j → p0 ∈ ∂�.

It should be noted that each singular boundary point of � is a local peak point of � (see
Lemma 5.1 of [10]). Moreover, each smooth boundary point p is a local weak peak point of
�, i.e., there exist a neighbourhood Up of p and a function f p holomorphic on � ∩Up and
continuous on � ∩ Up such that f p(p) = 1, | f p(z)| < 1 for z ∈ � ∩ Up , and | f p(z)| ≤ 1
for z ∈ � ∩ Up . It follows that � is complete hyperbolic and hence taut (refer Corollary
3.3 of [9] and the following remark therein). We will show that M is biholomorphic to
�2. Indeed, p0 ∈ ∂� is either a singular boundary point or a regular boundary point. We
consider the �n-variant of the c/k-invariant. Fix a coordinate chart centred at z0. Following
the proof of the main theorem of [10], and making the relevant changes therein, it follows
that in both cases, CMj (z

0)/KM (z0) ≥ 1 for each j in local coordinates centred at z0.
But since Mj ⊂ Mj+1 is an exhaustion of D, the above observation together with Lemma
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3.9 implies that CM (z0)/KM (z0) ≥ 1. Recall that the inequality CM (z0)/KM (z0)(·) ≤ 1
always holds and therefore, CM (z0)/KM (z0) = 1. As a consequence, it follows that M is
biholomorphically equivalent to �2. ��

We note that the simply connected assumption on � is required only when p0 ∈ ∂� is a
regular boundary point which can be seen from the proof in [10]. The proof of Theorem 1.1
(iv) can be modified to provide an alternate approach for the Union problem in the case � is
strongly pseudoconvex (refer Theorem 1.2 of [3]). More precisely,

Theorem 3.10 Let M in the Union problem be a hyperbolic manifold of dimension n. If � is
a bounded C2-smooth strongly pseudoconvex domain inCn, then M is biholomorphic either
to � or to B

n.

Proof For the duration of this proof we will be working with the B
n-variant of the c/k-

invariant. Let z0 ∈ M be a fixed point, ψ j : Mj → � be biholomorphisms from Mj onto �,
and p j = ψ j (z0). Much like before, the following two possibilities need to be considered:

(a) {p j } is compact in �, and
(b) {p j } has at least one limit point p0 ∈ ∂�.

Notice that M turns out to be biholomorphically equivalent to � in case (a) as earlier. In case
(b), we show that M is biholomorphic to Bn . Indeed, fixing a coordinate chart in D1 centred
at z0, it is immediate that

CMj (z
0)

KMj (z
0)

= C�

(
p j

)

K�

(
p j

) . (3.21)

But since Mj ⊂ Mj+1 is an exhaustion of M and M is hyperbolic, Lemma 3.9 imply that

CMj (z
0)

KMj (z
0)

→ CM (z0)

KM (z0)
. (3.22)

On the other hand, it follows from [31] that

C�

(
p j

)

K�

(
p j

) → 1. (3.23)

Combining (3.20), (3.21) and (3.22), and letting j → ∞ givesCM (z0) = KM (z0). It follows
that M is biholomorphic to Bn , and the proof is complete. ��

3.4 Proof of Theorem 1.1 (vi):Ä is the symmetrized polydiscGn

The symmetrized polydisc is the image Gn = π(�n) of �n under the symmetrization map
π : Cn → C

n defined by

π(z1, . . . , zn) =
⎛
⎝ ∑

1≤ j1<···< jk≤n

z j1 . . . z jk

⎞
⎠ , 1 ≤ k ≤ n. (3.24)

In particular, G1 = � and G2 is called the symmetrized bidisc. It is known that Gn is taut,
(π)−1 (Gn) = �n , and π |�n : �n → Gn is proper with multiplicity n!.

Recall that we are in case (b), i.e., p j → p0 ∈ ∂�. We prove that there exists a proper
correspondence from M to�n . To this end, consider the symmetrization mapping π : �n →
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� as defined above and the n!-valued holomorphic mapping π−1 : � → �n . Set λ j,0 ∈ �n

to be any one of the n! preimages of ψ j (z0) under π . Define the multiple valued mappings

H j ◦ π−1 ◦ ψ j : Mj → �n

where H j are automorphisms of �n so chosen that H j map λ j,0 to the origin. Note that the
inverses

(
ψ j

)−1 ◦ π ◦
(
H j

)−1 : �n → Mj

are proper holomorphic mappings. At this point, recall from [21], the notion of normality
for correspondences and Theorem 3 therein, the version of Montel’s theorem for proper
holomorphic correspondences with varying domains. It is immediate from the construction
that the set H j◦π−1◦ψ j (z0) contains the origin. In particular, it is evident that {H j◦π−1◦ψ j }
fails to be compactly divergent. In this setting, Theorem 3 of [21] implies that the family
{H j ◦π−1◦ψ j } of proper correspondences is normal and hence some subsequence converges
to a proper correspondence from M to �n with each fibre having cardinality at most n!. �� .

4 WhenM is non-hyperbolic

The purpose of this section is to prove Theorem 1.2. Firstly, recall the biholomorphisms

ψ j : Mj → � and φ j := (
ψ j

)−1 : � → Mj . As in Sect. 2, fixing z0 ∈ D, and writing
p j = ψ j (z0), one needs to consider the following two cases:

(a) {p j } is compactly contained in �, and
(b) {p j } has at least one limit point p0 ∈ ∂�.

Consider case (a). The first step is to construct a retract Z of �. The tautness of � forces
that {ψ j }, after passing to a subsequence, converges uniformly on compact subsets of M
to a holomorphic mapping ψ : M → �. Following [7] and [3], consider the holomorphic
mappings

α j := ψ ◦ φ j : � → �.

Observe that

α j (ψ j (z0)
) = ψ ◦ φ j (ψ(z0)

) = ψ(z0).

Again, exploiting the tautness of �, it is possible to pass to a subsequence of {α j } that
converges uniformly on compact subsets of � to a holomorphic mapping α : � → �.
Moreover,

α ◦ ψ(z) = lim
j→∞ α j ◦ ψ j (z) = lim

j→∞ ψ ◦ φ j ◦ ψ j (z) = ψ(z)

for all z ∈ M . Following [7] and [3], define

Z = {w ∈ � : α(w) = w} ⊃ ψ(M).

Note further that

α
(
α j (w)

) = α ◦ ψ ◦ φ j (w) = ψ ◦ φ j (w) = α j (w)

and hence α j maps Z to Z . Now let k be the maximal rank of ψ on M . Recall that α =
lim j→∞ ψ ◦ φ j , and hence rank α ≤ k. By verbatim arguments from Lemmas 4.1–4.4 of
[7] one can check that Z = ψ(M), Z is a closed connected submanifold of �, the mapping
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α is a holomorphic retraction from � onto Z , and the mapping ψ has constant rank k. Also,
as ψ j are biholomorphisms and hence Kobayashi isometries,

FMj (p, v) = F�

(
ψ j (p), dψ j (p)v

)
, (p, v) ∈ T 1,0M . (4.1)

The tautness of � implies via a normal family argument that F�(·, ·) is jointly continuous
and hence letting j → ∞ in (4.1) yields

FM (p, v) = F�

(
ψ(p), dψ(p)v

)
, (p, v) ∈ T 1,0M . (4.2)

Since � is hyperbolic,
FM (p, v) = 0 iff dψ(p)v = 0,

and hence the dimension of {v ∈ TpM : FM (p, v) = 0} is equal to the nullity of dψ(p)
which is the constant n − k as we have noted above. This proves part (i) of the theorem in
case (a). It is worthwhile mentioning that the zero set of the infinitesimal Kobayashi metric
on M , i.e., the set {

(p, v) ∈ T 1,0M : FD(p, v) = 0
}
,

turns out to be a vector bundle over M of dimension (n − k). The proofs of parts (ii) and (iii)
of Theorem 1.2 in case (a) follow exactly as in [7] and are therefore omitted here.

Now consider case (b). We scale � along p j = ψ j (z0) and recall that A j : � → � j are

the scaling maps, ψ̃ j = A j ◦ ψ j : Mj → � j is a normal family, ψ̃ j (z0) = q j → q0 ∈ �,
and ψ̃ : M → �∞ is a limit of ψ̃ j . Moreover, φ̃ j = (ψ j )−1 : � j → Mj . Following [7]
and [3], consider the holomorphic mappings

α̃ j := ψ̃ ◦ φ̃ j : � j → �∞.

Observe that

α̃ j (q j ) = ψ̃ ◦ φ̃ j (ψ j (z0)
) = ψ̃(z0) = q0.

Again, exploiting the tautness of �∞, it is possible to pass to a subsequence of {α̃ j } that
converges uniformly on compact sets of �∞ to a holomorphic mapping α̃ : �∞ → �∞.
Also,

α̃ ◦ ψ̃(z) = lim
j→∞ α̃ j ◦ ψ̃ j (z) = lim

j→∞ ψ̃ ◦ φ̃ j ◦ ψ̃ j (z) = ψ̃(z),

for all z ∈ M . Following [7] and [3], define

Z̃ = {w ∈ �∞ : α̃(w) = w} ⊃ ψ̃(D).

Note further that

α̃
(
α̃ j (w)

) = α̃ ◦ ψ̃ ◦ φ̃ j (w) = ψ̃ ◦ φ̃ j (w) = α̃ j (w)

and hence α̃ j maps Z to Z . Let k̃ be themaximal rank of ψ̃ onM . Recall that α̃ = lim j→∞ ψ̃◦
φ̃ j , and hence rank α̃ ≤ k̃. By verbatim arguments from Lemmas 4.1–4.4 of [7] one can
check that Z̃ = ψ̃(M), Z̃ is a closed connected submanifold of �∞, the mapping α̃ is a
holomorphic retractions from �∞ onto Z̃ , and the mapping ψ̃ has constant rank k̃. Also, as
ψ̃ j are biholomorphisms and hence Kobayashi isometries,

FMj (p, v) = F� j

(
ψ̃ j (p), dψ̃ j (p)v

)
, (p, v) ∈ T 1,0M . (4.3)

Further, appealing to (3.13) and letting j → ∞ in (4.3) gives

FM (p, v) = F�∞
(
ψ̃(p), dψ̃(p)v

)
. (4.4)
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Again, as �∞ is hyperbolic, we obtain

FM (p, v) = 0 iff dψ̃(p)v = 0.

Therefore, the dimension of {v ∈ TpM : FM (p, v) = 0} is equal to the nullity of dψ̃(p)
which is the constant n−k̃.We furthermention that the zero set of the infinitesimal Kobayashi
metric on M , i.e., the set

{(p, v) ∈ T 1,0M : FM (p, v) = 0},
in this case is a vector bundle over M of dimension (n − k̃). The proofs of parts (ii) and (iii)
of Theorem 1.2 follow exactly as in [7] and are therefore omitted here.

5 Retracts of1× B
n−1: Proof of Theorem 1.5

For notational convenience, we work with � × B
n instead of � × B

n−1. Before proceeding
ahead, recall that a holomorphic retract of a complex manifold X is a complex submanifold
of X (see Chapter 2 of [2]). We shall refer X and its points as the trivial retracts. Let α =
(α0, α1, . . . , αn) be a retraction of � × B

n and Z be the range of α. Note that dα(p)v = v

for all p ∈ Z and v ∈ TpZ . Moreover, assume that Z contains the origin, i.e., α(0) = 0, by
composing with an automorphism of � × B

n , if required.
Further, note that Z is a non-compact subset of�×B

n and hence intersects the boundary

∂(� × B
n) = (∂� × B

n) ∪ (� × ∂Bn) ∪ (∂� × ∂Bn).

The main idea is to study how L = T0Z intersects ∂(� × B
n). Writing G = � × B

n ,
L ′ = L ∩ G, and ∂L ′ = L ∩ ∂G, the following four cases arise:

(i) ∂L ′ ⊂ ∂� × ∂Bn .
(ii) ∂L ′ ⊂ ∂� × Bn .
(iii) ∂L ′ ⊂ � × ∂Bn .
(iv) ∂L ′ intersects both ∂� × B

n and � × ∂Bn .

Here, and in the sequel, a linear subspace of D refers to the intercept l ∩ D where l is
any complex linear subspace of Cn+1. Further, the closed set l ∩ ∂D denotes the boundary
of such a linear subspace.

Case (i) Here, both the projections π1 : L ′ → � and π2 : L ′ → B
n are proper. Since

proper holomorphic maps do not decrease the dimension, it follows from the properness of
π1 that dim(L) = dim(L ′) = 1, and consequently that, Z is a one-dimensional complex
submanifold of � ×B

n . Since L ′ is linear, the properness of π1 also means that the fibres of
π1 are singletons, and hence π1 : L ′ → � is a biholomorphism. Now, use the inverse of this
map to parametrize L ′ as

L ′ =
{(

w, β1(w), . . . , βn(w)
) : w ∈ �

}
,

where β1, . . . , βn are linear functions of a single complex variable. Recall that L ′ contains
the origin, and hence β j (w) = c jw for c j ∈ C. By the hypothesis of case (i), it follows that
(c1, . . . , cn) ∈ ∂Bn .

So far, we have a description of L ′. The claim is that L ′ = Z . Indeed, pick (w0, z0) =
(w0, z01, . . . , z

0
n) ∈ ∂L ′ ⊂ ∂� × ∂Bn and consider the complex line through this point and

the origin. Since dim(L ′) = 1, this complex line must be L ′ itself. Thus,

ϕ(t) = (w0t, z
0
1t, . . . , z

0
nt)
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is a parametrization of L ′. Restrict the retraction α to L ′ and consider

g1(t) = (π1 ◦ α ◦ ϕ)(t) = α0(w0t, z
0
1t, . . . , z

0
nt)

and

g2(t) = (π2 ◦ α ◦ ϕ)(t) = (
α1(w0t, z

0t), . . . , αn(w0t, z
0t)

)
.

Note that g1 : � → � and g2 : � → B
n . Further, observe that g1(0) = 0 and

dg1(0) = dπ1|0 ◦ dα|0 ◦ dϕ(0) = w0 ∈ ∂�

since dϕ(0) = (w0, z0) ∈ T0Z , dα(0)v = v for all v ∈ T0Z . Applying the Schwarz Lemma
to g1 yields that α0(w0t, z0t) = w0t , and hence α0(w, z) = w on L ′. Similarly, g2(0) = 0
and dg2(0) = z0 ∈ ∂Bn . By the Schwarz Lemma (Theorem 8.1.3 of [32]), it follows that
g2(t) = z0t or equivalently that

α j
(
w0t, z

0
1t, . . . , z

0
nt

) = z0j t,

for each j = 1, . . . , n. Hence, α is the identity mapping on L ′. In particular, it follows that
L ′ ⊂ Z . Apply the identity principle (see Proposition 1, Section 5.6 of [4] for details) to
conclude that L ′ = Z . Thus,

Z = {(w, c1w, c2w, . . . , cnw) : w ∈ �}
where (c1, . . . , cn) ∈ ∂Bn .

Case (ii) In this case, the projection π1 : L ′ → � is proper. Using similar arguments as
before, it follows that dim(Z) = dim(L) = dim(L ′) = 1 and

L ′ = {(w, c1w, c2w, . . . , cnw) : w ∈ �} ,

for (c1, . . . , cn) ∈ ∂Bn . Pick a point (w0, z0) ∈ ∂L ′ ⊂ ∂�×Bn , and consider the restriction
of α to the complex line segment joining (w0, z0) and the origin. Applying the Schwarz
lemma, as in Case (i), shows that α0(w, z) = w on L ′. This implies that α(L ′) is the graph
of the Bn-valued holomorphic mapping

� � w �−→ (
α1(w, c1w, . . . , cnw), . . . , αn(w, c1w, c2w, . . . , cnw)

)
.

In particular, α(L ′) is a one-dimensional subvariety of Z . In this setting, the identity principle
for the complex analytic sets ensures that α(L ′) = Z , i.e.,

Z =
{(

w, α1(w, c1w, . . . , cnw), . . . , αn(w, c1w, c2w, . . . , cnw)
) : w ∈ �

}
.

Case (iii) In this case, the projection π2 : L ′ → B
n is proper. Since proper holomorphic

maps do not decrease the dimension, it follows that dim(L ′) is at most n.
Suppose that dim(L ′) = 1. Let (w0, z0) be a point of ∂L ′ chosen so that (w0, z0) ∈

� × ∂Bn (if w0 ∈ ∂�, then we are in Case (i)). As before, since dim(L ′) = 1, the complex
line through this point (w0, z0) and the origin is L ′ and

ϕ(t) = (w0t, z
0
1t, . . . , z

0
nt)

gives a parametrization of L ′. Moreover, g2 : � → B
n defined by setting g2(t) = (π2 ◦ α ◦

ϕ)(t) satisfies g2(0) = 0 and dg2(0) = z0. Apply Theorem 8.1.3 of [32], as before, to get
that g2(t) = z0t , i.e.,

(
α1

(
ϕ(t)

)
, . . . , αn

(
ϕ(t)

)) = (z01t, . . . , z
0
nt),
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which exactly means that
(
α1(w, z1, . . . , zn), . . . , α1(w, z1, . . . , zn)

) = (z1, . . . , zn) on L ′. (5.1)

Furthermore, since L ′ is linear and π1 is proper, each fibre of π1 is a singleton. Hence, π2

maps L ′ biholomorphically onto π2(L ′), π2(L ′) is a one-dimensional linear subspace of Bn

and

L ′ =
{(

β0(z1, . . . , zn), z1, . . . , zn
) : (z1, . . . , zn) ∈ π2(L

′)
}
,

where β0 is holomorphic in z1, . . . , zn . It follows that α(L ′) is the graph of a �-valued
holomorphic function over π2(L ′), i.e.,

α(L ′) =
{(

α0
(
β0(z1, . . . , zn)

)
, z1, . . . , zn

)
: (z1, . . . , zn) ∈ π2(L

′)
}
.

In particular, α(L ′) is a one-dimensional analytic variety of Z and hence α(L ′) = Z by the
identity principle.

Next, suppose that dim(L ′) = k > 1. Apply the above analysis to each one-dimensional
complex linear subspace l ′ of L ′ with ∂l ′ ⊂ � × ∂Bn to conclude that

(
α1(w, z1, . . . , zn), . . . , α1(w, z1, . . . , zn)

) = (z1, . . . , zn) on l
′.

It follows that
(
α1(w, z1, . . . , zn), . . . , α1(w, z1, . . . , zn)

) = (z1, . . . , zn) on L ′.

On the other hand, since π2 : L ′ → B is proper and L ′ is linear, it follows that π2 maps L ′
biholomorphically onto π2(L ′), π2(L ′) is a k-dimensional linear subspace of Bn and hence

L ′ =
{(

β(z1, . . . , zn), z1, . . . , zn
) : (z1, . . . , zn) ∈ π2(L

′)
}
,

for some holomorphic function β. As a consequence,

α(L ′) =
{(

α0
(
β(z1, . . . , zn)

)
, z1, . . . , zn

)
: (z1, . . . , zn) ∈ π2(L

′)
}

,

or equivalently that, α(L ′) is the graph of a�-valued holomorphic function over π2(L ′). It is
immediate that α(L ′) is a k-dimensional analytic variety of Z . Since dim(Z) = dim(L ′) = k,
it follows that α(L ′) = Z as before.

Case (iv) Here, ∂L ′ intersects both ∂� × B
n and � × ∂Bn .

Let l denote the complex line joining the origin and a point (w0, z0) ∈ ∂L ′ ∩ (∂� × B
n).

Then, the line l does not intersect � × ∂Bn . It follows that l is properly contained in L ′ and
hence dim(L ′) ≥ 2.

Note that open pieces of ∂L ′ are contained in ∂� × B
n and � × ∂Bn . Indeed, if l̃ is a

complex line in L ′ that intersects ∂� × B
n (or � × ∂Bn), then the lines obtained by small

perturbations of l̃ intersect the open piece ∂�×B
n (or�×∂Bn , respectively) of ∂G. Further,

the boundary of the intercept of each such line with G is entirely contained in ∂� × B
n (or

� × ∂Bn). Then, the union of these lines contains an open subset UL of L ′.
Next, applying the Schwarz lemma arguments as in Case (ii) and Case (iii) yields that

α0(w, z) = w and (α1(w, z), . . . , α1(w, z)) = z on L ′. Hence, α is the identity mapping
on L ′. As a consequence, L ′ ⊂ Z . But dim(L ′) = dim(Z), so that L ′ = Z as before. This
completes the proof of Theorem 1.5.

Combining the above observations with Theorem 3.2 and the Main Theorem of [7], we
get the following result:
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Theorem 5.1 Let � = � × B
n−1 in the union problem. If M is hyperbolic, then M is

biholomorphic to � ×B
n−1. If M is non-hyperbolic and the corank of FM is one, then M is

biholomorphic to Z×Cwhere Z is a retract of�×B
n−1 as given by Theorem 1.5. Moreover,

Z is either the graph of a �-valued holomorphic function on B
n−1 or a linear subspace of

� of (complex) dimension at least two.

6 CanM be quasiprojective?: Proof of Theorem 1.7

Let M = P
n \ Z where Z is a divisor in P

n . Firstly, we show that M cannot be hyperbolic.
Suppose not; then Theorem 3.2 of [7] provides a biholomorphism ϕ : M → �. Then, each
of the components of ϕ are bounded and by the Riemann removable singularities theorem,
applied to these component functions says that Z is removable for all these component
functions and yields their holomorphic extendibility toPn and thereby forϕ aswell. However,
as Pn is a compact complex manifold, it follows by Liouville’s theorem that ϕ is constant
which is impossible, as ϕ is a biholomorphic map on M . Therefore, M cannot be hyperbolic.

Next, let � = B
n or �n and as just noted, M is not hyperbolic. If possible, assume

that the corank of FM is one. In this case, Corollary 4.8 of [7] gives a biholomorphism
φ : M → �′ × C, where �′ = B

n−1 or �n−1, respectively. Let π : �′ × C → �′ be
the natural projection. Now, consider the map φ̃ = π ◦ φ which is a mapping firstly from
M to �′; but then as before, note that the Riemann removable singularities theorem, when
applied to the components of φ̃ yields their holomorphic extendibility to P

n , and thereby
of φ̃ as well. Now P

n being a compact complex manifold forces φ̃ to be constant. What
this means for our map φ is that it maps all of M into just one of the fibres of π which are
all one-dimensional; but this is impossible as φ is a biholomorphic mapping on M (whose
dimension is n ≥ 2; when n = 1, the arguments are even easier). We conclude therefore that
if at all a quasiprojective variety M can be exhausted by biholomorphic images of Bn or �n ,
then the corank of its Kobayashi metric FM must be strictly bigger than one.

7 CanM be a co-pluripolar set?: Proof of Theorem 1.8

If possible, assume that M is hyperbolic. Then, Theorem 3.2 of [7] applies to give a biholo-
morphism ψ : M → B

n . As ψ is bounded and P is pluripolar, ψ extends to a holomorphic
map on all of M . But then ψ(P) ⊂ ∂B and the maximum principle forces ψ to be a constant
which is a contradiction. We do not know whether it is possible for the corank to be one in
this case. This would amount to showing that M = X \ P cannot be biholomorphic to�×C.

8 Some concluding remarks

It is possible to formulate versions of Theorems 1.1 and 1.2 with only local assumptions on
the model domain �; the proofs, being similar, are omitted here.

Theorem 8.1 Let a hyperbolic manifold M be the union of an increasing sequence of open
subsets M j , for each of which there exists a biholomorphism ψ j : Mj → � where � is a
bounded taut domain in C

n. If there exists a point z0 ∈ M with {ψ j (z0)} being compactly
contained in�, then M is biholomorphic to�. If not, for any z0 ∈ M, the sequence {ψ j (z0)}
has at least one limit point p0 ∈ ∂�.
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(i) If p0 is a Levi corank one point of ∂�, then M is biholomorphic to a limiting domain of
the form

�∞ =
{
z ∈ C

n : 2Re zn + P2m (z1, z1) +
n−1∑
j=2

|z j |2 < 0
}
,

where 2m is the 1-type of ∂� at p0 and P2m (z1, z1) is a subharmonic polynomial of
degree at most 2m without any harmonic terms.

(ii) If ∂� near p0 is smooth and convex, then M is biholomorphic to a complete hyperbolic
convex domain inCn. Further, if p0 is a point of finite type 2m, then M is biholomorphic
to a limiting domain

�∞ =
{
z ∈ C

n : 2Re zn + P
(′z, ′z

)
< 0

}
,

where P
(

′z, ′z
)
is a convex polynomial of degree atmost2mwithout any harmonic terms.

If ∂� near p0 is convex (but not necessarily smooth) and does not contain any nontrivial
complex analytic varieties, and M is (a priori) known to be complete hyperbolic, then
M is biholomorphic to �.

(iii) If n = 2 and � near p0, after a holomorphic change of coordinates, is a strongly
pseudoconvex polyhedral domain, then M is biholomorphic to a limiting domain �∞,
which is one of �2, B2, or a Siegel domain as in (3.4).

As a consequence, note that the 1-type of every boundary accumulation point of {ψ j (z0)}
for any z0 ∈ M must be the same. In particular, the Levi geometry of ∂� cannot be different
for different boundary accumulation points.

The second part of (ii) above, i.e., when M is complete hyperbolic, implies that if p0 has
a neighbourhood U such that � ∩U is biholomorphic to the minimal ball for instance, then
the only possibility is that M is biholomorphic to �.

Theorem 8.2 Let aKobayashi corank onemanifold M be the union of an increasing sequence
of open subsets M j , for each of which there exists a biholomorphismψ j : Mj → �where�

is a bounded taut domain inCn. If there exists a point z0 ∈ M with {ψ j (z0)} being compactly
contained in �, then M is biholomorphic to a fibre bundle with fibre C over a retract Z of
�. If not, for any z0 ∈ M, the sequence {ψ j (z0)} has at least one limit point p0 ∈ ∂�. Then
under the hypothesis (i), (ii), or (iii) of Theorem 8.1, M is biholomorphic to a fibre bundle
with fibre C over a retract Z of the corresponding limiting domain �∞.

Finally, we do not know whether a version of Theorem 1.2 holds when � is either the
symmetrized polydisc or a simply connected domainwith generic piecewise smooth Levi-flat
boundary.
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