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Abstract
In this note, we give a description of rational maps from the open unit disc D to the
pentablock thatmap the boundary ofD to the distinguishedboundary of the pentablock.
We also obtain a new characterization of the distinguished boundary of the pentablock.
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1 Introduction

In 2015,Agler, Lykova andYoung introduced anewboundeddomain called pentablock
in [6]. The pentablock is a subdomain of C3 denoted by P and defined as the image
of the domain {A ∈ M2(C) : ‖A‖ < 1} under the mapping

π : A = [ai j ] �→ (a21, tr(A), det(A)).

We denote the closure of P by P . The set P ⊂ C
3 is non-convex, polynomially

convex, and star-like about the origin, see [6]. The pentablock is an inhomogeneous
domain, see [23]. The complex geometry and function theory of the pentablock were
further developed in [6, 23, 26, 27].
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Attempts to solve particular cases of the μ−synthesis problem have also led to the
study of two other domains namely the symmetrized bidisc

G := {(tr(A), det(A)) : A = [ai j ]2×2, ‖A‖ < 1} ⊂ C
2,

see [7] and the tetrablock

E := {(a11, a22, det(A)) : A = [ai j ]2×2, ‖A‖ < 1} ⊂ C
3,

see [1]. We denote the closure of G by �. The set G and E are polynomially convex
and non-convex domains. The symmetrized bidisc and the tetrablock have attracted
a considerable amount of interest in recent years. For a greater exposition on these
domains, see [1, 4, 7, 9, 14–16, 19, 22, 24, 25].

Let � ⊂ C
d be a bounded polynomially convex domain with closure �. Let

A(�) be the algebra of continuous scalar functions on � that are holomorphic in �.

A boundary for � is a subset C of � such that every function in A(�) attains its
maximum modulus on C . The distinguished boundary of �, to be denoted by b�
(some authors write b�), is the smallest closed boundary of �.

The distinguished boundaries of the symmetrized bidisc and the tetrablock were
found in [7] and [1] to be

b� = {(s, p) ∈ C
2 : |s| ≤ 2, s = s p, |p| = 1}

= {(tr(U ), det(U )) : U = [ui j ]2×2,U is a unitary}

and

bE = {(u11, u22, det(U )) : U = [ui j ]2×2,U is a unitary},

respectively. A key fact used in the above descriptions of distinguished boundaries is
that the set of 2× 2 unitary matrices is the distinguished boundary of the 2× 2 matrix
operator-norm unit ball. It was shown in reference [6] that the sets

K0 =
{
(a, s, p) ∈ C

3 : (s, p) ∈ b�, |a| =
√
1 − 1

4
|s|2

}

and

K1 =
{
(a, s, p) ∈ C

3 : (s, p) ∈ b�, |a| ≤
√
1 − 1

4
|s|2

}

both are boundaries of the pentablock. It was further shown in reference [6] that the
set K0 is the distinguished boundary of the pentablock while

K1 = {(u21, tr(U ), det(U )) : U = [ui j ]2×2,U is a unitary}.
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This suggests that, unlike in the cases of the symmetrized bidisc and tetrablock, the
distinguished boundary of the pentablock is attuned to a certain special class of unitary
matrices rather thanwhole class of unitarymatrices. This note finds exactly that special
class that describes K0 via the map π. This, in turn, leads to a new description of the
distinguished boundary of the pentablock.

Let T denote the unit circle in the complex plane C. An analytic map x =
(x1, . . . , xd) : D → � is called a rational �−inner (some authors call it rational
�−inner) function if each xi is a rational function with poles outside D and

(x1(λ), . . . , xd(λ)) ∈ b�

for all λ ∈ T. In [17], W. Blaschke studied the rational D−inner functions and proved
that all rational D−inner functions are of the form

B(z) := eiθ
n∏
j=1

z − a j

1 − a j z

for some a1, a2, ..., an ∈ D and θ ∈ [0, 2π ]. Functions of this form are well-known
to be the finite Blaschke product. For a survey of results, see [18]. If � = D

d , then it
follows from d = 1 case that all rational Dd−inner functions are of the form

(B1(z), . . . Bd(z))

for some finite Blaschke products B1, . . . , Bd . A description of rational �−inner
functions is givenbyAgler–Lykova–Young, see [3].Alsalhi–Lykovagave a description
of rational E−inner functions, see [13]. In Sect. 3, we give a description of rational
P−inner functions, see Theorem 3.9.

Sometime after this paper was finished and uploaded to arXiv, [12] appeared on
arXiv. There is an overlap of one result of our paper with [12]. Theorem 3.9 also
appears there. The proofs are different. Fejér-Riesz Theorem is used in [12] whereas
our proof uses a study of the zeros and poles of certain functions.

2 A New Characterization of the Distinguished Boundary

In the following theorem, we shall give a characterization of points in bP. The proof
of the theorem will manifest a recipe to construct a 2 × 2 unitary matrix U = [ui j ]
for any (a, s, p) ∈ bP such that (a, s, p) = (u21, tr(U ), det(U )).

Theorem 2.1 For (a, s, p) ∈ C
3, the following are equivalent:

(1) (a, s, p) ∈ bP ,

(2) There exists a unique unitary matrix U =
(
u11 u12
u21 u22

)
such that

u11 = u22 and (a, s, p) = (u21, tr(U ), det(U )).
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Proof First, we shall prove that (1) ⇒ (2). Let (a, s, p) ∈ bP. Since bP = K0, we
have

|s| ≤ 2, s = s p, |p| = 1 and |a|2 = 1 − |s|2
4

.

In order to find the desired matrix U = [ui j ]2×2, we need to solve the following four
equations in four variables.

u11 − u22 = 0, u21 = a, u11 + u22 = s and u11u22 − u12u21 = p.

If a 	= 0, then we get a unique solution

(u11, u12, u21, u22) =
(
s

2
,
s2 − 4p

4a
, a,

s

2

)
.

A simple computation will show that the matrix U is unitary. If a = 0, then the set of
solutions is

{(u11, u12, u21, u22) =
( s
2
, λ, 0,

s

2

)
: λ ∈ C, s2 = 4p}.

Since |p| = 1, we get |s| = 2 and hence the matrix U = [ui j ]2×2 is unitary if and
only if λ = 0.

Now we shall prove that (2) ⇒ (1). Let U = [ui j ]2×2 be a unitary matrix with

u11 = u22 and (a, s, p) = (u21, tr(U ), det(U )).

Since U is a unitary, we get that (s, p) = (tr(U ), det(U )) ∈ b�, also

4|a|2 + |s|2 = 4|u21|2 + | tr(U )|2 = 4(|u21|2 + |u11|2) = 4.

This proves that (a, s, p) ∈ bP. 
�

3 RationalP−Inner Functions

In this section, we give a description of rational P−inner functions. First, recall that,
a rational map x = (x1, x2, x3) : D → P is said to be rational P−inner if

(
x1(λ), x2(λ), x3(λ)

) ∈ bP

for all λ ∈ T. Note that if (s, p) ∈ � and α ∈ D, then 1− sα + pα2 	= 0, see [8]. For
each α ∈ D, we define a function �α : C × � → C by

�α(a, s, p) = a(1 − |α|2)
1 − sα + pα2 .
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The function �α is analytic in C × G and continuous on C × �. One of the main
results of [6] contains several characterization of a point to be in P . We recall the one
characterization which we shall use later.

Theorem 3.1 [6, Theorem 5.3] For (a, s, p) ∈ C × �, the following are equivalent:

(1) (a, s, p) ∈ P,

(2) |�α(a, s, p)| ≤ 1 for all α ∈ D.

For any positive integer n and for any polynomial f of degree less than or equal to n,
we define the polynomial f ∼n by the formula,

f ∼n(λ) = λn f

(
1

λ

)
.

For a C−valued rational function x = f /g, where f and g are relatively prime
polynomials, we define deg(x) to be the maximum of deg( f ), deg(g). Note that if x
is a finite Blashcke product, then deg(x) is same as number of Blaschke factors in the
product. The following theorem gives a description of rational �−inner functions.

Theorem 3.2 [3, Proposition 2.2] Let h = (s, p) be a rational �−inner function with
deg(p) = n. Then there exist polynomials D and N such that

(1) deg(D), deg(N ) ≤ n
(2) N∼n(λ) = N (λ) on D,
(3) D(λ) 	= 0 on D,
(4) |N (λ)| ≤ 2|D(λ)| on D,
(5) s = N

D on D, and

(6) p = D∼n

D on D.

Conversely, if N and D are polynomials satisfying (1), (2), (4) above, D(λ) 	= 0 on
D, and s and p are defined by (5) and (6) respectively, then h = (s, p) is a rational
�−inner function with deg(p) = n.

Furthermore, a pair of polynomials N ′ and D′ satisfies (1)− (6) if and only if there
exists a non-zero real number t such that N = t N ′ and D = t D′.

Note that if x = (x1, x2, x3) is a rational P−inner function, then in particular,

(1) (x2(λ), x3(λ)) ∈ G for every λ ∈ D; and
(2) (x2(λ), x3(λ)) ∈ b� for every λ ∈ T.

Consequently, it is necessary for x = (x1, x2, x3) to be rational P−inner that (x2, x3)
be �−inner. The latter class is completely understood in view of Theorem 3.2. Thus,
our job reduces to understanding just the first coordinate of a rationalP-inner function.
This is what we do in the following sequence of preliminary results.

Lemma 3.3 If (x2, x3) is a rational �−inner function and x1 is a rational function
with poles outside D such that

|x1(λ)|2 = 1 − |x2(λ)|2
4



120 Page 6 of 12 A. Jindal and P. Kumar

for all λ ∈ T, then x = (x1, x2, x3) is a rational P−inner function.

Proof First note that x(λ) = (
x1(λ), x2(λ), x3(λ)

) ∈ bP for all λ ∈ T. We need to
show that

(
x1(λ), x2(λ), x3(λ)

) ∈ P for all λ ∈ D. Fix α ∈ D and consider the map
�α ◦ x : D → C. The map �α ◦ x is analytic in D and continuous on D. Since
x(λ) ∈ bP ⊂ P for λ ∈ T, by Theorem 3.1, for all λ ∈ T we get

|�α

(
x(λ)

)| = |�α

(
x1(λ), x2(λ), x3(λ)

)| ≤ 1

for all α ∈ D. By the maximum modulus principle, for λ ∈ D we get

|�α

(
x(λ)

)| = |�α

(
x1(λ), x2(λ), x3(λ)

)| ≤ 1

for all α ∈ D.Again by Theorem 3.1, x(λ) = (
x1(λ), x2(λ), x3(λ)

) ∈ P for all λ ∈ D.

Thus, x = (x1, x2, x3) is a rational map from D to P which sends T into bP. This
proves that x = (x1, x2, x3) is a rational P−inner function. 
�

Now, we shall give some examples of rational P−inner functions.

Example 3.4 Let B be a finite Blaschke product. Then the function x : D :→ P defined
by

x(λ) = (
B(λ), 0, B(λ)

)

is rational P−inner.

Proof It is easy to see that (0, B(λ)) is a rational �−inner function. Now we show
that, for λ ∈ T, the point x(λ) lies in bP . Here

x1(λ) = B(λ), x2(λ) = 0, and x3(λ) = B(λ).

Since |B(λ)| = 1 on the circle, it follows that

|x1(λ)|2 = 1 = 1 − |x2(λ)|2
4

.

Thus, by Lemma 3.3, x is a rational P−inner function. 
�
The following lemma gives a class of rational P−inner functions.

Lemma 3.5 Let β ∈ T. Then the map x : D → P by the setting

λ �→
(

β − βλ

2
, β + βλ, λ

)

is rational P−inner.
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Proof By virtue of Lemma 3.3, we need to show that (x2, x3) is a �−inner function,
and the following equality holds for λ ∈ T,

4|x1(λ)|2 + |x2(λ)|2 = 4.

Here,

x1(λ) = β − βλ

2
, x2(λ) = β + βλ and x3(λ) = λ.

Note that, for λ ∈ T, x2(λ) = x2(λ)x3(λ), |x3(λ)| = 1, and |x2(λ)| ≤ 2. So the
map (x2, x3) maps T into b�. Since (x2(λ), x3(λ)) ∈ � for all λ ∈ D, it follows that
(x2, x3) is a rational �−inner function. Now, for λ ∈ T,

|x1(λ)|2 = x1(λ)x1(λ) = 1/4(β − βλ)(β − βλ)

= 1

4

[
|β|2 − β

2
λ − β2λ + |β|2|λ|2

]

= 1

2
− 1

4

[
β
2
λ + β2λ

]
. (3.1)

We also have

|x2(λ)|2 = x2(λ)x2(λ) = (β + βλ)(β + βλ)

= |β|2 + β2λ + β
2
λ + |β|2|λ|2

= 2 + β2λ + β
2
λ (3.2)

Thus, from Eqs. (3.1) and (3.2), for all λ ∈ T,

4|x1(λ)|2 + |x2(λ)|2 = 4.


�
The next two lemmas give some more examples of rational P−inner functions. These
will also be used in the proof of the main theorem of this section.

Lemma 3.6 If x = (x1, x2, x3) is a rational P−inner function, then xB
def=

(Bx1, x2, x3) is also a rational P−inner function for any finite Blaschke product
B.

Proof Since (x1, x2, x3) is a rationalP−inner function, (x2, x3) is a�−inner function.
For λ ∈ T,

4|Bx1(λ)|2 + |x2(λ)|2 = 4|B(λ)|2|x1(λ)|2 + |x2(λ)|2
= 4|x1(λ)|2 + |x2(λ)|2
= 4.
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Thus, by Lemma 3.3, xB = (Bx1, x2, x3) is a rational P−inner function. 
�
Lemma 3.7 If B is a finite Blaschke product, x1 is a rational functionwith poles outside
D and (Bx1, x2, x3) is a rationalP−inner function, then (x1, x2, x3) is also a rational
P−inner function.

Proof Since (Bx1, x2, x3) is a rational P−inner function, (x2, x3) is a �−inner func-
tion. For λ ∈ T,

4|x1(λ)|2 + |x2(λ)|2 = 4|B(λ)|2|x1(λ)|2 + |x2(λ)|2
= 4|Bx1(λ)|2 + |x2(λ)|2
= 4.

Thus, by Lemma 3.3, (x1, x2, x3) is a rational P−inner function. 
�
If f (z) = ∑n

i=1 ai z
i is a polynomial, then define

f ∨(z) =
n∑

i=1

ai z
i .

If f1, f2 are two polynomials and r = f1/ f2 is a rational function, then define r∨ =
f ∨
1 / f ∨

2 . The following proposition is an intermediate step to prove the main theorem
of this section.

Proposition 3.8 Let x = (x1, x2, x3) be a rational P−inner function. Let x1 = B f1
g1

where B is a Blaschke product and f1, g1 are relatively prime polynomials such that
f1/g1 has no Blaschke factor. Then the following hold.

(1) If g1(a) = 0, then x∨
1 (1/a) 	= 0; and

(2) if x2 = f2/g2, where f2 and g2 are relatively prime polynomials, then g1 = tg2
for some non-zero constant t .

Proof Let x = (x1, x2, x3) be a rational P−inner function. Let g1(a) = 0. Suppose
if possible x∨

1 (1/a) = 0. This implies that f ∨
1 (1/a) = 0, which in turn implies that

f1(1/a) = 0, this together with g1(a) = 0, imply that f1/g1 has a Blaschke factor,
which is a contradiction. Hence, x∨

1 (1/a) 	= 0. This proves (1).
Since x = (x1, x2, x3) is a rational P−inner function, (x2, x3) is a �−inner func-

tion. Therefore, x2 and x3 satisfy

x2(λ) = x2(λ)x3(λ) = x∨
2 (λ)x3(λ) = x∨

2 (1/λ)x3(λ)

for all λ ∈ T. Since the first and last terms are rational functions,

x2(λ) = x∨
2 (1/λ)x3(λ) for all λ ∈ C.

Hence,

x2(a) 	= 0 ⇒ x∨
2 (1/a) 	= 0.
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Since x = (x1, x2, x3) is a rational P−inner function, x1, x2 satisfy

x1(λ)x1(λ) = 1 − 1

4
x2(λ)x2(λ)

⇒x1(λ)x∨
1 (λ) = 1 − 1

4
x2(λ)x∨

2 (λ)

for all λ ∈ T. This implies

x1(λ)x∨
1 (1/λ) = 1 − 1

4
x2(λ)x∨

2 (1/λ) for all λ ∈ T. (3.3)

Since both the left hand side and the right hand side are rational functions in Eq. (3.3),
it follows that

x1(λ)x∨
1 (1/λ) = 1 − 1

4
x2(λ)x∨

2 (1/λ) for all λ ∈ C.

For m ≥ 1, we have

(λ − a)m−1x1(λ)x∨
1 (1/λ) = (λ − a)m−1

(
1 − 1

4
x2(λ)x∨

2 (1/λ)

)
(3.4)

for all λ ∈ C.
Let a be a pole of x1 of multiplicity m ≥ 1. Clearly, |a| > 1. Hence |1/a| < 1,

and so x∨
1 and x∨

2 are analytic at 1/a. Also by part-1 of the proposition x∨
1 (1/a) 	= 0.

Therefore, on letting λ → a in (3.4), we get

(λ − a)m−1x2(λ) → ∞.

Thus a is a pole of x2 of multiplicity at least m.

Let a be a pole of x2 of multiplicity m ≥ 1. Again on letting λ → a in Eq. (3.4)
we get that a is a pole of x1 of multiplicity at least m. This proves that g1 and g2 have
same zeros with same multiplicities. Hence g1 = tg2 for some non-zero constant t .


�
Now we are ready to prove the main result of this section.

Theorem 3.9 If x = (x1, x2, x3) is a rational P−inner function and the degree of x3
is n, then there exist polynomials N1, N2, D and a finite Blaschke product B such that

(1) (x2, x3) =
(
N2
D , D∼n

D

)
is a �−inner function,

(2) x1 = B N1
D on D,

(3) |N1(λ)|2 = |D(λ)|2 − 1
4 |N2(λ)|2 on T, and

(4) deg(N1) ≤ n.

Conversely, if N1, N2, and D are polynomials satisfying (1) and (3) above, then
( N1
D , N2

D , D∼n

D ) is a rational P−inner function and the degree of D∼n

D is equal to n.
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Furthermore, a triple of polynomials N ′
1, N

′
2 and D′ satisfy (1) − (4) if and only if

there exists a non-zero real number t such that

N1 = t N ′
1, N2 = t N ′

2 and D = t D′.

Proof Let x = (x1, x2, x3) be a rational P−inner function and the degree of x3 be
n. Then (x2, x3) is a rational �−inner function. By Theorem 3.2, there exist two
polynomials N2 and D of degree less than or equal to n such that

(x2, x3) =
(
N2

D
,
D∼n

D

)
.

This proves condition (1). Note that D(λ) 	= 0 for all λ ∈ D. Since x1 is a rational
function with poles outside D, we have

x1 = B
f

g

where B is a finite Blaschke product and f , g are relatively prime polynomials such
that f /g does not contain any Blaschke factor. By Proposition 3.8, g can be taken to
be D. Let us denote f by N1. Thus,

x1 = B
N1

D
.

This proves condition (2).
Since

(
x1(λ), x2(λ), x3(λ)

) ∈ bP for all λ ∈ T, we have

|x1(λ)|2 = 1 − 1

4
|x2(λ)|2.

By virtue of conditions (1) and (2), we have

∣∣∣∣N1(λ)

D(λ)

∣∣∣∣
2

= 1 − 1

4

∣∣∣∣N2(λ)

D(λ)

∣∣∣∣
2

⇒|N1(λ)|2 = |D(λ)|2 − 1

4
|N2(λ)|2 (3.5)

for all λ ∈ T. This proves condition (3).
From Eq. (3.5), it follows that

N1(λ)N∨
1 (λ) = D(λ)D∨(λ) − 1

4
N2(λ)N∨

2 (λ).

This is same as

N1(λ)N∨
1 (1/λ) = D(λ)D∨(1/λ) − 1

4
N2(λ)N∨

2 (1/λ) (3.6)
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for all λ ∈ T. Since N1(0) 	= 0, the coefficient of λdeg(N1) is non-zero in
N1(λ)N∨

1 (1/λ), which is the highest degree coefficient in this expression. Since the
degree of the right hand side in Eq. (3.6) is at most n, we get deg(N1) ≤ n. This
proves condition (4).

Proof of the converse follows from Theorem 3.2 and Lemma 3.3.
Finally, suppose a triple of polynomials N ′

1, N
′
2 and D

′ satisfy (1)−(4).ByTheorem
3.2, there exists a non-zero real number t such that N2 = t N ′

2 and D = t D′. Using
(2) we get N1 = t N ′

1. The converse is straightforward. 
�
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