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Abstract
Most quantum systems that are used for generating entanglement and for practical applications
are not isolated from the environment, and are hence susceptible to noise. Entanglement in
more than one degree of freedom between two systems, known as hyperentanglement, is
known to have certain advantages, including robustness against noise over conventional
entangled states. Quantum illumination, imaging and communication schemes that involve
sending one photon from a pair of entangled photons and retaining the other photon usually
involve exposing only the signal photon to environmental noise. The disruptive nature of noise
degrades entanglement and other correlations which are crucial for many of these applications.
In this paper, we study the advantages of using photon pairs in certain path-polarization
hyperentangled states in a noisy interaction where photons in only one of the paths are affected
by noise. We model such noise and study the effect of noise on the correlations present in the
hyperentangled photons. Three different methods, entanglement negativity, entanglement
witnesses and Bell nonlocality are used to show the resilience of path-polarization
hyperentangled probe state against noise.

Keywords: quantum information, quantum optics, hyperentanglement, noise, open quantum
systems

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum entanglement is a useful resource in many domains
of science which harness the exotic effects of quantum
mechanical systems for better performance or security in infor-
mation processing, metrology and communication tasks [1, 2].
Some examples of the pioneering applications of entanglement
that beat the best known classical protocols are quantum dense
coding, quantum teleportation, quantum key distribution, and
quantum illumination [3–6]. Entanglement is also deemed
as one of the key resources behind computational speedup
in quantum computing [7]. It is an essential ingredient in
device independent quantum cryptography [8]. Entanglement

∗ Author to whom any correspondence should be addressed.

in higher dimensions has been shown to give better perfor-
mance enhancements than conventional entanglement, like
enhanced channel capacity and robustness against noise in
quantum communication [9–12].

Entangled photons are widely used in many applications
since they can be readily generated through non-linear pro-
cesses like spontaneous parametric down conversion (SPDC)
using birefringent crystals, and transmitted relatively eas-
ily [13]. Interactions with the environment can subject the
quantum system to noise, which leads to a loss of entangle-
ment, decoherence and other such disruptive effects. Photonic
dissipation in waveguide quantum electro dynamical systems
is another example of effect of environmental interaction
[14–16]. In some applications, the transmission of one of
the entangled photon pair and retention of the other, causes
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environmental noise to act only on the transmitted photons
in the noisy path. Such a scheme is commonly adopted for
example in quantum cryptographic protocols, quantum illumi-
nation schemes, and quantum teleportation protocols [3, 5].
Therefore, finding ways to engineer entangled states that are
robust against noise is an area of continuous research interest.

Hyperentanglement—Simultaneous entanglement bet-
ween two systems in more than one degree of freedom,
is termed as hyperentanglement [17]. Photons with more
than one controllable degree of freedom can be simulta-
neously entangled in multiple degrees of freedom like path,
polarization, time, energy and orbital angular momentum
[18–23]. The presence of entanglement in more than one
degree, expands the dimension of the Hilbert space of
the state of the photon pair. Some of the applications that
utilise hyperentangled states are enhanced channel capacity,
protocols for entanglement purification, quantum secure direct
communication and enhanced signal to noise ratio in quantum
illumination [24–28]. In this work we will consider one such
configuration of hyperentangled state, entanglement in path
and polarization degree of freedom and show its advantages
in the desired noisy environment where noise acts only on
one of the paths. We use controlled Kraus operators of bit
flip, phase flip and depolarizing channel to model the noise.
Different indicators of correlations, which are entanglement
negativity, entanglement witnesses, and Bell nonlocality
after the action of noise are used to quantify and compare
the results with conventional entangled photons. It can be
seen that the path-polarization hyperentangled state retains
correlations as much or better than conventional entangled
photons when affected by noise.

The paper is organised as follows. In section 2 a noise
model is introduced that can be used to study scenarios like
quantum cryptography and quantum illumination. In section 3
we introduce the quantifiers of correlations we use to study the
effect of noise. In section 4 we present the numerical results
showing the robustness of path-polarization hyperentangled
state against noise when compared to entanglement in one
degree of freedom and conclude with remarks in section 5.

2. Path-polarization entanglement
and noise model

Photons in composition of polarization and path degree of free-
dom will have a Hilbert space composition, Hpol ⊗Hp where
Hpol is spanned by the basis state {|H〉, |V〉} representing the
horizontal and vertical polarization degree of freedom, and Hp

is spanned by the basis states {|0〉, |1〉} representing the two
paths for photons. The two paths can be, for example, the out-
put modes of a beam splitter. Path-polarization hyperentangled
state can be generated by first generating photons entangled in
polarization degree of freedom using SPDC process and by
further engineering photons paths to entangle in path degree
of freedom [18, 19]. Appropriate post selection of the states
can also be used to generate path-polarization hyperentangled
states [18]. In this work, we will model the effect of noise
on such hyperentangled states where the noise acts only on
the photons present in one of the path, |0〉 ∈ Hp and leaves

the photon in the other path unaffected. Such noise can be
mathematically described in the form of a controlled noise
model in resemblance to the controlled unitary operator where
noise acts on the target (polarization) system conditioned on
the state of the control (path) system.

In order to model noise in such a way, it is required that
a few conditions are met. For a photon state that is coupled
with the spatial mode |0〉1|0〉2, the noise should act on both
the photons. Similarly, for photon states having spatial modes,
|0〉1|1〉2, |1〉1|0〉2, only single photon noise should act on the
photon in |0〉, and the corresponding polarization entangled
photon should remain unaffected by the noise. Finally, for
photons passing through |1〉1|1〉2, both the photons should
remain unaffected. Such situations can often be seen in appli-
cations like quantum illumination [5], where one of the noisy
paths is probed for an object while the other noiseless path is
kept as a reference. Similar situations also arise in quantum
teleportation and quantum key distribution, where one of the
photons of an entangled photon pair is sent to Bob and hence
subject to noise, while storing the other photon as a references
[3, 6].

We model noise using Kraus operator representation of
noise channels. These are a set of operators that are derived
from jointly evolving a state along with an environment and
tracing out the environment [29]. Given a set of Kraus oper-
ators describing a single photon noise model, like bit flip,
depolarizing and phase damping noise,

K1
i ≡ {K1, K2, . . .Kn}. (1)

The Kraus operators for two photons can be constructed by
taking tensor products of combinations of the set of single
qubit Kraus operators as shown in equation (2). This par-
allel concatenation of multiple channels can be generalized
for higher dimensional composite photon states [30]. Here
we construct the Kraus operators for the two photon channel
corresponding to equation (1)

K2
i ≡ {Ki ⊗ Kj : Ki, Kj ∈ {K1

i }}. (2)

To construct the noise model, the single/two photon noise
Kraus operators are coupled with the appropriate projectors
from a set of projection operators on the position Hilbert space,

P00 = |0〉1|0〉2〈0|1〈0|2 (3)

P01 = |0〉1|1〉2〈0|1〈1|2
P10 = |1〉1|0〉2〈1|1〈0|2
P11 = |1〉1|1〉2〈1|1〈1|2,

and put together as a single set of combined Kraus operators
K̃i,

K̃i ≡

⎧⎪⎪⎨
⎪⎪⎩

(K1
i ⊗ I) ⊗ P01, (Single photon noise)

(I ⊗ K1
i ) ⊗ P10,

(K2
i ) ⊗ P00, (Two photon noise)

(I ⊗ I) ⊗ P11 (Identity channel)

⎫⎪⎪⎬
⎪⎪⎭
. (4)

It can be verified that the action of the above Kraus operators
satisfies all the required conditions of a quantum channel,
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Figure 1. CHSH parameter S for the polarization entangled state as
a function of (θ′, δ′) when (θ, δ) = (π/4, π/2). The maximum
violation of CHSH inequality, S = 2

√
2 is seen when

(θ′, δ′) = (3π/8, 5π/8) and (θ′, δ′) = (7π/8,π/8).

Figure 2. Entanglement negativity, N as a function of bit flip noise
level p. The plot for the hyperentangled state shows a consistently
higher level of negativity than the plot for the entangled state
indicating the robustness of the hyperentangled state against bit flip
noise.

including the complete positivity and trace preserving condi-
tion. We note that this noise model does not accurately model
the noise acting on the path states, since the projectors cause
loss of correlations in path degree of freedom. But in this study
we are examining only the polarization degree of freedom,
hence this model is valid.

The noise model developed above is applied on the hyper-
entangled state of the form,

|Ψ〉HE =
1
2

(|H〉1|V〉2 + |V〉1|H〉2) ⊗ (|1〉1|1〉2 + |0〉1|0〉2).

(5)
Here subscript 1 and 2 represent photon 1 and photon 2.
In the above expression we can note that both the photons

Figure 3. Entanglement witness 〈W〉 as a function of bit flip noise in
the range, 0 � p < 0.5. The expectation value of the witness for
hyperentangled state has a negative value at maximum bit flip noise
level, p = 0.5 where the expectation value of witness for the
entangled state becomes 〈W〉 = 0 indicating the state becoming
separable.

entangled in polarization degree of freedom take the same
path in this configuration. However, the polarization degree
entangled photons will remain spatially separated along each
path. Such states can be generated in a laboratory setting by
using the methods illustrated in references [18, 31]. Conven-
tional polarization entangled photons that are coupled with
only one of the spatial modes is used as a reference. For ease
of comparing these states, the spatial mode of the conven-
tional entangled photon pair is taken to be |0〉1|1〉2. Now the
path-polarization entangled and polarization entangled states
belonging to Hpol ⊗Hp can be written as,

|Ψ〉HE =
1
2

(|HV00〉+ |HV11〉+ |VH00〉) + |VH11〉),

(6)

|Ψ〉E =
1√
2

(
|HV01〉+ |VH01〉

)
. (7)

The Kraus operators act on the density matrices of the photon
states. The corresponding density matrix representations of the
photon states are,

ρHE = |ΨHE〉〈ΨHE|, ρE = |ΨE〉〈ΨE|. (8)

The action of the noise model is then given by,

ρ̃(HE) =
∑

i

K̃iρ( HE)K̃i
†, ρ̃(E) =

∑
i

K̃iρ( E)K̃i
†. (9)

Following this, the path degree of freedom is partial traced
out for both the states bringing down both of these states to
a four-dimensional space. This is done in order to compare
between the entanglement in both these pairs of photons on an
equal footing

3
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Figure 4. CHSH parameter S as a function of θ′ and δ′ when (θ, δ) = (π/4, π/2) and bit flip noise level p = 0.5. It is evident that the bit flip
noise has degraded the nonlocality effect in both states when compared with figure 1 but the maximum value of S is seen to be higher for the
hyperentangled state.

Figure 5. Maximum value of CHSH parameter S as a function of bit
flip noise level p when (θ, δ) = (π/2, π/4) and θ′, δ′ ∈ [0,π].
Max(S) for the given range of angle configurations seem to follow a
similar trend to that of negativity. It is evident that hyperentangled
photons are able to retain nonlocality better than entangled photons.

ρout
HE = TrPOS(ρ̃(HE)), ρout

E = Tr POS(ρ̃(E)). (10)

The controlled noise model can be used with any set
of single qubit Kraus operators by substituting in place of
equation (1) and getting the corresponding set of controlled
Kraus operators K̃.

3. Quantifying correlations under noise

There are many measures that can reliably quantify (quantum)
correlations in a composite system [32–34]. To study the effect
of noise on the quantum correlations of the photon states, we
introduce an entanglement measure called negativity and a
measure of nonlocality using the CHSH parameter. We will
also take a look at entanglement witnesses which present
an effective method to experimentally verify the presence of
entanglement in the system.

3.1. Entanglement negativity

Given a density matrix of a composite quantum system, the
entanglement negativityN between two bipartitions A:B of the
system is given as,

N (ρ) =
‖ρΓA‖1 − 1

2
, (11)

where ‖ρΓA‖ denotes the partial transpose of ρ with respect
to subsystem A, and ‖X‖1 = Tr(

√
XX†) denotes the trace-

norm [34, 35]. For the path encoded state, the polarization
degree of freedom of the two photons are considered as the
subsystems. For the purpose of comparing conventional entan-
gled photons and path-encoded photons, we trace out the
position degree of freedom of the path-encoded state after
applying the operations to it. Initially, it can be seen that the
hyperentangled states have entanglement negativity of N = 1.
The state of the hyperentangled photons in position degree
of freedom contributes equally to the entanglement negativity
as the polarization and can be added up using the additive
property of negativity.

Entanglement Witness—Experimentally, it is difficult and
resource intensive to measure entanglement negativity without
knowing the complete density matrix of the state through
methods like quantum state tomography (QST) [36]. For this
reason, we construct an entanglement witness, which are oper-
ators whose expectation value can be used as an indicator
for whether the state is entangled or not [37]. A state ρ is
entangled if and only if there exists a Hermitian operator W
such that Tr(ρW ) < 0 and Tr(ρsepW ) � 0 for all separable
states ρsep. The operator W can then be defined as the entan-
glement witness of the state ρ. The expectation values of W
can be measured experimentally using fewer number of mea-
surements as compared to QST. We study here theoretically
how the expectation values of suitable witness operators are
affected by various levels of noise, and illustrate a method to
experimentally measure 〈W 〉 using fewer measurements [38].
It should be noted that given an entanglement witness for a
particular entangled state, it may not be a suitable witness for
other entangled states.

4
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Figure 6. Entanglement negativity N as a function of depolarizing
noise level p. The negativity of the entangled state reaches zero
faster than the hyperentangled state, indicating the robustness of the
hyperentangled state again depolarizing noise.

3.2. Nonlocality measurements

A useful benchmark for certification of entanglement in a
system is the violation of the Bell’s inequality [39]. (Clauser
Horne Shimony Holt) CHSH inequality measurements can
be performed in laboratory settings using an entangled pho-
tons pairs and local measurements using optical components
like half-wave plates or polarizers, and coincidence detections
[40, 41]. We investigate the effect of the higher dimensional
entanglement on the CHSH parameter S.

Given a bipartite quantum system, we can define two par-
ties, Alice and Bob, who perform local measurements on one
of the photons. They can choose from a set of orthogonal mea-
surements independently. The CHSH inequality is given by,

S = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′). (12)

Here a, a′ and b, b′ represent the measurements with outcomes
1 or −1, taken by Alice and Bob respectively. E(a, b) rep-
resents the expectation value for the measurement a and b.
According to Bell’s theorem of nonlocality, for physical sys-
tems that can be described by local hidden variable theories,
the CHSH inequality is given by,

|S| � 2. (13)

Quantum systems are known to violate the CHSH inequal-
ity, indicating the nonlocality of quantum mechanics. Here we
theoretically investigate the Bell nonlocality of hyperentan-
gled photons under the effect of noise. As a reference, we also
see the effect of noise on the nonlocality of conventional pho-
tons. In the context of photons, a, a′ and b, b′ are determined
by the angles θ, θ′ and δ, δ′ for along which the polarization
(|H〉 or |V〉) of the photon are measured.

In the experimental setting, measurements are made in
the form of coincidence counts using suitable time tagging
devices. The measurements are performed for four different

Figure 7. Entanglement witness 〈W 〉 as a function of depolarizing
noise level p. The plot for the entangled state reaches 〈W 〉 = 0 at
the same level of p for which N = 0, and the plot for the
hyperentangled state remains in the negative region for all levels of
noise.

combinations of polarization of photons: CHH, CHV, CVH, CVV.
Here the CHV stands for coincidence counts when first photon
is measured for the polarization H and the second photon
measured for polarization V. Using these coincidence counts,
E(θ, δ) can be obtained using,

E(θ, δ) =
CHH + CVV − CHV − CVH

CHH + CVV + CHV + CVH
, (14)

where θ and δ denote the angle of rotation of the polarization of
two photons at which the coincidence counts are measured for
each of the photon pair respectively. S can now be computed
using the value of E for different combinations of rotation
angles as given in equation (12).

Theoretically, the S parameter can be calculated by obtain-
ing the probability of measurements for various configura-
tions, by either performing rotation operations on the density
matrix or performing a measurement using a rotated projection
operator. For the first case,

ρout
rot = (R(θ) ⊗ R(δ))ρout

(E/HE)(R(θ)† ⊗ R(δ)†), (15)

PVV = Tr(PVVρ
out
rot ),

where R(θ) is the rotation operator acting on the polarization
degree of freedom given by,

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (16)

and PV V denotes the projection operator along the state |VV〉.
Now,

E(θ, δ) = PHH + PVV − PHV − PVH. (17)

In figure 1, in absence of noise, the CHSH parameter S
is calculated and plotted for all angles of θ′ and δ′ in the
range 0 � θ′ � π, 0 � δ′ � π when θ = π/4 and δ = π/2.
For (θ′, δ′) = (3π/8, 5π/8) and (θ′, δ′) = (7π/8, π/8) when
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Figure 8. CHSH parameter S as a function of θ′ and δ′ when (θ, δ) = (π/4, π/2) and the depolarizing noise level is set to p = 0.5. Both the
plots have a similar pattern with a slightly lower S value for the entangled state.

Figure 9. Maximum value of CHSH parameter S as a function of
depolarizing noise level p when (θ, δ) = (π/2,π/4) and
θ′, δ′ ∈ [0, π]. The plot for the hyperentangled state shows a higher
level of Max(S) compared to the entangled state.

(θ, δ) = (π/4, π/2) we obtain a maximum violation of CHSH
inequality, S = 2

√
2. We will use this as a reference to see the

effect of noise on the maximum value of S.

4. Results

In this section, we study the effect of the noise modeled
using the equation (4) on the correlations of the photon states.
Three different basic noise models are used here [29]: (1) bit
flip (2) depolarizing (3) phase damping. We numerically plot
the variation of the quantifiers introduced in section 3 as a
function of the noise levels and compare the effect of noise
on hyperentangled states and entangled states.

4.1. Bit flip noise

The bit flip noise channel, as the name suggests, is used to
model bit flip errors in two level quantum systems. The noise
parameter p in the context of bit flip noise is the probability
of a flip (|H〉 ↔ |V 〉) occurring. The Kraus operators for the

single qubit flip noise channel are given by,

K1 = (
√

p)

(
0 1
1 0

)
, K2 = (

√
1 − p)

(
1 0
0 1

)
. (18)

On the action of the bit flip channel on the hyperentangled
photons and the entangled reference states, the output state
ρout

(E/HE) is computed for various values of p. Here, p quantifies
the amount of noise being acted on the photon states. N (ρout

(HE))
and N (ρout

(E)) can now be computed using equation (11).
In figure 2, the plot for negativity as a function of noise level

p shows enhanced retention of entanglement in hyperentan-
gled states. The enhancement can be seen as a result of the
state that was chosen that includes a superposition of the noisy
and noiseless path, which reduces the effect of noise acting on
the complete state. Since the bit flip noise acts symmetrically
on the polarization state of the two photons, the maximum
noise level will be p = 0.5. It can be observed that the value of
negativity returns back to the highest value of N = 0.5 with
the increase in p from 0.5 to 1 indicating the return to the
maximally entangled two photon (Bell) state.

Now for an entanglement witness as explained in the
section 3, for the bit flip channel (with 0 � p � 0.5) there
exists a simple witness,

W =
1
2

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠. (19)

The operator W can be easily decomposed to a set of local
measurements [38],

W =
1
2

(σi ⊗ σi − σx ⊗ σx − σy ⊗ σy + σz ⊗ σz). (20)

Such a measurement can be performed in the laboratory using
local measurements in the Pauli basis, and combining the
results with the weights. In the case of QST, expectation values
of 16 operators {σi ⊗ σ j : i, j = 0, 1, 2, 3} are required, but in
the case of the entanglement witness W, only 4 of them are
required. The theoretical expectation value of W is plotted in
figure 3. In the following subsections, we see that the same

6
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Figure 10. Entanglement negativity N as a function of phase
damping noise level p. The negativity for the hyperentangled state is
slightly higher compared to the entangled state with an increase in
the difference for higher levels of noise.

entanglement witness, equation (19) can be used as a witness
for other noise models discussed in this work.

In the figure 3, it can be seen that both plots approach the
value 〈W 〉 with increasing levels of noise and at p = 0.5,
the witness for the entangled state reaches 〈W 〉 = 0 indicat-
ing separability (N = 0), but the hyperentangled state has
negative value of 〈W 〉 indicating entanglement, which is in
agreement with the negativity plot figure 2. Although 〈W 〉
does not explicitly quantify entanglement, it can be used to
comparatively illustrate the robustness of the states against
noise.

For the nonlocality measurements we compute the theoreti-
cal value of the CHSH parameter S as explained in section 3.2.
The S(θ′, δ′) value for θ = π/4 and δ = π/2 is computed for
ρout

E and ρout
HE for the bit flip channel with a fixed value of

p = 0.5. There is a visible difference in the pattern between
ρout

E and ρout
HE in the figure 4, but it does not give much insight

into the difference between the two channels. However, there
is no violation of CHSH inequality in this range indicating that
the noise has degraded the nonlocality of both the states.

It is quantitatively clear from the plots that when noise level,
p = 0.5 the effect of noise on nonlocality, CHSH parameter S
is higher for the entangled state compared to the hyperentan-
gled state. For a better comparison of the nonlocality of ρHE

and ρE the maximum value of S in the range 0 � θ′, δ′ � π
with θ = π/2 and δ = π/4 is plotted in figure 5 as a function
of noise level p. Similar to negativity, the nonlocality appears
higher for the hyperentangled photons. In an experimental
setting it may be difficult to iterate over all the possible angles
to compute the S value and find the maximum value, but the
plots in figure 1 and other such plots will be a good reference
to identify the regions where maximum S can be obtained.

4.2. Depolarizing noise

Depolarizing noise channel is a combination of bit flip, phase
flip, and bit plus phase flip operators (represented by Pauli

Figure 11. Entanglement witness 〈W〉 as a function of phase
damping noise level p. The plots are consistent with the negativity
plot figure 10 showing a similar inverse trend as seen for other noise
channels.

matrices). The noise parameter here serves as the probability
of the occurrence of flips. The single qubit Kraus operators for
the depolarizing noise channel are,

K1 =
√

p/4

(
0 1
1 0

)
K2 =

√
p/4

(
1 0
0 −1

)

K2 =
√

p/4

(
0 i
−i 0

)
K4 =

√
1 − 3p/4

(
1 0
0 1

)
.

(21)
In figures 6 and 7 the negativity and witness as a function
of depolarizing noise level is shown. One can clearly see the
robustness of the hyperentangled state against depolarizing
noise. The witness operator used here is the same as the witness
of bit flip channel equation (19). As the witness is the same,
we are able to use the same decomposition in equation (20)
for it. In figure 7, 〈W〉 for the ρout

E can be seen to approach
〈W〉 = 0 with increasing noise levels and eventually crosses it
at the same level of noise for which N = 0, indicating that the
state is now separable. But for ρout

HE, 〈W〉 < 0 throughout the
noise levels. This agrees with the corresponding entanglement
negativity plot of the depolarizing channel.

The nonlocality plots, S and Max(S) in figures 8 and 9,
respectively also show a clear advantage for hyperentangle-
ment, indicating enhanced retention of nonlocality through
depolarizing channel.

4.3. Phase damping noise

The phase damping noise channel is used to model the loss of
a fixed relative phase between the states of a quantum system,
due to interactions with the environment. This process also
termed as decoherence, is a frequently encountered effect in
photons. The Kraus operators for the phase damping noise
model are,

K1 =

(
1 0
0

√
1 − p)

)
K2 =

(
0 0
0

√
p

)
. (22)
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Figure 12. Nonlocality plots for the phase damping channel with p = 0.5. θ = π/4 and δ = π/2 is fixed and θ′ and δ′ are varied. Both plots
show a negligible difference compared to each other and the zero noise case figure 1.

Figure 13. Maximum value of CHSH parameter as a function of
phase damping noise level p when θ = π/2 and δ = π/4 and
θ′, δ′ ∈ [0, π]. Both the plots show a downtrend, but the maximum S
values still violate CHSH inequality for both the plots.

In figures 10 and 11 the negativity and witness as a function
of phase damping noise level is shown. Hyperentangled states
shows a slight advantage against phase damping noise as
compared to the entangled state.

However, for the phase damping noise channels, it can be
seen that both the states undergoing phase damping noise still
violate the CHSH inequality. The plots obtained in figure 12
indicates that the phase damping channel has a negligible
effect on the nonlocality of a quantum state (figure 13).

As seen in the nonlocality plots for the phase damping noise
channel, the S parameter remains above 2 for all the noise
levels except at p = 1 for the entangled state. For the entangled
state, the phase damping channel with p = 1 decoheres it to a
classical state which saturates the CHSH inequality, S = 2.

In the case of the phase damping noise, there appears to
be only a minor difference between the nonlocality of ρout

(E) and
ρout

(HE). This difference may possibly be negligible to be detected
in a laboratory setting.

Figure 14. Negativity in the polarization degree of freedom as a
function of bit flip noise level p using Stinespring dilation. The plots
are equivalent to the negativity plots obtained for the bit flip channel
figure 2 showing the robustness of hyperentanglement.

4.4. Unitary noise model

The Kraus operators of a noise channel can be used to back
calculate an equivalent unitary that acts on a system coupled
with the environment. This unitary gives equivalent dynamics
to the noise channel when the environment is traced out. This
method termed as stinespring dilation is given by [42],

UA→A′E : |ψ〉 →
∑

a

Ka|ψ〉 ⊗ |a〉, (23)

where E corresponds to the environment coupled with the sys-
tem A with dimension equal to the number of Kraus operators
and orthonormal basis {|a〉}.

We construct a dilated unitary for the bit flip channel,

Ux =

⎛
⎜⎜⎜⎝

√
1 − p 0 0

√
p

0
√

1 − p
√

p 0
0 −√

p
√

1 − p 0
−√

p 0 0
√

1 − p

⎞
⎟⎟⎟⎠. (24)
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Figure 15. Negativity in the path degree of freedom as a function of
bit flip noise level p using Stinespring dilation. The negativity in the
entangled state remains at 0 owing to no path entanglement, and the
negativity for the hyperentangled state shows an inverse linear trend
with the noise level.

Now we model the noise using a controlled unitary
given by,

U = P00 ⊗ (Ux ⊗ Ux) + P01 ⊗ (Ux ⊗ I), (26)

+ P10 ⊗ (I ⊗ Ux) + P11 ⊗ (I ⊗ I).

Here U acts on a system in which the polarization subsystems
of the photons are both coupled with environment systems. For
example, the polarization entangled state is coupled with the
environment as follows,

(1/
√

2)(|HV〉+ |VH〉) −→(1/
√

2)
(
|H〉|0〉|V〉|0〉

+ |V〉|0〉|H〉|0〉
)
,

where |0〉 is the initial state of the environment. After the evo-
lution of the environment-coupled hyperentangled and entan-
gled states with U, the environment can now be traced out to
obtain the final state. The correlations in the path and polar-
ization subsystems can be studied by tracing each other out
respectively. Here we plot the negativity of each subsystems
as a function of the noise level p.

The plot of negativity of polarization degree of freedom in
figure 14 is identical to the plot for negativity in figure 2 except
for the small fluctuations in the curves which can be attributed
to the small crossover of correlation of one degree of freedom
to the other. In figure 15, we observe an inverse linear relation
of the negativity in the path subsystem of the hyperentangled
state and the noise level p. The negativity in the path of the
conventional entangled state remains at zero as there is no path
entanglement present in it. This is an additional feature we are
able to probe because of the unitary noise model compared to
using Kraus operators. From figure 15 it is evident that some
correlations in the paths do make across through the noise.

5. Conclusion

The noise model proposed in this paper serves as a useful
tool to theoretically study the effect of various types of noises

encountered in the experimental settings where one of the basis
state of an entangled pair is subject to noise. One of the main
features of quantum systems that sets them apart from classical
systems are the quantum correlations which have been proven
to be a useful resource in many applications. Any approach
to protect the entanglement in quantum systems from environ-
mental effects will always be very useful. Higher dimensional
entanglement in quantum systems has proven its advantages
over conventional entanglement in many applications like
dense coding and quantum illumination. The results obtained
here for the path-polarization hyperentangled state of photons
pairs help confirm this advantage and possibly provides a
reason for it. The entanglement in the path, provides a way
to retain better correlations through a noisy environment. The
hyperentangled states are shown to have enhanced negativity
as compared to the conventional entangled state of photons. An
experimental method to confirm this is provided in the form
of entanglement witnesses, that provide a method to verify
whether a state is entangled or not using a few joint local mea-
surements. The CHSH parameter violation is also computed
and it shows that hyperentangled states retain nonlocality as
good as, or better than entangled states. It can be concluded
that path-polarization hyperentangled state equation (5) can
be used as a robust probe in a noisy environment for applica-
tions like quantum communication and quantum illumination.
Though we have shown the robustness for a specific path-
polarization hyper entangled state, the conclusion will hold
in general for all forms of path-polarization hyper entangled
states and should be extendable for all hyperentangled states.
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