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Abstract

Recent interests in layered transition-metal dichalcogenides (TMDCs), such as WSe,, MoS, etc, arise
due to their attractive electrical, optical, and mechanical properties with potential applications in
energy storage, generation, and many more. Embedding these 2D materials in plasmonic cavities can
further enhance light—matter interactions and alter their properties, resulting in diverse and efficient
optoelectronic applications. The strain due to the geometry and charge transfer due to the plasmonic
materials can further modify the TMDCs’ optical response for sensing applications and as single
photon emitters in on-chip optoelectronic applications. This work discusses one such 2D-plasmonic
hybrid configuration of a silver sphere on a gold disc with WSe, sandwiched in between. We perform
non-invasive Raman and PL studies of this system to estimate the field enhancement and discuss strain
and doping induced in the TMDC.

Introduction

Metal nanoparticles of different shapes, sizes, and materials like gold (Au), Silver (Ag), or Copper (Cu) show strong
interaction with incident light through the excitation of collective and coherent electron oscillations known as localized
surface plasmons. Applications include surface-enhanced Raman spectroscopy (SERS), photovoltaics, photocatalysis,
and many more, making noble metal nanoparticles attractive for fundament studies as well as technologically
important [1-7]. The strength of these electromagnetic couplings depends on the number of such nanoparticles and
their separation distance. Of all plasmonic systems, the most common is a two-nanoparticle system with nm and
smaller spacings in between, also known as dimers, which has great scope in biological imaging, photodetection, and
optical sensing, along with those mentioned above. The easiest way of maintaining such a sub-nm gap is by placing a
material of equal thickness between the plasmonic particles. In this respect, two-dimensional materials like graphene
and transition metal dichalcogenides (TMDCs) with atomic thickness have found much attention [8—14]. Previously
we have shown how sandwiching a single layer of graphene between two silver nanoparticles resulted in unprecedented
photoresponsivity in graphene that allowed the realization of a new class of large-area color-selective plasmonic
photodetector at room temperature [15]. The local electromagnetic field at the junction of the sub-nm spaced dimers
increased dramatically, thereby resulting in the most sensitive graphene—plasmonic hybrid photodetector reported to
date. Such an architecture signifies the tremendous promise of integrating plasmonics with atomically thin materials,
especially TMDC:s, in nanoelectronics and nanophotonic applications [ 1519, 44], arising due to the direct bandgap of
TMDC monolayers in the visible region.

It is necessary to recognize the various effects that can alter the physical properties of the TMDCsina
sandwich geometry. Quite well known are the local strains and possible defect localization in TMDC:s on pillars.
While the uncontrolled occurrence of many defects is typically detrimental to material properties, carefully
structured and induced defects and strain engineering have led to new applications, including single-photon
sources in monolayer WSe; [18, 19, 20, 21, 45] and inducing direct bandgap in multilayer WSe, [22].

© 2022 The Author(s). Published by IOP Publishing Ltd
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In addition, the charge transfer by the Ag sphere or Au disc into the material can result in doping of the
material, resulting in a shift in the optical bandgap of the material, offering another important handle towards
engineering the properties of TMDCs for applications [23, 24]. This has led to critical applications in
spintronics, high-speed transistors, and various sensors [25—-28]. Metal nanoparticles are known to reduce
lifetime/speed up the decay process.

Surprisingly, there have been only a limited number of studies on the effects of doping and strain on WSe,
characterized through PL and/or Raman shifts. These include a report on Niobium-induced p-doping of WSe,
causing a redshift in PL energy as well as a Raman shift, while other p-dopants like Magic blue or
[N(CgHy4-p-Br)s] SbClg causing a blueshift [28—31]. In other work, while p-doping by Au is established in the
WSe, monolayer, the effect on PL energies has not been discussed [31].

With such an expanse of applications of TMDCs- plasmonic hybrid, here we present a careful investigation
of the effect of a plasmonic cavity over WSe, as the TMDC, specifically for strain and doping consequences,
using Raman and PL. The dimer-2D cavity was fabricated on pillar geometry to induce deterministic strain in
WSe,.

We modelled multiple plasmonic architectures to find one with resonance closest or equal to WSe,. Few of
such examples are shown in supplementary information figure S1. Keeping in mind the feasibility of fabrication
over pillars and other factors, we chose a sphere-disc geometry to be fabricated over pillars. A plasmonic-2D
material hybrid device geometry, as shown in figure 1(a), which is reasonably close to the final experimental
device, is studied here in detail. We consider a silver (Ag) sphere of radius 75 nm and a gold (Au) disc of radius
100 nm, thickness 40 nm, separated by monolayer WSe, of thickness 0.7 nm, and simulated the scattering cross-
section and electric field enhancement |IE/E,| using Finite Element Method (FEM) based COMSOL simulations.
The dielectric function values of WSe, were taken from Heinz et al [32]. The geometry parameters were chosen
to have a resonance wavelength close to the WSe, optical bandgap at 750 nm. Figure 1(b) shows E/E, field
enhancement in the hotspot as high as 5000. Figure 1(c) shows the spatial extent of the electric field
enhancement in the hot spot region, which lies within a few nanometers. The device fabrication and
characterization details of the geometry are explained in the Experimental section below.

Results and discussion

To inspect the effect of the plasmonic hotspots over WSe, in our device geometry, we analyze the enhancement
and shift in its Raman signal. Raman shift of bare monolayer WSe; has a peak ~250 cm ™" which corresponds to
the degenerate Eig + Ajgin-plane vibration mode, and a peak ~260 cm™ ' which corresponds to the 2LA(M)
second-order mode [33, 34].

Figure 2(a) shows the Raman shift of monolayer WSe, with and without the plasmonic confinement. To rule
out the effect of the heat-induced shift in the Raman spectra of WSe,, we performed Raman measurements on
W-bare sample before and after heating it at 260 C for 15 min figure S3 shows the respective Raman spectra with
no difference in the mode position due to heating. To make a quantitative estimate of the enhancement of the
electric field, we took the ratio of the total area under the E;g + Ajg Raman band as a measure of the strength of
the Raman signal, following the method outlined by Paria et al [ 15]. Accordingly, the ratio of the area under the
curve of Eég + A, peak of the sandwiched nanostructure to the area under the peak for bare WSe, on SiO,/Si
substrate provided an estimate of the plasmonic enhancement of ~2. For the theoretical estimation, we used the
enhancement curve from the numerical simulation in figure 1(b). Theoretically, the net enhancement of the
Raman signal for a laser focal spot of area A is given by

() () (5)

ab emi

2
where ( llEFf II ) is the enhancement due to the component of the strongly enhanced near field parallel (E,) to
01/ abs

2
WSe, at the wavelength of the excitation laser (532 nm), ( Illfrf’oll ) is the local electric enhancement at the
emi

Stokes-shifted emission wavelengths (539 nm). The area of high field enhancement (¢) is calculated by taking the

2

fwhm of the in-plane enhanced fields. From figure 1(b), the primary source of the enhancement (%)
O 1/ abs

the wavelength of the excitation laser (532 nm) was 81. The largely enhanced EM fields were concentrated in a

tiny region of area o &~ 150 nm” at the junction of the 2D-plasmonic geometry, as shown in figure 1(c). The

2
secondary source of enhancement ( Il EEP Poll ) was 121 (at 539 nm) for the E%g+A1g peak. Net estimated

enhancement was, thus, ~1.4, which is reasonably close to the experimental value obtained above, proving that
the plasmonic geometry indeed results in a hundred-fold focussing of optical intensity.
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Figure 1. (a) Schematic of desired 2D-plasmonic hybrid geometry. (b) simulated scattering cross section and electric field
enhancement for Ag/WSe,/Au geometry. (c) Spatial confinement of local electric field enhancement hotspot at 750 nm. Scale bar

10 nm. (d—j) Schematic of fabrication technique used; (d) PMMA spin coated SiO ,/Si substrate for e-beam lithography, (e) patterned,
developed and Cr deposited SiO,/Si substrate, (f) PMMA lifted-off leaving Cr disc as mask for substrate etching, (g) SiO, etched and
Cr removed pillars; Inset shows WSe, transferred on such a substrate for fabrication of W-pillars control sample, (h) Au film thermally
evaporated on SiO,/Si pillars, (i) WSe, transferred on Au-pillar substrate to form W-monomer control sample, (j) Ag/WSe,/Au
substrate post overlay lithography, development, Ag deposition, lift-off, and annealing steps. (k) SEM image of final fabricated device,
inset shows a magnified image of single dimer-on-pillar structure with WSe,. Scale bar 200 nm.
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Figure 2. (a) Raman shift of bare WSe, on SiO,/Si substrate and WSe, embedded in plasmonic Ag—Au cavity showing Eég + Ajgpeak
at250 cm ' and 2LA mode at 260 cm . The area under the Eig + A4 peak gives quantitative Raman plasmonic enhancement of the
dimer system. (b) Normalised Raman spectra of the dimer and the control samples, W-pillars with WSe, on SiO,/Si pillars and
W-monomer with WSe, on Au disc on SiO, pillars. A clear redshift is observed in Raman peaks. (c) Summary of the shift in both Eig +
Ajgand 2LA peaks for the control samples and device geometry.

We also studied the shift in the Raman bands and a comparison was drawn of the dimers with the control
samples of WSe, /SiO, pillar (W-pillar) geometry and WSe,/Au Disc/SiO, pillar (W-monomer) geometry, both
prepared using fabrication details mentioned in the experimental section. It was observed that addition of Au
disc on WSe, redshifts the Eég + A;gpeak by 0.5 cm™ ! compared to the W-pillar, while the 2LA peak shifts by
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Figure 3. (a) PL spectra for bare WSe,, pillar, monomer, and dimer samples. The latter three show redshift of 21-35 meV w.r.t the bare
sample. Lorentzian fitting and deconvolution of PL peak to neutral exciton (A% ~1.66 eV and trion peak (A*) ~1.63 eV for (b) WSe,
on SiO, pillars (W-pillar) sample, (c)WSe, on Au disc on SiO; pillar (W-monomer) sample and (d) Ag/WSe,/Au on SiO, pillar
sample (W-dimer). Clearly, the trion peak increases in intensity relative to the neutral exciton peak as the doping increases.

1 cm ™. This shift, shown in figure 2(b), is in accordance with previous work where monolayer WSe, decorated
with Aunanoparticles showed a redshift in the Eig + Ajgpeak [31]. Adding Ag on top of this monomer structure
further redshifts the in-plane vibrational mode by 0.5 cm ™' compared to W-monomer and by I cm ™' compared
to W-pillar. The 2LA mode also sees a significant redshift of 2 cm™' (3 cm™ ") compared to its previous
W-monomer (W-pillar) control geometry. This is one-of-a-kind reporting of the optical properties where the
effect of silver on monolayer WSe, has been reported optically. The shifts have been summarised in figure 2(c). A
similar reduction in the Raman shift of WSe, observed in previous works says that a tensile strain is induced on
WSe, by our geometry [35-37]. The strain induced can be quantified using photoluminescence (PL)
measurements. Raman does, however, establish that the strain induced is biaxial rather than uniaxial for the
current device, as no splitting is observed in the Eég + Ajgpeak[35].

We next carried out PL measurements on the dimer sample and control samples to understand the effect of
charge transfer by Ag and Au onto WSe; in variable conditions and quantify the strain induced in WSe,. Albeit
doping through electrical control of carrier concentration is well established, such as through the application of
voltage to the gate electrode, the purpose of this study was to understand the nature of doping induced by
plasmonic materials in a transparent device architecture; followed by optical characterizations using PL [28—-31].
Figure 3(a) shows photoluminescence (PL) spectra for W-bare, W-pillar, W-monomer, and W-dimer samples.
The data has been normalized to accentuate the peak shifts. Pristine monolayer WSe, (W-bare) presents a
prominent PL peak at 1.66 eV (A excitonic emission), corresponding to the direct bandgap transition. We find
that the addition of Au to the device geometry redshifts the optical bandgap by 21 meV.

Interestingly, the addition of the top Ag sphere to the geometry further redshifts the optical bandgap by
14 meV (atotal of 35 meV shift from pristine WSe;,). This material effect of Ag sphere onto monolayer WSe;, has
not been reported before to the best of our knowledge, and previous works have always associated redshift in PL
of monolayer due to various dopants with p-doping of the material [28, 38—40]. Raman peak shift pattern
observed matches with other work indicative of possible p-type doping of WSe, by our device structure;

4



10P Publishing

Nano Express 3 (2022) 045001 PSurietal

however, a conclusive result would require an electrical measurement [31]. To investigate the effect of plasmonic
parameters and structural variation on bandgap shift, we varied the diameter of the Au disc for W-monomer
sample and the pillar diameter in W-pillar sample. Figure S2 in supplementary information shows that the PL
peak position did not change dramatically in either case.

As established before, using Raman analysis, the type of strain acting on WSe, by our device is biaxial tensile;
we quantified the amount of strain induced using the magnitude of peak shift values of PL spectra. We found
that a strain of 0.2% and 0.3% was induced onto WSe, by the W-monomer and W-dimer geometry, respectively,
following the work of Johari and Shenoy [41].

Apart from the PL peak position redshift, there was an apparent increase in the FWHM of the PL peak. An
increase in FWHM is suggestive of other excitonic species formation. Hence, we deconvoluted the A exciton
peak into the neutral exciton emission (A®) at 1.66 €V and the trion (A7) at ~1.63 eV for the TMDC using
Lorentzian fitting [38, 42, 46]. This assignment of the trion peak to ~1.63 eV comes from works of ZhangR et al
[38], Huang] etal [46] and Jones A.M. et al [43] who used optical and electrical measurements to assign the
peaks. An accurate assignment would require altering the device to include electrical pads for gate
measurements, which is out of the scope of this work. Figure S5 in supplementary information shows the
FWHM of the A’ and A peak for bare to dimer samples. Figures 3(b)—(d) shows deconvoluted trion and exciton
peaks for the three samples; W-pillars, W-monomer, and W-dimer. The deconvoluted trion and exciton peak
for the W-bare sample has been added as figure S6 in supplementary information. It can be seen that the neutral
excitons (A”) dominate the PL emission of W-pillars. But as we introduce Au and Ag in the system, the intensity
ratio of trion to neutral exciton (AT /A®) increases, indicating the existence of enhanced concentrations of excess
carriers through doping effects. However, the literature suggests similar modifications can also happen due to
induced defects in the system [38, 46]. The ratio in our system changes from 0.14 for W-pillar to 0.35 for
W-monomer and 0.6 for the W-dimer sample. This encouraging observation suggests an efficient material route
toward bandgap engineering in WSe, for single-photon emitter-type device applications.

Conclusion

We investigated the effect of strain and metallic (Au, Ag) dopants on monolayer WSe, by sandwichingitin a
raised plasmonic cavity. We found that both Raman and PL peak positions shift on the introduction of strain
and Au, Ag. The Raman shift suggests the strain to be biaxial, and the PL suggests approximately 0.3%. The
change in the ratio of trion to exciton peak intensity indicated doping effects of Au and Ag. The effect of structure
and material on bandgap is relevant to photodetector applications, where 2D materials are coupled with
plasmonic devices, e.g., when plasmonic nanoparticles [14—16] are in close proximity to the 2D photo-
responsive material. In addition, these TMDC-plasmonic cavities, when strained, can be potential candidates
toward deterministic and efficient sources of single photons for various quantum information applications.

Experimental section

Device fabrication

Fabrication of the base SiO, pillars on SiO,/Si substrate was done using electron beam (e-beam) lithography.
Photoresist (PR)PMMA 495k A4 was spin-coated on SiO,/Si substrate. The desired hole pattern of radius

100 nm and pitch 1 pm was written and developed in MIBK: IPA solution for 1 min 35 s to obtain the hole array
patterns in the PR. A 40 nm thick chromium (Cr) film was deposited on the hole pattern followed by lift-off to
obtain 100 nm radius Cr discs. With Cr as a mask, the SiO, substrate was etched using Reactive Ion Etching
(RIE) with CHF; gas forming SiO, pillars array. Cr was later removed using a Cr etchant, leaving arrays of
120-130 nm tall SiO, pillars, figure 1(f). A thin film of 40 nm Au thermally evaporated over the patterned pillar
substrate formed the base plasmonic material of the dimer-on-pillar geometry, as shown in figure 1(g).
Commercially available CVD grown monolayer WSe;, (from Six-Carbon Technology) was transferred to the
Au-SiO, pillar substrate using a standard PMMA-based wet transfer process. WSe,-Au disc-SiO, pillar
configuration or W-monomer obtained is shown in figure 1(h). Overlay e-beam lithography was used to expose
only the top of the pillars covered with WSe,/Au. Post-development, an array of holes was obtained precisely at
the location of pillars. A 40 nm thick silver film was deposited, followed by lift-off leading to Ag disc-WSe,-Au
disc on SiO, pillar configuration. This was further annealed at 260 °C for 15 min in nitrogen ambient to form an
Ag nanoparticle-WSe,-Au disc configuration, denoted as W-dimer sample ahead. Figure 1(j) shows the SEM
image of the final fabricated dimer-on-pillar geometry with WSe2 in between.

5
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Optical characterizations

The optical characterizations of Raman and PL spectra of our samples were carried out using Horiba Jobin Vyon
LabRAM HR spectrometer with excitation laser 532 nm, 100x objective of 0.9 NA. The effective spot size was
800 nm. The incident laser power was 50 W, and spectra were collected with an integration time of 3 s for PL
and 5 s for Raman. The signal was averaged three times for both. To confirm that input laser power used has no
effect on the PL spectra, we performed power dependence of W-bare sample and found that spectra do not shift
as a function of power for upto few 100 W, as shown in figure S4.
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