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Abstract
In this paper, we present a computationally efficient technique based on the Method 
of Lines for the approximation of the Bermudan option values via the associated 
partial differential equations. The method of lines converts the Black Scholes par-
tial differential equation to a system of ordinary differential equations. The solution 
of the system of ordinary differential equations so obtained only requires spatial 
discretization and avoids discretization in time. Additionally, the exact solution of 
the ordinary differential equations can be obtained efficiently using the exponential 
matrix operation, making the method computationally attractive and straightforward 
to implement. An essential advantage of the proposed approach is that the associ-
ated Greeks can be computed with minimal additional computations. We illustrate, 
through numerical experiments, the efficacy of the proposed method in pricing 
and computation of the sensitivities for a European call, cash-or-nothing, powered 
option, and Bermudan put option.
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1 Introduction

Pricing an option with early exercise features, such as Bermudan options, is a 
problem of practical importance with numerous pricing methods proposed in the 
literature, each with its own set of advantages. When fast and accurate evalua-
tion of the option price is the objective, the Fourier-based methods are commonly 
used numerical techniques. Some of the proposed Fourier-based pricing methods 
include the Fourier–Cosine method (Fang & Oosterlee, 2009),data-driven Fou-
rier–Cosine method (Leitao Rodriguez et al., 2017), and fast Fourier transform-
based approach (Carr & Madan, 1999). Monte Carlo based schemes are popular 
for pricing the early exercise options under multidimensional stochastic pro-
cesses. The traditional lattice-based methods are often impractical in such cases 
due to the curse of dimensionality. Popular simulation-based pricing models 
include Longstaff and Schwartz method (Longstaff & Schwartz, 2001), the sto-
chastic mesh method by Broadie and Glasserman (2004), and the stochastic grid 
bundling method Jain and Oosterlee (2015). There has been an increasing interest 
in neural network-based pricing methods for early exercise options. Some of the 
recent ones include Andersson and Oosterlee (2021), Lokeshwar et  al. (2021), 
and Becker et al. (2019).

For low dimensional options, often finite difference methods are used for 
approximating the solution to the underlying partial differential equation, as 
approximate option prices for a grid of underlying values (see for instance De 
Graaf et al., 2014) can then be obtained. Solving efficiently the partial differen-
tial equations (PDEs) for American styled options using finite difference schemes 
have been extensively studied in Brennan and Schwartz (1977), In’t  Hout and 
Foulon (2010), and Haentjens and in’t Hout (2015). The ability to compute prices 
along a spatial and temporal grid of underlying stochastic states is helpful for the 
simulation of future exposure. Future exposure is required, for instance, for credit 
valuation adjustment or for the risk management purposes, such as determining 
the potential future exposure of a particular position.

In this paper we propose an accurate and efficient approach based on the 
Method of Lines (MOL) to compute the value of Bermudan and European options 
for a grid of underlying values at any time prior to maturity. The MOL for solv-
ing evolutionary partial differential equation (PDEs) consists of two parts, first 
involves discretisation of the space variable and then writing the PDE as a system 
of ordinary differential equations (ODEs). The second part involves efficiently 
solving the system of ODEs so obtained. The main advantage of the proposed 
approach is that it solves the ODEs so obtained exactly, by writing the solution 
to the ODE as an exponential of a matrix. As most modern numerical packages 
come with efficient solvers for computing the exponential of matrices, we can 
efficiently compute the exact solution for the ODE. The above is possible in the 
Black–Scholes framework as the coefficients of the PDE are time-independent 
and the PDE is linear.

Several researchers have worked on the MOL in the past few decades, most 
notable among which include Hamdi et al. (2007), Schiesser and Griffiths (2009), 
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and Lee and Schiesser (2003) who provide a general elucidation to the method. 
For a detailed discussion on the application of time discrete MOL for pricing of 
options, the readers can refer (Meyer, 2014). Similar time-discretised approaches 
have been implemented for pricing of American put option in the Black–Scholes 
framework (Meyer & Van der Hoek, 1997), for put options under jump-diffusion 
dynamics (Meyer, 1998), call options under stochastic volatility (Adolfsson et al., 
2013), American options with stochastic volatility and interest rates (Kang & 
Meyer, 2014), American options under a regime-switching GBM (Chiarella et al., 
2016). The method proposed here is closely related to the approach proposed in 
Horng et  al. (2019), and Meyer and Van der Hoek (1997). Compared to these 
methods stated above, our approach does not require time discretisation, and the 
option value can be found as a continuous function of time.

Some of the recent regulatory requirements, such as the exchange of initial mar-
gin computed based on the ISDA standard initial margin model (SIMM), require 
efficient computation of the sensitivities of the derivative with respect to its under-
lying risk factors. Further, to compute the associated margin valuation adjustment 
(MVA), to manage the funding costs for posting the initial margin over the lifetime 
of a derivative, sensitivities along the paths are required (see Jain et al., 2019). Com-
putation of the sensitivities along the paths poses noteworthy computational chal-
lenges for all the underlying risk factors.

Some of the key features of the study presented in this paper are:

• We provide the exact solution for the ODEs obtained using MOL from the Black 
Scholes PDEs for European options.

• The scheme avoids discretisation in the time domain, and the solution is closed 
form in time. Therefore, one can obtain the approximate option price at any time 
instant before the maturity of the option.

• The matrix expressions for the Greeks: delta, theta, gamma, and vega are 
obtained, which allows evaluating the various sensitivities at the spatial grid 
points with a few additional computations. This feature makes the approach 
attractive when sensitivities along scenarios are required.

• We extend the approach to Bermudan options by formulating a Bermudan option 
as a sequence of European options with appropriate pay-offs.

The paper is organised as follows: We first begin with the formulation of the prob-
lem and defining the notations used in Sect.  2. Section  3 describes in detail the 
methodology used. In Sect. 4, the expressions for the Greeks are obtained. Section 5 
presents detailed numerical examples for European call, cash or nothing, powered 
option, and Bermudan options to illustrate the efficiency of the proposed method. 
Finally, we provide some conclusions in Sect. 6.

2  Problem Formulation

A Bermudan option is defined as an option where the buyer has the right to exercise 
at a set of discrete time points. We denote the exercise times by
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where 0 = t0 ≤ t1 ≤ t2 … tE−1 ≤ T , T is the maturity date of the option, and E 
denotes the number of early exercise opportunities. For ease of notation, we assume 
that the exercise dates are equally spaced, i.e., te+1 − te = Δt.

The pay-off received by the holder of the option upon exercising his rights at the 
opportunity te, e ∈ {1,… ,E} is given by �(Ste). The continuation value, or the value 
of the option if the holder decides not to exercise and continue holding the option at 
te, is defined as:

where r is the risk free rate (we assume it to be constant), Fte
 is the filtration associ-

ated with the stochastic process St, the expectation is taken under the risk-neutral 
measure, and U

(
te+1, Ste+1

)
, is the option value function at te+1.

The option value at any time t is then solved using the following dynamic pro-
gramming formulation. The value of the option at the terminal time T is given by,

Recursively, moving backwards in time, the following iteration is then solved. Given 
U
(
te+1, Ste+1

)
, has already been resolved,

The value of the option at t0, assuming there is no exercise opportunity at t0 is then 
given by U(t0, St0 ) = c(t0, St0 )

3  Methodology

Under the Black–Scholes framework (Black & Scholes, 1973), when the underly-
ing stock follows the geometric Brownian motion (GBM), the price of the European 
option, U,  satisfies the following PDE,

where the underlying S follows the GBM process,

where r is the risk-free rate, � is the drift of the underlying process, � is the implied 
volatility, and Wt is the standard Brownian motion.

T ≡ {t1,… , te,… , tE = T},

c(te, Ste ) = e−rΔt�
[
U
(
te+1, Ste+1

)
∣ Fte

]
,

U
(
tE, StE

)
= max

(
�(StE ), 0

)
.

(1)
c(te, Ste) = e−rΔt�

[
U
(
te+1, Ste+1

)
∣ Fte

]

U
(
te, Ste

)
= max

(
c(te, Ste ),�(Ste)

)
.

(2)�U

�t
+

1

2
�2S2

�2U

�S2
+ rS

�U

�S
− rU = 0,

dSt = �Stdt + �StdWt,
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In order to numerically solve (2) for t ∈ [0, T], we first transform it into the 
familiar forward in time parabolic partial differential equation by replacing U 
with u, S with x and t with � = T − t , thereby obtaining the following initial-
boundary value problem for u(�, x),

With the initial condition given by Eq. (4).

The value of Bermudan option, with early exercise dates T ≡ {t1,… , te,… , tE = T}, 
can be formulated as follows. Define �e = T − tE−e, for e = 0, 1,… ,E, such that 
�0 = 0 and �E = T . The fair value function u of Bermudan option satisfies the 
PDE (3) with natural boundary condition on each time interval 

[
�e−1, �e

)
, for 

e = 1, 2,… ,E. The initial condition for �0 is

while the initial condition for solving the PDE (3) in the interval 
(�e−1, �e), e = 2,… ,E is given by

Condition (5) is non-linear and arises from the early exercise feature of Bermu-
dan options and represents the optimal exercise condition. We solve the PDE (3) in 
the interval [�e−1, �e), to obtain the initial condition for the subsequent interval, i.e. 
[�e, �e+1).

Since numerically we cannot work with the infinite spatial domain [0,∞) , the 
spatial domain is truncated at x = L. We use three types of grids in the spatial 
dimension: 

1. The first one being where, a family of uniform grid �n =
n

N
, n ≤ N, (N is the num-

ber of discretization points) are defined in the interval [0, 1], which generates a 
two parameter family of quasi-uniform grid 

 where �n ∈ [0, 1], xn ∈ [0,∞). This map has two control parameters c > 0, and 
d > 1 (see Fazio & Jannelli, 2014). Once a uniform mesh has been generated 
in [0, 1], we shall use the above mentioned transformation to generate a non-
uniform grid, called NUG1 in our text, with x0 = 0, and truncate xN+1 at L.

2. For the second non-uniform grid, termed NUG2, we generate xn ’s using the map, 

(3)𝜕u

𝜕𝜏
=

1

2
𝜎2x2

𝜕2u

𝜕x2
+ rx

𝜕u

𝜕x
− ru, x > 0, 𝜏 ∈ (0, T],

(4)u(0, x) ≡ u0(x) = �(x).

u(�0, x) = �(x),

(5)u(�e−1, x) = max

(
�(x), lim

t↑�e−1

u(t, x)

)

(6)xn = c
�n

d − �n
,

(7)xn = K × eyn ,
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 where K is the strike of the option, and yn ’s are uniformly distributed over the 
interval [−m1,m2] , for choice of m1,m2 > 0.

3. The third one is constructed as a uniform grid xn called UG1, in the interval 
[Smin, Smax] , where 0 < Smin < S0 < Smax.

Following this, we set xi − xi−1 = hi , for i = 1....N  and hN+1 = L − xN . We then 
reduce (3) to a set of ODEs by approximating the spatial derivatives in the fol-
lowing manner (see Volders, 2014): at each grid point xi , we approximate the 
option value by

Further, the approximation of the first derivative is given by,

Analogously, the approximation for the second derivative is

It should be noted that for a uniform mesh we have hi = h , hence the above approxi-
mations would in the case of uniform mesh coincide with the familiar second order 
approximations to the first and second derivatives, i.e.,

Upon replacing the spatial derivatives in (3) by the approximations stated above, we 
obtain the following system of ODEs,

In order to obtain the value of the option, the matrices corresponding to the coeffi-
cients of the derivative approximations need to be defined. Consequently, the matrix 
corresponding to the second order derivatives is defined as follows,

where,

u(�, xi) ≈ Ui(�).

(8)ux(�, xi) ≈
Ui+1(�) − Ui−1(�)

hi + hi+1
= DUi(�).

(9)uxx(�, xi) ≈
2Ui−1(�)

hi(hi + hi+1)
−

2Ui(�)

hihi+1
+

2Ui+1(�)

hi+1(hi + hi+1)
= D2Ui(�).

ux(�, xi) ≈
Ui+1(�) − Ui−1(�)

2h
, uxx(�, xi) ≈

Ui+1(�) − 2Ui(�) + Ui−1(�)

h2
.

(10)
dUi(�)

d�
=

1

2
�2xi

2D2Ui(�) + rxiDUi(�) − rUi(�), for i = 1,…N.

A =

⎡⎢⎢⎢⎣

�1 �1 ... 0

�−2 �2 ... 0

............

0 ........... �−N �N

⎤⎥⎥⎥⎦
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and the matrix corresponding to the first order derivatives is

where,

.
Finally the zero-th order term in (3) is incorporated in the following matrix,

with the boundary conditions being given by,

Using these, the ODE (10) can be compactly written as,

For the interval [�e−1, �e), the initial condition would be,

3.1  Exact solution to the ODEs

Denoting � = A + B + C , the ODE (12) can be readily solved to obtain the follow-
ing solution,

�j = −
�2xj

2

hjhj+1
, j = 1,…N,

�j =
�2xj

2

(hj + hj+1)hj+1
, j = 1,…N

�−j =
�2xj

2

(hj + hj+1)hj
j = 1,…N

B =

⎡
⎢⎢⎢⎣

0 b1 .... 0

−b2 ........

....... .... ... bN−1
0 .... − bN 0

⎤
⎥⎥⎥⎦

bj =
rxj

hj + hj+1
, j = 1,…N.

C =

⎡⎢⎢⎢⎣

−r 0 ... 0

0 .... ...

.. .... ... ..

0... .. 0 − r

⎤⎥⎥⎥⎦

(11)F(�) = [(�−1 − b1)u(�, 0), 0,… 0, (�N + bN)u(�, L)]
T
.

(12)
dU

d�
= AU + BU + CU + F(�).

U(𝜏e−1) = [u(𝜏e−1, x1), u(𝜏e−1, x2),… .u(𝜏e−1, xN)]
⊤.



 P. Banerjee et al.

1 3

where � ∈ [�e−1, �e). The above is possible based on the observation that � is not 
a function of time. The computation of the expression above requires the explicit 
definition of F(s) from Eq.  (11). While u(�, 0) is in general known to be equal to 
u(�e−1, 0), u(�, L) is often not known. Hence, we draw inspiration from Kangro 
and Nicolaides (2000) and Higham (2004) and the fact that for large enough L it is 
known that the standard European put option will be far out of money, while a stand-
ard call option will be far in money, at all times, from (1) we can approximate the 
underlying option’s value as e−r(�−�e−1)u(�e−1, L) ≈ u(�e−1, L) , which readily yields,

The approximation e−r(�−�e−1)u(�e−1, L) ≈ u(�e−1, L) is beneficial as the resultant F is 
a constant, and the second term in (13) can then be integrated exactly to obtain the 
final expression,

If we do not make the assumption of constant F, one could use the exponential 
Runge–Kutta schemes discussed in Hochbruck and Ostermann (2010). To compute 
Eq. (15), one needs to calculate the exponential of a matrix, which has an efficient 
implementation in most modern numerical libraries (see Appendix 7.1 for details on 
matrix exponential).

We can obtain an exact solution for any � in the interval [�e−1, �e) for all the spa-
tial grid points which makes this approach attractive for exposure computation, as 
proposed in De Graaf et  al. (2014), where finite difference methods can be com-
bined with Monte Carlo based methods. In the section to follow, we extend the 
above approach to obtain the various sensitivities, which again can be combined 
with Monte Carlo methods to obtain sensitivities along scenarios (see, for instance 
de Graaf et al., 2017).

3.2  Parameter and Computational Considerations

In order to determine the value of parameters: c, m1,m2, Smin and Smax , used for gen-
erating the three grids, we apply a bisection method on a coarser grid in each of the 
cases. There could be a more thorough heuristic approach to arrive at the param-
eters, which we leave as a part of future research.

(13)U(�) = e� (�−�e−1)U(�e−1) + ∫
�

�e−1

e� (�−s)F(s)ds,

(14)F(�) = F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(�−1 − b1)u(�e−1, 0)

0

.

.

.

0

(�N + bN)u(�e−1, L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)U(�) = e� (�−�e−1)U(�e−1) + �−1(e� (�−�e−1) − 1)F.
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Figure 1 depicts the changes in the log errors of the European call option, pow-
ered option, and cash-or-nothing option for different values of the parameter c,   
while keeping the rest of the parameters constant, and the number of grid points 
fixed at N = 1000.

For the European call option, we see that the error reduces as we increase the 
value of c and beyond c ≈ 90, the errors are fairly stable. For the Powered option 
increasing c progressively reduces the error, although beyond c = 123, there is a 
slight rise in the error. For cash-or-nothing, the error is stable until c < 100, beyond 
which there seems to be a slight increase in the errors. Based on these heuristics, we 
pre-select the value of c with the lowest error for each corresponding experiment.

Arriving at the matrices A, B,  and C in Eq. (13) for N grid points involves O(N), 
computations. The computationally intensive steps involve matrix inversion, which 
involves O(N3) operations, and computing the exponential of the matrix, which 
again has O(N3) operations. Therefore, overall the computational complexity of the 
method is O(N3).

3.3  Study of Convergence and Stability

In this section we discuss about the convergence and stability of the MOL method. 
While we do our error analysis for the uniform grid, the results obtained are simi-
lar for the non-uniform grid as well. We start our analysis with the equation under 
consideration,

Following the analysis as done in Appendix 7.3, we get,

(16)
dUi(�)

d�
=

1

2
�2xi

2D2Ui(�) + rxiDUi(�) − rUi(�), for i = 1,…N.

Fig. 1  Error at S0 = 100 for European call, cash-or-nothing, and powered options when time to maturity 
is 1 year, with varying values for parameter c 
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In an analogous manner, using Taylor’s expansion, we get,

Now, if U(�, x) denotes the exact solution of the system (16), then, as shown in 
Appendix 7.3, the local accuracy is given by

Equation (19) shows that the local accuracy of the MOL method behaves as O(h2).
It must also be noted from the above expression that the convergence of our 

method only depends upon the spatial discretization and we are exact with respect 
to time.

To address the issue of stability, it must be noted that the numerical scheme we 
solve is given by the following ODE,

whose solution is given by (15). As this is a linear ODE, following (Strang, 2006), it 
can be concluded that this system will be stable when the real part of the Eigen val-
ues of � are negative. Therefore, in order to check the stability, one should first check 
the Eigen values of � . In all the numerical examples we considered, we found that 
the corresponding � had negative Eigen values. The reader can refer to Appendix 7.3 
for a brief discussion about stability.

This is one of the inherent advantages of our method that the stability of the sys-
tem of ODEs is driven only by the underlying constant matrix � and is not influenced 
by an additional effect from any time discretisation in the model. For a detailed sta-
bility analysis of solving such a special system of equations through a method of 
exponential integrators, the reader can refer to Brachet et al. (2020) and Buvoli and 
Minion (2022).

4  Greeks Using MOL

The Greeks of an option represent the sensitivity of the option’s price with respect 
to changes in underlying parameters involved in the definition of the option. The pri-
mary Greeks of interest include: delta Δ =

�U

�S
, vega � =

�U

��
, theta Θ =

�U

�t
, and rho 

� =
�U

�r
. Amongst second-order Greeks, gamma, Γ =

�2U

�S2
. is often computed. Based 

(17)
D2U(�) =

U(�, x + h) − 2U(�, x) + U(�, x − h)

h2

= Uxx(�, x) +
h2

12
Uxxxx(�, x) +O(h3).

(18)DU(�, x) =
U(�, x + h) − U(�, x − h)

2h
= Ux(�, x) +

h2

3!
Uxxx(�, x) +O(h3)

(19)R = −�2x2
h2

24
Uxxxx(�, x) +O(h3) −

rx

3!
h2Uxxx(�, x) +O(h3)

(20)
dU

d�
= �U + F,
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on the methodology described above, we present simple extensions to compute the 
Greeks, not just at the initial point but for any t at the generated spatial grid.

As a direct consequence of the approximation (8), one obtains the matrix cor-
responding to the first order and second order derivatives as

and the value of Gamma(Γ ) is given by the matrix product,

where the matrix D1 and D2 are defined as:

with,

and,

and U(�) is obtained using Eq. (15).
In order to calculate Theta(Θ ) one can differentiate U(�) in (15) to obtain the 

following formula for Θ,

For the calculation of Vega(� ), a direct application of calculus theory to (15) and the 
identity � .�−1 = IN yields the partial differential of U(�) with respect to �,

where A′ and F′ are the matrices obtained by term-by-term differentiation of the 
matrices A and F (14) respectively with respect to �.

Analogously one obtains the formula for Rho(�),

(21)Δ(�) = D1U(�) + D2

(22)Γ(�) = D2

1
U(�) + D1D2 + D2,

D1 =

⎡
⎢⎢⎢⎣

0 d1 .... 0

−d2 ........

....... .... ... dN−1
0 .... − dN 0

⎤
⎥⎥⎥⎦

dj =
1

hj + hj+1
, j = 1,…N.

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−d1 × u(�, 0)

0

.

.

0

dN × u(�, L)

⎤⎥⎥⎥⎥⎥⎥⎦

(23)
�U(�)

�t
= −�e��U0 − e��F

(24)
�U(�)

��
= �e��A�U0 − �−1A��−1(e�� − I)F + ��−1e��A�F + �−1(e�� − I)F�
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where B′ , C′ and F′
r
 are the matrices obtained by term-by-term differentiation of the 

matrices B, C and F respectively with respect to r. The corresponding derivations 
of the formulae obtained for the Θ , � and � can be found in the Appendix 7.2. The 
sensitivities are usually computed only at S0, but here we also obtain the sensitivities 
at underlying prices corresponding to the other grid points for any t ∈ [0, T], without 
significant additional computations.

Efficient computation of sensitivities of derivatives with respect to the underly-
ing risk factors is becoming increasingly important, not only from the perspective of 
hedging and managing risk but also to meet certain regulatory requirements. ISDA 
SIMM1 requires the sensitivities of the derivatives for computing the initial margin 
to be exchanged for over the counter derivatives portfolio. Managing the funding 
risk associated with the exchange of the initial margin, through the life of the deriv-
ative position, involves computing the sensitivities along the simulated scenarios. 
The proposed method gives a closed-form expression of the various sensitivities 
as a function of time for a grid of underlying values. Following the approach dis-
cussed in de Graaf et al. (2017), forward sensitivities of options can be simulated by 
generating the underlying Monte Carlo scenarios and interpolating the sensitivities 
obtained at the fixed grid points in the proposed method.

5  Numerical Examples

To illustrate the performance and efficiency of the method, we start with the assump-
tion that the underlying asset price process St follows the GBM process and then 
apply the MOL to compute the value of certain types of European options, a basic 
European call option, a powered option, and finally a cash-or-nothing option; all of 
which are special cases of the standard Bermudan option defined earlier, where the 
number of exercise opportunities, E,  is set to one. We then report results for a Ber-
mudan put option and numerically study its convergence when an increasing number 
of spatial grid points are used.2 The following parameters are used throughout for 
the European styled options: � = 0.3 , r = 0.03 , initial stock price S0 = 100 , strike 
price K = 100 and T = 1.

Our first step is to generate a uniform mesh {�n = n × dx}N
n=0

 in [0,  1] with 
dx = 1∕N and then append an additional point �N+1 = 1.1. A non-uniform mesh, 
NUG1: {xn}N+1n=0

 , is generated using the transformation stated in (6 ), with the value 
d = 1.2 and appropriate values of c,   as stated in the respective tables. A brief 

(25)

�U(�)

�r
= �e�� (B� + C�)U0 − �−1(B� + C�)�−1(e�� − I)F + ��−1e�� (B� + C�)F

+ �−1(e�� − I)F�
r

1 INTERNATIONAL SWAPS AND DERIVATIVES ASSOCIATION: ISDA SIMM TM,1 Methodol-
ogy, Version 2.0 (December, 2017). https:// www. isda. org/a/ oFiDE/ isda- simm- v2. pdf.
2 The Python code for all the experiments reported here is available at https:// github. com/ Purba Baner jee.

https://www.isda.org/a/oFiDE/isda-simm-v2.pdf
https://github.com/PurbaBanerjee
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discussion on choice of the parameter c is provided in Sect. 3.2. We insert in the 
appropriate position, the point x = 100, in case of the European options, and x = 40, 
in case of the Bermudan put option, and evaluate the accuracy of the method at 
these points.

Similarly, the grids NUG2 and UG3 are generated for an appropriate choice of the 
parameters: m1,m2 , Smin and Smax , respectively for each of European styled options.

5.1  European Call Option

As the first numerical test we consider a European call option, whose payoff is given 
by �(x) = (x − K)+. For the European call option, the closed-form solution of the 
Black–Scholes equation is given by,

where, N(d) = (1∕
√
2�) ∫ d

−∞
e−0.5x

2

dx, is the cumulative distribution function for the 
standard normal distribution. The initial conditions for solving this option using the 
MOL are:

and it also satisfies,

Table  1 reports the values and errors of the European call option obtained 
by the method on using the first non-uniform grid NUG1, along with the 
computational(CPU) times, when an increasing number of grid points, N,  are used. 
The exact value of the option is 13.28330.

As a comparison, in Jeong et al. (2018) in order to get an accuracy of 1.73e−4 , 
16717 points were used for time discretization, 17141 points for spatial discretiza-
tion and a CPU time of 19.25 seconds was incurred.

Another interesting point to be noted is that, while in Jeong et al. (2018), we 
cannot then obtain the value of the option at another arbitrary time point between 

u(�, x) = xN(d1) − Ke−r�N(d2),

d1 = (ln(x∕K) + (r + 0.5�2)�)∕(�
√
�), d2 = d1 − �

√
�

(26)u(0, x) = �(x),

(27)u(�, x) ≈ �(x) as x → ∞

Table 1  Value of the European 
call option obtained by the 
MOL and the corresponding 
log errors

We take c = 110, the parameter for generating the first grid NUG1 
through Eq. 6

N u(13.28330) Absolute error Log error CPU time (sec)

100 13.25 2e−2 − 3.7 0.03
200 13.27 5e−3 − 5.3 0.10
400 13.282 1e−3 − 6.7 0.41
800 13.2830 3e−4 − 8.1 2.30
1600 13.2832 6.3e−5 − 9.7 12.61
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0 and T, with our method, such additional computations can be done in merely a 
few seconds. Also, the computational time for the other grids, NUG2 and UG3 
are similar.

Figure 2 illustrates the convergence of the method for an increasing number of 
grid points in case of each of the three grids. It was observed that the numerical 
convergence of the method in this case is almost 2, which is along the expected 
lines.

The Greeks of the European call option are given by Haug (1997),

Table 2 reports the Delta and Gamma values for the European call option obtained 
by the MOL along with their respective errors in log scale. We see that fairly accu-
rate values are obtained with relatively few grid points.

Δ = N(d1), Γ =
N�(d1)

�x
√
�
, Θ = −

�xN�(d1)

2
√
�

− rKe−r�N(d2)

� = x
√
�N�(d1), � = �xe−r�N(d2).

Fig. 2  Error in the price of the European call option at the initial point S0 = 100, when time to maturity 
is 1 year. The grid parameters being: c = 110 , m1 = −1.5,m2 = 1.5, Smin = 30, Smax = 350

Table 2  Delta and Gamma of the European call option and their corresponding log errors taking c = 110 
in NUG1

N Δ(0.59870632) Log error ( Δ) Γ(0.01288894) Log error ( Γ)

100 0.6 − 3.3 0.0127 − 8.4
200 0.6 − 4.2 0.0127 − 9.2
400 0.6 − 5.4 0.01285 − 10.4
800 0.6 − 5.4 0.01285 − 10.4
1600 0.6 − 6.2 0.01287 − 11.3
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Table  3 reports the vega, rho, and theta values for the European call option. 
Again we see that fairly accurate values are obtained with relatively few grid 
points.

5.2  Powered Option

Next , following Jeong et  al. (2018) we consider a powered option whose pay-off 
function at maturity T is given by �(x) = max(x − K, 0)p , where p is a constant 
(called the power). The initial conditions of the PDE (3) for a powered option are 
given by Eq. (5), similar to the European call option.

The closed-form solution of the powered option is

where, dp,q = [ln(x∕K) + (r + (p − q − 0.5)�2)�]∕(�
√
�) . In the example we choose 

a value of p = 2.
Table 4 reports the values of the powered option obtained by the implementation 

of the MOL for different values of grid points, N and their corresponding log errors 
and CPU times for NUG1. The exact value of the option given in Jeong et al. (2018) 
is 676.758.

Figure 3 illustrates the convergence of the powered option with increasing num-
ber of grid points. A convergence of order almost 2 was observed numerically in this 
case as well.

u(�, x) =

p∑
q=0

p!

q!(p − q)!
xp−q(−K)qe(p−q−1)(r+0.5(p−q)�

2)�N(dp,q),

Table 3  Vega, rho, and theta of the European call option and their corresponding log errors taking 
c = 110 in NUG1

n �(38.667) Log error �(46.5873) Log error Θ ( −7.19764) Log error

100 38.7 − 2.4 46.6 − 4.0 − 7.2 − 4.3
200 38.68 − 4.1 46.59 − 4.9 − 7.2 − 5.9
400 38.67 − 5.6 46.589 − 6.1 − 7.198 − 7.4
800 38.667 − 7.0 46.5878 − 7.5 − 7.1977 − 8.8
1600 38.667 − 8.4 46.5874 − 8.8 − 7.19767 − 10.2

Table 4  Value of the Powered 
option obtained by the MOL 
and it’s corresponding log errors 
taking c = 123 for generating 
NUG1

N u(676.758) Absolute error Log error CPU time (sec)

100 677.4 6e−1 − 0.4 0.01
200 677.4 2e−1 − 1.8 0.06
400 676.8 4e−2 − 3.1 0.35
800 676.76 9e−3 − 4.6 2.12
1600 676.76 3e−3 − 5.7 16.63
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In contrast, for the same case, in Jeong et  al. (2018) you get an accuracy of 
2.54e−2 where 4183 points are used for time discretization, 4395 points were used 
for spatial discretization and a CPU time of 1.24 s.

As mentioned earlier, the calculation of the option values and their Greeks can be 
done at any time point, unlike in Jeong et al. (2018) and the additional time required 
is negligible.

Table 5 reports the values and the respective errors of the delta and gamma 
values in log scale, obtained by the MOL, where the reference values (from 
Jeong et al., 2018) are reported in parenthesis.

Fig. 3  Error in the price of the European powered option at the initial point 
S0 = 100, when time to maturity is 1 year. The respective grid parameters are: 
c = 123,m1 = −1.6,m2 = 1.8, Smin = 30, Smax = 890.

Table 5  Delta and Gamma of 
the Powered option and their 
corresponding log errors taking 
c = 123 in NUG1

N Δ(40.102) Log error ( Δ) Γ(1.598) Log error ( Γ)

100 41.2 0.1 1.592 − 5.1
200 41.1 0.1 1.592 − 5.1
400 41.1 0.02 1.592 − 5.1
800 40.4 − 1.1 1.596 − 6.3
1600 40.107 − 5.3 1.598 − 7.7

Table 6  Vega, Rho and Theta of the powered option and their corresponding log errors taking c = 123 in 
NUG1

N �(4795.291) Log error ( �) �(3333.420) Log error ( �) Θ(−819.296) Log error ( Θ)

100 4795.4 − 2.4 3347.2 2.6 − 819.7 − 0.8
200 4795.3 − 3.9 3336.8 1.2 − 819.4 − 2.2
400 4795.293 − 6.3 3334.3 − 0.2 − 819.3 − 3.6
800 4795.295 − 5.4 3333.6 − 1.5 − 819.3 − 4.9
1600 4795.292 − 6.4 3333.47 − 2.9 − 819.298 − 6.2
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We also report the vega, rho, and theta values of the powered option in 
Table 6.

5.3  Cash‑or‑Nothing Option

The cash-or-nothing option, with maturity T, pays at maturity, an amount C, pro-
vided the value of the underlying asset is greater than K,   and no pay-off other-
wise. For the experiment, we set C = K = 100 . The exact solution of the cash-or-
nothing option is given by:

Table 7 reports the values of the cash-or-nothing option obtained for different num-
ber of grid points, N and the corresponding log errors for NUG1, with exact value of 
the option given in Jeong et al. (2018) being 46.587.

In Jeong et al. (2018) in order to obtain an accuracy of 6.93e−4 , a time discre-
tization of 1050 grid points and a spatial discretization of 1156 points were used, 
with a CPU time of 0.1 s.

Figure  4 illustrates the convergence of the method for an increasing number 
of grid points for each of the three grids. It was observed numerically that the 

u(�, x) = Ce−r�N(d2).

Table 7  Value of the cash-or-
nothing option obtained by the 
MOL and it’s corresponding log 
errors taking c = 89 in NUG1

N u(46.587) Absolute error Log error CPU time (sec)

100 43.2 3.3 1.2 0.02
200 45.5 1.1 0.1 0.02
400 46.0 6e−1 − 0.6 0.22
800 46.3 3e−1 − 1.2 1.43
1600 46.4 2e−1 − 1.9 8.84

Fig. 4  Error in the price of the Cash-or-nothing at the initial point S0 = 100, when time to maturity is 1 
year. The values of the grid parameters are as follows: c = 89,m1 = −1,m2 = 1, Smin = 50, Smax = 300
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order of convergence of the method for this option was almost 1. In this case, our 
method is not as accurate as Jeong et al. (2018) but we have an added advantage 
of the option value and greeks being calculated at any time point, in almost negli-
gible additional time.

The Greeks of the cash-or-nothing option are given by,

The following Tables 8 and 9 report the values of the Greeks obtained by the MOL 
along with their respective errors in log scale. The exact values of the respective 
quantities are given in the brackets (Jeong et al., 2018).

5.4  Bermudan Put Option

Table 10 depicts the values, the corresponding log errors and the computational 
times incurred while implementing the MOL for the Bermudan put option. The 
reference value for the Bermudan put option is obtained by applying a Fou-
rier–cosine method, as done in the COS method in Fang and Oosterlee (2009).The 
COS method can, in general, handle more general dynamics for the underlying, 

Δ =
Ce−r�N�(d2)

�x
√
�

, Γ = −
Cd1e

−r�N�(d2)

(�x)2�

� = −Ce−r�
d1

�
N�(d2), � = Ce−r�

�
−�N(d2) +

√
�

�
N�(d2)

�

Θ = Ce−r�

�
rN(d2)(−�N(d2) +

�
d1

2�
−

r

�
√
�

�
N�(d2)

�
.

Table 8  Delta and Gamma of 
the cash-or-nothing option and 
their corresponding log errors 
taking c = 89 in NUG1

N Δ(1.289) Log error ( Δ) Γ(−0.011) Log error ( Γ)

100 1.27 − 3.9 − 0.007 − 5.5
200 1.289 − 5.9 − 0.010 − 6.5
400 1.288 − 6.6 − 0.010 − 7.0
800 1.288 − 7.0 − 0.010 − 7.4
1600 1.288 − 7.4 − 0.011 − 7.7

Table 9  Vega, Rho and Theta of the cash-or-nothing option and their corresponding log errors taking 
c = 89 in NUG1

N �(−32.222) Log error ( �) �(82.302) Log error ( �) Θ(2.364) Log error ( Θ)

100 − 20.7 2.4 84.4 0.7 0.5 0.6
200 − 28.5 1.3 83.2 − 0.2 1.7 − 0.5
400 − 30.3 0.6 82.7 − 0.8 2.0 − 1.2
800 − 31.2 − 0.03 82.5 − 1.4 2.2 − 1.9
1600 − 31.7 − 0.7 82.4 − 2.1 2.2 − 2.5
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when compared to the existing methods like Gauss transform (Broadie & Yama-
moto, 2003) and the double exponential transformation (Mori & Sugihara, 2001; 
Yamamoto, 2005) and can price a vector of strike prices simultaneously. Further, 
the accuracy and the error analysis of this method, as reported in Fang and Oost-
erlee (2009) compare well with other Fourier transform based methods such as 
the Carr and Madan (1999) and the CONV (Lord et  al., 2008) method. For a 
detailed error analysis of the COS method implementation in case of European 
options, the reader can refer to Section  4 of Fang and Oosterlee (2009). We 
first reproduce in Fig.  5 the convergence results reported in Fang (2010) using 
our implementation of the COS method. The reference value of 10.4795201 is 
obtained through finite difference scheme, using 2000 spatial, and 4000 temporal 
discretization points.

For implementation of the MOL the following parameters were used for the 
asset price model and the option � = 0.3, r = 0.06, T = 1, initial stock price 
S0 = 40, and the strike K = 44. The option has E = 10, equally spaced early exer-
cise opportunities. Figure 6 shows the numerical convergence of the method with 

Fig. 5  Error versus number of Fourier cosine terms, N, for a Bermudan put option, using COS method. 
The parameter values for the Bermudan option are S0 = 100,K = 110,T = 1, r = 0.1, � = 0.2,E = 10

Table 10  Value of the 
Bermudan put option 
obtained by the MOL and it’s 
corresponding log errors along 
with their computational time

The parameter for NUG1 is taken as c = 80.

n u(6.04590214) Log error CPU time (sec)

250 6.0454 − 7.6 0.24
500 6.0456 − 8.1 1.70
1000 6.0458 − 9.8 10.83
1500 6.0458 − 10.8 27.49
2000 6.0458 − 11.7 67.54
2500 6.0458 − 12.6 144.86
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an increasing number of spatial discretization points. Table 10 reports the compu-
tational effort required to achieve different level of accuracy.

With the above numerical experiments, we study the convergence of the MOL 
with spatial discretization for the various payoffs for the European options and a 
Bermudan put option. For the non-uniform and uniform spatial grid, we observe 
a second-order convergence for all the payoffs considered, except for the cash-or-
nothing option, where we observe the first-order convergence. The convergence is 
studied only for spatial discretization as the method is exact in time. We numerically 
compute for each case that the option Greeks with little additional computational 
cost. Finally, the numerical experiments demonstrate the efficiency of the method. 
For instance, it takes 0.24 s to achieve a numerical log error of −7.6 with the MOL.

6  Conclusion

We have presented an approach based on the MOL for obtaining the value of Euro-
pean and Bermudan options and their sensitivities to the various risk factors and 
model parameters. The MOL approach allows the underlying PDEs to be converted 
to a system of ODEs, which can be solved using a large choice of available effi-
cient solvers. In the Black Scholes framework, we show that an exact solution to the 
ODE can be obtained using an exponential of a matrix. This makes the presented 
approach attractive as then we avoid discretisation in time, which makes the method 
highly efficient.

For various risk management and regulatory calculations, for instance, simulation 
of future exposure, one has to compute the value of the derivatives along simulated 
scenarios at different time points. Following the approach discussed in De Graaf 
et al. (2014), an efficient solution to the PDE can be combined with Monte Carlo 

Fig. 6  Error in the price of the Bermudan put option at the initial point S0 = 40, a strike of 44, when time 
to maturity is 1 year with E = 10 equally spaced exercise opportunities. The value of parameter c for 
generating NUG1 is taken as 80



1 3

Method of Lines for Valuation and Sensitivities of Bermudan…

simulations to efficiently compute the exposure along scenarios using interpolation. 
With the presented approach, one can obtain the exposure of European and Bermu-
dan options for a grid of underlying states at arbitrary time points. Additionally, the 
sensitivities at these spatial grid points can also be computed for any time grid.

The numerical results obtained for the European options and the Bermudan 
option, along with their respective log errors, prove the desired efficiency of the 
approach in option valuation. We see that fairly accurate solutions can be obtained 
with relatively few spatial grid points.

We can summarise the benefits and the limitations of our method as follows:

• The first benefit of our method is that we can frame the problem as a system of 
ODEs which are can be solved to obtain exact solutions.This allows easy evalu-
ation of the option values at current time t0 , and any arbitrary time point before 
the expiry. This is difficult with most schemes requiring time discretisation, as 
one would have to interpolate to obtain the option value at an arbitrary time 
point.

• Our method involves spatial discretization alone and no time discretization. 
Therefore, the accuracy is exact with respect to time and is only driven by the 
spatial grid size, as discussed earlier.

• The third important benefit is that the option values as well the Greeks can be 
calculated directly at any time point, at negligible time expense.

• The stability of our method is only driven by the underlying matrix � and hence, 
is far simple to evaluate.

• The method is attractive when one is concerned with memory requirements, as 
now only spatial discretisation needs to be stored.

• Further, the method is shown to be applicable to options with early exercise fea-
ture.

• As far as the limitations are concerned, the method derived is applicable when 
volatility is assumed to be constant, as in the Black–Scholes framework, and 
hence, the framework for stochastic or even local volatility would be fairly differ-
ent and remains to be a motivation for future exploration for us.

• Further, other mappings could utilise this method, which still needs to be 
explored.

Appendix

Matrix Exponential

The matrix exponential is defined for A ∈ ℂ
n×n by,

(28)eA = I + A +
A2

2!
+

A3

3!
+⋯⋅
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We shall now state an important theorem which yields the convergence of the matrix 
Taylor series (28).

Theorem 7.1 (Convergence of matrix Taylor series) Suppose f has a Taylor series 
expansion,

with radius of convergence r. If A ∈ ℂ
n×n then f(A) is defined and is given by

if and only if each of the distinct eigenvalues �1,… , �s of A satisfies one of the 
conditions

1. |𝜆i − 𝛼| < r,

2. |�i − �| = r,

and the series for f (ni−1)(�) (where ni is the index of �i ) is convergent at the point 
� = �i , i = 1 ∶ s.

Now, if we consider the power series (28), then the corresponding power series is 
given by,

whose radius of convergence is,

where, an =
1

n!
 (since the limit in the denominator exists in this case). Hence, this 

readily yields

Therefore, on applying the theorem above we know that the series (28) is defined 
and further by standard results in analysis (as in Gillespie, 1955), we can differenti-
ate the series term by term to obtain d

dt
eAt = AeAt = eAtA.

Another representation of a matrix exponential is,

(29)f (z) =

∞∑
k=0

ak(z − �)k,

(
ak =

f (k)(�)

k!

)

(30)f (A) =

∞∑
k=0

ak(A − �I)k

(31)f (z) =

∞∑
k=0

zk

k!

r =
1

limn→∞
an+1

an

r =
1

limn→∞
n!

(n+1)!

= ∞

(32)eA = lim
s→∞

(I + A∕s)s
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The formula above is the limit of the first-order Taylor expansion of A/s raised to the 
power of s ∈ ℤ . In a more general setting, we can take the limit as r → ∞ or s → ∞ 
of r terms of the Taylor expansion of A/s raised to the power of s, thereby generalis-
ing both (28) and (32). Results show that this general formula also yields eA and pro-
vides an error bound for finite r and s. We shall not delve into these details but refer 
the reader to Gillespie (1955) for a detailed analysis of the same.

Derivations of the Greeks

Theta ( Θ ): Since the matrices do not involve the parameter t, a direct differentiation 
of the function U(�) in (15) with respect to t yields the following formula for Θ,

Vega ( � ): The calculation of this is a bit involved since the coefficients of the matri-
ces A and F involve the parameter � . We first use the identity ��−1 = I and differen-
tiate it partially with respect to � and utilise the chain rule to obtain,

Now, a simple application of chain rule to (15) , combined with the formula obtained 
and the straight-forward result ��

��
= A� yields the formula (24) for �.

Rho ( � ): An almost identical formulation as that of � yields the following 
formula,

Using this and the result ��
�r

= B� + C� , one readily obtains the formula (25) for �.

Accuracy and Stability of MOL

It can be seen using a direct application of Taylor’s expansion that U(�, x) satisfies 
the following equation,

�U(�)

�t
= −�e��U0 − �−1�e��F

= −�e��U0 − e��F

��

��
�−1 + �

��−1

��
= 0

⟹ �
��−1

��
= −

��

��
�−1

⟹
��−1

��
= −�−1

��

��
�−1

��−1

�r
= −�−1

��

�r
�−1
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which gives,

Similarly,

which leads to

Upon adding these two equations, one obtains the expression for D2U(�) in (17).
Using these and the fact that U(�, x) denotes the exact solution of (16), one 

obtains the local accuracy of the method as follows (Higham, 2004),

which, on application of (17) and (18) becomes,

Since, U(�, x) is a solution to the Black–Scholes equation (3), the above expression 
simplifies to,

which gives the desired local accuracy of the method as O(h2).
Recall that our system of differential equations described in Eq. (20) has a solu-

tion given by (15). This implies that the system is stable if et� does not blow up. To 

U(�, x − h) = U(�, x) − hUx(�, x) +
h2

2
Uxx(�, x)

−
h3

3!
Uxxx(�, xi) +

h4

4!
Uxxxx(�, x) +O(h5)

U(�, x − h)

h2
=

U(�, x)

h2
−

Ux(t, x)

h
+

Uxx(�, x)

2

−
h

3!
Uxxx(�, x) +

h2

4!
Uxxxx(�, x) +O(h3).

U(�, x + h) = U(�, x) + hUx(t, x) +
h2

2
Uxx(�, x)

+
h3

3!
Uxxx(�, x) +

h4

4!
Uxxxx(�, x) +O(h5)

U(�, x + h)

h2
=

U(�, x)

h2
+

Ux(t, x)

h
+

Uxx(�, x)

2

+
h

3!
Uxxx(�, x) +

h2

4!
Uxxxx(�, x) +O(h3).

(33)R =
�U(�, x)

��
−

1

2
�2x2D2U(�, x) − rxDU(�, x) + rU(�, x)

R =
�U(�, x)

��
−

1

2
�2x2Uxx(�, x) − �2x2

h2

24
Uxxxx(�, x) +O(h3)

− rxUx(�, x) −
rx

3!
h2Uxxx(�, x) +O(h3) + rU(�, x)

R = −�2x2
h2

24
Uxxxx(�, x) +O(h3) −

rx

3!
h2Uxxx(�, x) +O(h3)
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ensure this, it is enough if the real part of each of the Eigen values of the associated 
matrix � are negative, since F is a constant matrix in our case (Strang, 2006).

For general cases, though, F is not necessarily constant and is itself a function of 
time. In such a case, one could use the scheme discussed in Hochbruck and Oster-
mann (2010).
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