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Abstract. In this paper, we design and analyze a hybrid high-order approximation for a class
of quasilinear elliptic problems of nonmonotone type. The proposed method has several advantages;
for instance, it supports an arbitrary order of approximation and general polytopal meshes. The key
ingredients involve local reconstruction and high-order stabilization terms. The existence of a unique
discrete solution is shown by using Brouwer’s fixed point theorem and the contraction principle. A
priori error estimation is derived in a discrete energy norm that shows optimal order of convergence.
Numerical experiments are performed to substantiate the theoretical results.
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1. Introduction. We consider here numerical approximation for nonlinear
elliptic boundary value problems of the type

(1.1a) —V-(a(z,u)Vu) = f(x) in Q,
(1.1b) u(z) =0 on 09,

where Q is a bounded convex polytopal domain in R?, d € {2,3}, with Lipschitz
boundary 99 and a : Q2 x R — R is a nonlinear function of its arguments. For simplic-
ity, a homogeneous boundary condition is considered. Some additional assumptions
are stated in the appropriate section. The main purpose of the article is to devise and
analyze hybrid high-order (HHO) approximation for problem (1.1) on general meshes
inspired by the HHO methods of [36] for a linear diffusion model problem, [31] for de-
generate advection-diffusion-reaction models, and [29] for the nonlinear steady Leray—
Lions equation. The proposed method became very famous over the last decade. The
method has several advantages, such as HHO discretization supporting general poly-
topal meshes and allowing arbitrary order of polynomial approximations. The HHO
method complies with physics and is robust with respect to the variations of physical
coeflicients. It focuses on the reproduction of key continuous properties at the discrete
level, such as local balances and flux continuity. The computational cost for the HHO
method can be reduced by using a compact stencil and static condensation.

Over the last several years, a major focus has been on analyzing discretization
methods for partial differential equations (PDEs), which support arbitrary-order dis-
cretization on general meshes, including nonmatching interfaces and polytopal cells.
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A lot of research has been done on the arbitrary-order polytopal method for lin-
ear diffusion equations. To name a few, we refer to [2, 5] for the constructions of
polyhedral elements for adaptive mesh coarsening, the hybridizable discontinuous
Galerkin method of [28, 24], the virtual element method of [6, 7, 16], the high-order
mimetic method of [60], the weak Galerkin method of [64, 66, 67], the gradient dis-
cretization methods of [46, 44, 33|, and the multiscale hybrid mixed method of [3].
Recently, a robust HHO approximation scheme for the Poisson problem on poly-
topal meshes with small edges/faces was analyzed in [47], where the standard scaling
of hr for the stabilization is replaced by hp. There are some connections of the
HHO method with the hybridizable discontinuous Galerkin (HDG) method, but the
choice of stabilization for the HHO method is different from that of HDG to deliver
a higher-order convergence rate for HHO discretization. On the other hand, if we
consider the nonconforming virtual element methods (ncVEM), the devising view-
point with HHO is different. ncVEM considers the computable projection of virtual
functions instead of a reconstruction operator, and the stabilization for both meth-
ods achieves similar convergence rates as HHO but is written differently. The close
connections of the HHO method with HDG [28] and ncVEM [4] have been analyzed
in [27].

The HHO method in the lowest-order case belongs to the hybrid mixed mimetic
family [45], which includes the mixed-hybrid mimetic finite differences [19], the hybrid
finite volume [48], and the mixed finite volume [42, 43]. Recently, the HHO method has
been bridged in [59] with the virtual element method. Some more related approaches
can also be found in [14, 45, 17, 18, 58]. Several works on HHO methods involving
linear and nonlinear PDEs can be found in various articles, such as pure diffusion
[36], advection-diffusion [31], interface problems [20], the viscosity-dependent Stokes
problem [37] for linear PDEs, the elliptic obstacle problem [26], a nonlinear elasticity
with infinitesimal deformations [15], steady incompressible Navier—Stokes equations,
[38], and Leray-Lions operators [29, 32] for nonlinear PDEs.

The quasilinear problem of nonmonotone type (1.1) can be viewed as a stationary
heat problem with variable nonlinear diffusion coefficient. This has many engineer-
ing applications, for instance, heat distribution for metal bodies. Finite element
approximations for nonlinear problem (1.1) have been studied in [54, 53] for a pri-
ori error estimation using discontinuous Galerkin (DG) and hp-DG methods and in
[11, 9, 12, 65] for various a priori and a posteriori error estimates. For some related
works on hp-DG methods for strongly nonlinear elliptic problems, we refer to [52, 13]
and references therein. We also refer to articles on various nonlinear problems for
second-order elliptic PDEs, the weak Galerkin methods of [64], the mimetic finite
difference approximation of [1], and the virtual element method of [22]. The finite
element approximations for quasilinear problems are studied under various regularity
assumptions on the coefficient a and on the solution u, for instance, a in C? and
u € W22H¢(Q), e > 0, or u € H?(Q); see [68, 54, 10, 11, 41, 61, 63].

In this article, we establish an optimal-order a priori error estimate in a discrete
energy norm for the HHO approximation for a quasilinear elliptic problem of non-
monotone type. We assume the solution u € H}(Q) of (1.1) belongs to W2(Q) for
d = 2 and belongs to H?(2) N W2%>(Q) for d = 3. We use local reconstruction and
high-order stabilization in the discrete formulation. First, we establish the existence,
uniqueness, and a priori error estimate for an auxiliary second-order non-self-adjoint
linear elliptic problem satisfying Garding-type inequality. The well-posedness of this
auxiliary problem helps us to formulate a suitable nonlinear map that possesses a ball
to ball mapping and contraction properties. For sufficiently small mesh parameters,
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the existence, uniqueness, and a priori error estimate for the solution of HHO approx-
imation of quasilinear problems are derived by using Brouwer’s fixed point theorem
and the contraction principle on a quasiuniform mesh.

The organization of the paper is as follows. Section 1 is introductory in nature,
and section 2 is devoted to notation, definition, and preliminaries related to HHO
discretization. In section 3, we discuss the HHO approximation for a linear non-
self-adjoint elliptic problem and establish error estimates. Section 4 is devoted to the
HHO approximation for the solution of quasilinear elliptic problem (4.1). In section 5,
numerical experiments are performed to illustrate the theoretical results obtained in
this article. Finally, in section 6, we present a summary of the article and describe
some possible extensions.

Throughout the paper, standard notation on Lebesgue and Sobolev spaces and
their norms are employed. The standard seminorm and norm on H?®(2) (resp.,
W=P(Q)) for s > 0 are denoted by | e |; and || ||s (resp., | ®|s, and || e ||s, ). The
positive constants C' appearing in the inequalities denote generic constants which do
not depend on the meshsize. The notation a < b means that there exists a generic
constant C independent of the mesh parameters such that a < Cb; a ~ b abbreviates
a<b<a.

2. HHO discretization.

2.1. Discrete setting. We consider a sequence of meshes (7,)n>0, where the
parameter h denotes the meshsize and goes to zero during the refinement process.
For all A > 0, we assume that the mesh 7} covers 2 exactly and consists of a finite
collection of nonempty disjoint open polyhedral cells T' such that Q = Urer, T and
h = maxpe7, hr, where hp is the diameter of 7. A closed subset F' of 2 is defined
to be a mesh face if it is a subset of an affine hyperplane Hp with positive (d — 1)-
dimensional Hausdorff measure and if either of the following two statements holds
true: (i) there exist 71(F) and T5(F') in T, such that FF C 9T1(F) N 0T(F) N Hp; in
this case, the face F' is called an internal face; (ii) there exists T(F') € T, such that
F C OT(F)N o2 N Hp; in this case, the face F is called a boundary face. The set
of mesh faces is a partition of the mesh skeleton, i.e., Upe, 0T = Upez, F', where
Fp = }"}; U]-',l; is the collection of all faces that is the union of the set of all the internal
faces F; and the set of all the boundary faces ]—"g. Let hp denote the diameter of
F € Fp,. For each T € Ty, the set Fr := {F € F,|F C 0T} denotes the collection
of all faces contained in 0T, nr denotes the unit outward normal to T', and we set
nrp := np|p for all F' € Fj,. Following [35, Definition 1], we assume that the mesh
sequence (7T )n>o0 is admissible in the sense that, for all h > 0, 75, admits a matching
simplicial submesh 7}, (i.e., every cell and face of Ty, is a subset of a cell and a face
of Tp, respectively) so that the mesh sequence (7p)p>0 is shape-regular in the usual
sense and all the cells and faces of 7, have a uniformly comparable diameter to the
cell and face of 7, to which they belong. Owing to [34, Lemma 1.42], for T € T}, and
F € Fr, hr is comparable to hy in the sense that

0*hr < hp < hr,

where ¢ is the mesh regularity parameter. Moreover, there exists an integer Ny
depending on g and d such that (see [34, Lemma 1.41]):

d < Ns.
mmax car (Fr) < Ny
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There also exist real numbers Cy, and C}, . depending on o but independent of h such
that the following discrete and continuous trace inequalities hold for all T' € 7} and
F € Fr (see [34, Lemmas 1.46 and 1.49]):

(2.1) ollF < CuhpPllollr Yo € PY(T),

(2:2) [vllor < Cur,c(hz! [0llF + he | Voll7)!/* Vo € HN(T),

where ]P’il (T') is the space of polynomial of degree at most [ on T € T,,. There exists a
real number Cyp,p, depending on ¢ and [ but independent of & such that, for all T" € 7y,

denoting by 74 the L2-orthogonal projector on P}(T), the following holds (see [34,
Lemmas 1.58 and 1.59]): For all s € {1,...,l+ 1} and all v € H*(T),

(2.3)
lv— 7r5~1)|Hm(T) + h;/2|v - WflzﬂU|Hm(8T) < Capphy "lge(ry Ym e {0,...,5 -1},

where | ® |gmgr) denotes the facewise H™-seminorm when the boundary 0T of an
element T € 7T}, is written as a union of faces.

2.2. Discrete spaces. Let k& > 0 be a fixed polynomial degree. For T' € T,
define the local space of degrees of freedom (DOF's) by

24 gh = yr) < { x P},

where P%(T) is the space of polynomials of degree at most k on T' € Tj, and PX_ (F)
is the space of polynomial of degree at most k£ on the face F' € F;,. The global space
of DOFs is obtained by patching interface values in (2.4) as

gt ={, x B« { x B}

TETh

The zero boundary condition can be imposed in the above discrete space U ],i as follows:
Uh o= {Qh = ((vr)rem (vr)rer,) EUL|vp =0 VF € fﬁ}-

For v, € QZ, we understand v, € L%(Q)) by vs|r = vr. The local interpolation
operator IX : HY(T) — U is such that, for all v € H(T),

(2.5) Ifw = (7, (Tpv) perr),
where 77}% is the L2-orthogonal projector on ]P’Z_l(F ). The corresponding global in-
terpolation operator I} : H(Q) — Qlﬁ is such that, for all v € H(Q),

I}ILCU = ((ﬂ-g“v)TET}n (TF;CT’U)FE]‘-}L)'

When applied to Hg(Q), IF maps onto QZ,@
Below, we state the Lebesgue embedding result. For proof, we refer to [29, Lemma
5.1].

LEMMA 2.1 (direct and reverse Lebesgue embeddings). Let T, be a regular mesh
with T € Ty Let k € N and ¢,m € [1,00]. Then

1_1
(2.6) lwllLaery = | T~ 7 ||| pm(ry  Yw € PE(T).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/22 to 14.139.128.34 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2322 T. GUDI, G. MALLIK, AND T. PRAMANICK

Define the Sobolev exponent p* of p by

e ddfpp if p<d,
4+oo  ifp>d.

The following lemma on discrete Sobolev embeddings is stated from [29, Proposition
5.4], and this is used to obtain various boundedness results in the following sections.

LEMMA 2.2 (discrete Sobolev embeddings). Let (Tn)n>0 be an admissible mesh
sequence of Q C R, Let1 < q<p*ifl<p<dandl<q<ooifp>d. Then there
exists C only depending on Q,0,k,q, and p such that

lonllzace) < Cllopllipn Vo, € Uk o,

1/p
Lph = (Z ||UT||1,p,T>

TeTh

where

[ory

with
1/p
1—
HQT”LILT = <||VUT||z£p(T)d + Z hy p””F - UTip(gﬂ)) .
FeFr

In particular,
(2.7) lonllzs@) < Cllupllien Vo, € Us -

We use the abbreviation || e |1, for || ® ||1.2,, in the subsequent analysis.

2.3. Local reconstructions and stabilization operators. In this subsection,
some essential ingredients related to HHO formulation are defined. For T € Tp,
we define the local reconstruction operator R?H : U ; — IP”;H(T) such that, for

vy = (vr, (VF)FeFs),

(283) (VRI%JAQT, Vw)T = (VUT, Vw)T + Z (UF —ur, VU)"I’ETF)F,
FeFr
(28b) (R?HQT, 1)T = (UTa l)T )

where (2.8a) is enforced for all w € JP’ZH (T). A global reconstruction operator RZH :
Qi’ — IF’SH(E) is defined by RZHQ}L‘T = R’;IHQT.
Define the local gradient reconstruction G% : Uk — P*(T)¢ such that, for all
k
Ur € QT?

(2.9) (GITC‘QTa T)r = (Vor, 7)r + Z (vp —vp, Trp)p VT E ]P)k(T)d.
FeFr

Moreover, from [30, Lemma 4.10], it holds that

(210)  (Gjop, T)r = (Vor, )7+ Y (vp — v, (7h7)mpp)p V1€ LT
FeFr
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The relation between G and RE™ is established by taking 7 = Vw with w € IP”;Jrl (T)
in (2.8) and comparing with (2.9) as

(2.11) (Ghvy — VRE My, Vw)r =0 Vw € PPYYT).

In other words, VRY v, is the L?-orthogonal projection of Ghuy on VPF1(T)
PH(T)* and | VR vy e < |Gy |z
For F € Fr, define the local stabilization operator S% : U% — Pk (F) by

(2.12) Skvp = 7k, (vp —vr — (RI;:HQT - W%RI%J'_IQT)) .

The next lemma follows from the property R’F‘lléiv = 7r714k+1v for v € WHY(T),
where ﬂ%«’k-i_l is the elliptic projector (see [30, Definition 1.39]) and its approximation
property [30, Theorem 1.48] is given by the following lemma.

LEMMA 2.3 (approximation properties of R;HI%). There exists a real number
C > 0 depending on o but independent of hr such that, for all v € H*Y1(T) for some
s€{0,1,...,k+1},

lv — REF o7 + hyl?|lo — REF Ihol|or + he ||V (0 — REF TEw)||7

(2.13) + B2V (v = RET ) lor < Ch ullgress 7).

The property G’%I{ﬁ’u = 7wk (Vo) for v € WH1(T) and the approximation property
for L? projector Wéﬁ lead to the next lemma.

LEMMA 2.4 (approximation properties of GaI%). [30, Lemma 3.24] There exists
a real number C > 0 depending on o but independent of hp such that, for all v €
HsTY(T) for some s € {0,1,...,k+1},

(2.14) (IVv — G’%IéﬁUHLz(T) < Ch%|u\Hs+1(T).

3. Non-self-adjoint linear elliptic problems and error estimate. To an-
alyze the existence and uniqueness of the discrete solution of (1.1), we require a
linearized problem which is essentially a non-self-adjoint elliptic problem (the explicit
form is described in section 4). This motivates us to consider a general non-self-adjoint
elliptic PDE:

—

(3.1a) —V-(a(x)Vu) + b(x)-Vu + ag(x)u = p(z) in Q,
(3.1b) u=0 on 09,

where € is a bounded convex polytopal domain in R%, d € {2,3}, with Lipschitz
boundary 992. In this section, we consider the HHO approximation and establish
an error estimate for the discrete solution of (3.1). The existence and uniqueness
results will be used in the error analysis of the HHO approximation for the quasilinear
elliptic problem (1.1). We adopt the following Assumptions A.1-A.4 on the above
problem (3.1).

Assumption A.1. There exists a > 0 such that a < a(z) and ag(z) > 0 for all
z € Q.

Assumption A.2. The functions a € C*(Q), b € L=(Q) and ao € L*°(Q) with
M := max{l|a| L= (0), [[bll Lo (@), [laoll L= (o) }-
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Assumption A.3. The load function p € L?().

The model problem (3.1) has a unique solution u € H(Q) under the above
Assumptions A.1-A.3; see [49, Theorem 8.9].

Assumption A.4. The solution u € H}(Q2) of (3.1) satisfies the regularity result
(3.2) lullg2(0) < CllpllL2(o)-

It can be observed that under Assumptions A.1-A.3, the last Assumption A.4 on
the regularity is verified if the boundary 99 is of class C'!; see [49, Lemma 9.17] and
[50, Theorem 2.4.2.5].

3.1. HHO discretization of a non-self-adjoint linear elliptic problem.
Define the discrete counterpart of (arVu, Vv)p, where ar(z) = a(z)|r, as the local
discrete bilinear form

Br(ug,vy) = (aTG@T, G?ET)T + s7(up, vy)

(33) + (EVRI;«JFI(QT), ’UT)T + (aouT, ’UT)T,

where the stabilization term sy (up, vy ) is defined by
af . o
(3.4) sT(up, vy) = Z % (Szlf“MTaSJIfﬂQT)F with a7 == [lar| L= (F)-
FeFr

The discrete formulation of (3.1) seeks w;, € Q,lio such that
(3.5) B (up,v,) = (p,on) Yoy, € Up o,

where By, (uy,,vy,) = ZTGTh Br(up,vr).
Define the energy seminorms on Uf (norms on QQO owing to the homogeneous
boundary condition) as follows:

g,h = Z v

TETh

(3.6) [

i,T and [lvpll1n = uplli2n Yo, € Qﬁ,

where the local contributions are defined as

1/2 vk ar)
(3.7) lorll? r = llar*GrorlF + Y S llvr — vrl}-
F
FeFr

With the help of Assumptions A.1-A.2 and [30, Lemma 3.15], it can be easily shown
that the above seminorms || ® ||, and || ® |1 5 are equivalent on U} .

The following boundedness property can be obtained using the definitions of re-
constructions G’%, R;H, the trace inequality, and the Cauchy—Schwarz inequality; see
[30, Proposition 3.13 and Lemma 3.15].

LEMMA 3.1 (boundedness). For u,,v; € Q’fw there exists a constant C' > 0 inde-
pendent of mesh parameter h but depending on o, M, Cyy, Capp, 0, N such that

1/2 1/2
B (up,vp) < C (lugllzn + lunll®) " (lenlln + lloal®)

The following lemma is essential for establishing the existence and uniqueness of
the discrete solution (3.5).
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LEMMA 3.2 (Garding-type inequality). For all v, € QZ, there exist two real
numbers C1,Cy > 0 independent of h such that

(3.8) Bp(vp,,vp,) > CIHQhHZ,h - 02||Uh||2 Vuy, € Qi-

Proof. Following the proof of [30, Lemma 31.5], the lower bound for By,(e,e) can
be easily obtained as follows:

(3.9) (arGhor, Ghor) +srlvr.vr) > collogl?

for some positive constant c3. Using the Cauchy—Schwarz inequality, we obtain the
following estimates for the remaining terms:

(3.10)
1/2
> (b'VR]7€1+1QT7UT)T S 1bllze @) llvnlla,n <Z |UT|72F> < callvplla,nllvnll,
TeTh TeTh
(3.11) > (aovr,vr)r < llaollzey Y lvrllF < esllonl?

TETh TETh

for some positive constant ¢4 and cs.
Now, we prove the Garding-type inequality for By (v, v;). The definition of
By, (v, vp,) and a use of the above three estimates (3.9)—(3.11) lead to

an = Callvnllanllon]l — cs|lvn]|?

Cq
> (e — caO)llunlPn — (C +c5) S Jor2

TeTh

Bp(vp,,vy) > sl

for any positive ¢. For sufficiently small ¢ > 0, the proof of (3.8) follows. ]

Using Lemma 2.2, we have |lv,]| < C|lv,|la,n. We rewrite the Garding-type in-
equality (3.8) as

(3.12) Cillopllan < sup Bi(vy,wy) + Callvnl Vo, € UJ.

wy, EQQ’ Hﬂh”a,hzl
3.2. Existence and uniqueness of the discrete solution of a non-self-
adjoint elliptic problem. We now show an a priori result of a discrete auxiliary

problem which is used to prove the existence and uniqueness of the discrete solution
uy, € U} o of (3.5).

LEMMA 3.3. Let ¢ € L?(Q). Then for sufficiently small h, there exists a unique
solution Qh S Qlfi,o such that

(3.13) Bu(vy, 6,) = (q.0n) Vv, € U

Moreover, the solution Qh satisfies

(3.14) 18, lla,n < Cllal-
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Proof. We first prove the a priori bound (3.14). Since (3.13) leads to a finite-
dimensional system, the existence and uniqueness of the solution follow from the a
priori bound. The Garding-type inequality (3.8) with v, = ¢, yields

Cillg,|

Using (3.13) and the Cauchy—Schwarz inequality, we obtain

Bi(¢,,:¢,) = (@ ¢n) < llallza@llonllzaiy < (lall® + llenl?)/2.

L2L,h - CzHQShH2 S Bh(?h79h)'

Combining the above two estimates, we have

(3.15) 18l < Csllall + Callnl-

We apply the Aubin—Nitsche duality argument to estimate ||¢y|. For the above
Qh elU 270, consider the following auxiliary problem:

—

(3.16a) =V-(a(z)V) + b(x) Vi + ag(z)y = ¢p in Q,
(3.16b) $=0 on 0Q.

Assumptions A.1, A.2, and A.4 ensure the existence and uniqueness of the solution
¥ € HE(Q) N H%(Q) and the elliptic regularity:

(3.17) V] 20 < CllonllLa)-

Multiply (3.16) by ¢, and integrate over €2 to obtain

(318)  lonl? = - /Q V-(aV)én dx + /Q BVdndx + /anwhdx.

Applying the integration by parts on the first term of the above equation, we obtain

- [ viavosac=- 3 [ Varveienas

TETh
(3.19) = < arVi-Vor dx + (¢ — d1)arVipn Fds)7

where the term related to ¢ on the skeleton Fy, is zero owing to the zero boundary
condition and [30, Corollary 1.19]. The local term of the above equation is estimated
by the definition of gradient reconstruction (2.10) as

VyY-Vord — V- d
/TCLT Y-Vordx + Z /F(¢F or)arVi-nrpds

FeFr

= / aval/}.Gl,}?T dx + Z / (¢F — d)T) ((Lva - T’;w(aTVQb)) ‘Nrr ds
T F

FeFr

= | arGhrtvGiopax+ [ an(Vo - ko) Ghoax
T T

(320) + Z ‘/F(QSF - ¢T) (GTV'I/J - ’/TI%(G,TV’I/J)) ‘NtTr ds.

FeFr
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We rewrite the second term of (3.18) as

[ by vvonax= 3 [ ) vuords

TETh
(321) =Y / b(z) V(RE! ) pr dx + > / b(z)-V (¢ — REFLIE) b dx.
Te7 /T Te1, /T

Combining (3.19)—(3.21) in (3.18) and using the definition of By (e, e), we obtain

lonlP = Bu(Ti.0,) = 3 se(rbveg) + 3 ([ ar (Vo - Ghbo)Gho, ax

TETh TETh

+ Z /F(Qﬁp - ¢T) (ava - W%(ava)) ‘nrr ds

FeFr
(3.22)

+ / b(z)-V () — REFLIEp) o dx + / ao(x) (1 — D)o dx) =T +Ts+Ts.
T T

The Cauchy—Schwarz inequality, trace inequality, and approximation properties of
R]}H[é?, G’%, and 7% yield an estimate for the above last four terms as

(3.23) Ts S hlidll a2 ll2),

a,h-

Choose v, = I in (3.13) and use the Cauchy—Schwarz inequality to obtain

(3.24) Bu(Iyy, ¢,) = /qu’fw dx < [lallmioll < lalllllaz o).
Following [36, equation (46)], we can obtain

(3.25) > sp(Ihv, ¢, S B¢l 2918, llan-

T€Th

Combining the last three estimates (3.23)—(3.25) in (3.22) and using the a priori
estimate (3.17) we obtain

(3.26) lonll < Chllg,

an+ [l

Finally, for sufficiently small choice of h, use (3.26) in (3.15) to obtain

18, lla,n < Cllall.

This completes the proof. 0

Existence and uniqueness of the solution of (3.5). In Lemma 3.3, we
proved the existence and uniqueness of the solution of discrete system (3.13) which is
the adjoint problem of (3.5). This implies the existence and uniqueness of the solution
of discrete system (3.5).

3.3. Error estimate for a non-self-adjoint elliptic problem. In this sub-
section, we prove the error estimate for the discrete solution (3.5) using Garding-type
inequality and some auxiliary problems.
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LEMMA 3.4. Letu € H}(Q) and u,, € Qz,o be the solutions to the continuous and
discrete problems (3.1) and (3.5), respectively. Assume u € H" 2(Ty,) for some r €
{0,1,...,k}. For sufficiently small h, there exists a real number C' > 0 independent
of h such that

(3.27) ITFu — wpllan < Chr+1||u||Hr+z(Th).
Proof. From the Garding-type inequality (3.8), we have
Cillwnllz n — Collonll® < Bu(vp,v,) Yoy, € U.

Set x, = Fu — wy,. Choosing v;, = X,, in the above equation, we obtain

(3.28)
Ci| Iu — uhlli,h — Collmhu — up||* < Bi(Iyu — @haff]fu —uy) = By(Iu— @haxh)-

Since u;, € Qﬁ’o satisfies (3.5), we have
(3.29) CullZ5u — wy [ = Collmiu — unl* < Br(Iyu, x,) = (0, xn)-

Now, p = —V-(aVu) + b-Vu + agu of (3.1) leads to
(P, xn) Z / pXnRdx = Z / (aVu) + b-Vu + apu)xp dx.
TETh TET,

Applying the integration by parts in the above equation and following the derivation
of (3.18)—(3.22), we obtain

(5, x1) = Bu(Ifu,x,) — sn(Ifu,x,) + / ar(Vu — GhIhu) Gl ., dx
T

+ Z / (xr — xr) (arVu — 73 (arVu)) nrp ds

FeFr
+ Z / — REP TR w) o dx + / ao () (u — mha)xp, dx.
TETh @

The last five terms of the above equation are estimated using similar techniques
followed in (3.23)—(3.25) to produce

(3.30) En(pix,,) = Br(Iyu, x,) = (0, xn) < O™ Hull vz 1, lan-
This leads to an estimation for (3.29) as

(3.31) CullZ5u = wp 13 = Collmhu — un|* < Ch™Hlull g7 1, laon-
A use of Lemma 2.2 leads the above equation to

(3.32) CillIfu = wpllan < O™ ull grsa (i) + Callxall-

To estimate || x|, we use the results of the discrete adjoint problem (3.13) with ¢ = xy,
and v, = x, , and this leads to

Ixnll> = Bi(x,,,) = Bu(Ifw — w,, ¢,)
= Bu(Iju,¢,) — (0, é1) = En(p; 0,)-
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After using the estimate for Ejp(p;¢,) in (3.30) and the a priori result [|@, [la,n <
C|lxrl| of (3.13), it holds that

(3.33) Ixall < CH™ [l sz (7).
Combining (3.32) and (3.33), we obtain the final estimate
15w = wplla < CR™Hlull gresz)-

This completes the proof. 0
The triangle inequality, Lemma 3.4, and Lemma 2.4 lead to the error estimate.

THEOREM 3.5 (error estimate). Let u € HE(Q2) and u,, € Qi’o be the solutions
to the continuous and discrete problems (3.1) and (3.5), respectively. Assume u €
H™2(Ty,) for some r € {0,1,...,k}. For sufficiently small h, it holds that

1/2
(3.34) ( S IVu- G%uTn%) < CH v )

TETh

for some positive constant C independent of h.

4. Quasilinear elliptic problem. In this section, we consider the HHO ap-
proximation for the quasilinear elliptic boundary value problem:

(4.1a) —V-(a(z,u)Vu) = f(x) in Q,
(4.1b) u(z) =0 on 09,

where  is a bounded convex polytopal domain in RY, d € {2,3} with Lipschitz
boundary 092. We make the following Assumptions Q.1-Q.4 (see [40, 54]) for the
problem (4.1).

Assumption Q.1. There exist positive constants o, M such that 0 < a < a(z,t) <
M, xzeQ,teR.

Assumption Q.2. The coefficient function a : Q xR — R is a twice continuously
differentiable function on 2 x R such that all derivatives of a(x,t) up to and including
second order are bounded in Q x R, i.e., a € CZ(2 x R).

Henceforth, we understand a(zx,t) by a(t) if there is no confusion. For sufficiently
smooth data f, problem (4.1) possesses a unique smooth solution « when the boundary
is also sufficiently smooth; see [41]. Under the assumption f € L*°(Q), Caloz and
Rappaz in [21, Theorem 5.1] have proved that problem (4.1) has a unique solution
in W2P(Q),1 < p < oo, on a domain § with smooth boundary 9. The existence
and uniqueness of the weak solution u in H{(£2) are established in [56] on a bounded
domain with Lipschitz boundary.

Finite element approximation for the above problem (4.1) is proposed and ana-
lyzed under various assumptions on the coefficient and data and an assumption on
regularity for the solution; see [40, 61, 63, 54, 10, 11, 9, 8]. Following [22, 53, 10, 11],
we make the following assumption on the solution of (4.1).

Assumption Q.3. The solution u € H}(Q) of (4.1) belongs to W2°°(Q) for d = 2
and belongs to H3(Q) N W2°°(Q) for d = 3.
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The linearization of (4.1) around a solution w in the direction % is given by an
operator L(u) : Hi(Q) — H~1(Q) defined by

(4.2) L(u)y :== —=V-(a(u) V¢ + ay(u) Vu ).

In this article, we consider the numerical approximation of a class of isolated
solutions for the quasilinear problem (4.1).

DEFINITION 4.1 (isolated solution ). [57, Definition 2.4] A solution u of (4.1) is
said to be isolated if L(u) is nonsingular. That is, if L(u)y = 0, then ¢ = 0.

An isolated solution is often named a nonsingular solution or regular solution for
the underlying nonlinear problem. We make the following assumption which is used
to define a nonlinear map through the Newton method.

Assumption Q.4. The solution u € H}(Q) of (4.1) is isolated.

For the HHO approximation of the solution of (4.1), we consider a linearized
problem: find ¢ € H}(Q) such that

(4.3a) —V-(a(u)V) + ay(u)Vuy) = ¢ in €,
(4.3b) b =0 on 90,

for some load function ¢ € L?(€2). The existence and uniqueness of the solution of
(4.3) follow from Assumption Q.4. The above problem (4.3) can be converted to an
equivalent problem:

—AYp=¢ inQ,
Y=0 ondQ,

with the right-hand-side load function defined by
= (¢ + Va(u)- Ve + ay(u)Vu-V 4+ (Vay (u)-Vu + ay (w) Au)ip) /a(u)

which belongs to L?(2). Since a € CZ(R) and u € W2°°(Q) (Assumptions Q.2 and
Q.3), the solution satisfies the elliptic regularity 1 € H?(f2); see [51, Theorem 2.4.3
and Corollary 2.6.8].

In the following sections, we consider an HHO approximation of the above lin-
earized problem (4.3) and analyze the existence and uniqueness of the HHO approxi-
mation for the quasilinear problem (4.1).

4.1. HHO approximation for a quasilinear elliptic problem. For w;,,u;,
and v, in U}, define

(4.4) Ni (wy; up, vp) Z / (REA w)Grup-Ghop dx + sp(uy,, vy,),
TETh
where the above stabilization term sy (uy,v,,) = > peg, $7(Ur,vy) with the local
stabilization
s ( L a%OF Sk: Sk h oo .
r(Up, vy) = Z Tm ( FUT, FQT)Fv where a7 = ||ar|| L~ ().
FeFr
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The discrete HHO approximation of (4.1) seeks u;, € U ﬁ,o such that
(4.5) Ni(uy; up,vp,) = Uvy,) Vo, € Qﬁ,o’
where the linear form reads I(vy,) := Y ey [p fordx.

We propose an HHO discretization of the linearized problem (4.3). The discrete
linearized problem seeks 9, € U 270 such that

(46) Nflzin(u;%h’yh) = (¢7Uh) VQh S Q];L,Ov

where we considered linearization around the solution u of (4.1) and, for %h, v, €U Z,

N m) = Y [ (0(0Gh, Ghor + au(wRE v, VuGhur) dx

TeTh
(4.7 +Sh(£h7yh)'

Moreover, define a fully discrete version of the linearization term as follows: for
k
Mfmghayh S th

./'\V/"Ilin(wh;%h7 Z / Rk-‘rle GTw GTUT dx
TETh
(4.8) + Z / ay ( RkHwT RkHz/J Ghw,-Ghuy dx + sp(, ,vp)-
TETh

For v, € UF, the definition of reconstruction operator yields Jr( R vy —vp)dx =0
for each T € Tp. This leads to the following estimate (see [29, Corollary 5.10]): for

p<q<p,

(4.9) IRE 0y, — vall ooy < CRY 575wy |1 -
In particular,

(4.10) IR wpllze @) < Cllvg 1

Using similar arguments as in the proof of Lemma 3.2 and the above estimate, we
obtain a Garding-type inequality for N} (u; e, e) as

(4.11) N (s 0, 03) > Crllog |17, = Callvnll 720

for some positive constants C; and C5 independent of h but depending on u and a(u).
Then, the existence and uniqueness of the solution ¢, € U Iii,o of (4.6) follow from the
existence and uniqueness of the solution of (3.5).

We make the following assumption [54] throughout the section.

Assumption Q.5 (quasiuniformity). We assume the admissible mesh sequence
(Th)n>0 to be quasiuniform; i.e., there exists a constant Cg independent of h such
that

max hr < C mlnh
TeT T Q TETh r
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4.2. Fixed point formulation and contraction result. In this section, we
prove the existence, local uniqueness, and error estimates for the solution u;, € U. 270 of
the above problem (4.5) using fixed point arguments. Following the idea of [62, 23, 54],
we define a nonlinear map p : Uy, o — Qﬁ,o which satisfies, for all v, € U}, o,

(412) NG (u; Tw — p(8)), vp) = NG™ (s Tju — 0y, 04) + Nu (03505, 03) — Uy,)-
The map p is well-defined as (4.6) is well-posed. It can be observed that any fixed

point §, (say) of u satisfies N4(€,;€, . v),) = l(vy,) for all v, € Qﬁ,& That is, &, is a
solution of (4.5). Define a ball of radius R with center at IFu as

D(IFu; R) = {Qh € Uk , such that || Ifu— 6,1 < R}.

The following results are obtained using the generalized Holder’s inequality,
Lemma 2.1, (4.10), discrete Sobolev embedding (2.7), and similar arguments of [54,
equation 4.20] as follows.

LEMMA 4.2. For§,,x, € UY, and v, € Qﬁ)o, the following bounds hold true:

Z / |Rk+1§ GTXT -Ghup|dx
T€eTh

< C(max )[R, oy g, lonllonllnn
< C(max hz"*) 1€, lnllx, lallenlns
b S [ IR G, Ghur dx

TeTh
d/3
< C(max hy PYIREFE, N2 oo 1, nnlwn 1.

d/3
< c<m€a,;;h PNENE g, Inllen i ne

Now we prove some auxiliary results that will be used in the fixed point theorem.

LEMMA 4.3. Letting uw € H™"2(Ty,) forr € {0,1,...,k} and Y,.vy € U¥, it holds
that

(4.13)
N (s 4, vy) = NE (T, vy)| < CRT Y0 ) e oy 1, 1, Lo ln-

Proof. From the definitions of A}™ and /\7}3“ in (4.7)—(4.8), we have

Nlin( .wh’vh) —./Tflirl(l,]fu;y 7Qh)

= > / ) — a(REM i) G, -Glrop dx
TeTh
(4.14) + Z / ay(u)Vu — au(R’%HIé?u)Gl}I{ﬁu) RZ}HQTG?FQT dx.
TETh

The Taylor series expansion

(4.15) a(u) = a(w) + ay(uw)(u — w),
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where a,,(u) = fol ay(u + t(w — u)) dt, Holder’s inequality, inverse inequality, and
Lemma 2.3 lead to an estimate for the first term of (4.14) as

> / a( Ry Tjw)) G -Glrop dx

T€eTh
< Cllaullze@y Y llu— Ry IRull 2@y GR, s |Gl Lacr
TeTh
(4.16) < Ol oo (k™27 |u|

H™+2(Th)

The second term of (4.14) is estimated using Taylor series expansion, Holder’s inequal-
ity, inverse inequality, quasiuniformity of meshes, Lemmas 2.2-2.3, and Lemma 4.2(a)
as

Z / ay(u)Vu — au(R’%HIé?u)G’%I{ﬁu) REpr-Glhivg dx

TeTh
Z / ay(u) — au(RkHITu)) (Vu) R -Gy dx
TeTh
+ Y / ay(REF Thu) (vu - GTITu) REFpp Gy dx
TETh
< Ollawulloe @) 2 YOl sres2 73 |Vl oo 0 18, 1.l 11,
(4.17) + Cllaul e @h™ = llull e () 12, 1l -
Then, the proof of (4.13) follows from the above two estimations. |

THEOREM 4.4 (fixed point result). Let u € Hg(2) be a solution for (4.1). As-
sume u € H™ 2(Ty,) for somer € {d—2,...,k}. For sufficiently small mesh parameter
h, there exists R(h) such that the nonlinear map QZ,O — Qﬁp defined in (4.12)

maps from the ball D(IFu; R(h)) to itself with radius R(h) :== Ch™*' for some constant

C independent of the mesh parameter. Moreover, u has a fized point in D(IFu; R(h)).
Proof. Since N} (u; e, @) is associated with the linearized problem, it satisfies the

Garding-type inequality (3.12):

(4.18) Cillwp|l1,n < sup Nlm(wwhayh) + Collwn|  Vuw, € QZ,@

QhEQ’Z,O,Htha,h 1
Choose w), = IFu — p(0),) (we understand [, llz2 by [[¥nllz2(q)). Then, there exists
vy, € Qﬁ’o with [|up,|lq,n = 1 such that

CullZiw = (@)l < NG (us i = 10(8,), wn) + Coll 5w — p(0,)l| 2.

With this and the definition of p of (4.12), we obtain
CullZiw — p(85) 1,0 < N (ws L — p0(8),), v4) + CallIiw — p(9,) 2
= N (u; I = O3, 03) + Ni ;030 01) = L) + Call Iyu — (8 2
= (Nflzin(w Tiju— 0, 0,) — Nilzin(fi’fw Tiju — thQh))
(4.19)
(N (s T = 0 0) + Moy 03, 23) = () ) + Call T = u(8) 2.
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The definition of (y;,) with (4.1) and integration by parts lead to

1(v,) /fvhdx— /v w)Vu)v, dx = — Z/ u)Vu)vy, dx

TET

(4.20) = Z </T a(u)Vu-Vor dx + Z / vp —vr)a(u)Vu: nTFds>,

TETh FeFr

where the additional term related to vg on the skeleton JFj, is zero, owing to the
zero boundary condition and [30, Corollary 1.19]. Now we rewrite the above terms
by adding and subtracting several terms and use the definition (2.10) of gradient
reconstruction as follows:

() = Z(/T a(u) V-Gl dxt Z/ vr—vr)(a(u)Vu—rk (a(u )Vu))~nTFds>

TETh FeFr

Z / w)GETEu-GEvp dx + Z / )(Vu — GhIEw)-GEup dx

TeTh TETh

+ Z Z / (vp — vr)(a(u)Vu — mh(a(u) Vu))-nrp ds
TET, FEFr

TeThH

+ Z / RkHITu)) G IEu-Ghop dx
TeTh

+ ) / )(Vu — G IEu)-Ghop dx
T€eTh

(4.21)
=3 % [ r —vn)aVu - o) V) nre s
TeTh FEFT

The second term of (4.21) is estimated using Taylor series expansion (4.15), the gen-
eralized Holder’s inequality, and Lemma 2.3 as

Z / Rk+1ITu)) G IEu-Ghop dx
TeTh
(422) < CH 2 jull 2|

The third term of (4.21) is estimated using the Cauchy—Schwarz inequality and
Lemma 2.4 as

@2 Y [ atw)(Vu— Ghliu)Ghur dx < O0 ulnesa L
TETh

The last term of (4.21) is estimated by the Cauchy—Schwarz inequality, Lemma 2.3,
trace inequality, and Sobolev embedding H*(Q) < L*(Q2) as

Z Z / vp —vr) (a(u)Vu — 77 (a(u)Vu)) -nrp ds

TeTh, FEFT
< Ch™*a(u)
(4.24) < O ([l (W)l lull ey + llaC@) || o) ull sz 7 12 l1,0-
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For §h,yh € Qﬁ, define

(4.25) (Fn = > / (R, GTE . -Ghrop dx.

TETh
The definitions of Ny, (e; e, e) and F, and the previous estimates (4.24)—(4.22) lead to
(4.26)

N3 035 01) = Uwy) < (Fa(0)vn) — (Fa(Iiw),vp) + 500y, v5) + CBwyll1n-
The Taylor series expansion yields
(4.27) a(w) = a(u) + ay(u)(w — u) + Gy (w)(w — u)?,

where Ay (W) = f01(1 — t)auu(w + t(w — u)) dt. Since a, € CH(Q x R) and ay, €
CP (2 x R), we have G, € L>(2 x R) and dy, € L>(2 x R); see [54, equatlon (4.8)].
We set

(4.28) Co :=max {||au| L (@xr), |Guull Lo @xr) } -

For ¢, € U and X, Un € Uh 0, expanding Fr(§, + x, ) from the above definition
(4.25) and using (4. 27) we obtain

Fn ) = 3 [ alRE 6+ x,)GH € + x, ) Ghurdx

TeTh
= 3 [ (alRE ) + au(REF )R X, ) G, + ) G dx
TETh
+ > / G (R5TE) (RET X )P G (8 + X)) Glrup dx
T67-h

= (Fn(€,) o) + Ni"(€,5 X0 2n) = sn (X, 08)

3 /auu (REFIE, )(REH Yy, )2GEE -Ghup dx

TeTh
+ 2 / au(RyTE )R ), G, Grog dx
TeT
(4.29) + ) / G (RETLE ) (RET X )2 Ghx Gl dx.
TETh

The fifth term (4.29) is estimated using Lemma 4.2(a) as

> / au (RETE )R X Gl x - Glog dx
TeT

—d/
(4.30) < CaC( 1 max by ", 1wl a-

The fourth term of (4.29) is estimated using Lemma 4.2(b) as

Z / Rk+1 (Rk+1 >2GT§ GTUT dx
TETh

d/3
(4.31) < Ca (max by )1, I3 01, Izl
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and the sixth term of (4.29) is estimated by (4.31) with {, = x, . Combining (4.29)~
(4.31) with x, =6, — IFu and &, = IFu, we obtain

(Fn(4),vp) = (FrTiu),vp) + sn(0),, )

< NI (Ifu; 0y, — Ifu,vy) + sn(Thu,vy,)

—d/3 k k k k
+ CuC jmea% hey / (||Qh - Ihu”%,h + 10, — Ihu”%,h”-[hunl,h + 119, — Ihu”?,h) lupll1,n

i —d/3 :
< N (s 0, = s vg) + CaC max hy™ (10, = Tulf o+ 18, = TulEs) lloaln

(4.32)
+ ChTJrl Hyh ” 1,h,

where we used the estimation for the consistency term sy (1 ;’fu, vy,); see [36, equation
(46)]. Combining (4.26), and (4.32), we obtain

N}ILin(I}kL:u; I}fu =0, v,) + Nu(8; 05, 0p,) — Uvy,)
(4.33)

—d/3 k k
< CaC(:anea% T / ) (||Qh - Ih“”%,h + 118, — Ihu”?,h) lvpllin + Ch o llin-

This implies from (4.19) with Lemma 4.3 and ||y, |/1,, = 1 that
Cull = ) < € (Cal s b ™) (10— Tl + 6, — Thul?)
(439 R0 g, TEuly g+ T - @)1

Now, we estimate |[Iju — pu(8),)||r> using the following dual problem: given g, :=
Ifu = p(8y), find ¢, € Uy o such that
(4.35) Ni™(u; 04, 8,) = (qn,vn) Yy, € Uy o

Choosing v, = IFu — p(0),) in the above equation, using the definition (4.12) of u,
the idea of splitting (4.19), and (4.33), we obtain

5w = (001 Z20) = Ny (us Tw = u(0),), 6,)

= N3 (u; Tu — 01 @,) + Ni(Oy: 01, 0,) — U, )

< C(Cal s ") (18— Thull o + 10, — Thelit ) 12,
Lallo, [hn)-

1a S TFu— p(8,)| 2 of (4.35), we obtain

l1,n

Ryl + ARG, — Tl

Using the a priori bound ¢, |
—d/3
12k = (@)l < ©(Cal(max ™) (18 = TEull} . + 18 — Tfull] )
(4.36) AT B, — Tl ).
Finally, the above estimations (4.34) and (4.36) lead to

|k = @) 1w < C (W74 4 B0 0, — Ik

1,h

—d/3
(437) o+ (e b ) (18 = Tl + 118 - Thull}) )
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for some positive constant C' independent of h but depending on u and a(u). Choose
h, such that

(1+ 2Ch, 40 L yC2p /3 L gE3p2rt24/3) < 9

This implies (1 + 20 hr+1-d/6 4 4C~'2h"'~“1_d/3 + 8C~'3h2"+2_d/3) < 2 whenever h < h,.
Thus if |[Ifu — 8,]l1.n < R(h) := 2Ch"*!, then using Assumption Q.5 of quasi-
uniformity, (4.37) yields

115w — (@) ]lin < C (hr+1 4 o0p2rt2=d/6 | A2 2rt2—d/3 8@3h3r+3—d/3)

< Chrtt (1 4 2CRTHI=/6 | 4B pri=d/3 SOWHH/?’) < Ch™1 x 2 = R(h).

Thus for sufficiently small h (h < h,), there exists a ball D(Ifu; R(h)) of radius
R(h) = 2Ch"*+! with center at IFu such that the following result holds:

125w = Oyl < R(h) = [ Iiu = pu(0y)ll1n < R(R).

Hence p is a map from a closed and bounded (compact) convex ball to itself. There-
fore, using the Brouwer fixed point theorem, it has a fixed point. This completes the
proof. 0

To prove the unique fixed point of u, we show the following contraction result.

THEOREM 4.5 (contraction result). Let u € HE(S) be a solution for (4.1). As-
sume u € H™2(Ty,) for some r € {d —2,...,k}. Let 0,0, € D(IFu; R(h)). For
sufficiently small h, the following contraction result holds:

114(81) = 1(83) 1,0 < CR™T1 =210, — B[,
Proof. Let 0, 05 € D(IFu; R(h)); then u(0;) and u(f,) satisfy (4.12). That is,

(4.38) N (us Ifu — p(6),v;) = Np™(ws Ifu — 0y, v3,) + Ni(0y564,0,) — L(vy),
(4.39)  N™(us Ifu — pu(05),vp,) = N (us Iiw — 0, v3,) 4+ Niw(09: 05, 0) — L(vy,).

Using Garding-type inequality (3.12), replacing 8, by p(6,) — p(8y) with |lvg|l1,n = 1,
we have

(4.40)  Cullp(9y) = p(0a)lln < N (us p(0y) — p(0s), v4) + Callp(0y) — p(05)ll 22,

where we understand ||v,,[|z2 by ||va|r2(q) in the above term of ||u(€;) — p(fs)]z2-
From the definition of 4 and subtracting (4.39) from (4.38), we get

(4.41)
Nflzm(u;ﬂ(g2) - :U‘(Ql)ayh) - Ile(u;Q2 - leyh) +Nh(ﬁ1§€1,yh) 7Nh(Q2;Q272h)'

Using the definition F, of (4.25), the last two terms of (4.41) yield

Nh@l%ﬁpﬂh) *Nh(Q%Qth)

= (Fnlth),vp,) — (Fn(ls),vp,) + sn(ly — s, v5)
= ((Fu(01),vp) = (FaIfu),vp) + sn(0) — Iiu,vy,))
(4.42) — ((Fn(0s),vp,) — (FulIgu),vp) + sn(0 — Tiu,vp)) -
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Set x,, =0y — Ifu, x,, =0 — Ifu, and tp := Ry Ifu. From the expansion of Fj,
of (4.29), we rewrite (4.42) as

Nh(QﬁQpﬂh) _Nh(Qz;Q2>Qh) _ﬁ}llin(lf]fu§g1 - QQth)

= ( Z /&uu(ﬂT)(R’}HXlT)zVﬂT-G’}yTdx
T

TETh

- Z /duu(ﬂT)(R’%+1X2T)2V12T~G’%UTdX)
TeT; ” T

! ( Z /a“(ﬂT)R?leTG;&T'G?QT dx
TeT, T

- Z /au(ﬂT)R§;+1X2TG§“X2T'G§“UTdX)
1T’ T

+ Z /duu(aT)(RIIC“JrleT)QGl’ZC"XlT'GI’IC“QTdX
TETh T B B

(4.43) -y / o () (R X, ) Gl X Gy dx> =Ty + Ty +Ts.
TeTi T

To estimate the above terms, we use the identities

(444) a2 — b2 = ((I — b)(a + b), a1b1 — (Zgbg = al(bl - bz) + (a1 — a2)b27
(445) a?bl - a%bg = a%(bl — bz) + (a1 - ag)(al + ag)bg.

Using the above identity (4.44) and estimates similar to Lemma 4.2(a), the terms T}
and T5 of (4.43) yield

> /Tduu (i) (R0, p— Ry o) (R 0y p—tir + R 0y — tig) Vitr-Glvg dx
TeTh

+ 5 [ autar) o — B 0,)G 01 — ) Gl d
TE7—}L

+ Z / a“(aT)(leFHQlT - R§+1Q2T)GI%(I§“U - QZT)'GIZC"QT dx
TeT, ' T

—d/6
< C'aC'(;nGE% hop / MOy = Osll1n (1w — Osll1n + 1w — 6,

10 llop s

The above identity (4.45) and estimates similar to Lemma 4.2 lead to an estimate for
the term T3 of (4.43) as

T3 = Z /T&uu(ﬁT) ((TLT - RIIC“+1Q2T)2G”JC“(61T — bor) + (RIIC“—HQlT - R§“+1Q2T)X
TETh

(g — RZ}HQH +tr — RIIC“JFIQIT)GITC“(I%u - Q1T)) -Gup dx

—d/3 c )
< CoC(max by P16y = sl (17w = ol + 175w = 04113 1) gl .n
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Combining the estimation for (4.43) in (4.41) with |lv,|l1,» = 1, yields
NP (u 0(8) = p(01),0) = (AR (s 0 = 03,3) = N (I s 0, — 0,v,))
+ (Nh(QﬁQth) — Ni(0; 05, v;,) *N}Lin(ﬂ}«fu;& *%aﬂh))

< OI8Oyl + o )10 — 0l (U2 =
h

(4.46) = 0312+ 1 — Bylln + T eznih).

To obtain the estimation for the L2-term ||1(6;) — 11(05)| 2 of (4.40), we consider the
following dual linear problem: given g, := u(6;) — p(6,), find ¢, € QZ,O such that

(4.47) N (us 0y, 0, ) = (qn,vn) Vo, € UR .
Choose vy, = () — p(0,) in (4.47) and use (4.46) to obtain

11(81) = 1(82) 172 = NG (s (8y) — 1(82): &)

< CRT 000y = Byl o + CaC (max hy™?) 01 = Bsllan

x (k= Bullen + 17w = 031 5 + 12w = Bll v + 1w = 85113 ) 19, .
The a priori bound |9, 1 < Cll(01) = () |22 of (4.47) leads to
l11(81) = (8a) 22 < CH" 0118 — B3]l + CaCll — bl (e ")
(448)  x (12hw = 0yl + 1T = 0,13, + 1w = Ol + 1w — 853 ).
Using (4.46) and (4.48), we obtain from (4.40) that
11(81) = 1(0)ll1.n < OB 1400, — 6,

C,Cl0, — 0 h 3
1+ CaCl0, 72||1,h(¥1€a725 T )
x (7w = Oyl + 1K = 0335+ 1Eu = Bl + 1T = 05113,).

Since 0, 0, € D(Ifu; R(h)) with R(h) = 2Ch"*!, we have

[ TFu — 0,1 <2Ch™* and  |[TFu — B,)1.0 < 2CH" L.

This implies

11(01) = 1)1 < CR™H=4318y — Bol1.n

for sufficiently small mesh parameter h. This completes the proof. ]

For sufficiently small h, Theorem 4.5 proves the local uniqueness of the fixed point
of v and hence the local uniqueness of the solution of (4.5).

Error estimate for a quasilinear problem. Adding and subtracting G’fbl Fu,
using the triangle inequality and Theorem 4.4, we have the following error estimate.

THEOREM 4.6 (error estimate). Let u € HJ(S2) be the solution of the nonlinear
problem (4.1) and u, € QZ’O be the solution of the discrete problem (4.5). Assume
u € H™2(Ty) for somer € {d—2,...,k}. Then for sufficiently small h, we have

(4.49) |Vu — Gu,| < CR™L.
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(a) (b) () ()

Fic. 1. (a) Triangular, (b) Cartesian, (c) Kershaw, and (d) hezagonal initial meshes.

5. Numerical experiments. In this section, numerical experiments are per-
formed using the HHO approximation (4.5) for the quasilinear problem (4.1). We
consider the following nonlinear problem [54]:

V- (1+uw)Vu)=f in Q,
u=0 on 09,

where Q := (0,1) x (0,1) C R? and the source term f is taken in such a way that the
exact solution reads u(z,y) = x(1—z)y(1—y). We rewrite the nonlinear map (4.12) in
order to obtain practical iterative solutions. In the computation, we do not demand
the exact solution u, and this is replaced by the previous step’s computed (initial
guess) solution. We start with an initial guess u9 € U iO obtained from solving the
Dirichlet Poisson problem —Awu = f with the same load function f as defined above.
The (n + 1)th iteration is given by, for all v, € Q,k;’o,

NI (s uf vy = NE™ (s ult, v,) — N (s u,vy) + U(vy) forn=0,1,2,...,

where the linearized N; inand nonlinear A}, forms are as defined in (4.7) and (4.4), re-
spectively. The stopping criterion is prescribed by a tolerance 10719 for the difference
of two successive iterative solutions as |G (up ™ —u)||/||Grui T < 10710, We con-
sider the triangular, Cartesian, Kershaw, and hexagonal mesh families for numerical
experiments which are depicted in Figure 1. The triangular, Cartesian, and Kershaw
mesh families are discussed in [55], and the hexagonal mesh family is introduced in
[39]. The experiments are performed in MATLAB. Some of the basic implementation
methodologies for HHO methods are adopted from [30, 25, 36]. It has been observed
that the iterative step terminates within 4 steps using the above stopping criterion.
The experimental rate of convergence is computed as

rate(() := log (en,/en,_,)/10g (he/he-1) for £ =1,2,3,...,

where ep, and ey, , are the errors associated to the two consecutive meshsizes hy
and hy_1, respectively. In Figure 2, we have plotted the convergence histories for the
relative reconstructed gradient error e, = |[Vu — Gfu,||/||Vu| as a function of mesh
parameter h on the sequence of triangular, Cartesian, Kershaw, and hexagonal meshes
for the polynomial degree k = 0, 1, 2. The convergence rates for the polynomial degree
k =0,1,2 are, respectively, close to 1,2, 3 for each mesh. The convergence rates are
in line with the theoretical convergence found in Theorem 4.6.

6. Conclusions. In this paper, we have discussed an HHO approximation for the
second-order quasilinear elliptic problem of nonmonotone type defined on a polytopal
domain in R? d = 2,3. First, we have deduced the existence, uniqueness, and error
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F1G. 2. Convergence histories for the relative gradient error on (a) triangular, (b) Cartesian,
(c) Kershaw, and (d) hezagonal meshes.

estimate for the discrete solution of a general second-order non-self-adjoint problem.
This has helped us to construct a nonlinear map that satisfies the contraction property
over a small ball. The discrete solution of the nonlinear problem is essentially a fixed
point of the nonlinear map. The existence, local uniqueness, and error estimation for
the HHO approximation of the nonlinear problem are established. The analysis does
not require any user-specified large penalty parameter, unlike the DG method of [54].
The analysis also supports lowest-order (k = 0 when d = 2) polynomial approximation
with linear order of convergence. It is possible to extend our analysis without much
difficulty to the more general nonlinear problem of the type V-(a(x, u)Vu)+ f(x,u) =
0 with f € C2(Q2xR) and when a(z, ) is a uniformly bounded positive-definite matrix.
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