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Abstract

Estimating the burden of COVID-19 in India is difficult because the extent to which cases

and deaths have been undercounted is hard to assess. Here, we use a 9-component, age-

stratified, contact-structured epidemiological compartmental model, which we call the

INDSCI-SIM model, to analyse the first wave of COVID-19 spread in India. We use INDSCI-

SIM, together with Bayesian methods, to obtain optimal fits to daily reported cases and

deaths across the span of the first wave of the Indian pandemic, over the period Jan 30,

2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interven-

tions (NPIs), an overall increase in testing as a function of time, the under-counting of cases

and deaths, and a range of age-specific infection-fatality ratios. We first use our model to

describe data from all individual districts of the state of Karnataka, benchmarking our calcu-

lations using data from serological surveys. We then extend this approach to aggregated

data for Karnataka state. We model the progress of the pandemic across the cities of Delhi,

Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that

deaths were undercounted by a factor between 2 and 5 across the span of the first wave,

converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient.

We also estimate an overall under-counting of cases by a factor of between 20 and 25

towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the

range 0.05—0.15, broadly consistent with previous estimates but substantially lower than

values that have been estimated for other LMIC countries. We find that approximately 35%

of India had been infected overall by the end of the first wave, results broadly consistent with

those from serosurveys. These results contribute to the understanding of the long-term tra-

jectory of COVID-19 in India.
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Author summary

Making sense of publicly available epidemiological data for the COVID-19 pandemic in

India presents multiple challenges, largely to do with the quality of the data. Here, we

describe ways of addressing these questions by studying the data using a well-parame-

terised, detailed compartmental model together with Bayesian methods, alongside infor-

mation derived from pan-India serological surveys. We focus on the first wave of the

Indian pandemic, across the interval Jan 30, 2020 to Feb 15, 2021. We estimate that deaths

were under-counted by a factor between 2 and 5 across the span of the first wave and that

cases were under-counted by a factor of between 20 and 25 towards its end. We estimate

an infection fatality ratio (IFR) in the range 0.05—0.15. We find that approximately 35%

of India had been infected overall by the end of the first wave, a number that helps us bet-

ter understand the context in which the second and later waves unfolded.

Introduction

COVID-19, a disease of zoonotic origin whose causative agent is the beta coronavirus SARS-

CoV-2, is believed to have first infected humans towards the latter part of November 2019, in

or near the Chinese city of Wuhan [1]. It then spread, aided by international travel networks,

around the world, with devastating epidemics in the USA, the UK, Europe and South America,

even as cases in China declined [2]. With close to 440 million recorded cases and 6 million

recorded deaths worldwide as of early March 2022, the COVID-19 pandemic is likely the most

consequential epidemiological event of our lifetimes.

The first COVID-19 case in India was detected at the end of January, 2020 [3]. By March

25, 2020, the total numbers of Indian cases had increased to just above 600. At that point, the

Indian government ordered a sequence of stringent country-wide lockdowns that were to last

for 68 days (March 25—June 1, 2020) [4]. The lockdown was then relaxed in multiple phases.

All through, reported cases of COVID-19 kept rising, although the pace of increase was argu-

ably held in check by the stringency of the lockdown [5]. A peak of about 98,000 cases was

reached in mid-September. Cases in India then declined steadily for the next four months,

even as cases rose elsewhere in the world. By mid-January, it appeared as if India might have

avoided the multiple waves of cases seen elsewhere. However, numbers at the level of individ-

ual cities and states presented a more complex story. Delhi and Mumbai, for example, saw

multiple waves of cases [6]. The decline in cases at the all-India level persisted from the peak

around mid-September to the middle of February, when they began to increase again [7]. This

increase is linked to the emergence of more transmissible variants, specifically the B.1.617 and

B.1.1.7 variants [8]. The pace of this increase was far steeper than the pace at which the first

wave of cases were recorded. By roughly mid-May 2021, the second wave began to decline,

from a peak of a little more than 410,000 cases daily at its maximum; a later third wave, associ-

ated with the Omicron variant spread across India across January 2022. A time-line of the first

wave of COVID-19 in India is displayed in Fig 1. This figure shows the increase in cumulative

cases, in tests and in deaths, highlighting the period of the national lockdown.

Epidemiological models are useful because they allow us to reason about parameters that

control pandemic spread, and how interventions serve to modulate them, extrapolating from a

trajectory of cases and deaths. Population-level epidemiological information, such as results

from serological surveys, help to further constrain these models. The earliest models for

COVID-19 in India come from the work of Mandal et. al. [9]. This compartmental model

addressed two issues, the effects of imperfect airport screening measures and the question of
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optimal strategies for mitigation once the disease had spread to the major Indian cities. Chat-

terjee et al. used a stochastic SEIR model to examine the effects of lockdowns on case counts

[10]. Work from the group of Bhramar Mukherjee provided early insights into the progress of

the pandemic and continues to do so [11]. Their work uses a Bayesian extension of the SIR

model, the extended susceptible-infected-removed (eSIR) model, to project case-counts and

deaths. Agent based models have provided useful insights, at the level of full cities, into mitiga-

tion methods and the effectiveness of non-pharmaceutical interventions [12]. Related refer-

ences which model COVID-19 in India are [10, 11, 13–22, 22–35]. These models are very

largely compartmental models of varying degrees of complexity [36]. Almost all of them were

aimed at understanding the initial stages of the evolution of the pandemic and the role of inter-

ventions. To our knowledge, with the exception of Ref. [11], none have described the full tra-

jectory of the epidemic by integrating model with data.

As the second most populous nation in the world, with a population of close to 1.4 billion,

the consequences of an explosion of COVID-19 cases in India could easily dwarf its impact

anywhere else [37]. What remains unclear is the extent to which the Indian population has so

far been infected by COVID-19 and whether any proximity to herd immunity through infec-

tion might slow later waves of disease [38–40]. Large-scale serological surveys (serosurveys)

from the Indian Council of Medical Research (ICMR), adjusted for test sensitivity, estimate

the overall fraction of those with a prior COVID-19 infection to be about 22% by December

2020 -January 2021 [41–43]. The first two ICMR serosurveys obtained a nation-wide seroprev-

alence of 0.73% in May-June 2020 and of 6.6% in August-September 2020. A strong gradient

of seroprevalance between urban and rural India has been a consistent feature of these national

Fig 1. The timeline of the first wave of COVID-19 in India, beginning from the time of the first detected cases in India and ending on February 15,

2021, across different months during that period. The period of India’s nationwide lockdown, between the dates of March 25 and May 31, 2020, is shown

as a green box. Daily infection and death curves are shown in filled light blue curve and light brown inverted curves respectively. Specific milestone values

for cases, deaths and tests are also provided.

https://doi.org/10.1371/journal.pcbi.1010632.g001
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serosurveys. These were done in just 70 districts of a total of about 740 in India, however, so

only represent a relatively small cross-section of the country. Other serosurveys have studied

specific Indian cities, among them Bengaluru [40], Chennai [44, 45], Delhi [46], Pune [47] and

Mumbai [48]. These city-based surveys estimate that fairly substantial fractions of the urban

population should have been infected by the time that the first wave waned. In many cases,

such as for Delhi, Mumbai and Pune, this fraction has been estimated at over 50%. However,

because of the variety of test kits used, it has proved hard to compare results from different ser-

osurveys. Also, these presumed high levels of prior seropositivity seem to have done little to

offset the dramatic rise of cases seen at the onset to the second wave in urban India. This raises

questions of potential errors in the serosurveys tied to the sensitivity and specificity of the kits

used, as well as of the importance of reinfections [49].

This paper describes the analysis of first wave of COVID in India, from Jan 2020 to Febru-

ary 2021. To do so, we use an age-stratified, contact-structured compartmental model for

COVID-19 spread in India. We call this model INDSCI-SIM. It is a 9-component model,

adopted and modified from [50], with rates bench-marked to a wide range of available data. It

projects numbers of both mild and severe cases and can be generalized to a variety of India-

specific situations. Finally, it can be used to incorporate the modelled effects of a number of

public health interventions, including lock-downs as well as progressive improvements in case

identification. At the methodological level, our techniques can account for improvements,

with time, in case identification as well as in treatment leading to lower overall mortality,

within a fully Bayesian framework.

Our work describes the trajectory of COVID-19, including fits to both cases and deaths,

across all districts in the southern Indian state of Karnataka, as well as in the capital of that

state, Bengaluru. Also included are similar fits to cases and deaths in multiple Indian cities,

including Mumbai, Delhi, Chennai and Pune, as well as to aggregate data for the whole

country. Via this excersise, we estimate that approximately 35% of India was infected at the

time the second wave struck, roughly consistent with serosurvey results. We suggest that

cases have been under-counted by a factor ranging from about 90 at the onset of the Indian

epidemic to about 20 at the end of the first wave. We estimate that a multiplicative factor of

about 2.2 between counted and actual deaths might be a reasonable estimate across India

for the first wave of the pandemic, although even this estimate relies on a number of

approximations. Finally, our results are consistent with the observation that the trajectory

of the disease across India has been inhomogeneous, with complex spatio-temporal behav-

iour at the level of districts and states summing to give smoother results for the country as a

whole.

1 Materials and methods

The epidemiological compartmental model represented by INDSCI-SIM is shown in Fig 2.

INDSCI-SIM is based on a model introduced in Ref. [50], that expands the classical SIR &

SEIR framework with compartments that account for an asymptomatic infectious state [50–

52]. The model also accounts for variations in the severity of disease across the infected class

[50]. There is a compartment for hospitalized cases as well as compartments that count deaths

as well as recoveries. The model parametrizes the transmission of infection from the infected

classes on the susceptible class, also allowing this to depend on time. This is an indirect, yet

useful, way of describe increased stringency as well as relaxations in non-pharmaceutical inter-

ventions. These include both direct effects such as increased testing, the imposition of mask-

wearing and the effects of isolation and quarantines. They also include, inter alia, indirect

effects, such as increased public awareness and related modification of behaviour [53].
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1.1 Disease progression

SARS-CoV-2 infection manifests as an acute respiratory infection, progressing to respiratory

failure in a small number of patients [54–56]. It can result in a range of clinical manifestations,

from asymptomatic or mild infection to severe, requiring hospitalization [57]. Among patients

who are symptomatic, the median incubation period is approximately 4 to 5 days [58]. About

97% have symptoms within 11 days after infection [59]. These can further be categorized as

mild, severe and critical [60]. Patients who are hospitalized, the severe category, can progress

to severe pneumonia and acute respiratory distress syndrome (ARDS). A fraction of these

patients will require ventilation and an even smaller fraction may die [61]. Older patients expe-

rience greater clinical severity of COVID-19, which we account for via age-stratified parame-

ters [61, 62]. Co-morbidities such as cardiovascular disease, diabetes and obesity are common

underlying conditions associated with worse clinical outcomes and increased disease severity

[62–64]. These can be incorporated through a composite risk score affecting branching rates

between mild and severe disease states, although we do not do so here. Males may experience

more severe disease than females, and genetic variations, including the ABO blood type, have

Fig 2. Schematic diagram of the compartmental model used in this analysis, adopted from [50]. The dotted lines indicate the force of infection from the

infected compartments on the susceptible population. Transitions between compartments, denoted via solid lines and an arrow, are defined as in Eq 1

which contains both bare rates as well as information as to how flow is to be divided between compartments. The number of persons transiting from one

compartment to the other in each day depends on the product of the transition rates and the branching fractions.

https://doi.org/10.1371/journal.pcbi.1010632.g002
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been implicated in clinical outcomes for patients with COVID-19. Our model ignores these

effects [65, 66]. Around 40–75% of infections may be asymptomatic, a fairly broad range. We

note that numbers for India suggest a larger fraction of asymptomatic cases than reported else-

where [67, 68].

1.2 Transmission dynamics

The compartmental structure we consider contains susceptible (S), exposed (E), asymptomatic

infectious (Ia), pre-symptomatic infectious (Ip), mildly symptomatic infectious (Im), severely

symptomatic infectious (Is), hospitalized (H), dead (D) and recovered (R) compartments.

Transitions between these model compartments are shown in Fig 2. The dotted lines indicate

the force of infection from the infected compartments on the susceptible population. Fre-

quency-dependent transmission is assumed. As appropriate for a fast-spreading infection, we

ignore the effects of demography [51].

The model equations, for unstructured compartments, are

_S ¼ � bSð�aIa þ �pIp þ �mIm þ �sIsÞ=N;

_E ¼ bSð�aIa þ �pIp þ �mIm þ �sIsÞ=N � gE;

_I a ¼ agE � laIa;

_Ip ¼ ð1 � aÞgE � lpIp;

_Im ¼ mlpIp � lmIm;

_I s ¼ ð1 � mÞlpIp � lsIs;

_H ¼ lsIs � rH;
_R ¼ laIa þ lmIm þ ð1 � dÞrH;
_D ¼ drH

ð1Þ

The left-hand side of these equations denote first-order time derivatives. The population size is

N. Infectious individuals in any associated compartment can infect the susceptible population

regardless of symptoms and severity with a fixed transmission rate β. However, this quantity is

modulated by the relative intensity of contacts between susceptible and infectious individuals

whose effect is simply specified here through factors of �. These can, in principle, vary with

time and can also be chosen to vary between compartments.

Each infected individual enters an ‘exposed’ compartment (E), spending an average latent

period 1/γ days before becoming infectious [69]. A fraction α of this infectious population

remains asymptomatic (Ia) until recovery. Asymptomatic individuals are assumed to be infec-

tious for an average period of 1/λa days [70, 71]. Those in the remaining fraction, of (1 − α),

enter a pre-symptomatic state (Ip) where clinical symptoms are not exhibited for a relatively

short average period of 1/λp [70]. Individuals in this pre-symptomatic compartment go on to

developing mild or severe symptoms [72]. All rates applicable to the model are provided in

Table 1.

A fraction μ of symptomatic cases is assumed to develop mild symptoms (Im), while the

remaining fraction (1 − μ) of cases are transferred to the severe class (Is). Infectious cases with

mild symptoms recover without hospitalization after 1/λm days. Severe cases require hospitali-

zation after an average of 1/λs days. From the hospitalized population (H), we assume that a

proportion (1 − δ) recovers successfully (R), after spending an average duration of hospitaliza-

tion 1/ρ days. The remaining fraction, δ, of the hospitalised, will die. The numerical values of

these parameters are specified in Table 1 [73, 74].
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Of these parameters, the infectivity parameter β is particularly central. It determines the

effective reproduction ratio as the epidemic proceeds. The force of infection arising from

asymptomatic cases alone is assumed to be lower in comparison to that arising from the pre-

symptomatic, mildly symptomatic and severely symptomatic cases.

1.2.1 Age-structured model. Incorporating age structuring in addition to contact matri-

ces describing the nature of social contacts are essential to the simulation,s as the fractions of

infected population distributed in different compartments, as well as the IFRs, strongly depend

on age. The IFRs, in particular, rise almost exponentially. NPIs such as a lockdown (or partial

lockdown) affect different age groups diferently as different institutions, such as schools, work-

place, markets etc. are largely populated by specific age groups. The societal structures peculiar

to India, with large multi-generational families living under the same roof, suggest that incor-

porating structured contacts between age-groups should provide a better description of disease

spread.

We incorporate age-structuring, dividing each compartment into sub-compartments, rep-

resenting the age-intervals 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79 and 80+. We

denote the sub-compartment by adding the subscript i, for each age-bracket, to each of the

compartment labels, thus obtaining{Si;Ei; Ia
i ; I

p
i ; Im

i ; I
s
i ; I

h
i ;Di and Ri}. We define βij as the bare

infectivity term coupling age-brackets i and j, although we will assume βij� β here. The quan-

tities Cij defines the intensity of contacts between these age-brackets. We assume that, during

the lockdown, only contacts at home are effective, since schools and workplaces are closed. We

can also assume that contacts in public transports and other places are negligible. Since, in

India, schools largely remained closed even after the lockdown ended and workplace crowding

had reduced substantially, we assume that even without any lockdown, work contacts are only

50% effective. These contacts are obtained from those compiled by Ref. [75]. The appropriate

contact matrices are discussed in Fig A in S1 Text.

To incorporate time-dependence in contacts, we generalize the four � terms, �a, �s and �m

and �p, making their magnitude time-dependent. This allows for varying implementation of

testing, quarantining and isolation rules, lock-downs and other non-pharmaceutical

interventions.

Table 1. Age dependent branching ratios between compartments. Our values for αi and μi are from those consoli-

dated by the COVASIM program, Refs. [76] and [77]. We use IFR’s from data from LMIC’s taken from fits in the

paper of Ref. [78], where the following formula is derived: log10(IFR) = −3.27 + 0.0524 � age. We modify only the δi for

the 80+ age group to account for the leveling off of mortality in older age groups described by Ref. [24]. The IFR for

each age group can be obtained as IFRi = (1 − αi)(1 − μi)δi. We use the estimated δi numbers as our initial IFRs,

although when we allow them to vary as part of our minimization strategy to find the effective IFR’s we multiply all δi’s

by a single smooth time-varying factor, optimizing this against data.

Fraction Asymptomatic αi Mild μi Dead δi
Age group

0–9 0.5 0.999 0.0185

10–19 0.45 0.997 0.0187

20–29 0.4 0.988 0.0143

30–39 0.35 0.968 0.0166

40–49 0.3 0.951 0.034

50–59 0.25 0.898 0.05

60–69 0.2 0.834 0.097

70–79 0.15 0.757 0.21

80+ 0.1 0.727 0.22

https://doi.org/10.1371/journal.pcbi.1010632.t001
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Our generalized equations, for Na age-brackets, are then

dSi

dt
¼ � Si b

XNa

j¼1

Cij

�aðtÞIa
j þ �pðtÞI

p
j þ �mðtÞIm

j þ �sðtÞI
s
j

Nj

dEi

dt
¼ Si b

XNa

j¼1

Cij

�aðtÞIa
j þ �pðtÞI

p
j þ �mðtÞIm

j þ �sðtÞI
s
j

Nj
� gEi

dIa
i

dt
¼ aigEi � laIa

i ;

dIp
i

dt
¼ ð1 � aiÞgEi � lpI

p
i ;

dIm
i

dt
¼ milpI

p
i � lmIm

i ;

dIs
i

dt
¼ ð1 � miÞlpI

p
i � lHIs

i ;

dHi

dt
¼ lHIs

i � rHi;

dRi

dt
¼ laIa

i þ lmIm
i þ ð1 � diÞrHi;

dDi

dt
¼ dirHi

ð2Þ

The values used here are listed in Table 1.

1.3 Time-dependence of effective contacts to model non-pharmaceutical

interventions

The effective infectivity in the INDSCI-SIM model is a product of three terms. The first is a

bare infectivity parameter (βij� β)and the second is the term involving the contacts, the Cij’s.

The third is the temporal modulation, the factors of �. While it is only variation in this overall

product that is of significance, it allows us to conceptualize interventions in a more targeted

way: the sudden changes in infectivity imposed by a lockdown can be associated with abrupt

changes in β whereas slow and secular improvements in masking etc. can be associated to the

smoothly varying factors of �. This product is affected by mask-wearing, hand-washing, volun-

tary self-isolation or self-quarantining and the maintenance of social-distancing. It is also

influenced by global non-pharmaceutical interventions such as closures of schools, malls and

cinemas, large-scale lock-downs, restrictions on movement and autonomous modifications of

social behaviour.

We first use a “global” value of β, one that differs in the lockdown period and in the open

period. We then model compliance with restrictions by modulating this with a time-depen-

dent factor, using a hyperbolic tangent function of time, as described below. This function

comes with an associated time-scale which is an output of our minimization procedure. A

quantification of mask-wearing India-wide comes from studies incorporated into the IHME

model for India that are standardized using survey results from the University of Maryland

Social Data Science Center, from the Kaiser Family Foundation and the YouGov COVID-19

Behaviour Tracker survey [79]. This data motivates the use of such an interpolating function,

since it shows an initial lag period, a sharp rise as public awareness increases and saturation at

about 70% reflecting social acceptance of mask-wearing.
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We also allow for a decay of the relative intensity of contacts between susceptible and

infected individuals by assuming an exponential decay of the �i terms, viz.,

�iðtÞ ¼ �ið0Þ expð� t=tiÞ; where i ¼ a; p; s;m ð3Þ

Here, τi represents the characteristic time-scale describing the increased effectiveness of non-

pharmaceutical interventions. These could include restrictions on crowding, improvements in

screening procedures as well as increased testing. The net effect of these could be chosen to be

different for each of the infectious categories. Although the force-of-infection ultimately

involves a product of both the β(t) and the �(t) terms, splitting them out thus provides some-

what more control over the specifics of the non-pharmaceutical interventions as well as the

ability to account for new variants that might affect the value of β but not the �-s.

1.4 Estimating R0

Given the central equations defining our model, we compute the dominant eigenvalue of the

next generation matrix [80] obtained from Eq 1. This is the basic reproductive ratio, R0. This

result, derived using a next-generation method outlined in SI, yields

R0 ¼ b
a�a
la
þ ða � 1Þ �

m�m
lm
�
�p

lp
þ
ðm � 1Þ�s

ls

 ! !

ð4Þ

In the equation, β is the infectivity parameter. The reciprocal of the λ’s capture the timescales

associated with different stages of the disease progression. Together, they determine the serial

interval associated with the disease. Note that in the relative intensity of the contacts, the (�)’s

are simply constants; likewise, α and μ representing proportions are dimensionless constants.

See Table 2 for the description and values of each of these parameter values.

1.5 Estimating R(t)
The time evolution of R(t) is obtained from Eq 2. We obtain the next generation matrix

(FV� 1
), incorporating age stratification and contact matrices. Lockdown changes the contact

matrices; we take this into account in our estimation of R(t). The computation of the next gen-

eration matrix, and thence R(t) corresponding to Eq 2, is discussed in Section 1 in S1 Text.

Table 2. The transition rates between compartments and the efficiency parameters. These parameters are fixed dur-

ing the analysis and their values are taken from [50, 84].

Parameter Rate (1/day) Description

γ 0.5 Transition rate from exposed to asymptomatic or pre-symptomatic (mean 2 days)

λa 0.1428 Transition rate from asymptomatic to recovered (mean 7 days)

λm 0.1428 Transition rate from mild to recovered (mean 7 days)

λp 0.5 Transition rate from pre-symptomatic to mild and severe (mean 2 days)

λs 0.1736 Transition rate from severe to hospitalized (mean 6 days)

ρ 0.068 Transition rate from hospitalized to recovered or dead (mean 15 days)

Parameter Efficiency

�a 0.67 Relative intensity of contacts for asymptomatic

�p 1 Relative intensity of contacts for pre-symptomatic

�m 1 Relative intensity of contacts for mild

�s 1 Relative intensity of contacts for severe

https://doi.org/10.1371/journal.pcbi.1010632.t002
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Comparing model predictions with the data generates samples of parameters. From these sam-

ples we compute the bounds on R(t) for each region of interest.

1.6 Computing effective R(t) from the data

A standard way to describe infection spread is to calculate the effective reproduction rate R(t)
at a given time t. To estimate R(t) we use a Bayesian approach developed by Bettencourt and

Ribeiro [81], later modified by K. Systrom [82]. In this approach, given k new cases, the proba-

bility distribution of R(t) on a certain day t is:

PðRtjkÞ ¼
PðkjRtÞ � PðRtÞ

PðkÞ
;

where P(k|Rt) is the likelihood of seeing k new cases given R(t) (this is assumed to follow a

Poisson distribution), P(Rt) is the prior, and P(k) is the probability of seeing k cases. The

method of deciding the appropriate priors is described in Ref. [81, 82].

1.7 Fixed parameters

Several parameters determine the progress of the pandemic in the INDSCI-SIM model. These

include parameters which remain fixed, such as the rate of transitions between the compart-

ments, described above, and a choice for the initial IFR. Other parameters are allowed to vary

so as to model the effects of non-pharmaceutical interventions or optimized to fit available

data, as discussed below. We assume that asymptomatic patients are less likely to pass on infec-

tion to susceptibles by a factor of 2/3, consistent with data from Ref. [67, 83]. The choices of

our fixed parameters are provided in Table 2.

1.8 Variable parameters

We maximize a likelihood function to obtain optimal fits to the data, sampling a broad prior

distribution in parameter space to assess uncertainties in our description of the disease pro-

gression. Our simulations are initiated around 2 weeks prior to the first death being reported.

Since the time evolution of any similar compartmental model with constant parameters and

no births or deaths would yield only a single wave, we use an adaptive parametrization to

address multiple waves of COVID-19 cases. The parameters that enter our description are

described below.

We choose a generic functional form for all our parametrizations that involve parameter

changes with time. This form interpolates between a high and a low value, and is a function of

a characteristic time-scale. We choose a hyperbolic tangent function for concreteness, and

because it is easy to specify, but any other suitable function could be used in its place.

1. Initial exposed (Einitial): The exposed people on the first day of simulation, distributed

between age groups according to the population fraction.

2. IFR-associated parameters (ΔIFR, δi(tinitial), δi(tfinal) and DIFR): A number of studies [85–87],

suggest that the IFR has decreased over time. This is attributed to an improved clinical han-

dling, new pharmacological treatments such as corticosteroids, non-pharmacological treat-

ments such as proning and simply earlier interventions and finally the potential

prophylactic consequences of lower viral load exposure from masking [85]. For concrete-

ness, we choose a specific functional form to describe this decrease, accounting for it by

assuming a smooth transition governed by a hyperbolic tangent function. We model the
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variation of d
i
HðtÞ as:

d
i
ðtÞ ¼

d
i
ðtinitialÞ þ d

i
ðtfinalÞ

2
�
d

i
ðtinitialÞ � d

i
ðtfinalÞ

2
tanh

t � DIFR

DIFR

� �

; ð5Þ

where DIFR is the transition time-point (here, tied to the Hospitalized Fatality Ratio) and

ΔIFR is the characteristic time width of the transition. This introduces four parameters, δi(ti-
nitial), δi(tfinal), the timescale ΔIFR and the transition point itself, DIFR. Although this formu-

lation is general, allowing for age-bracket dependent variation of the IFRs with time, we

choose to allow all age-brackets to have the same functional behaviour, rendering the index

i redundant. We take δi(tfinal) to be a sixth of δi(tinitial): given an initial IFR of 0.3% this

potentially allows the IFR to decay across the range 0.3% to 0.05%, over a timescale defined

by ΔIFR, with the cross-over point between the upper and lower limit defined by DIFR.

3. Bias(b) and bias-variation (Δb): A large fraction of the population remains asymptomatic to

COVID-19 infections. In addition, some symptomatic patients may also opt not to be

tested. Since testing in India has been limited throughout the first wave, a substantial per-

centage of actual infections can be expected to have remained undetected, with detected

infections always represent an under-counting of the true numbers of infected [88]. We use

a bias parameter b to accommodate this scaling relation (actual daily infection = b(t) ×
reported infection), introducing another parameter to estimate. We parametrise the bias

factor as:

bðtÞ ¼
bðtinitialÞ þ bðtfinalÞ

2
�

bðtinitialÞ � bðtfinalÞ

2
tanh

t � Dbias

Db

� �

; ð6Þ

where Δb represents the bias variation timescale. We use the transition time Dbias to be 3

months from the beginning of March but checked that the results should depend minimally

on Dbias if the priors on the b(tinitial) and Δb are wide enough. This introduces three parame-

ters b(tinitial), b(tfinal) and Δb. We fix b(tfinal) so that it will reach 1 asymptotically. Our calcu-

lation obtains the daily number of infected people from the day. We then fix a multiplier

that relates the actual numbers of infected to those detected each day. This number, for

those expected to be detected in each day, is then compared with the numbers of those

reported infected.

If the reported numbers of daily infected cases, or the daily numbers of deaths, shows multi-

ple peaks, a single parametrization will not capture this behaviour. The sources of this behavior

are complex functions of government policy constraining the contacts between people, of the

sum of individual actions taken to prevent infection and also of the entry of new potentially

more infectious variants. Our analysis must be flexible enough to account for these. Set against

this is the requirement that we should not over-determine the model, by allowing for a large

number of such changes.

We allow our parametrization to vary in the following way: We assume that the time over

which we choose to model the data is divided into N segments, with each segment denoted by

i. This defines N − 1 break points or nodes. These node points are same for both new cases and

deaths, with the lag between these already taken into in the model via various timescales of

progression of the disease. The infectivity parameter β and the timescale τ can change in these

segments. For simplicity, τ is assumed to be the same between segments. We thus parametrize

the model with the following:

1. βi: Infectivity within the i’th window.
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2. τi: Timescale within the i’th window.

3. Nodei: The position of the break points (dates) across which βi and τi are change. We decide

the required number of break points by comparing the Bayesian evidence for the models

with different break points.

Comparisons of the Bayesian evidence indicates that different τi’s defined in each segment

are not favored. Thus, we work with N β’s, a single τ and N − 1 Node parameters. For N win-

dows, then, we will have N + 1 + (N − 1) parameters specific to adaptive parametrization, 4

parameters (Einitial, DIFR, ΔIFR, b, Δb) common to both parametrizations and 2 noise error

parameters (for modelling the fluctuations in the infected and death data discussed in subsub-

section 1.9.1).

1.9 Bayesian modeling

Our model is a mechanistic model that should capture the significant aspects of the dynamics

of COVID-19 disease spread. It has a number of parameters which must be optimized. We

achieve this optimization through a simultaneous fit to the data on deaths and on detected

cases. The latter is related to the “true” number of cases through the time-dependent bias

factor.

We address this optimization through Bayesian methods. In such methods, probability dis-

tributions over parameters, and not point estimates, are obtained [89, 90]. Bayesian models

require a prior distribution over parameters to be specified as well as a likelihood of observing

the data under a specific assignment of parameters. Given parameters and initial conditions, a

compartmental model defines a unique solution for each of the compartments.

Such methods begin with prior estimates for the parameters entering the model, usually

chosen so that they are at least partially constrained by prior knowledge [89]. A likelihood

function, chosen appropriately, estimates the probability with which the observed data can be

accounted for by a specific parameter set. This leads to a posterior distribution over the param-

eter set. Credible (confidence) intervals can be derived from such calculations.

We now address the role of initial conditions and sensitivity to parameter values in the con-

text of our Bayesian modelling for parameter estimations. We initiate our model simulations

when the infected population is small enough that the susceptible population is not substan-

tially depleted. With this starting point, the dependence on this initial condition is negligible.

All other important parameters are estimated using Bayesian methods which incorporate

uncertainties in their values. Since we sample over an ensemble of initial values, the depen-

dence on initial conditions is also expected to be minimal. Furthermore, Bayesian modelling

naturally allows for parameter variation (e.g. for parameters listed in Table 3), finding an opti-

mum range of posterior distributions constrained by the observed data.

Table 3. Priors on model parameters used in our analysis to account for time varying parameters.

Parameter Description Lower limit Upper limit

Einitial Initial exposed 100 50000

β Infectivity parameter 0.005 0.25

τ Time scale of NPI effectiveness 2 months 2 years

Node Position of break points (dates) Region dependent Region dependent

ΔIFR Time width of transition 2 days 200 days

DIFR Transition time-point 2 months 2 years

binitial Initial bias 1 200

Δb Bias variation timescale 1 month 2 years

https://doi.org/10.1371/journal.pcbi.1010632.t003
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1.9.1 Likelihood model. We compute the likelihood after a logarithmic transformation,

optimizing the product of the likelihoods from the infected and death data as

(Ljinfection�Ljdeath). We choose a form for the likelihood function that accounts for two sources

of error [91]. We assume no correlation between the variances of infected and death data and

treat them independently in the joint fit. We use a Gaussian log likelihood defined as:

lnLjinfection=death ¼ �
1

2

XN

t¼1

Dt � T t

st

� �2

þ ln 2ps2

t

� �
" #

;

and lnLjtotal ¼ lnLjinfectionþ lnLjdeath;

ð7Þ

where s2
t ¼ s

2
ME þ s

2 represents the variance in the data. This is the sum of a measurement

error σME and of an intrinsic scatter σ. T t represents a suitable function (see below) of the com-

puted value of infected/death cases, while Dt represents reported infected/death data on day t
scaled with the same function. The data must first be transformed so that it is normally distrib-

uted. By log scaling the data we find the distribution is close to normal around the mean, apart

from minor outliers. Thus T t and Dt represent the logarithm of the computed and reported

values respectively.

In Eq 7, the ln L’s are computed for both infected cases and deaths and are then added. The

likelihood has 2 error parameters, corresponding to the scatter in the infections and death

data. The parameter σ appearing in the intrinsic scatter term encodes both parameters σ1 and

σ2, corresponding to scatters in detected infection and death reports on a log scale. They

appear in these two likelihood terms as defined in Eq 7. Note that the correlation in the data at

different times can, in principle, be modelled through an error covariance matrix. We ignore

such correlations here. In some cases reporting error leads to negative death numbers. Unless

they are large (> 10) where we regularize the data by the absorption of outliers, we reject the

data point.

1.9.2 Priors. We use uniform priors on all the parameters. The ranges for each parameter

are provided in Table 3. We ensure that the priors are broad enough to generate a two-tailed

marginalized posterior distribution where the parameter can be constrained by the data.

Only for the period between nodes, the priors depend upon the zone that is being studied.

With a visual inspection of the data, we can determine the possible times of transition. Differ-

ent zones have local peaks at different time of the pandemic owing to the reasons described in

subsection 1.8. To capture these effects, the priors on the nodes remain region dependent.

However we impose wide priors around those transition times to remove possible bias. If the

entire timeline is divided into N windows, we will have N − 1 nodes. The lower limit on the i
+ 1’th Node is the day following the upper limit of i’th Node.

1.9.3 Parameter estimation and post processing. The posterior probability p(θ|D, M) for

the parameter set θ of a model M given data D is given by Bayes Theorem,

pðyjD;MÞ ¼
pðDjy;MÞpðyjMÞ

pðDjMÞ
; ð8Þ

where p(D|θ, M) is the likelihood and p(θ|M) the prior probability distribution. p(D|M) is the

Bayesian evidence or the marginal likelihood [89]. We use a nested sampling method for

parameter estimation using PolyChord [92]. We consider uniform priors and the likelihood

described in Eq 7 and use CosmoChord (an extension of CosmoMC that includes Poly-
Chord) as our generic sampler [93]. A brief description of nested sampling with PolyChord
is given in Section 3 in S1 Text.
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While PolyChord computes the marginal likelihood, it is also useful for parameter esti-

mation using samples. We remove 30% of the total samples generated by the nested sampling

procedure that represent the initial burn-in phase. We use getdist to obtain the marginalized

posterior probabilities [94]. We use an adaptive parametrization as described in subsection

1.8. Marginal likelihoods are compared to determine the optimal numbers of windows

required to describe the data. We show marginalized posteriors in certain cases in the main

article while the others are presented in supplementary material.

1.10 Data

We use cumulative infected and death data downloaded from the COVID19India website

https://www.covid19india.org/. We manually curated the time series, but only wherever

required to deal with major outliers arising from reported corrections to the record. (For

example Mumbai reported 917 deaths on June 16th 2020, as opposed to the average count of

78.3 for previous week.) These outliers were smoothed by replacing their values by the local

average and redistributing the excess count over 20–60 previous days depending upon the

value. Typically, for each time series there are only a handful of such outliers (< 5), if at all,

and are removed manually. For our simulations, we need the population data for each zone of

interest (district, state or country), and mention each of these sources in the appropriate sec-

tions. For each such zone, we also need the population fraction in each age group which we

obtain from the 2011 census data [95].

1.11 Estimating mortality under-counting

Reported infections are expected to be substantially lower than the actual numbers of infected.

While death numbers should nominally be better indicators of the state of the pandemic, most

deaths in India happen at home and a medically certified cause of death may not be available,

given low levels of MCCD coverage. Moreover, death registration is not uniform across the

country. Estimates of overall under-counting of covid deaths vary, but reasonable estimates

suggest a factor of 1.5—5 across India during the first wave [49].

Under-counting for cases and deaths cannot be estimated independently in our model,

since one of these can be subsumed into a definition of the IFR. Benchmarking our results to

those from serological surveys (serosurveys) provides a way of estimating this undercounting,

since such surveys provide an estimate of the fraction of the population which has sustained a

prior infection by the time of the test. Requiring that the quantum of deaths be consistent with

the postulated IFR then allows us to estimate the undercounting of deaths at the time of the

survey.

We analyse data for Karnataka—a typical Indian state with both rural and urban districts.

(Approximately 62% of Karnataka’s population lives in rural areas, comparable to a figure of

65–70% for India as a whole.) We choose Karnataka for our analysis so that we can compare

our numbers to district-wise serosurvey results available from a detailed study conducted in

early September of 2020 [96].

For this part of the analysis, we assume that IFR does not change over the course of the first

wave; we refer to this as the fixed IFR analysis. We choose several fixed values of (age-averaged)

IFR in the range 0.15% and 0.3%. We vary the extent of death undercounting by multiplying

the observed number of deaths by a factor U >1. We then chose a baseline district where it is

potentially safe to assume that death under-counting might be minimal and that, hence,

U ¼ 1. For this district, we expect the number of infections as estimated from serosurveys

should coincide with those obtained from our calculations as well as be consistent with the

numbers of deaths given our assumed IFR.
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Once we standardize our choice of (age-averaged) IFR with this method for a baseline dis-

trict, we assume that the same IFR holds true across the state. We can then use the serosurvey

results to estimate the true number of deaths for each district [96]. If Dreported is the number of

reported deaths, Isero is the expected number of infected individuals based on serosurvey, we

can in principle estimate the death under-counting factor U using the relationship between

these quantities: U ¼ max ½IFR � Isero=Dreported; 1�. This relation is an average estimation. How-

ever, as the pandemic is ongoing during the serosurvey, the infection and deaths differ by a lag

(� 1–2 weeks) and thus, we cannot use this relation directly.

Instead, using time series of reported infections and deaths, we first estimate actual infec-

tions by the time of serosurvey (X(Z) for a district Z). If there is no death under-counting, the

expected proportion of actual infections will be equal to the actual proportion of infected from

serosurveys (Y(Z)). We estimate any offset from this expectation to estimate a death under-

counting factor for each district Z: UðZÞ ¼ max½YðZÞ=XðZÞ; 1�. All these estimates were per-

formed by analysing time-series data that begins with an initial simulation date (two weeks

prior to the available infected and death reports of each district) and goes on to early Septem-

ber 2020, when the Karnataka serosurvey was conducted. We simultaneously fit the daily

time-series of infection and deaths, using the fixed values of the (age-averaged) IFR mentioned

above. Uncertainties in the serosurvey results translate to uncertainties in our determination

of UðDÞ. Apart from the estimation of death undercounting, the rest of our analysis is based

on a time-varying IFR described in the previous sections.

We also employ a ‘death multiplier’ for our analysis of Karnataka state, which is different

from UðDÞ. The death multiplier is provided as an input that represents our estimate the

amount by which deaths are under-counted. We multiply the death numbers uniformly by the

death multiplier for the entire period of analysis. For consistency, these numbers must be

aligned to the IFR and the underlying numbers of infections. UðDÞ is the parameter that we

obtain as an output that indicates possible death undercounting. For example, in a particular

case, if without the use of death multiplier, we find UðDÞ ¼ 2, then it indicates that the death

numbers are under-counted by a factor of 2. For the same case, if the death multiplier was

input was 2, then we will estimate UðDÞ ¼ 1.

2 Results

We present our results in the following sequence. We first present results for the large south-

Indian state of Karnataka in subsection 2.1, under a variety of scenarios. In this part, our pri-

mary purpose is to obtain a reasonable estimation of death under-counting and the percentage

population infected by COVID-19 at the end of first wave by mid-February 2021. This is fol-

lowed by an analysis of data for a number of Indian cities where we assume no death under-

counting. We present the results for the large city of Mumbai in the main text subsection 2.3,

while relegating the rest to SI.

While the assumption of no death undercounting is certainly untrue, we present these

results primarily to illustrate the power of our method in capturing time varying parameters

on relatively short scales. Finally, in subsection 2.4, we apply the model to data for India as a

whole, with death undercounting taken over from our estimates for Karnataka. In each of

these cases, we estimate, among other parameters, the actual number of infected and the effec-

tive IFR over the course of first wave of the pandemic.

2.1 Karnataka districts: Estimating death under-counting

Our analysis of the Karnataka data follows a relatively complex set of protocols, which we use

to obtain reasonable estimates of death undercounting and total infected in the first wave. This
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is a challenging exercise because (a) the cases are under-counted, (b) deaths are under-counted

and (c) there is no true consensus on the IFR values that should be appropriate. Our method

deals with these issues by assuming that the deaths are calibrated correctly in one urban district

with the best health facilities in the state.

We begin with an estimation of death under-counting in Karnataka (subsubsection 2.1.1),

using a simultaneous fitting of reported infections and deaths to our INDSCI-SIM model. We

then compare this with serosurvey findings, following the fixed IFR analysis protocol described

in subsection 1.11. Since the serosurvey we use to calibrate was conducted in September 2020,

this first analysis is carried out for daily reported data of new cases and deaths from the start of

the pandemic in India to early September 2020. We find that an IFR of 0.2% seems a reason-

able estimate upto early September 2022. We then apply our model allowing for time-varying

IFR (and other parameters, as described in subsection 1.1 to 1.10), to data of each district of

Karnataka (subsubsection 2.1.2); we find that different districts had different levels of infec-

tions, ranging from 20% to 70% in some cases, with a state-wide aggregate under-counting fac-

tor of 2.2. Finally, we present results for the aggregate state-level data for Karnataka

(subsection 2.2).

2.1.1 Estimates of death under-counting upto early September 2020, with fixed IFR.

We use the serosurvey results published in Ref. [97] for all districts of Karnataka. We first scale

all age-dependent IFR’s with a constant factor to ensure age-averaged IFRs of 0.3%, 0.2% and

0.15%—these have been argued to be in the right range for LMICs [78]. We assume further

that either (a) there is no death under-counting or, (b) that deaths have been under-counted

by a factor of two. As can be seen in Table 4, assuming that deaths have been under-counted

by a factor of two doubles our estimate of the actual infected in the same IFR category, as

expected. On the other hand a decrease in the IFR results in an increase in our estimate of the

actual numbers of infected. We stress that, for the purposed of this specific analysis, the IFR is

assumed to be constant over time (no change in δi) and that we only analyze the data till Sep-

tember 15, 2020 for all districts in Karnataka for consistency with the Karnataka serosurvey.

Population data for Karnataka districts is sourced from the projections for the period 2020–

2021, as provided by the report issued by Directorate of Economics and Statistics, Bangalore

[98]. We choose Bengaluru Urban as our baseline model district, assuming that the recorded

numbers of deaths are accurate. This choice is motivated by the observation that Bengaluru

Urban is the largest district in Karnataka by population. It contains the state capital and is also

thus likely under greater scrutiny than other, more remote, districts. Comparing our model

results with those from the serosurveys for Bengaluru Urban we find that an IFR of 0.2%

(highlighted column in tha table) yields numbers of those actually infected that are close to the

measured seroprevalence (the undercounting factor U ’ 1:1). To the extent that the reported

death numbers are accurate for Bengaluru Urban, this is then our best estimate for the IFR—

but only up to the date of the serosurvey. We can now use this assumption to estimate levels of

undercounting in other districts, UðDÞ. (We, however, expect that this IFR value will go down

further as time goes on, reflecting improvement in patient treatments and a consequent mor-

tality reduction as well as COVID deaths in older age-bands leading to a reduction in the pop-

ulation which carries the most mortality risk.)

Using these columns in Table 4, for IFR = 0.2%, we plot the factors UðDÞ in Fig 3 as a choro-

pleth in the left panel. Darker colors for districts represent a larger death undercounting. In

the right panel we plot UðDÞ for IFR = 0.3% analysis. As expected, the estimated death under-

counting increases here. This would be consistent with an death undercounting in the Benga-

luru Urban district by 60% i.e. (UðDÞ ¼ 1:6).

2.1.2 Estimates of cases by the end of first wave (Feb 2021), with variable IFR. Having

estimated UðDÞ, we redo our analysis for each of Karnataka’s districts, multiplying reported
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Table 4. Estimation of death under-counting by comparing seroprevalence. The first column lists each district of Karnataka (as on Sept 2020). The second column pro-

vides the seropositivity estimate as obtained in a serosurvey across the first two weeks of September 2020. The third column provides our estimate of the potential death

undercounting in that district, UðDÞ, represented by the ratio of seropositivity to the actual number of reported infected. Since death overcounting is not possible, the min-

imum value of UðDÞ can only be 1. The uncertainty on this number is obtained by propagating the 95% uncertainties from the serosurvey reports to our prediction of

actual infection. In cases the lower bound on UðDÞ goes below 1, we present the mean value and the range from 1 as an upper bound in parentheses. In a few cases we just

present 1 as an upper bound, representing those cases where even the upper limit is less than or equal to 1.

IFR = 0.3 No death

multiplier

IFR = 0.3 Death

multiplier = 2

IFR = 0.2 No death

multiplier

IFR = 0.2 Death

multiplier = 2

IFR = 0.15 No death

multiplier

District Observed sero

prevalence (%)

Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ

Bengaluru Urban 29.8 ± 3.3 19 ± 6.5 1.6 [1–

2.3]

34.3 ± 10.5 1 [1–

1.3]

26.9 ± 8.1 1 [1–

1.6]

52.1 ± 16.4 1 33.2 ± 8.3 1 [1–

1.2]

Mysuru 27.2 ± 8.8 13.9 ± 5.9 2 [1–

3.5]

25.7 ± 8.5 1.1 [1–

1.8]

19.7 ± 7.4 1.4 [1–

2.4]

37.2 ± 11 1 [1–

1.2]

25.7 ± 8.9 1.1 [1–

1.8]

Ballari 43.1 ± 9.5 13.6 ± 6.7 3.2 [1–

5.5]

25 ± 11.1 1.7 [1–

2.8]

19.5 ± 8.5 2.2 [1–

3.7]

34.9 ± 11.8 1.2 [1–

1.9]

25.4 ± 11.1 1.7 [1–

2.8]

Dakshina

Kannada

27 ± 8.5 12.4 ± 4.9 2 [1–

3.7]

23 ± 7.7 1.2 [1–

2]

17.5 ± 5.9 1.5 [1–

2.5]

33.3 ± 10.6 1 [1–

1.3]

22.6 ± 7.4 1.2 [1–

2]

Hassan 30.7 ± 9.4 10.6 ± 6.7 2.9 [1–

5.6]

19.8 ± 11.4 1.6 [1–

3]

15 ± 9.1 2 [1–

3.9]

26 ± 12.6 1.2 [1–

2.1]

20.1 ± 11.6 1.5 [1–

2.8]

Belagavi 30.1 ± 8.8 4.2 ± 2.2 7.2 ± 5.8 8.3 ± 4.1 3.6 [1–

6.5]

6.2 ± 3.1 4.9 ± 3.8 11.4 ± 5.2 2.6 [1–

4.6]

7.9 ± 3.7 3.8 [1–

6.7]

Tumakuru 29.4 ± 9.5 5 ± 2.4 5.9 ± 4.7 9.4 ± 3.9 3.1 [1–

5.4]

7.4 ± 3.4 4 [1–

7.1]

14 ± 5.4 2.1 [1–

3.6]

9.2 ± 3.7 3.2 [1–

5.5]

Udupi 36.4 ± 9 7.3 ± 3.3 5 ± 3.5 15.5 ± 7 2.3 [1–

3.9]

11.3 ± 4.7 3.2 ± 2.1 22.2 ± 9.1 1.6 [1–

2.7]

13.9 ± 5.8 2.6 [1–

4.3]

Kalaburagi 29.8 ± 8.6 7.9 ± 4 3.8 [1–

6.8]

14.7 ± 6.9 2 [1–

3.5]

10.7 ± 4.6 2.8 [1–

4.8]

22.5 ± 9 1.3 [1–

2.2]

14.7 ± 6.6 2 [1–

3.5]

Dharwad 8.7 ± 6 18.9 ± 8.6 1 35 ± 11.8 1 26.5 ± 9.4 1 47.3 ± 12.2 1 36.6 ± 12.7 1

Shivamogga 21.4 ± 8.3 12.1 ± 5.4 1.8 [1–

3.3]

21.8 ± 9.2 1 [1–

1.8]

16.9 ± 7.5 1.3 [1–

2.4]

31.1 ± 12.5 1 [1–

1.2]

22.5 ± 9.3 1 [1–

1.8]

Davanagere 40.6 ± 9.7 16.6 ± 11.7 2.4 [1–

4.7]

28.7 ± 16.4 1.4 [1–

2.5]

22.7 ± 14.7 1.8 [1–

3.4]

36.8 ± 17.6 1.1 [1–

1.9]

29.5 ± 17.1 1.4 [1–

2.5]

Mandya 25.3 ± 8.6 5.3 ± 3.6 4.8 [1–

9.7]

9 ± 5 2.8 [1–

5.3]

7.9 ± 4.8 3.2 [1–

6.2]

13.6 ± 7.3 1.9 [1–

3.5]

9.1 ± 5.4 2.8 [1–

5.4]

Bengaluru Rural 28.7 ± 8.9 13.9 ± 9.7 2.1 [1–

4.2]

20 ± 11.7 1.4 [1–

2.7]

16.8 ± 10.9 1.7 [1–

3.3]

25.5 ± 12.5 1.1 [1–

2]

19.4 ± 11 1.5 [1–

2.8]

Chitradurga 25.9 ± 8.9 13 ± 9 2 [1–

4.1]

16.3 ± 8.4 1.6 [1–

3]

14.6 ± 8.4 1.8 [1–

3.4]

19.9 ± 8.2 1.3 [1–

2.3]

16.1 ± 8.3 1.6 [1–

3]

Vijayapura 35.4 ± 9.7 4.3 ± 1.6 8.2 ± 5.3 8.4 ± 2.9 4.2 ± 2.6 6.3 ± 2.1 5.6 ± 3.4 11.9 ± 3.6 3 ± 1.7 8.2 ± 2.6 4.3 ± 2.6

Uttara Kannada 16.3 ± 7.5 6.6 ± 3.8 2.5 [1–

5.1]

12.2 ± 6.5 1.3 [1–

2.6]

8.8 ± 4.5 1.9 [1–

3.7]

16.1 ± 7.2 1 [1–

1.9]

11.2 ± 5.2 1.5 [1–

2.8]

Raichur 34.1 ± 9.3 6.6 ± 2.3 5.2 ± 3.2 12.3 ± 3.6 2.8 ± 1.6 9.3 ± 2.7 3.7 ± 2.1 18 ± 4.6 1.9 [1–

2.9]

12.1 ± 3.2 2.8 ± 1.5

Chikkamagaluru 31.8 ± 9 9.8 ± 5.7 3.2 [1–

6]

16.1 ± 7.2 2 [1–

3.4]

13.4 ± 6.6 2.4 [1–

4.2]

23.7 ± 10 1.3 [1–

2.2]

18 ± 9.4 1.8 [1–

3.2]

Koppal 22.3 ± 7.9 15.9 ± 8.3 1.4 [1–

2.6]

29.1 ± 12.6 1 [1–

1.4]

23.5 ± 11.1 1 [1–

1.7]

38 ± 14.7 1 28.9 ± 12.5 1 [1–

1.4]

Chikkaballapura 12.1 ± 7.6 7.3 ± 4.5 1.7 [1–

3.8]

11.6 ± 5.3 1 [1–

2.1]

9.5 ± 5 1.3 [1–

2.8]

16.5 ± 6.3 1 [1–

1.4]

12.3 ± 5.8 1 [1–

2.1]

Bagalkote 12 ± 7.1 10.1 ± 7.5 1.2 [1–

2.8]

14.4 ± 8.5 1 [1–

1.8]

13.9 ± 9.5 1 [1–2] 22.3 ± 12.2 1 [1–

1.1]

15.1 ± 9 1 [1–

1.7]

Gadag 9 ± 8 8.7 ± 3.6 1 [1–

2.3]

16.6 ± 5.7 1 [1–

1.2]

12.8 ± 4.6 1 [1–

1.6]

24.4 ± 8.3 1 16.5 ± 5.4 1 [1–

1.2]

(Continued)

PLOS COMPUTATIONAL BIOLOGY Modelling the first wave of COVID-19 in India

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010632 October 24, 2022 17 / 35

https://doi.org/10.1371/journal.pcbi.1010632


deaths by the multiplying factors tabulated in Table 4. We then run the program forward till

February 15, 2021, but now also allow the IFR to vary according to the parametrization

described earlier. Using this analysis we tabulate the actual infected percentages we predict by

Dec 15, 2020 and Feb 15, 2021 in Table 5, together with 95% confidence intervals. We find that

between 20% and 70% of the population in these districts has been infected by February 15,

2021. We find no substantial change in the actual infection between December 2020 and Feb-

ruary 2021.

The relationship between actual numbers of prior infections and results from serosurveys is

complicated by the observation that antibodies measured in such surveys have been observed

to decay in concentration over a period of several months. However, given the fact that the

peak in cases in Karnataka occurred over September-October 2020, and that the serosurvey

was performed during this period, it is reasonable to assume that this will not impact our inter-

pretation of the serosurvey observations [97].

2.2 Projections and data fitting for Karnataka state: The effect of death

undercounting

We now present our analysis of Karnataka state viewed as an aggregate of all its districts. Kar-

nataka has both urban and rural districts. We will assume that a suitable estimate of under-

counting at the level of the entire state can be obtained through a population average of the

undercounting at the level of its individual districts. Accounting for the fraction of the total

population associated to each district, multiplying them by the district undercounting factor U
(D) and summing these values gives us a population averaged death undercounting for Karna-

taka to be 2.2.

In this section we analyze the Karnataka infection curve in two ways. In the first, we assume

no death undercounting. In the second we multiply the reported deaths by 2.2 to account for

state-wide undercounting. Here the reported infection and deaths data are addressed using

our model. We have used the data till the end of the first wave, i.e. February 15, 2021. From the

sampled parameter space we predict the time evolution of bias (between actual and reported

infection), the IFR and the actual infected population.

Table 4. (Continued)

IFR = 0.3 No death

multiplier

IFR = 0.3 Death

multiplier = 2

IFR = 0.2 No death

multiplier

IFR = 0.2 Death

multiplier = 2

IFR = 0.15 No death

multiplier

District Observed sero

prevalence (%)

Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ Predicted

actual

infection

UðDÞ

Haveri 28.6 ± 8.8 10.7 ± 6.2 2.7 [1–

5.1]

17.9 ± 8.6 1.6 [1–

2.8]

14.4 ± 7.2 2 [1–

3.6]

24 ± 9.8 1.2 [1–

2.1]

18 ± 8.2 1.6 [1–

2.8]

Yadgir 31.6 ± 8.9 10.5 ± 7.9 3 [1–

6.1]

14.7 ± 9.6 2.1 [1–

4.1]

12.4 ± 8.5 2.5 [1–

5]

18.7 ± 9.9 1.7 [1–

3.1]

15.1 ± 9.3 2.1 [1–

4]

Kolar 16.1 ± 7.4 8.5 ± 6.3 1.9 [1–

4.2]

12.2 ± 7.5 1.3 [1–

2.7]

10.8 ± 7.5 1.5 [1–

3.2]

15.3 ± 8.3 1.1 [1–

2.2]

12.3 ± 7.3 1.3 [1–

2.7]

Bidar 18.7 ± 7.6 8.3 ± 4.6 2.3 [1–

4.5]

14.3 ± 6 1.3 [1–

2.4]

11.6 ± 5.7 1.6 [1–

3]

19.3 ± 6.9 1 [1–

1.7]

14.6 ± 5.9 1.3 [1–

2.6]

Ramanagara 29.3 ± 9.2 7.5 ± 4.5 3.9 [1–

7.5]

13.1 ± 6.2 2.2 [1–

4]

10.7 ± 6.1 2.7 [1–

5.1]

18.2 ± 7.7 1.6 [1–

2.8]

13.1 ± 6 2.2 [1–

3.9]

Chamarajanagara 21.1 ± 8.4 8.9 ± 6.5 2.4 [1–

5.1]

12.1 ± 6.4 1.7 [1–

3.3]

10.1 ± 5.9 2.1 [1–

4.2]

16.5 ± 7.1 1.3 [1–

2.4]

13 ± 7.2 1.6 [1–

3.1]

Kodagu 20.5 ± 8.2 14.9 ± 10.6 1.4 [1–

2.9]

19.8 ± 10.7 1 [1–2] 16.6 ± 10 1.2 [1–

2.4]

24.4 ± 10.3 1 [1–

1.5]

19.5 ± 10.8 1.1 [1–

2.1]

https://doi.org/10.1371/journal.pcbi.1010632.t004
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We present the results via a set of 6 plots in three panels. In the top panel we present the fit

to the daily reported cases (left—(a)) and to the daily reported deaths (right—(b)). The actual

predicted infections and the bias are plotted in the middle left (c) and right (d) plots respec-

tively. Note that the bias factor, once multiplied with the reported infections, provides the esti-

mate of actual infection. The change in the IFR (left—(e)) and the effective reproduction

number R(t) (right—(f)) estimates are plotted in bottom panel. For R(t) we also plot an inde-

pendent estimate [82] as a reference.

2.2.1 Karnataka: No death undercounting. In Fig 4 we provide model results for Karna-

taka state data assuming deaths have been counted accurately. The posterior distributions and

parameter constraints are provided in Fig F and Table A in S1 Text. Both infected and death

numbers are well described by the model. The state-wide data has a single peak in both

infected and deaths, indicating that the many variable peaks present in the individual districts

are averaged out to yield the relatively simple structure shown in the figure. The numbers for

those totally infected ranges between 15–45% at the 2σ level by mid February. We see that the

Fig 3. Ratio of seroprevalence reported in districts of Karnataka across the first two weeks of September, 2020 and our prediction of actual infected

on the same date. This ratio indicates the death under-counting in different districts assuming uniform IFR in different districts. We plot the ratios here

for IFR = 0.2 [a: left plot] and 0.3 [b: right plot] respectively. Note that these numbers are plotted from Table 4 for corresponding IFRs. For IFR = 0.3 the

INDSCI-SIM prediction of actual infected is certainly lesser than the IFR = 0.2 case. The plot on the right shows larger ratios compared to the left. The

maps are generated using the data made available at https://github.com/covid19india/covid19india-react/tree/master/public/maps. As per their declaration

the repository is available under an MIT License: https://github.com/covid19india/covid19india-react/blob/master/LICENSE.md.

https://doi.org/10.1371/journal.pcbi.1010632.g003
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strong urban to rural gradient in seropositivity, once averaged across the state, yields infected

fractions that are below those in the urban regions. The bias multiplier follows results obtained

from the city of Bengaluru.

The IFR shows a decreasing trend after lockdown with a final range of IFR between 0.05–

0.12%, consistent with estimates from the serological surveys [97]. These surveys find an over-

all adjusted total prevalence of 27.7% (95%CI 26.1–29.3); we obtain about 25% at the mid-line

of the 95% confidence interval in mid-September. The case-to-infection ratio was estimated to

be 1:40 while the infection fatality rate was 0.05%; our results are consistent with both observa-

tions. The R(t) band shows an increase after the lockdown till August 2020. After that R(t)
decreases till December 2020 and stays below 1 till February 2021. In this case, bounds on

cumulative infections and deaths are plotted with data in Figs C-E in S1 Text.

2.2.2 Karnataka: Incorporating death undercounting. Fig 5 shows our model predic-

tions for the Karnataka state data where the death timeseries is uniformly scaled with

Table 5. Estimation of actual infection in Karnataka districts on December 15, 2020 and February 15, 2021. The

uncertainties are quoted at 95% C.L. This table is obtained from an analysis that assumes a time varying IFR as

explained in Methods.

District December 15, 2020 February 15, 2021

Bengaluru Urban 73.5 ± 10.5 74.5 ± 10.5

Mysuru 34.6 ± 10.9 36.2 ± 11.4

Ballari 46.1 ± 13.3 47.5 ± 13.4

Dakshina Kannada 38.0 ± 11.7 39.6 ± 12.4

Hassan 37.0 ± 12.4 38.0 ± 12.8

Belagavi 33.2 ± 8.3 34.1 ± 8.4

Tumakuru 45.9 ± 13.2 48.9 ± 14.5

Udupi 48.7 ± 20.0 50.3 ± 20.4

Kalaburagi 41.1 ± 14.7 42.0 ± 15.0

Dharwad 33.7 ± 13.1 35.0 ± 13.5

Shivamogga 25.3 ± 9.4 25.9 ± 9.7

Davanagere 50.4 ± 22.4 51.3 ± 22.9

Mandya 38.3 ± 19.0 39.1 ± 19.5

Bengaluru Rural 50.4 ± 20.7 52.4 ± 21.3

Chitradurga 36.7 ± 22.9 38.7 ± 23.8

Vijayapura 43.7 ± 9.9 44.7 ± 10.1

Uttara Kannada 34.7 ± 15.2 35.8 ± 15.8

Raichur 43.3 ± 13.0 44.4 ± 13.0

Chikkamagaluru 67.8 ± 18.6 69.6 ± 19.0

Koppal 43.7 ± 25.8 43.6 ± 26.1

Chikkaballapura 28.8 ± 16.4 30.7 ± 17.6

Bagalkote 33.3 ± 27.1 33.6 ± 27.3

Gadag 37.6 ± 27.9 38.2 ± 28.3

Haveri 30.0 ± 10.8 31.1 ± 11.0

Yadgir 34.9 ± 19.2 35.5 ± 19.6

Kolar 21.3 ± 8.5 22.0 ± 9.0

Bidar 24.5 ± 9.3 25.4 ± 9.4

Ramanagara 40.3 ± 15.4 40.8 ± 15.6

Chamarajanagara 38.2 ± 17.6 39.6 ± 18.2

Kodagu 45.5 ± 22.8 49.2 ± 24.3

Karnataka (State) 51.3 ± 11.6 52.2 ± 11.3

https://doi.org/10.1371/journal.pcbi.1010632.t005
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multiplier of 2.2. The related shifts in the posterior distributions and parameter constraints

can be seen in Fig F and Table A in S1 Text). The daily infection and the scaled daily death

report fits are similar to Fig 4. However, compared to the analysis that assumed no death mul-

tiplier, predictions for the fraction of those infected ranges between 30–50% Table 5. A larger

death undercounting thus leads to a higher estimates of actual infection within the population.

Correspondingly, the bias multiplier is also large.

Fig 4. Timeseries analysis for Karnataka without death undercounting. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b:

top right] assuming no death undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right]

obtained as a ratio between actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom

right plot [f] contains our estimation of R(t) and an independent [82] measurement. Note that the bands correspond to 2σ and 3σ confidence levels. We do

not assume any death undercounting in this analysis.

https://doi.org/10.1371/journal.pcbi.1010632.g004
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With higher death numbers, the effective IFR decreases at a later stage (around September

2020), converging around February to the values without death undercounting. The effect of

death undercounting is absorbed mainly by the bias multiplier and therefore is reflected in the

actual infected numbers. We find that the R(t) is nearly identical to the analysis without death

undercounting. Assuming death undercounting, our estimates for the cumulative infections

and deaths are plotted alongside the data in Section 5, Figs C-E in S1 Text.

Fig 5. Timeseries analysis for Karnataka with death undercounting. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b:

top right] taking into account estimated death undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative

factor [d: right] obtained as a ratio between actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR.

The bottom right plot [f] contains our estimation of R(t) and an independent [82] measurement. Note that the bands correspond to 2σ and 3σ confidence

levels. In this analysis the reported death numbers are multiplied with 2.2, the average death undercounting we obtained from Karnataka districts assuming

Bengaluru Urban does not have any death undercounting.

https://doi.org/10.1371/journal.pcbi.1010632.g005
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2.3 Infection curves for select Indian cities

In this sub-section, we analyse of the progress of COVID-19 across the period Jan 2020—Feb-

ruary 15, 2021, for a few select Indian cities: Bengaluru, Chennai, Delhi, Pune and Mumbai.

For each of these cities, the data correspond to the urban district agglomeration within which

the city is embedded. We assume that deaths have been counted largely accurately for these cit-

ies, and thus that U(D) defined above is 1. We will return to the implications of this assump-

tion later.

All these cities show more than a single peak in reported cases. The origins of these peaks

are complex. Together, they represent a combination of relaxations of the lockdown and of

physical distancing, festivals and political activity at various times, the ebb and flow of migra-

tion from nearby districts, as well as day-to-day variations in testing. These effects are captured

in our multiple window model with adaptive selection, since infectivity parameters can now

vary across different windows and the bias factor between actual and reported cases can itself

evolve.

We present a set of 6 plots in three panels, as in results of Karnataka in the previous subsec-

tion. We show the results for Mumbai in a subsection below, and relegate the rest to Tables

D-G and Figs K-V in S1 Text.

2.3.1 Mumbai. Results for the city of Mumbai are provided in Fig 6. The population of the

district is taken from the projections for 2021 [99]. The posterior distributions and related

parameter constraints are provided in Fig H and Table B in S1 Text. The data for Mumbai show

two well resolved peaks around June-July 2020 and September-October 2020. Following the sec-

ond peak, reported infections reduce and remain roughly constant from about December 2020.

The reported deaths shows a peak and a plateau before reaching a second, smaller peak.

While the second peak in the reported infection is higher than the first peak, the plateau in the

reported death numbers around October 2020 is substantially lower than the July 2020 peak,

indicating better treatment interventions. There are no systematic outliers in the death num-

bers, once we apply our smoothing to the data. The sharp decrease in death cases in contrast to

the increase in reported infections could result from increase in testing (a lowering of the

TPR) and/or a decrease in IFR.

While the bias multipler decreases from 100 to 15, the IFR does not decrease as rapidly. At

2σ the data is consistent at about an IFR of 0.15%, which is the largest when compared to the

previously discussed cities. In Mumbai, a relatively smaller fraction of population (50%)

appears to be infected within this calculation. However, fluctuations in the infected data w.r.t.
the mean value translate to the uncertainties in the time-series estimation. Thus, the bands are

wider compared to Bengaluru, Chennai and Delhi. At the 2σ-level we estimate that 54–84% of

total Mumbai population may have been infected. R(t) shows a steady decrease within the

lockdown and after that till mid-August 2020 when it starts to rise again temporarily indicating

an upcoming second peak. Following the peak R(t) first reduces below 1 for a few months,

then rises to fluctuate around 1 in early 2021 till February.

Mumbai serosurvey data showed that 54�1% of samples in slums and 16�1% of those in

non-slums tested positive [100], in a study performed between June 29 and July 19, 2020.

These are broadly consistent with our estimates. Our estimates for cumulative infections and

deaths are plotted with data in Fig G in S1 Text.

2.4 India

To describe the data for India, we assume that the death undercounting factor that represents

India as a whole is the same as that obtained for the state of Karnataka, a factor of 2.2. In doing

this we are motivated by the observations that the urban-rural gradient can be substantial and
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that the division between urban and rural populations at the Karnataka state level and at the

national level are not too different, at an approximate ratio of about 35:65.

The national data for COVID-19 infections shows a single peak structure around mid-Sep-

tember 2020, at a bit less than 98,000 cases. The daily numbers then began to reduce after that

reaching a value of about 10,000 by January of 2021. Our model fits infection and death reports

in three adaptive windows between March 1, 2020 and February 15, 2021. For our calculations,

we use India’s population data from the projections reported in the 2019 report published by

National Commission on Population [101].

Fig 6. Timeseries analysis for Mumbai. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming no death

undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d: right] obtained as a ratio between

actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The bottom right plot [f] contains our

estimation of R(t) and an independent [82] measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

https://doi.org/10.1371/journal.pcbi.1010632.g006
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We find the bias multipliers change from 120 to 20 in this time period, thus indicating that

by the end of the first wave, infections were being underestimated by the reported cases

through a factor of 20. This decrease is in accordance with the reported overall increase in test-

ing during this period. At the 2σ level, by the middle of February when the second wave began,

we find that between 20–50% (95% CI) of Indian population was infected, with a point esti-

mate of about 35%. This is a more conservative estimate than made by others. However, we

believe it is consistent with the third ICMR serosurvey across December and January as well as

with the slow pace of case accumulation over January and February.

The IFR band is consistent with a global India IFR of about 0.1% (95%CI 0.05—0.15). The R
(t) band has several interesting features corroborated with the independent measurement plot-

ted in dots. Before the lockdown, the R(t) stays in the high range 2.5–3. During lockdown it

reduced to 1.5 and thereafter to the vicinity of 1.2. It stayed around 1.2 till August, going below 1

around October, signaling a steady decrease in infected numbers. A slight upward blip in

November 2020 is consistent with the festival season in the north and east of India. The R(t)
then stayed below 1 through till February 2021. Assuming death undercounting, estimations for

cumulative infections and deaths for India are plotted with data in Fig I in S1 Text. We present

the posterior distribution of model parameters for the national data analysis in Fig J in S1 Text.

Our estimates indicate that at the beginning of March the mean exposed population in

India was around 6000. Around 14 March the number of officially reported infections in India

crossed 100, but we expect that a lot of infections must have escaped detection.

Three adaptive windows are defined between simulation onset (March beginning) to 154’th

day from the onset (August 2, 2020); between August 2, 2020 to October 21, 2020 (234th day

from the simulation onset) and October 22, 2020 to February 15, 2021 (simulation end). These

3 regions have three different associated infectivities β1 = 0.0755, β2 = 0.117 and β3 = 0.220.

This is the base infectivity with respect to the simulation onset. This is suggestive of two phases

in which increased relaxations of COVID-19-associated restrictions may have led to a rise of

cases, one around the beginning of August and one around the end of October, although one

should be careful not to overinterpret this data,

Note that the effective β is modified by the parameter τ which has a mean value of 142 days.

Therefore while the β is increasing with different windows, the effective β is also increasing.

The bias parameter is unbounded from above even with a conservative prior. However the

time evolution of bias determined by b and Δb for national data indicates a steady decrease,

reaching a bias of around 20 as plotted in Fig 7. The IFR shows a transition around mid July

(108 day since the onset) with a width ΔIFR of 2 months. σ1 and σ2 represents the noise in the

infected and deaths data respectively. They are well constrained.

The triangle plot of posteriors reveal strong correlations between parameters. Given the

time-series of infected persons, a fit to the initial data can be addressed either by having a large

initial exposed and lower infectivity or by having a smaller exposed population and a higher

infectivity. Such a negative correlation is seen in Fig J in S1 Text, between Einitial and β1. Since

smaller τ1 results in a faster decrease in infection by lowering the effective β, to fit the infection

data, if βi increases, τ must decrease to maintain a similar level of effective infectivity. These

negative correlations are reflected in the contour plots as well. The slope of the infection curve

is given by β; the β’s are thus positively correlated.

3 Discussion and conclusions

This paper describes the application of an epidemiological compartmental model, INDSCI-

SIM, to COVID-19 in India. We focused on describing the first wave, starting from the first

case in India on January 30, 2020 and continuing till mid-February, 2021, when a second and
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more destructive wave was initiated. Our intent was to obtain reasonable estimates for the frac-

tion of the Indian population that was infected prior to the onset of the second wave. A parallel

aim was to arrive at credible estimates of the Infection Fatality ratio (IFR) and of the under-

counting of both cases and deaths during the first wave.

Assuming that deaths were recorded accurately in one urban district of Karnataka, we

chose an infection fatality ratio for which our predicted fraction of infections and the fraction

obtained through serosurveys in early September 2020 were approximately equal. We then

Fig 7. Timeseries analysis for Indian national data. We plot the fit to the daily infected cases [a: top left] and daily reported deaths [b: top right] assuming

taking into account estimated death undercounting. Middle panel contains the cumulative actual infected cases [c: left] and the bias multiplicative factor [d:

right] obtained as a ratio between actual and reported infections. The left plot [e] at the bottom panel contains the evolution of age averaged IFR. The

bottom right plot [f] contains our estimation of R(t) and an independent [82] measurement. Note that the bands correspond to 2σ and 3σ confidence levels.

In this analysis the reported death numbers are multiplied by 2.2 to take into account a measure of presumed undercounting.

https://doi.org/10.1371/journal.pcbi.1010632.g007
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used this to determine the extent of death undercounting across other districts of Karnataka,

both urban and rural, by examining consistency between the numbers of infected as estimated

through serosurveys and the numbers of deaths that should have resulted given the IFR value.

We found that some districts could have under-counted deaths by a factor of about 5. Rural

districts, in general, tended to have lower levels of infection spread, likely associated to the fact

that agricultural labour and a good fraction of the rural workforce work outdoors, where infec-

tion risk is decidedly less. We thus estimated the overall fraction of infected in Karnataka to lie

in the interval 30%-50%. Then, factoring this death undercounting into our calculation, we

switched to a more refined calculation in whicn the IFR itself was allowed to vary. Averaging

over all districts weighted by their populations yielded a factor of 2.2 between total actual and

reported deaths in Karnataka state. We used these results to estimate that between 20–70% of

the population across these districts were infected by February 2020.

Our results for the cities of Mumbai, Delhi, Pune and Bangalore—we assume no death

undercounting here—indicate that, by February 2021, almost 60–80% of the population were

infected, consistent with serological surveys in these cities. We found that only one in 15–20

cases were detected overall [102]. The effective reproductive ratio in all cases settled to just

below 1 between December 2020 and February 2021, a period where cases were declining

across India.

Our analysis for India, incorporating the same level of death undercounting as for Karna-

taka state, estimates that a fraction of about 35% (CI: 20–50%) have been infected at the 95%

confidence level by the end of the first wave. We believe that this estimate, distinctly on the

lower side of estimates made by others, may account for the speed at which the second wave

has spread. It may also account for the fact that rural spread seems to have been far larger in

the second wave as opposed to the first, although the plight of urban India has tended to

attracted more attention.

Our IFR estimates, though broad, are consistent with an inferred IFR of about 0.1%, with a

broad 95% CI of (0.05—0.15). These are, as mentioned earlier, on the lower side vis a vis. pop-

ulation-based estimates for LMICs in general. We caution here that the extent of death under-

counting will impact any estimate of the IFR. There are, as yet, no completely credible

estimates of the extent of undercounting in the first COVID-19 wave in India, although this

question has attracted much attention recently [49, 103, 104]. A recent estimate is of 3.1–3.4

million COVID deaths across both waves, including 2.5–2.8 million during the period of the

second wave, April-June 2021 [105]. An estimate of about 0.6—0.9 million deaths in the first

wave is larger than our conservative estimate of a multiplier of 2.2 between actual and recorded

deaths, which would give us a number somewhat in excess of 0.3 million, but is overall consis-

tent with the range we had estimated of undercounting by a factor of between 2 and 5. This

would then imply an IFR of between 0.2 and 0.3, assuming that our estimates of infections

remained accurate with only the fraction of deaths among them being multiplied by a factor of

between 2 and 3.

In principle, we could have repeated the district-wise analysis we performed for Karnataka

state for all states in India, but would be faced with the same problem, that of finding a bench-

mark district where we could safely assume that deaths were being counted more-or-less accu-

rately (or knowing the extent of undercounting precisely) and then adjusting the mortality

figures of other districts accordingly. We expect that as more data is obtained through better

proxies for COVID-19 deaths or through accurate estimations of all-cause mortality, we

should be able to refine these calculations further with more precise input.

Our model and methods provide a valuable framework as well as specific tools for compre-

hensive retrospective analysis of epidemiological waves. When used with abundant caution,

we believe that it may be useful even for short-term projections; we strongly recommend that
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modellers must present uncertainties associated with any such projections. More specifically,

the results presented here should be valuable in determining the initial conditions for the sec-

ond wave, especially since we compute the posterior probabilities for the parameters which

enter our model. Given these, and additional epidemiological and clinical input, for example

the fraction of reinfections upon the introduction of a new strain, the decay of humoral immu-

nity, the persistence and extent of cellular immunity, a vaccination program that was being

slowly ramped up at the time of onset of the second wave as well as other features of the Indian

response across February and March of 2021, we can then begin to address the question of

what led to the fast increase of cases in the second wave. Our methodological innovations

include accounting for a time-dependent improvement in case identification as well as in treat-

ment leading to lower mortality, all implemented within a fully Bayesian framework. Ques-

tions such as the issue of reinfections as a consequence of immune escape, of partial immunity

from the ongoing vaccination program, of vaccine breakthroughs at a low rate and of the

impacts of multiple lock-downs applied inhomogeneously throughout the country should fac-

tor into any further analysis of events after the end of the first wave of COVID-19 in India.

These impact public health policy intimately, especially as they are relevant to both testing

strategies and vaccination policies [106, 107]. It is here that we expect that well formulated and

bench-marked models should be of substantial use, both to understand the past better as well

as to project the future more accurately.

4 Codes developed and used

We developed a fast FORTRAN code ELiXSIR—Extended, zone Linked IX-compartmental
SIR model: a code to simulate COVID19 infection as a solver for the model [108]. A version of

ELiXSIR is available for download in https://gitlab.com/dhirajhazra/eSIR_INDIA. The code

is designed for arbitrary number of age groups and regions. We acknowledge the use of

PolyChord through the publicly available code CosmoChord https://github.com/

williamjameshandley/CosmoChord. ELiXSIR is fused with CosmoChord for the purpose of

data analysis and post processing. See Fig B in S1 Text that provides a flowchart of how our

analysis is structured.

Supporting information

S1 Text. Section 1: Computation of reproduction number R0. We provide the calculation of

the basic reproductive ratio corresponding to the age-stratified model, assuming uniform

infectivity and values of � = 1, using a next-generation-matrix method. Section 2: Contact

matrices between stratified age-groups. We describe how the contact matrices of Ref. [75]

can be specified for our use here, combining contact matrices with a 5-year resolution into a

more coarse-grained description. Fig A: The coarse-grained contact matrices for India during

(top) and without lockdown (bottom). Section 3: Brief discussion on Nested Sampling. We

briefly discuss the sampling method we have used in our analysis. Section 4: Flowchart of our

analysis. We discuss the essentials of the algorithm and techniques and provide a flowchart of

the analysis. Fig B: A schematic flowchart of our analysis. Section 5: Supporting plots for

Karnataka, Mumbai and India (aggregate) analysis. We present supporting plots and tables

corresponding to our analysis for Karnataka state, Mumbai and for India-wide numbers.

Table A: Karnataka: Constraints on parameters. Fig C: Karnataka: Bounds on cumulative

infection with no death multiplier. Fig D: Karnataka: Bounds on cumulative infection with a

death multiplier of 2.2. Fig E: Karnataka: Bounds on cumulative infection with a death multi-

plier of 5. Fig F: Karnataka: Marginalized posteriors of the parameters. Table B: Mumbai:

Constraints on parameters. Fig G: Mumbai: Bounds on cumulative infection with no death
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multiplier. Fig H: Mumbai: Marginalized posteriors of the parameters. Table C: India: Mean

and 95% bounds on the parameters. Fig I: India: Bounds on cumulative infection with a death

multiplier of 2.2. Fig J: India: Marginalized posteriors of the parameters. Section 6: Infection

curves for select Indian cities. In the main text, we presented the analysis of Mumbai alone.

Here, following the same protocol, we describe results for Bengaluru Urban, Chennai, Pune,

and Delhi. Table D: Bengaluru Urban: Constraints on parameters. Fig K: Bengaluru Urban:

Timeseries analysis for Bengaluru Urban. Fig L: Bengaluru Urban: Bounds on cumulative

infection. Fig M: Bengaluru Urban: Marginalized posteriors of the parameters. Table E: Chen-

nai: Constraints on parameters. Fig N: Chennai: Timeseries analysis for Chennai. Fig O: Chen-

nai: Bounds on cumulative infection. Fig P: Chennai: Marginalized posteriors of the

parameters. Table F: Delhi: Constraints on parameters. Fig Q: Delhi: Timeseries analysis for

Delhi. Fig R: Delhi: Bounds on cumulative infection. Fig S: Delhi: Marginalized posteriors.

Table G: Pune: Constraints on parameters. Fig T: Pune: Timeseries analysis for Pune. Fig U:

Pune: Bounds on cumulative infection. Fig V: Pune: Marginalized posteriors of the parame-

ters.

(PDF)

Acknowledgments

The numerical simulations discussed in the paper have been performed at the Institute of

Mathematical Science’s High Performance Computing facility Nandadevi. DKH would like to

thank Xingang Chen, Will Handley and Joshua Speagle for important discussions. BSP and

SMS would like to thank Mihir Arjunwadkar for early discussions. GIM would like to thank

Siva Athreya, Sandeep Krishna, Brian Wahl, Philip Cherian, Vaibhhav Sinha, Giridhara Babu,

Bhramar Mukherjee, Gagandeep Kang, L S Shashidhara, Shahid Jameel, Kayla Laserson and

Harish Iyer for many related discussions.

Author Contributions

Conceptualization: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Vish-

wesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Data curation: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Farhina

Mozaffer, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Formal analysis: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Sitabhra

Sinha, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Funding acquisition: Gautam I. Menon.

Investigation: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Farhina

Mozaffer, Sitabhra Sinha, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Methodology: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Farhina

Mozaffer, Sitabhra Sinha, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Project administration: Dhiraj Kumar Hazra, Pinaki Chaudhuri, Gautam I. Menon.

Resources: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Vishwesha Gut-

tal, Pinaki Chaudhuri, Gautam I. Menon.

Software: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Vishwesha Gut-

tal, Gautam I. Menon.

Supervision: Gautam I. Menon.

PLOS COMPUTATIONAL BIOLOGY Modelling the first wave of COVID-19 in India

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010632 October 24, 2022 29 / 35

https://doi.org/10.1371/journal.pcbi.1010632


Validation: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Farhina Mozaf-

fer, Sitabhra Sinha, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Visualization: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar, Farhina

Mozaffer, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Writing – original draft: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekatkar,

Sitabhra Sinha, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I. Menon.

Writing – review & editing: Dhiraj Kumar Hazra, Bhalchandra S. Pujari, Snehal M. Shekat-

kar, Farhina Mozaffer, Sitabhra Sinha, Vishwesha Guttal, Pinaki Chaudhuri, Gautam I.

Menon.

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneu-

monia in China, 2019. New England Journal of Medicine. 2020; 382(8):727–733. https://doi.org/10.

1056/NEJMoa2001017 PMID: 31978945

2. Russell TW, Wu JT, Clifford S, Edmunds WJ, Kucharski AJ, Jit M. Effect of internationally imported

cases on internal spread of COVID-19: a mathematical modelling study. The Lancet Public Health.

2021; 6(1):e12–e20. https://doi.org/10.1016/S2468-2667(20)30263-2 PMID: 33301722

3. Andrews MA, Areekal B, Rajesh KR, Krishnan J, Suryakala R, Krishnan B, et al. First confirmed case

of COVID-19 infection in India: A case report. Indian Journal of Medical Research. 2020; 151(5):490.

https://doi.org/10.4103/ijmr.IJMR_2131_20 PMID: 32611918

4. Lancet T. India under COVID-19 lockdown. Lancet (London, England). 2020; 395(10233):1315.

https://doi.org/10.1016/S0140-6736(20)30938-7

5. Pulla P. Covid-19: India imposes lockdown for 21 days and cases rise. BMJ. 2020; p. m1251. https://

doi.org/10.1136/bmj.m1251 PMID: 32217534

6. Pons-Salort M, John J, Watson OJ, Brazeau NF, Verity R, Kang G, et al. Reconstructing the COVID-

19 epidemic in Delhi, India: infection attack rate and reporting of deaths. Infectious Diseases (except

HIV/AIDS); 2021. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.03.23.21254092.

7. Mallapaty S. India’s massive COVID surge puzzles scientists; 2021. Available from: https://www.

natureasia.com/en/nindia/article/10.1038/nindia.2021.57.

8. Menon GI. The Novel Coronavirus Variants and India’s Uncertain Future; 2021. Available from: https://

science.thewire.in/health/sars-cov-2-variants-b117-b1617-india-second-wave-uncertain-future/.

9. Mandal S, Bhatnagar T, Arinaminpathy N, Agarwal A, Chowdhury A, Murhekar M, et al. Prudent public

health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathe-

matical model-based approach. Indian Journal of Medical Research. 2020; 151(2):190. https://doi.org/

10.4103/ijmr.IJMR_504_20 PMID: 32362645

10. Chatterjee K, Chatterjee K, Kumar A, Shankar S. Healthcare impact of COVID-19 epidemic in India: A

stochastic mathematical model. Medical Journal Armed Forces India. 2020; 76(2):147–155. https://

doi.org/10.1016/j.mjafi.2020.03.022 PMID: 32292232

11. Ray D, Salvatore M, Bhattacharyya R, Wang L, Du J, Mohammed S, et al. Predictions, role of interven-

tions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data

science call to arms. Harvard Data Science Review. 2020; 2020(Suppl 1). https://doi.org/10.1162/

99608f92.60e08ed5 PMID: 32607504

12. Agrawal S, Bhandari S, Bhattacharjee A, Deo A, Dixit NM, Harsha P, et al. City-Scale Agent-Based

Simulators for the Study of Non-pharmaceutical Interventions in the Context of the COVID-19 Epi-

demic: IISc-TIFR COVID-19 City-Scale Simulation Team. Journal of the Indian Institute of Science.

2020; 100(4):809–847. https://doi.org/10.1007/s41745-020-00211-3 PMID: 33199946

13. Ganesan S, Subramani D. Spatio-temporal predictive modeling framework for infectious disease

spread. Scientific Reports. 2021; 11(1):6741. https://doi.org/10.1038/s41598-021-86084-7 PMID:

33762613

14. Banerjee R, Bhattacharjee S, Varadwaj PK. Analyses and Forecast for COVID-19 epidemic in India.

Infectious Diseases (except HIV/AIDS); 2020. Available from: http://medrxiv.org/lookup/doi/10.1101/

2020.06.26.20141077.

15. Ansumali S, Kumar A, Agarwal S, Shashank HJ, Prakash MK. A steady trickle-down from metro dis-

tricts and improving epidemic-parameters characterize the increasing COVID-19 cases in India.

medRxiv. 2020; p. 2020.09.28.20202978.

PLOS COMPUTATIONAL BIOLOGY Modelling the first wave of COVID-19 in India

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010632 October 24, 2022 30 / 35

https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
https://doi.org/10.1016/S2468-2667(20)30263-2
http://www.ncbi.nlm.nih.gov/pubmed/33301722
https://doi.org/10.4103/ijmr.IJMR_2131_20
http://www.ncbi.nlm.nih.gov/pubmed/32611918
https://doi.org/10.1016/S0140-6736(20)30938-7
https://doi.org/10.1136/bmj.m1251
https://doi.org/10.1136/bmj.m1251
http://www.ncbi.nlm.nih.gov/pubmed/32217534
http://medrxiv.org/lookup/doi/10.1101/2021.03.23.21254092
https://www.natureasia.com/en/nindia/article/10.1038/nindia.2021.57
https://www.natureasia.com/en/nindia/article/10.1038/nindia.2021.57
https://science.thewire.in/health/sars-cov-2-variants-b117-b1617-india-second-wave-uncertain-future/
https://science.thewire.in/health/sars-cov-2-variants-b117-b1617-india-second-wave-uncertain-future/
https://doi.org/10.4103/ijmr.IJMR_504_20
https://doi.org/10.4103/ijmr.IJMR_504_20
http://www.ncbi.nlm.nih.gov/pubmed/32362645
https://doi.org/10.1016/j.mjafi.2020.03.022
https://doi.org/10.1016/j.mjafi.2020.03.022
http://www.ncbi.nlm.nih.gov/pubmed/32292232
https://doi.org/10.1162/99608f92.60e08ed5
https://doi.org/10.1162/99608f92.60e08ed5
http://www.ncbi.nlm.nih.gov/pubmed/32607504
https://doi.org/10.1007/s41745-020-00211-3
http://www.ncbi.nlm.nih.gov/pubmed/33199946
https://doi.org/10.1038/s41598-021-86084-7
http://www.ncbi.nlm.nih.gov/pubmed/33762613
http://medrxiv.org/lookup/doi/10.1101/2020.06.26.20141077
http://medrxiv.org/lookup/doi/10.1101/2020.06.26.20141077
https://doi.org/10.1371/journal.pcbi.1010632


16. Basu D, Salvatore M, Ray D, Kleinsasser M, Purkayastha S, Bhattacharyya R, et al. A Comprehensive

Public Health Evaluation of Lockdown as a Non-pharmaceutical Intervention on COVID-19 Spread in

India: National Trends Masking State Level Variations. medRxiv. 2020; p. 2020.05.25.20113043.

17. Bhaskar A, Ponnuraja C, Srinivasan R, Padmanaban S. Distribution and growth rate of COVID-19 out-

break in Tamil Nadu: A log-linear regression approach. Indian Journal of Public Health. 2020; 64

(6):188. https://doi.org/10.4103/ijph.IJPH_502_20

18. Bhattacharyya R, Bhaduri R, Kundu R, Salvatore M, Mukherjee B. Reconciling epidemiological models

with misclassified case-counts for SARS-CoV-2 with seroprevalence surveys: A case study in Delhi,

India. medRxiv. 2020; p. 2020.07.31.20166249.

19. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions

on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020; 368(6489):395–

400. https://doi.org/10.1126/science.aba9757 PMID: 32144116

20. Deo V, Chetiya AR, Deka B, Grover G. Forecasting Transmission Dynamics of COVID-19 Epidemic in

India Under Various Containment Measures- A Time-Dependent State-Space SIR Approach. medR-

xiv. 2020; p. 2020.05.08.20095877.

21. Gupta S, Shah S, Chaturvedi S, Thakkar P, Solanki P, Dibyachintan S, et al. An India-specific Com-

partmental Model for Covid-19: Projections and Intervention Strategies by Incorporating Geographical,

Infrastructural and Response Heterogeneity. arXiv:200714392 [physics, q-bio]. 2020;.

22. Kotwal A, Yadav AK, Yadav J, Kotwal J, Khune S. Predictive models of COVID-19 in India: A rapid

review. Medical Journal Armed Forces India. 2020; 76(4):377–386. https://doi.org/10.1016/j.mjafi.

2020.06.001 PMID: 32836710

23. Lahiri A, Jha S, Bhattacharya S, Ray S, Chakraborty A, et al. Effectiveness of preventive measures

against COVID-19: A systematic review of In Silico modeling studies in indian context Lahiri A, Jha SS,

Bhattacharya S, Ray S, Chakraborty A—Indian J Public Health; 2020. Available from: https://www.ijph.

in/article.asp?issn=0019-557X;year=2020;volume=64;issue=6;spage=156;epage=167;aulast=Lahiri.

24. Laxminarayan R, John J. Is Gradual and Controlled Approach to Herd Protection a Valid Strategy to

Curb the COVID-19 Pandemic?; 2020. Available from: https://www.indianpediatrics.net/june2020/

june-505-507.htm.

25. Mitra A, Pakhare AP, Roy A, Joshi A. Impact of COVID-19 epidemic curtailment strategies in selected

Indian states: an analysis by reproduction number and doubling time with incidence modelling. medR-

xiv. 2020; p. 2020.05.10.20094946. https://doi.org/10.1101/2020.05.07.20093542 PMID: 32511508

26. Pant R, Choudhury LP, Rajesh JG, Yeldandi VV. COVID-19 Epidemic Dynamics and Population Pro-

jections from Early Days of Case Reporting in a 40 million population from Southern India. medRxiv.

2020; p. 2020.04.17.20070292.

27. Ranjan R. Predictions for COVID-19 Outbreak in India using epidemiological models. medRxiv. 2020;

p. 2020.04.02.20051466.

28. Sardar T, Nadim SS, Rana S, Chattopadhyay J. Assessment of lockdown effect in some states and

overall India: A predictive mathematical study on COVID-19 outbreak. Chaos, Solitons, and Fractals.

2020; 139:110078. https://doi.org/10.1016/j.chaos.2020.110078 PMID: 32834620

29. Shah K, Awasthi A, Modi B, Kundapur R, Saxena D. Unfolding trends of COVID-19 transmission in

India: Critical review of available Mathematical models. Indian Journal of Community Health. 2020; 32

(2 (Supp)):206–214. https://doi.org/10.47203/IJCH.2020.v32i02SUPP.006

30. Welling A, Patel A, Kulkarni P, Vaidya VG. Multilevel Integrated Model with a Novel Systems Approach

(MIMANSA) for Simulating the Spread of COVID-19. medRxiv. 2020; p. 2020.05.12.20099291.

31. Agrawal M, Kanitkar M, Vidyasagar M. SUTRA: A Novel Approach to Modelling Pandemics with

Asymptomatic and Undetected Patients, and Applications to COVID-19. arXiv:210109158 [q-bio].

2021;.

32. Singh R, Adhikari R. Age-structured impact of social distancing on the COVID-19 epidemic in India.

arXiv:200312055 [cond-mat, q-bio]. 2020;.

33. Pujari BS, Shekatkar S. Multi-city modeling of epidemics using spatial networks: Application to 2019-

nCov (COVID-19) coronavirus in India. medRxiv. 2020; p. 2020.03.13.20035386.

34. Ansumali S, Kaushal S, Kumar A, Prakash MK, Vidyasagar M. Modelling a pandemic with asymptom-

atic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2. Annual Reviews

in Control. 2020; 50:432–447. https://doi.org/10.1016/j.arcontrol.2020.10.003 PMID: 33071595

35. Saraswat B, Ansumali S, Prakash MK. Using high effective risk of Adult-Senior duo in multigenera-

tional homes to prioritize COVID-19 vaccination. medRxiv. 2021; p. 2021.04.14.21255468.

36. Purkayastha S, Bhattacharyya R, Bhaduri R, Kundu R, Gu X, Salvatore M, et al. A comparison of five

epidemiological models for transmission of SARS-CoV-2 in India. medRxiv. 2020;

p. 2020.09.19.20198010.

PLOS COMPUTATIONAL BIOLOGY Modelling the first wave of COVID-19 in India

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010632 October 24, 2022 31 / 35

https://doi.org/10.4103/ijph.IJPH_502_20
https://doi.org/10.1126/science.aba9757
http://www.ncbi.nlm.nih.gov/pubmed/32144116
https://doi.org/10.1016/j.mjafi.2020.06.001
https://doi.org/10.1016/j.mjafi.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32836710
https://www.ijph.in/article.asp?issn=0019-557X;year=2020;volume=64;issue=6;spage=156;epage=167;aulast=Lahiri
https://www.ijph.in/article.asp?issn=0019-557X;year=2020;volume=64;issue=6;spage=156;epage=167;aulast=Lahiri
https://www.indianpediatrics.net/june2020/june-505-507.htm
https://www.indianpediatrics.net/june2020/june-505-507.htm
https://doi.org/10.1101/2020.05.07.20093542
http://www.ncbi.nlm.nih.gov/pubmed/32511508
https://doi.org/10.1016/j.chaos.2020.110078
http://www.ncbi.nlm.nih.gov/pubmed/32834620
https://doi.org/10.47203/IJCH.2020.v32i02SUPP.006
https://doi.org/10.1016/j.arcontrol.2020.10.003
http://www.ncbi.nlm.nih.gov/pubmed/33071595
https://doi.org/10.1371/journal.pcbi.1010632


37. Kuppalli K, Gala P, Cherabuddi K, Kalantri SP, Mohanan M, Mukherjee B, et al. India’s COVID-19 cri-

sis: a call for international action. The Lancet. 2021; 397(10290):2132–2135. https://doi.org/10.1016/

S0140-6736(21)01121-1

38. Naushin S, Sardana V, Ujjainiya R, Bhatheja N, Kutum R, Bhaskar AK, et al. Insights from a Pan India

Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. eLife. 2021; 10:e66537.

https://doi.org/10.7554/eLife.66537 PMID: 33876727

39. John J, Kang G. Tracking SARS-CoV-2 infection in India with serology. The Lancet Global Health.

2021; 9(3):e219–e220. https://doi.org/10.1016/S2214-109X(20)30546-5 PMID: 33515513

40. Velumani A, Nikam C, Suraweera W, Fu SH, Gelband H, Brown P, et al. SARS-CoV-2 Seroprevalence

in 12 Cities of India from July-December 2020. medRxiv. 2021; p. 2021.03.19.21253429.

41. Murhekar MV, Bhatnagar T, Selvaraju S, Rade K, Saravanakumar V, Thangaraj JWV, et al. Preva-

lence of SARS-CoV-2 infection in India: Findings from the national serosurvey, May-June 2020. Indian

Journal of Medical Research. 2020; 152(1):48. https://doi.org/10.4103/ijmr.IJMR_3290_20 PMID:

32952144

42. Murhekar MV, Bhatnagar T, Selvaraju S, Saravanakumar V, Thangaraj JWV, Shah N, et al. SARS-

CoV-2 antibody seroprevalence in India, August–September, 2020: findings from the second nation-

wide household serosurvey. The Lancet Global Health. 2021; 9(3):e257–e266. https://doi.org/10.

1016/S2214-109X(20)30544-1 PMID: 33515512

43. Murhekar MV, Bhatnagar T, Thangaraj JWV, Saravanakumar V, Kumar MS, Selvaraju S, et al. SARS-

CoV-2 seroprevalence among the general population and healthcare workers in India, December

2020–January 2021. International Journal of Infectious Diseases. 2021; 108:145–155. https://doi.org/

10.1016/j.ijid.2021.05.040 PMID: 34022338

44. Jagadeesan M, Ganeshkumar P, Kaur P, Sriramulu HM, Sakthivel M, Rubeshkumar P, et al. Epidemi-

ology of COVID-19 and effect of public health interventions, Chennai, India, March–October 2020: an

analysis of COVID-19 surveillance system. BMJ open. 2022; 12(3):e052067. https://doi.org/10.1136/

bmjopen-2021-052067

45. Malani A, Ramachandran S, Tandel V, Parasa R, Sudharshini S, Prakash V, et al. SARS-CoV-2 Sero-

prevalence in Tamil Nadu in October-November 2020. medRxiv. 2021; p. 2021.02.03.21250949.

46. Delhi sero-survey results: Over 23% residents have coronavirus antibodies; 2020. Available from:

https://www.livemint.com/news/india/delhi-sero-survey-results-over-23-residents-have-coronavirus-

antibodies-11595316584369.html.

47. Ghose A, Bhattacharya S, Karthikeyan AS, Kudale A, Monteiro JM, Joshi A, et al. Community preva-

lence of antibodies to SARS-CoV-2 and correlates of protective immunity in five localities in an Indian

metropolitan city. medRxiv. 2020; p. 2020.11.17.20228155.

48. Malani A, Shah D, Kang G, Lobo GN, Shastri J, Mohanan M, et al. Seroprevalence of SARS-CoV-2 in

slums and non-slums of Mumbai, India, during June 29-July 19, 2020. medRxiv. 2020;

p. 2020.08.27.20182741.

49. Banaji M. Estimating COVID-19 infection fatality rate in Mumbai during 2020. medRxiv. 2021;

p. 2021.04.08.21255101.

50. Childs ML, Kain MP, Kirk D, Harris M, Couper L, Nova N, et al. The impact of long-term non-pharma-

ceutical interventions on COVID-19 epidemic dynamics and control. medRxiv. 2020;

p. 2020.05.03.20089078. https://doi.org/10.1101/2020.05.03.20089078 PMID: 32511583

51. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford, New York:

Oxford University Press; 1992.

52. Keeling M, Rohani P. Modeling Infectious Diseases in Humans and Animals; 2007. Available from:

https://press.princeton.edu/books/hardcover/9780691116174/modeling-infectious-diseases-in-

humans-and-animals.

53. Perra N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Physics

Reports. 2021; 913:1–52. https://doi.org/10.1016/j.physrep.2021.02.001 PMID: 33612922

54. Tsai PH, Lai WY, Lin YY, Luo YH, Lin YT, Chen HK, et al. Clinical manifestation and disease progres-

sion in COVID-19 infection. Journal of the Chinese Medical Association: JCMA. 2021; 84(1):3–8.

https://doi.org/10.1097/JCMA.0000000000000463 PMID: 33230062

55. Choi MH, Ahn H, Ryu HS, Kim BJ, Jang J, Jung M, et al. Clinical Characteristics and Disease Progres-

sion in Early-Stage COVID-19 Patients in South Korea. Journal of Clinical Medicine. 2020; 9(6):1959.

https://doi.org/10.3390/jcm9061959 PMID: 32585855

56. Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, et al. Clinical progression of patients with COVID-19 in Shang-

hai, China. The Journal of Infection. 2020; 80(5):e1–e6. https://doi.org/10.1016/j.jinf.2020.03.004

PMID: 32171869

PLOS COMPUTATIONAL BIOLOGY Modelling the first wave of COVID-19 in India

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010632 October 24, 2022 32 / 35

https://doi.org/10.1016/S0140-6736(21)01121-1
https://doi.org/10.1016/S0140-6736(21)01121-1
https://doi.org/10.7554/eLife.66537
http://www.ncbi.nlm.nih.gov/pubmed/33876727
https://doi.org/10.1016/S2214-109X(20)30546-5
http://www.ncbi.nlm.nih.gov/pubmed/33515513
https://doi.org/10.4103/ijmr.IJMR_3290_20
http://www.ncbi.nlm.nih.gov/pubmed/32952144
https://doi.org/10.1016/S2214-109X(20)30544-1
https://doi.org/10.1016/S2214-109X(20)30544-1
http://www.ncbi.nlm.nih.gov/pubmed/33515512
https://doi.org/10.1016/j.ijid.2021.05.040
https://doi.org/10.1016/j.ijid.2021.05.040
http://www.ncbi.nlm.nih.gov/pubmed/34022338
https://doi.org/10.1136/bmjopen-2021-052067
https://doi.org/10.1136/bmjopen-2021-052067
https://www.livemint.com/news/india/delhi-sero-survey-results-over-23-residents-have-coronavirus-antibodies-11595316584369.html
https://www.livemint.com/news/india/delhi-sero-survey-results-over-23-residents-have-coronavirus-antibodies-11595316584369.html
https://doi.org/10.1101/2020.05.03.20089078
http://www.ncbi.nlm.nih.gov/pubmed/32511583
https://press.princeton.edu/books/hardcover/9780691116174/modeling-infectious-diseases-in-humans-and-animals
https://press.princeton.edu/books/hardcover/9780691116174/modeling-infectious-diseases-in-humans-and-animals
https://doi.org/10.1016/j.physrep.2021.02.001
http://www.ncbi.nlm.nih.gov/pubmed/33612922
https://doi.org/10.1097/JCMA.0000000000000463
http://www.ncbi.nlm.nih.gov/pubmed/33230062
https://doi.org/10.3390/jcm9061959
http://www.ncbi.nlm.nih.gov/pubmed/32585855
https://doi.org/10.1016/j.jinf.2020.03.004
http://www.ncbi.nlm.nih.gov/pubmed/32171869
https://doi.org/10.1371/journal.pcbi.1010632


57. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection. Annals of Internal Medicine.

2020; 173(5):362–367. https://doi.org/10.7326/M20-3012 PMID: 32491919

58. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated

with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.

The Lancet. 2020; 395(10223):514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 PMID:

31986261

59. Kimball A. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term

Care Skilled Nursing Facility—King County, Washington, March 2020. MMWR Morbidity and Mortality

Weekly Report. 2020; 69. https://doi.org/10.15585/mmwr.mm6913e1

60. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting

Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in

the New York City Area. JAMA. 2020; 323(20):2052–2059. https://doi.org/10.1001/jama.2020.6775

PMID: 32320003

61. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology,

clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective

cohort study. Lancet (London, England). 2020; 395(10239):1763–1770. https://doi.org/10.1016/

S0140-6736(20)31189-2

62. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK

patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospec-

tive observational cohort study. BMJ. 2020; 369:m1985. https://doi.org/10.1136/bmj.m1985 PMID:

32444460

63. Suleyman G, Fadel RA, Malette KM, Hammond C, Abdulla H, Entz A, et al. Clinical Characteristics

and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan

Detroit. JAMA Network Open. 2020; 3(6):e2012270–e2012270. https://doi.org/10.1001/

jamanetworkopen.2020.12270 PMID: 32543702

64. Singh BB, Ward MP, Lowerison M, Lewinson RT, Vallerand IA, Deardon R, et al. Meta-analysis and

adjusted estimation of COVID-19 case fatality risk in India and its association with the underlying

comorbidities. medRxiv. 2020; p. 2020.10.08.20209163.

65. Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on

COVID-19 outcomes in Europe. Biology of Sex Differences. 2020; 11(1):29. https://doi.org/10.1186/

s13293-020-00304-9 PMID: 32450906

66. Singh PP, Srivastava AK, Upadhyay SK, Singh A, Gupta P, Maurya S, et al. The association of ABO

blood group with the asymptomatic COVID-19 cases in India. medRxiv. 2021;

p. 2021.04.01.21254681. https://doi.org/10.1016/j.transci.2021.103224 PMID: 34366234

67. Kumar N, Shahul Hameed SK, Babu GR, Venkataswamy MM, Dinesh P, Kumar Bg P, et al. Descrip-

tive epidemiology of SARS-CoV-2 infection in Karnataka state, South India: Transmission dynamics of

symptomatic vs. asymptomatic infections. EClinicalMedicine. 2021; 32:100717. https://doi.org/10.

1016/j.eclinm.2020.100717 PMID: 33521608

68. Gupta M, Mohanta SS, Rao A, Parameswaran GG, Agarwal M, Arora M, et al. Transmission dynamics

of the COVID-19 epidemic in India and modeling optimal lockdown exit strategies. International Jour-

nal of Infectious Diseases. 2021; 103:579–589. https://doi.org/10.1016/j.ijid.2020.11.206 PMID:

33279653

69. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial Interval of COVID-19 among Publicly

Reported Confirmed Cases—Volume 26, Number 6—June 2020—Emerging Infectious Diseases jour-

nal—CDC. Emerging infectious diseases. 2020. https://doi.org/10.3201/eid2606.200357

70. Rasmussen AL, Popescu SV. SARS-CoV-2 transmission without symptoms. Science. 2021; 371

(6535):1206–1207. https://doi.org/10.1126/science.abf9569 PMID: 33737476

71. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Occurrence and

transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living system-

atic review and meta-analysis. PLOS Medicine. 2020; 17(9):e1003346. https://doi.org/10.1371/

journal.pmed.1003346 PMID: 32960881

72. Ferretti L, Ledda A, Wymant C, Zhao L, Ledda V, Abeler-Dörner L, et al. The timing of COVID-19 trans-

mission. medRxiv. 2020; p. 2020.09.04.20188516.

73. Barman MP, Rahman T, Bora K, Borgohain C. COVID-19 pandemic and its recovery time of patients

in India: A pilot study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020; 14

(5):1205–1211. https://doi.org/10.1016/j.dsx.2020.07.004 PMID: 32673841

74. Khalili M, Karamouzian M, Nasiri N, Javadi S, Mirzazadeh A, Sharifi H. Epidemiological characteristics

of COVID-19: a systematic review and meta-analysis. Epidemiology & Infection. 2020; 148. https://doi.

org/10.1017/S0950268820001430 PMID: 32594937

PLOS COMPUTATIONAL BIOLOGY Modelling the first wave of COVID-19 in India

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010632 October 24, 2022 33 / 35

https://doi.org/10.7326/M20-3012
http://www.ncbi.nlm.nih.gov/pubmed/32491919
https://doi.org/10.1016/S0140-6736(20)30154-9
http://www.ncbi.nlm.nih.gov/pubmed/31986261
https://doi.org/10.15585/mmwr.mm6913e1
https://doi.org/10.1001/jama.2020.6775
http://www.ncbi.nlm.nih.gov/pubmed/32320003
https://doi.org/10.1016/S0140-6736(20)31189-2
https://doi.org/10.1016/S0140-6736(20)31189-2
https://doi.org/10.1136/bmj.m1985
http://www.ncbi.nlm.nih.gov/pubmed/32444460
https://doi.org/10.1001/jamanetworkopen.2020.12270
https://doi.org/10.1001/jamanetworkopen.2020.12270
http://www.ncbi.nlm.nih.gov/pubmed/32543702
https://doi.org/10.1186/s13293-020-00304-9
https://doi.org/10.1186/s13293-020-00304-9
http://www.ncbi.nlm.nih.gov/pubmed/32450906
https://doi.org/10.1016/j.transci.2021.103224
http://www.ncbi.nlm.nih.gov/pubmed/34366234
https://doi.org/10.1016/j.eclinm.2020.100717
https://doi.org/10.1016/j.eclinm.2020.100717
http://www.ncbi.nlm.nih.gov/pubmed/33521608
https://doi.org/10.1016/j.ijid.2020.11.206
http://www.ncbi.nlm.nih.gov/pubmed/33279653
https://doi.org/10.3201/eid2606.200357
https://doi.org/10.1126/science.abf9569
http://www.ncbi.nlm.nih.gov/pubmed/33737476
https://doi.org/10.1371/journal.pmed.1003346
https://doi.org/10.1371/journal.pmed.1003346
http://www.ncbi.nlm.nih.gov/pubmed/32960881
https://doi.org/10.1016/j.dsx.2020.07.004
http://www.ncbi.nlm.nih.gov/pubmed/32673841
https://doi.org/10.1017/S0950268820001430
https://doi.org/10.1017/S0950268820001430
http://www.ncbi.nlm.nih.gov/pubmed/32594937
https://doi.org/10.1371/journal.pcbi.1010632


75. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and

demographic data. PLOS Computational Biology. 2017; 13(9):e1005697. https://doi.org/10.1371/

journal.pcbi.1005697 PMID: 28898249

76. Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Hart G, Rosenfeld K, et al. Covasim: an agent-based

model of COVID-19 dynamics and interventions. medRxiv. 2020; p. 2020.05.10.20097469. https://doi.

org/10.1101/2020.11.03.20225409 PMID: 33173914

77. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: Impact of non-

pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand; 2020.

Available from: http://spiral.imperial.ac.uk/handle/10044/1/77482.

78. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the

age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public

policy implications. European Journal of Epidemiology. 2020; 35(12):1123–1138. https://doi.org/10.

1007/s10654-020-00698-1 PMID: 33289900

79. IHME | COVID-19 Projections; 2021. Available from: https://covid19.healthdata.org/.

80. Diekmann O, Heesterbeek JaP, Roberts MG. The construction of next-generation matrices for com-

partmental epidemic models. Journal of The Royal Society Interface. 2010; 7(47):873–885. https://doi.

org/10.1098/rsif.2009.0386 PMID: 19892718

81. Bettencourt LMA, Ribeiro RM. Real Time Bayesian Estimation of the Epidemic Potential of Emerging

Infectious Diseases. PLOS ONE. 2008; 3(5):e2185. https://doi.org/10.1371/journal.pone.0002185

PMID: 18478118

82. Gruisen G, Lerer A. k-sys/covid-19; 2021. Available from: https://github.com/k-sys/covid-19/blob/

fac27a226d907bf59a9205a59660d2f281621ad9/Realtime%20R0:ipynb.
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