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Abstract
Recent interests in layered transition-metal dichalcogenides (TMDCs), such asWSe2,MoS2, etc, arise
due to their attractive electrical, optical, andmechanical properties with potential applications in
energy storage, generation, andmanymore. Embedding these 2Dmaterials in plasmonic cavities can
further enhance light–matter interactions and alter their properties, resulting in diverse and efficient
optoelectronic applications. The strain due to the geometry and charge transfer due to the plasmonic
materials can furthermodify the TMDCs’ optical response for sensing applications and as single
photon emitters in on-chip optoelectronic applications. This work discusses one such 2D-plasmonic
hybrid configuration of a silver sphere on a gold disc withWSe2 sandwiched in between.We perform
non-invasive Raman andPL studies of this system to estimate thefield enhancement and discuss strain
and doping induced in the TMDC.

Introduction

Metal nanoparticles of different shapes, sizes, andmaterials like gold (Au), Silver (Ag), orCopper (Cu) showstrong
interactionwith incident light through the excitationof collective andcoherent electronoscillations knownas localized
surfaceplasmons.Applications include surface-enhancedRaman spectroscopy (SERS), photovoltaics, photocatalysis,
andmanymore,makingnoblemetal nanoparticles attractive for fundament studies aswell as technologically
important [1–7]. The strengthof these electromagnetic couplingsdependson thenumberof suchnanoparticles and
their separationdistance.Of all plasmonic systems, themost common is a two-nanoparticle systemwithnmand
smaller spacings inbetween, also knownasdimers,whichhas great scope inbiological imaging, photodetection, and
optical sensing, alongwith thosementionedabove.The easiestwayofmaintaining such a sub-nmgap is byplacing a
material of equal thickness between theplasmonicparticles. In this respect, two-dimensionalmaterials like graphene
and transitionmetal dichalcogenides (TMDCs)with atomic thicknesshave foundmuchattention [8–14]. Previously
wehave shownhowsandwiching a single layer of graphenebetween two silvernanoparticles resulted inunprecedented
photoresponsivity in graphene that allowed the realizationof anewclass of large-area color-selectiveplasmonic
photodetector at roomtemperature [15]. The local electromagneticfield at the junctionof the sub-nmspaceddimers
increaseddramatically, thereby resulting in themost sensitive graphene–plasmonichybridphotodetector reported to
date. Suchanarchitecture signifies the tremendouspromiseof integratingplasmonicswith atomically thinmaterials,
especiallyTMDCs, innanoelectronics andnanophotonic applications [15–19, 44], arisingdue to thedirect bandgapof
TMDCmonolayers in the visible region.

It is necessary to recognize the various effects that can alter the physical properties of the TMDCs in a
sandwich geometry. Quite well known are the local strains and possible defect localization in TMDCs on pillars.
While the uncontrolled occurrence ofmany defects is typically detrimental tomaterial properties, carefully
structured and induced defects and strain engineering have led to new applications, including single-photon
sources inmonolayerWSe2 [18, 19, 20, 21, 45] and inducing direct bandgap inmultilayerWSe2 [22].
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In addition, the charge transfer by theAg sphere orAu disc into thematerial can result in doping of the
material, resulting in a shift in the optical bandgap of thematerial, offering another important handle towards
engineering the properties of TMDCs for applications [23, 24]. This has led to critical applications in
spintronics, high-speed transistors, and various sensors [25–28].Metal nanoparticles are known to reduce
lifetime/speed up the decay process.

Surprisingly, there have been only a limited number of studies on the effects of doping and strain onWSe2
characterized through PL and/or Raman shifts. These include a report onNiobium-induced p-doping ofWSe2
causing a redshift in PL energy as well as a Raman shift, while other p-dopants likeMagic blue or
[N(C6H4-p-Br)3] SbCl6 causing a blueshift [28–31]. In otherwork, while p-doping byAu is established in the
WSe2monolayer, the effect on PL energies has not been discussed [31].

With such an expanse of applications of TMDCs- plasmonic hybrid, herewe present a careful investigation
of the effect of a plasmonic cavity overWSe2 as the TMDC, specifically for strain and doping consequences,
using Raman and PL. The dimer-2D cavity was fabricated on pillar geometry to induce deterministic strain in
WSe2.

Wemodelledmultiple plasmonic architectures tofind onewith resonance closest or equal toWSe2. Few of
such examples are shown in supplementary information figure S1. Keeping inmind the feasibility of fabrication
over pillars and other factors, we chose a sphere-disc geometry to be fabricated over pillars. A plasmonic-2D
material hybrid device geometry, as shown in figure 1(a), which is reasonably close to the final experimental
device, is studied here in detail.We consider a silver (Ag) sphere of radius 75 nmand a gold (Au) disc of radius
100 nm, thickness 40 nm, separated bymonolayerWSe2 of thickness 0.7 nm, and simulated the scattering cross-
section and electric field enhancement |E/Eo|using Finite ElementMethod (FEM) basedCOMSOL simulations.
The dielectric function values ofWSe2were taken fromHeinz et al [32]. The geometry parameters were chosen
to have a resonancewavelength close to theWSe2 optical bandgap at 750 nm. Figure 1(b) shows E/Eofield
enhancement in the hotspot as high as 5000. Figure 1(c) shows the spatial extent of the electric field
enhancement in the hot spot region, which lies within a few nanometers. The device fabrication and
characterization details of the geometry are explained in the Experimental section below.

Results and discussion

To inspect the effect of the plasmonic hotspots overWSe2 in our device geometry, we analyze the enhancement
and shift in its Raman signal. Raman shift of baremonolayerWSe2 has a peak∼250 cm−1 which corresponds to
the degenerate E12g+A1g in-plane vibrationmode, and a peak∼260 cm−1 which corresponds to the 2LA(M)
second-ordermode [33, 34].

Figure 2(a) shows theRaman shift ofmonolayerWSe2with andwithout the plasmonic confinement. To rule
out the effect of the heat-induced shift in theRaman spectra ofWSe2, we performedRamanmeasurements on
W-bare sample before and after heating it at 260 C for 15 min figure S3 shows the respective Raman spectrawith
no difference in themode position due to heating. Tomake a quantitative estimate of the enhancement of the
electric field, we took the ratio of the total area under the E12g+A1g Raman band as ameasure of the strength of
the Raman signal, following themethod outlined by Paria et al [15]. Accordingly, the ratio of the area under the
curve of E12g+A1g peak of the sandwiched nanostructure to the area under the peak for bareWSe2 on SiO2/Si
substrate provided an estimate of the plasmonic enhancement of∼2. For the theoretical estimation, we used the
enhancement curve from the numerical simulation infigure 1(b). Theoretically, the net enhancement of the
Raman signal for a laser focal spot of area A is given by
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thewavelength of the excitation laser (532 nm)was 81. The largely enhanced EMfields were concentrated in a
tiny region of areaσ≈ 150 nm2 at the junction of the 2D-plasmonic geometry, as shown infigure 1(c). The

secondary source of enhancement
Ep

Epo
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2( )∣ ∣
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was 121 (at 539 nm) for the E12g+A1g peak.Net estimated

enhancementwas, thus,∼1.4, which is reasonably close to the experimental value obtained above, proving that
the plasmonic geometry indeed results in a hundred-fold focussing of optical intensity.
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Wealso studied the shift in the Raman bands and a comparisonwas drawn of the dimerswith the control
samples ofWSe2/SiO2 pillar (W-pillar) geometry andWSe2/AuDisc/SiO2 pillar (W-monomer) geometry, both
prepared using fabrication detailsmentioned in the experimental section. It was observed that addition of Au
disc onWSe2 redshifts the E

1
2g+A1g peak by 0.5 cm

−1 compared to theW-pillar, while the 2LApeak shifts by

Figure 1. (a) Schematic of desired 2D-plasmonic hybrid geometry. (b) simulated scattering cross section and electric field
enhancement for Ag/WSe2/Au geometry. (c) Spatial confinement of local electricfield enhancement hotspot at 750 nm. Scale bar
10 nm. (d–j) Schematic of fabrication technique used; (d)PMMA spin coated SiO 2/Si substrate for e-beam lithography, (e) patterned,
developed andCr deposited SiO2/Si substrate, (f)PMMA lifted-off leavingCr disc asmask for substrate etching, (g) SiO2 etched and
Cr removed pillars; Inset showsWSe2 transferred on such a substrate for fabrication ofW-pillars control sample, (h)Aufilm thermally
evaporated on SiO2/Si pillars, (i)WSe2 transferred onAu-pillar substrate to formW-monomer control sample, (j)Ag/WSe2/Au
substrate post overlay lithography, development, Ag deposition, lift-off, and annealing steps. (k) SEM image offinal fabricated device,
inset shows amagnified image of single dimer-on-pillar structurewithWSe2. Scale bar 200 nm.

Figure 2. (a)Raman shift of bareWSe2 on SiO2/Si substrate andWSe2 embedded in plasmonic Ag–Au cavity showing E12g+A1g peak
at 250 cm−1 and 2LAmode at 260 cm−1. The area under the E12g+A1g peak gives quantitative Ramanplasmonic enhancement of the
dimer system. (b)Normalised Raman spectra of the dimer and the control samples,W-pillars withWSe2 on SiO2/Si pillars and
W-monomerwithWSe2 onAu disc on SiO2 pillars. A clear redshift is observed inRaman peaks. (c) Summary of the shift in both E12g+
A1g and 2LApeaks for the control samples and device geometry.
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1 cm−1. This shift, shown infigure 2(b), is in accordance with previous workwheremonolayerWSe2 decorated
withAunanoparticles showed a redshift in the E12g+A1g peak [31]. Adding Ag on top of thismonomer structure
further redshifts the in-plane vibrationalmode by 0.5 cm−1 compared toW-monomer and by 1 cm−1 compared
toW-pillar. The 2LAmode also sees a significant redshift of 2 cm−1 (3 cm−1) compared to its previous
W-monomer (W-pillar) control geometry. This is one-of-a-kind reporting of the optical properties where the
effect of silver onmonolayerWSe2 has been reported optically. The shifts have been summarised infigure 2(c). A
similar reduction in theRaman shift ofWSe2 observed in previous works says that a tensile strain is induced on
WSe2 by our geometry [35–37]. The strain induced can be quantified using photoluminescence (PL)
measurements. Raman does, however, establish that the strain induced is biaxial rather than uniaxial for the
current device, as no splitting is observed in the E2g

1 +A1g peak [35].
We next carried out PLmeasurements on the dimer sample and control samples to understand the effect of

charge transfer byAg andAu ontoWSe2 in variable conditions and quantify the strain induced inWSe2. Albeit
doping through electrical control of carrier concentration is well established, such as through the application of
voltage to the gate electrode, the purpose of this studywas to understand the nature of doping induced by
plasmonicmaterials in a transparent device architecture; followed by optical characterizations using PL [28–31].
Figure 3(a) shows photoluminescence (PL) spectra forW-bare,W-pillar,W-monomer, andW-dimer samples.
The data has been normalized to accentuate the peak shifts. PristinemonolayerWSe2 (W-bare) presents a
prominent PL peak at 1.66 eV (A excitonic emission), corresponding to the direct bandgap transition.Wefind
that the addition of Au to the device geometry redshifts the optical bandgap by 21 meV.

Interestingly, the addition of the topAg sphere to the geometry further redshifts the optical bandgap by
14 meV (a total of 35 meV shift frompristineWSe2). Thismaterial effect of Ag sphere ontomonolayerWSe2 has
not been reported before to the best of our knowledge, and previous works have always associated redshift in PL
ofmonolayer due to various dopants with p-doping of thematerial [28, 38–40]. Raman peak shift pattern
observedmatches with other work indicative of possible p-type doping ofWSe2 by our device structure;

Figure 3. (a)PL spectra for bareWSe2, pillar,monomer, and dimer samples. The latter three show redshift of 21–35 meVw.r.t the bare
sample. Lorentzian fitting and deconvolution of PL peak to neutral exciton (A0)∼1.66 eV and trion peak (A*)∼1.63 eV for (b)WSe2
on SiO2 pillars (W-pillar) sample, (c)WSe2 onAu disc on SiO2 pillar (W-monomer) sample and (d)Ag/WSe2/Auon SiO2 pillar
sample (W-dimer). Clearly, the trion peak increases in intensity relative to the neutral exciton peak as the doping increases.
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however, a conclusive result would require an electricalmeasurement [31]. To investigate the effect of plasmonic
parameters and structural variation on bandgap shift, we varied the diameter of the Au disc forW-monomer
sample and the pillar diameter inW-pillar sample. Figure S2 in supplementary information shows that the PL
peak position did not change dramatically in either case.

As established before, using Raman analysis, the type of strain acting onWSe2 by our device is biaxial tensile;
we quantified the amount of strain induced using themagnitude of peak shift values of PL spectra.We found
that a strain of 0.2% and 0.3%was induced ontoWSe2 by theW-monomer andW-dimer geometry, respectively,
following thework of Johari and Shenoy [41].

Apart from the PL peak position redshift, therewas an apparent increase in the FWHMof the PL peak. An
increase in FWHM is suggestive of other excitonic species formation.Hence, we deconvoluted the A exciton
peak into the neutral exciton emission (A0) at 1.66 eV and the trion (AT) at∼1.63 eV for the TMDCusing
Lorentzian fitting [38, 42, 46]. This assignment of the trion peak to∼1.63 eV comes fromworks of ZhangR et al
[38], Huang J et al [46] and Jones A.M. et al [43]whoused optical and electricalmeasurements to assign the
peaks. An accurate assignment would require altering the device to include electrical pads for gate
measurements, which is out of the scope of this work. Figure S5 in supplementary information shows the
FWHMof theA0 andAT peak for bare to dimer samples. Figures 3(b)–(d) shows deconvoluted trion and exciton
peaks for the three samples;W-pillars,W-monomer, andW-dimer. The deconvoluted trion and exciton peak
for theW-bare sample has been added as figure S6 in supplementary information. It can be seen that the neutral
excitons (A0) dominate the PL emission ofW-pillars. But as we introduce Au andAg in the system, the intensity
ratio of trion to neutral exciton (AT/A0) increases, indicating the existence of enhanced concentrations of excess
carriers through doping effects. However, the literature suggests similarmodifications can also happen due to
induced defects in the system [38, 46]. The ratio in our system changes from0.14 forW-pillar to 0.35 for
W-monomer and 0.6 for theW-dimer sample. This encouraging observation suggests an efficientmaterial route
toward bandgap engineering inWSe2 for single-photon emitter-type device applications.

Conclusion

We investigated the effect of strain andmetallic (Au, Ag) dopants onmonolayerWSe2 by sandwiching it in a
raised plasmonic cavity.We found that both Raman and PL peak positions shift on the introduction of strain
andAu, Ag. The Raman shift suggests the strain to be biaxial, and the PL suggests approximately 0.3%. The
change in the ratio of trion to exciton peak intensity indicated doping effects of Au andAg. The effect of structure
andmaterial on bandgap is relevant to photodetector applications, where 2Dmaterials are coupledwith
plasmonic devices, e.g., when plasmonic nanoparticles [14–16] are in close proximity to the 2Dphoto-
responsivematerial. In addition, these TMDC-plasmonic cavities, when strained, can be potential candidates
toward deterministic and efficient sources of single photons for various quantum information applications.

Experimental section

Device fabrication
Fabrication of the base SiO2 pillars on SiO2/Si substrate was done using electron beam (e-beam) lithography.
Photoresist (PR)PMMA495kA4was spin-coated on SiO2/Si substrate. The desired hole pattern of radius
100 nmand pitch 1μmwaswritten and developed inMIBK: IPA solution for 1 min 35 s to obtain the hole array
patterns in the PR. A 40 nm thick chromium (Cr)filmwas deposited on the hole pattern followed by lift-off to
obtain 100 nm radius Cr discs.WithCr as amask, the SiO2 substrate was etched using Reactive Ion Etching
(RIE)withCHF3 gas forming SiO2 pillars array. Crwas later removed using aCr etchant, leaving arrays of
120–130 nm tall SiO2 pillars, figure 1(f). A thinfilm of 40 nmAu thermally evaporated over the patterned pillar
substrate formed the base plasmonicmaterial of the dimer-on-pillar geometry, as shown infigure 1(g).
Commercially available CVDgrownmonolayerWSe2 (from Six-CarbonTechnology)was transferred to the
Au-SiO2 pillar substrate using a standard PMMA-basedwet transfer process.WSe2-Au disc-SiO2 pillar
configuration orW-monomer obtained is shown infigure 1(h). Overlay e-beam lithographywas used to expose
only the top of the pillars coveredwithWSe2/Au. Post-development, an array of holes was obtained precisely at
the location of pillars. A 40 nm thick silver filmwas deposited, followed by lift-off leading toAg disc-WSe2-Au
disc on SiO2 pillar configuration. This was further annealed at 260 °C for 15 min in nitrogen ambient to form an
Ag nanoparticle-WSe2-Au disc configuration, denoted asW-dimer sample ahead. Figure 1(j) shows the SEM
image of thefinal fabricated dimer-on-pillar geometry withWSe2 in between.
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Optical characterizations
The optical characterizations of Raman and PL spectra of our samples were carried out usingHoriba JobinVyon
LabRAMHR spectrometer with excitation laser 532 nm, 100x objective of 0.9NA. The effective spot sizewas
800 nm. The incident laser powerwas 50μW, and spectrawere collectedwith an integration time of 3 s for PL
and 5 s for Raman. The signal was averaged three times for both. To confirm that input laser power used has no
effect on the PL spectra, we performed power dependence ofW-bare sample and found that spectra do not shift
as a function of power for upto few 100μW, as shown infigure S4.
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