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Quantitative landscapes reveal
trajectories of cell-state transitions
associated with drug resistance in melanoma

Maalavika Pillai,1,2,6 Zihao Chen,3,4,6 Mohit Kumar Jolly,1,7,* and Chunhe Li3,4,5,*

SUMMARY

Drug resistance and tumor relapse in patients with melanoma is attributed to a
combination of genetic and non-genetic mechanisms. Dedifferentiation, a com-
mon mechanism of non-genetic resistance in melanoma is characterized by the
loss of melanocytic markers. While various molecular attributes of de-differenti-
ation have been identified, the transition dynamics remain poorly understood.
Here, we construct cell-state transition landscapes, to quantify the stochastic dy-
namics driving phenotypic switching in melanoma based on its underlying regula-
tory network. These landscapes reveal the existence of multiple alternative paths
to resistance—de-differentiation and transition to a hyper-pigmented pheno-
type. Finally, by visualizing the changes in the landscape during in silicomolecular
perturbations, we identify combinatorial strategies that can lead to the most
optimal outcome—a landscape with the minimum occupancy of the two drug-
resistant states. Therefore, we present these landscapes as platforms to screen
possible therapeutic interventions in terms of their ability to lead to the most
favorable patient outcomes.

INTRODUCTION

Phenotypic heterogeneity in melanoma has been attributed to drug resistance, relapse, and recalcitrance

in patients.1–4 Clinically, phenotypic classification of tumor samples was introduced to distinguish between

the metastatic potential of melanoma tumors. Cells were classified as proliferative or invasive, based on

their ability to contribute to tumor growth (non-metastatic) and their ability to migrate to secondary tumor

sites (metastatic), respectively.5 These two phenotypes were shown to be capable of switching between

one another and giving rise to heterogeneous tumors independently.6,7 Although the classification started

as a binary system for metastatic and non-metastatic samples, intermediate phenotypes displaying fea-

tures of both the extreme phenotypes have also been identified.5,8–11 A recent study classified melanoma

samples into four phenotypes: melanocytic, transitory, neural crest stem cell like (NCSC) and undifferenti-

ated (in a decreasing order of proliferative behavior, or in an increasing order of invasive traits).12 Treatment

of melanocytic samples with BRAF inhibitors (BRAFi) or MEK inhibitors (MEKi) can cause cells to follow a

distinct de-differentiation trajectory, where they first transition to being intermediate phenotypes on the

proliferative-invasive axis (transitory and NCSC) and finally get undifferentiated.13–15 De-differentiation

has been dynamically characterized as a response to targeted therapy, a response driven by underlying

gene regulatory network that determines the changes in gene expression (during drug treatment or other

perturbations) and the consequent switching of phenotypes. Dynamical simulations of such networks sug-

gest that the four abovementioned phenotypes exist as ‘‘microstates’’ within two larger ‘‘macro-states’’,

namely the proliferative and invasive phenotypes.16 However, the stochastic cell-state transition dynamics

among these four phenotypes remain to be determined.

Besides de-differentiation, recent studies have identified alternate pathways to therapy resistance.17–19

Single-cell profiling of patient-derived xenograft models revealed an alternate resistance pathway where

cells increase expression of pigmentation genes and are referred to as hyper-pigmented.20 The hyper-pig-

mented phenotype is characterized by high expression of melanocyte differentiation marker MITF and its

downstream targets such as PMEL, TYR, and MLANA.21 While the existence of such an alternate pathway

has been characterized, the underlying regulatory mechanism and the cell-state transition trajectory to this

phenotype remains to be deciphered yet.
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The (co-) existence of multiple cell-states is visualized as switching among diverse ‘‘attractors’’ in a given

potential landscape, thus enabling the emergence of non-genetic heterogeneity. Waddington’s landscape

is a classic example of such multi-stable potential landscapes being used to explain the dynamics of differ-

entiation of cells, where each differentiated cell type is a stable state. In the context of cancer biology, such

landscapes have been used to explain the progression from a normal to cancerous cell state, switching to a

cancer stem-cell-like state, and epithelial-to-mesenchymal transition in carcinomas.22–27

Here, we explain the existence of categorical multi-stability (Figure 1A) and dynamics governing resistant

cell-fate decisions in melanoma, using quantitative landscapes. We infer cell-state transition probabilities

and identify the de-differentiation trajectory followed by cells as the most likely transition path in the given

landscape. Further, we reveal conditions under which cells can take an alternate trajectory for drug resis-

tance: the acquisition of a hyper-pigmented state. Finally, we use these landscapes to identify combinato-

rial strategies to promote favorable outcomes. Our model not only provides a mechanistic understanding

of phenotypic heterogeneity and underlying dynamics during phenotypic switching but also acts as a plat-

form for the primary screening of target genes to identify potential therapeutic strategies that can drive

desirable outcomes.

RESULTS

Quantitative landscapes capture categorical multi-stability in melanoma

We simulated the dynamics of a previously defined gene regulatory network (Figure 1B) that explains the

existence of four phenotypes, namely, Melanocytic (M), Transitory (T), NCSC (N), and Undifferentiated

(U),16 and generated corresponding landscape showcasing these four phenotypes observed in melanoma

(Figure 1C). Previously, in order to estimate parameters and simulate the network-derived model, we had

used RACIPE (RAndom CIrcuit PErturbation), which generates a large number of models by using an

ensemble of parameter sets such that kinetic parameters are sampled randomly from a distribution corre-

sponding to biologically feasible in vitro values.28,29 For this study, we selected parameter sets correspond-

ing to tetra-stable or penta-stable models (i.e., models that give rise to 4 or 5 stable states, respectively)

(Table S3).

In our earlier work,16 we had proposed that the underlying regulatory network gives rise to multi-stability

comprising of two broader categories or ‘‘macro-states’’ (Proliferative and Invasive) that can be subdivided

into 4 phenotypes or ‘‘micro-states’’ (Proliferative comprises of Melanocytic, Transitory; while Invasive com-

prises of NCSC and Undifferentiated) (Figure 1A). However, this categorization was entirely based on clus-

tering algorithms and Euclidean distance metrics applied to steady-state values obtained from RACIPE

simulations. These methods do not provide any insight into the actual dynamics of the system. Thus,

here, we focus on the relative stability of each state and its ability to transition to other states to quantify

multi-stability transition dynamics in the system (characterized by the depth of the corresponding ‘‘attrac-

tor’’ on the landscape).

The methodology used to simulate the network in our previous study (RACIPE) generates an ensemble of

kinetic models, each of which uses a set of kinetic parameters randomly generated within a specific biolog-

ically relevant range. Thus, each model is defined by a set of randomized parameters (also known as a

parameter set). To analyze the dynamics of the system, we selected 3 such models or parameter sets,

each of which gave rise to four stable state solutions i.e. tetra-stable parameter sets. In each of these

models, the four stable states correspond to the four phenotypes, based on the classification defined in

our previous work.

For the tetra-stable parameter sets, the landscape highlights the existence of these four phenotypes as four

attractors lying within two larger ‘‘macro-states’’ (proliferative and invasive) (Figure 1C). The melanocytic

and transitory phenotypes lie within the proliferative macro-state and the NCSC and undifferentiated phe-

notypes lie in the invasive macro-state, as expected. Here the landscape is acquired based on a dimension

reduction of landscape (DRL) approach,22 by projecting the high-dimensional landscape to a two-dimen-

sional space (PC1 and PC2). DRL identifies the contribution of each gene to the variability in the expression

among the phenotypes. The loading coefficients corresponding to the first two principal components dis-

played clear segregation of proliferative genes (MITF, FOS, STAT5A, ETV5, SMAD4) and invasive genes

(KLF4, NR3C1, SMAD3, JUN, NFIC, AHR, TBX3) (Figure 1D, Table 1). We also observe that the most likely

transition path of cells recapitulates the de-differentiation trajectory (i.e., transition from M to T to N to
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Figure 1. Energy landscapes explain the existence of categorical multi-stability in melanoma tumors

(A) Schematic representation of categorical multi-stability.

(B) Gene regulatory network (GRN) governing phenotypic heterogeneity in melanoma.

(C) Energy landscape for the parameter set giving rise to 4 stable states/phenotypes.

(D) Heatmap for PCA loading coefficients categorizes genes as proliferative and invasive.

(E) Changes in transition probabilities from Melanocytic phenotype with simulation time.

(F) Heatmap for transition probability matrix derived from energy landscape (X axis: To; Y axis: From). Color bar denotes

percentage probabilities.
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U; highlighted using white arrows in Figure 1C). Transition probabilities for cells in the M state, display the

maximum likelihood for transition to the T phenotype (Figures 1E and 1F, Table 2). These results are

captured in three separate parameter sets/models that were selected (Figures S1A and S1B, Table S1),

thus suggesting more generic features of the underlying tetra-stable landscapes corresponding to

melanoma.

Penta-stability explains the existence of multiple trajectories for drug resistance

Besides de-differentiation, alternative trajectories to drug resistance inmelanoma have been reported.17,20

The hyper-pigmented phenotype is a resistant phenotype that does not arise out of de-differentiation per

se. It is characterized by an increase in melanocytic markers such as MITF, PMEL, TYR, and MLANA which

are commonly associated with pigmentation in melanocytes. We used our existing network to test whether

it could explain the existence of this phenotype. To identify the fifth phenotype, we used k-means clus-

tering (k = 5) on the RACIPE simulation dataset that was previously generated.16 Parameter sets that

gave steady-state solutions for all five clusters were used to generate landscapes (Table S3B).

The landscapes revealed that the fifth state, which is characterized by very high levels of MITF (even higher

than the melanocytic phenotype), fell outside the de-differentiation trajectory (highlighted using white ar-

rows), suggesting that it represented the Hyperpigmented (H) phenotype (highlighted using pink arrows)

as previously reported20 (Figure 2A, Table 3). The melanocytic and transitory phenotypes showed the high-

est probability of switching to the hyper-pigmented phenotype (Figure 2B, Table 4). Similar results were

witnessed for an alternate penta-stable parameter set too (Figures S2A and S2B, Table S2).

To validate this prediction made by landscape quantification, we performed a pseudo-time analysis of sin-

gle-cell tumor samples (GSE115978, single-cell patient tumor samples, treatment, and naive condition for

immune checkpoint inhibitors). Previous reports suggest that the treatment of tumors with immune check-

points can lead to the progression of cells along the de-differentiation axis, suggesting that the two pro-

cesses of immune checkpoint inhibitor resistance and de-differentiation are linked.30 This analysis recapit-

ulated similar trends, where melanoma cells transition, along the pseudo-time axis, from being in a

proliferative phenotype to a transitory phenotype which further bifurcates to give rise to the de-differenti-

ation and hyper-pigmentation trajectories for drug resistance (Figures 2C, 2D, S2C and S2D), thereby

underlining two alternative or non-overlapping trajectories to resistance in melanoma. Scores for each

phenotype were calculated using AUCell for gene sets reported earlier.20,31 The genes regulating the hy-

per-pigmented phenotype (red labels) and the invasive phenotype (blue labels) form two mutually

Table 1. PCA coefficients for Figure 1

PC1 PC2

AHR 0.010417856 �0.003509517

NFIC 0.169563069 �0.057414515

FOS �0.010595336 0.00369566

KLF4 0.333410913 0.942556894

FOXF1 0.069210579 �0.023063742

JUN 0.233019618 �0.075501903

SMAD3 0.556252131 �0.185471997

MITF �0.177958673 0.059335041

SMAD4 �0.091301187 0.030436385

MAFB 0.054437965 �0.018147989

NR3C1 0.657138108 �0.246967925

NR2F1 0.055335417 �0.017854324

STAT5A �0.061691691 0.020573509

TBX3 0.002394554 0.006606184

TFE3 0.005726134 �0.001909402

ETV5 �0.051919583 0.017308019

TFAP2A 0.083419638 �0.027808951
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inhibiting ‘‘teams’’ of genes (Figure S2E), i.e., genes regulating a phenotype are positively correlated with

each other and negatively correlated with genes regulating the other phenotype. Such ‘‘teams’’-like inter-

actions have been shown to play a role in regulating phenotype switching and multi-stability in biological

systems.32,33 Transition paths based on the energy landscapes for the two trajectories (de-differentiation

and hyperpigmentation) reveal the changes in gene expression as cells transition from one state to another

(Figure S3). The state transitions during de-differentiation (M to T to N to U) reveal a clear switch from high

levels of expression of proliferative andmelanocytic markers (MITF, FOS, SMAD4, ETV5) to lower levels and

a concomitant increase in invasive markers (SMAD3, AHR, NFIC, KLF4, JUN) (Figures S3A and S3B). The

state transitions for hyperpigmentation (M to H) not only reveal an increase in expression levels of MITF,

a well-characterized regulator of pigmentation in melanocytes, but also an increase in expression of

ETV5 and TFAP2A. Previous studies have reported regulation of MITF, ETV5, and TFAP2A by super-

enhancer motifs during hyper-pigmentation.34 While MITF and TFAP2A have been reported to display

clear upregulation during hyperpigmentation. Overall, our model is able to recapitulate multiple paths

to drug resistance and the associated transitions in cell states observed in melanoma tumors.

Quantifying intra-tumor and inter-tumor heterogeneity in melanoma samples

After analyzing above-mentioned experimental datasets, we investigated single-cell transcriptomic data

gathered from multiple tumors. Interestingly, upon segregating these samples based on the tumor, we

observed that most tumors comprised a heterogeneous population of cells, i.e., cells from a single tumor

were proliferative, de-differentiated/invasive, and/or hyper-pigmented (Figure S2F), thus highlighting

intra-tumor heterogeneity. The frequencies of these phenotypes also varied across tumors, thereby show-

casing inter-tumor heterogeneity as well.

To quantify intra-tumor heterogeneity, we used the Shannon Diversity Index (SDI) (Figure 3A). Higher SDI

indicates higher levels of diversity and thereby higher uncertainty in determining the phenotype of a

random cell. For tumors comprising cells from a single phenotype, SDI is 0 (Mel121, Mel81, Mel84), and

tumors with a high proportion of a single phenotype have SDI close to 0 (Mel106, Mel79, Mel80). Intrigu-

ingly, very few tumors had hyper-pigmented phenotype as the dominant phenotype, suggesting that

this phenotype can be perhaps less abundant in tumors. This trend is also captured by the relative stability

of the hyper-pigmented phenotype in simulated data (Figure 3B). Only a small fraction (<25%) of solutions

corresponded to the hyper-pigmented phenotype in both cases. This low abundance might have possibly

contributed to this phenotype being discovered more recently under the lens of single-cell profiling,20 as

opposed to previous bulk-level studies on heterogeneity in melanoma.12

In silico knockdowns predict optimal drug treatment strategy

To check whether our landscape-based model could recapitulate the effects of targeted therapy as

noted experimentally, we knocked down (KD) in silico some commonly targeted genes. We used MITF

KD to mimic the effect of BRAF inhibition, since BRAF is a gene upstream of MITF.35 Since MITF is

required to identify the proliferative and hyperpigmented phenotype, we used the spatial localization

of these states along the PC space as a proxy for identifying them. A recent study also highlighted

the ability to overcome drug-resistant phenotypes by knocking down SMAD3 or its upstream regulator

AHR, both of which are included in our network.36 Knockdown of MITF alone, led to a loss of the hyper-

pigmented phenotype from the landscape (as compared to the unperturbed landscape), leaving only the

proliferative (melanocytic and transitory) and de-differentiated phenotypes (NCSC and Undifferentiated)

(Figures 4A and 4C). SMAD3 KD led to the loss of invasive and de-differentiated phenotypes, leaving

only the hyperpigmented and proliferative ones (Figure 4B). A recent study identified AHR and

SMAD3 as regulators of resistant phenotypes that arise during BRAFi-induced de-differentiation. Knock-

ing down AHR or SMAD3 prevented the emergence of resistant phenotypes during BRAFi treatment.36

Table 2. Transition matrix for Figure 1

(%) U N M T

U 0 45.29 27.32 27.39

N 44.82 0 27.56 27.62

M 20.21 25.54 0 54.25

T 19.88 25.7 54.42 0
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Figure 2. Energy landscapes explain the existence of multiple paths to drug resistance

(A) Energy landscape for the parameter set giving rise to 5 stable states/phenotypes.

(B) Changes in transition probabilities from Melanocytic phenotype with simulation time. Inset represents heatmap for

transition probability matrix derived from energy landscape (X axis: To; Y axis: From). Color bar denotes percentage

probabilities.
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We recapitulated this experiment in silico by knocking down MITF and SMAD3 simultaneously. This led

to the loss of both the de-differentiated (U) and the hyper-pigmented (H) resistant states (Figure 4D).

Similar trends were also seen for the combined knockdown of AHR and MITF, further validating the abil-

ity of our model to make predictive outcomes for targeted therapy (Figure S4A).

Moreover, with an increase in the extent of knockdown of MITF and SMAD3, we observed a lower rate of

de-differentiation and a higher rate of differentiation toward the melanocytic phenotype (i.e., the transition

rate of dedifferentiation from the melanocytic to undifferentiated phenotype became lesser than the

reverse transition) (Figure 4E). Of note, the stability of states can be both measured from the potential

and the transition actions, which should give consistent results. To verify this point, we compared the

two approaches to see their consistency. We take the relative stability between M and U states as an

example, when the landscape changes for knocking down SMAD3 and MITF. We found that the relative

transition action and the relative potential barrier height between M and U states for knocking down

SMD3 and MITF display a good correlation (Figure 4F), which supports the consistency between these

two approaches. Given the potential of our model, we tried various combinations of gene targets to iden-

tify optimal combinations of target genes that can give rise to a landscape lacking the resistant phenotypes

(similar to SMAD3+MITF KD or AHR +MITF KD) (Tables 5 and 6). For instance, AHR and NFIC KD displayed

a loss of invasive and hyperpigmented resistant phenotypes, but still maintained the transitory phenotype

(Figure S4B). AHR KD alone, also gave similar results (Figure S4C) while NFIC KD alone led to the loss of the

invasive phenotypes alone (Figure S4D).

DISCUSSION

Phenotypic heterogeneity in melanoma has been identified as one of the major drivers of resistance to tar-

geted therapy in melanoma. While previous studies have identified networks and mechanisms for how

phenotypic heterogeneity is regulated,10,16,37 here, we present a dynamical perspective of underlying en-

ergy landscapes that determine the resistant fate and trajectories of a cell that undergoes molecular

Figure 2. Continued

(C) Schematic representation of multiple drug-resistant trajectories. Red labels indicate the classification system used by

Rambow et al., 2018.

(D) Pseudo-time analysis reveals two trajectories to drug resistance in GSE115978 (single-cell patient tumor samples,

treatment, and naive condition for immune checkpoint inhibitors). i. Pseudo-time analysis. ii. AUCell scores for hyper-

pigmented gene set. iii. AUCell scores for the invasive gene set.

Table 3. PCA coefficients for Figure 2

PC1 PC2

AHR 0.001167897 0.008642988

NFIC 0.034337989 0.242185477

FOS �0.001193013 �0.008820762

KLF4 0.624130725 �0.177068881

FOXF1 0.116256607 0.859853032

JUN 0.003198531 �0.000931729

SMAD3 0.67629151 �0.140333235

MITF �0.0002368 �0.001758615

SMAD4 �0.001938843 �0.014034071

MAFB 0.030191703 0.071605455

NR3C1 0.368337014 0.222199211

NR2F1 0.002658593 0.018221392

STAT5A �0.000236318 �0.001763789

TBX3 0.042007707 0.308887966

TFE3 0.004204146 0.004855628

ETV5 �0.002413455 �0.017914893

TFAP2A 0.000370301 0.002733477
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perturbations. These landscapes confirmed the existence of multi-stability as previously suggested16 and

capture the bifurcation of drug resistance trajectory into two distinct branches, as observed in time course

experiments.20 By integrating data coming from in silico simulations and in vitro experiments, we also offer

Table 4. Transition matrix for Figure 2

(%) U N T M H

U 0 84.65 5.69 5.64 4.013

N 84.67 0 5.64 5.67 4.02

T 4.22 4.19 0 49.17 42.42

M 4.19 4.2 49.11 0 42.5

H 2.76 2.77 47.27 47.19 0

Figure 3. Patterns of intra-tumoral heterogeneity vary across patients

(A) Pie charts representing the proportion of cells belonging to each phenotype in a tumor. Titles include tumor name and

Shannon’s Diversity Index (SDI) to quantify ITH.

(B) Pie charts representing the proportion of initial conditions giving rise to each of the 5 steady states/phenotypes in

simulations for 2 penta-stable parameter sets.
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possible reasons for the reduced abundance of hyper-differentiated phenotype in a tumor. Besides

providing useful information on the dynamics of cell-state transitions, these (pseudo-)potential landscapes

also recapitulate the effects of various targeted therapies (KD of individual genes). Thus, they provide a ba-

sis for running high-throughput screening of target gene combinations to identify therapeutic strategies to

overcome drug resistance in cells.

Multi-stability was proposed to underlie the existence of multiple levels of classification of phenotypic

heterogeneity in melanoma. We previously suggested that the initial system of classification of samples

as proliferative and invasive could further be resolved into four phenotypes: melanocytic, transitory,

NCSC, and undifferentiated. Previously, this analysis was restricted to using distance-based metrics

that provided no insight into transition rates and cellular dynamics. Energy landscapes are able to reveal

this property of phenotypic classification by using potential (U) as a metric that quantifies the ability of

cells in one state to transition to another.38,39 Although our model is only able to resolve up to five phe-

notypes, by increasing the resolution (by adding more genes or sub-networks for each phenotype to the

existing 17-node network), possibly by adding sub-networks to the existing network, it might be possible

to further resolve each of the 4 phenotypes into ‘‘micro-states.’’ The existence of such (often un-observ-

able) ‘‘micro-states’’ within larger ‘‘macro-states’’ has been observed previously in the context of EMT as

well.40,41 The presence of a continuum of heterogeneity can potentially be attributed to the existence of

such micro-states.37,39

Potential (U) measures the stability of a cell at each point on the landscape. It provides information on the

probability of a cell in a given state switching to another state. Higher potential barriers represent a lower

likelihood of transitions between two states. These landscapes can be used to estimate the amount of

‘‘force’’ or perturbation needed to induce a switch from one attractor state to another. This can be used

Figure 4. Energy landscapes recapitulate change in phenotypic distribution during targeted gene knockdown

(A) Energy landscape for the unperturbed system.

(B) Energy landscape for SMAD3 knockdown.

(C) Energy landscape for MITF knockdown.

(D) Energy landscape for MITF and SMAD3 dual knockdown.

(E) Variation in transition action between melanocytic and undifferentiated phenotype with increasing knockdown effect

on MITF and SMAD3.

(F) The correlation between relative barrier height and relative transition action between melanocytic and

undifferentiated phenotype with increasing knockdown effect on MITF and SMAD3. BarrSM and BarrSU represent the

potential barrier between M state/U state and corresponding saddle point. SM->U and SU->M represent the transition

action between M state and U state, respectively.
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Table 5. Steady-state solutions for single gene knockdown

KD gene NFIC SMAD4

Phenotypes T0 M0 H0 U0 N0 T0 M0

AHR0 9.95 3 10�1 7.54 3 10�2 2.23 3 10�2 6.91E+00 6.91E+00 1.05E+00 1.05E+00

NFIC0 4.00 3 10�6 4.00 3 10�6 4.10 3 10�7 2.06 3 101 2.06 3 101 4.00 3 10�1 4.90 3 10�2

FOS0 5.57 3 10�1 3.65E+00 7.24E+00 1.76 3 10�4 1.77 3 10�4 6.55 3 10�3 8.27 3 10�2

KLF40 1.11 3 10�4 1.78 3 10�5 2.88 3 10�7 5.64E+00 3.38 3 10�1 1.12 3 10�4 8.64 3 10�6

FOXF10 2.38 3 101 2.38 3 101 2.38 3 101 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101

JUN0 3.11 3 10�6 2.62 3 10�6 1.63 3 10�7 1.74 3 10�2 2.21 3 10�4 3.29 3 10�6 2.39 3 10�7

SMAD30 8.95 3 10�1 5.50 3 10�2 1.30 3 10�3 1.19 3 102 1.19 3 102 9.72 3 10�1 9.63 3 10�1

MITF0 4.20 3 10�2 4.23 3 10�2 4.07E+00 2.40 3 10�5 6.83 3 10�4 3.76 3 10�2 3.62E+00

SMAD40 6.52E+00 6.52E+00 6.52E+00 9.79 3 10�6 9.79 3 10�6 6.52 3 10�4 6.52 3 10�4

MAFB0 7.20 3 10�2 5.03 3 10�2 5.03 3 10�2 1.67 3 102 1.67 3 102 7.71 3 10�2 7.65 3 10�2

NR3C10 1.35 3 10�2 1.50 3 10�5 5.87 3 10�6 4.37 3 101 4.37 3 101 1.68 3 10�2 1.64 3 10�2

NR2F10 1.05 3 10�3 5.60 3 10�4 1.42 3 10�4 2.36 3 102 9.11 3 101 1.06 3 10�3 1.06 3 10�3

STAT5A0 4.91 3 10�2 4.91 3 10�2 1.33 3 102 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 1.21 3 102

TBX30 2.11 3 10�6 1.66 3 10�6 1.66 3 10�6 1.28 3 101 1.75 3 10�3 2.23 3 10�6 2.21 3 10�6

TFE30 4.12 3 10�1 4.83 3 10�3 2.35 3 10�4 2.56E+00 2.41E+00 4.43 3 10�1 2.94 3 10�2

ETV50 7.64 3 10�2 7.64 3 10�2 1.76 3 101 2.43 3 10�3 2.43 3 10�3 7.63 3 10�2 1.76 3 101

TFAP2A0 2.28 3 10�2 2.29 3 10�2 3.36 3 10�1 3.62 3 10�1 3.85 3 10�1 2.09 3 10�2 3.28 3 10�1

KD gene AHR FOXF1

Phenotypes M0 H0 U0 N0 T0 M0 H0

AHR0 1.17 3 10�5 2.24 3 10�6 6.91E+00 6.91E+00 1.00E+00 7.64 3 10�2 2.24 3 10�2

NFIC0 4.00 3 10�1 4.10 3 10�2 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2

FOS0 3.04E+00 7.24E+00 1.76 3 10�4 1.77 3 10�4 5.46 3 10�1 3.64E+00 7.24E+00

KLF40 4.63 3 10�6 2.25 3 10�7 5.64E+00 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7

FOXF10 2.38 3 101 2.38 3 101 1.34 3 10�3 2.40 3 10�4 2.38 3 10�4 2.38 3 10�4 2.38 3 10�4

JUN0 2.62 3 10�6 1.63 3 10�7 1.74 3 10�2 2.21 3 10�4 3.13 3 10�6 2.62 3 10�6 1.63 3 10�7

SMAD30 4.78 3 10�3 1.29 3 10�3 1.19 3 102 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.30 3 10�3

MITF0 4.23 3 10�2 4.07E+00 2.40 3 10�5 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2 4.07E+00

SMAD40 6.52E+00 6.52E+00 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00 6.52E+00

MAFB0 5.03 3 10�2 5.03 3 10�2 1.67 3 102 1.67 3 102 7.27 3 10�2 5.03 3 10�2 5.03 3 10�2

NR3C10 2.78 3 10�5 5.87 3 10�6 4.37 3 101 4.37 3 101 1.40 3 10�2 1.52 3 10�5 5.87 3 10�6

NR2F10 6.95 3 10�4 1.42 3 10�4 2.36 3 102 9.11 3 101 1.05 3 10�3 5.62 3 10�4 1.42 3 10�4

STAT5A0 4.91 3 10�2 1.33 3 102 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 1.33 3 102

TBX30 1.66 3 10�6 1.66 3 10�6 1.28 3 101 1.75 3 10�3 2.12 3 10�6 1.66 3 10�6 1.66 3 10�6

TFE30 4.97 3 10�3 2.35 3 10�4 2.56E+00 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.35 3 10�4

ETV50 7.64 3 10�2 1.76 3 101 2.43 3 10�3 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 1.76 3 101

TFAP2A0 2.29 3 10�2 3.36 3 10�1 3.62 3 10�1 3.85 3 10�1 2.27 3 10�2 2.29 3 10�2 3.36 3 10�1

KD gene SMAD3 MITF

Phenotypes T0 M0 H0 U0 N0 T0 M0

AHR0 1.42 3 101 1.05E+00 9.67 3 10�1 6.91E+00 6.91E+00 1.03E+00 8.74 3 10�2

NFIC0 2.28 3 102 4.00 3 10�1 4.10 3 10�2 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1

FOS0 1.53 3 10�6 5.08 3 10�2 6.52 3 10�1 1.76 3 10�4 1.76 3 10�4 3.96 3 10�1 3.44E+00

KLF40 1.04 3 10�1 1.10 3 10�4 5.27 3 10�6 5.64E+00 3.38 3 10�1 1.12 3 10�4 2.16 3 10�5

FOXF10 2.28E+00 2.38 3 101 2.38 3 101 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101

(Continued on next page)
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Table 5. Continued

KD gene SMAD3 MITF

Phenotypes T0 M0 H0 U0 N0 T0 M0

JUN0 5.62E+00 2.62 3 10�6 1.63 3 10�7 1.74 3 10�2 2.21 3 10�4 3.21 3 10�6 2.62 3 10�6

SMAD30 7.10 3 10�3 9.72 3 10�6 8.72 3 10�6 1.19 3 102 1.19 3 102 9.36 3 10�1 1.08 3 10�1

MITF0 4.91 3 10�1 4.22 3 10�2 4.07E+00 2.40 3 10�9 6.83 3 10�8 4.18 3 10�6 4.23 3 10�6

SMAD40 3.56E+00 6.52E+00 6.52E+00 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00

MAFB0 7.36 3 101 5.12 3 10�2 5.11 3 10�2 1.67 3 102 1.67 3 102 7.49 3 10�2 5.03 3 10�2

NR3C10 2.68 3 101 5.61 3 10�4 4.98 3 10�4 4.37 3 101 4.37 3 101 1.54 3 10�2 1.94 3 10�5

NR2F10 1.35E+00 1.05 3 10�3 1.05 3 10�3 2.36 3 102 9.11 3 101 1.06 3 10�3 6.06 3 10�4

STAT5A0 6.78 3 10�2 4.91 3 10�2 1.33 3 102 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2

TBX30 6.02 3 10�5 1.66 3 10�6 1.66 3 10�6 1.28 3 101 1.75 3 10�3 2.17 3 10�6 1.66 3 10�6

TFE30 6.33E+00 4.43 3 10�1 1.85 3 10�2 2.56E+00 2.41E+00 4.39 3 10�1 4.86 3 10�3

ETV50 8.52 3 10�3 7.64 3 10�2 1.76 3 101 2.43 3 10�3 2.43 3 10�3 7.63 3 10�2 7.63 3 10�2

TFAP2A0 1.02 3 102 2.29 3 10�2 3.36 3 10�1 3.61 3 10�1 3.61 3 10�1 4.72 3 10�3 4.72 3 10�3

KD gene FOS MAFB

Phenotypes U0 N0 T0 U0 N0 T0 M0

AHR0 6.91E+00 6.91E+00 1.05E+00 6.91E+00 6.91E+00 1.00E+00 7.64 3 10�2

NFIC0 2.06 3 101 2.06 3 101 4.00 3 10�1 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1

FOS0 1.76 3 10�9 1.77 3 10�9 5.79 3 10�6 1.76 3 10�4 1.77 3 10�4 5.46 3 10�1 3.64E+00

KLF40 5.64E+00 3.38 3 10�1 1.12 3 10�4 5.64E+00 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5

FOXF10 1.34 3 102 2.40 3 101 2.38 3 101 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101

JUN0 1.74 3 10�2 2.21 3 10�4 3.30 3 10�6 1.74 3 10�2 2.21 3 10�4 3.13 3 10�6 2.62 3 10�6

SMAD30 1.19 3 102 1.19 3 102 9.72 3 10�1 1.19 3 102 1.19 3 102 9.05 3 10�1 5.88 3 10�2

MITF0 2.40 3 10�5 6.83 3 10�4 4.16 3 10�2 2.40 3 10�5 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2

SMAD40 9.79 3 10�2 9.79 3 10�2 6.52E+00 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00

MAFB0 1.67 3 102 1.67 3 102 7.71 3 10�2 3.75 3 10�4 3.75 3 10�4 7.27 3 10�6 5.03 3 10�6

NR3C10 4.37 3 101 4.37 3 101 1.68 3 10�2 4.37 3 101 4.37 3 101 1.40 3 10�2 1.52 3 10�5

NR2F10 2.36 3 102 9.11 3 101 1.06 3 10�3 2.36 3 102 9.11 3 101 1.05 3 10�3 5.62 3 10�4

STAT5A0 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2

TBX30 1.28 3 101 1.75 3 10�3 2.23 3 10�6 1.28 3 101 1.75 3 10�3 2.12 3 10�6 1.66 3 10�6

TFE30 2.56E+00 2.41E+00 4.43 3 10�1 2.56E+00 2.41E+00 4.15 3 10�1 4.83 3 10�3

ETV50 2.43 3 10�3 2.43 3 10�3 7.63 3 10�2 2.43 3 10�3 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2

TFAP2A0 3.62 3 10�1 3.85 3 10�1 2.26 3 10�2 3.62 3 10�1 3.85 3 10�1 2.27 3 10�2 2.29 3 10�2

KD gene KLF4 TBX3

Phenotypes N0 T0 M0 N0 T0 M0 H0

AHR0 6.91E+00 1.00E+00 7.64 3 10�2 6.91E+00 1.00E+00 7.64 3 10�2 2.24 3 10�2

NFIC0 2.06 3 101 4.00 3 10�1 4.00 3 10�1 2.06 3 101 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2

FOS0 1.78 3 10�4 5.46 3 10�1 3.64E+00 1.77 3 10�4 5.46 3 10�1 3.64E+00 7.24E+00

KLF40 3.41 3 10�6 3.78 3 10�8 1.81E-10 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7

FOXF10 2.38 3 101 2.38 3 101 2.38 3 101 2.40 3 101 2.38 3 101 2.38 3 101 2.38 3 101

JUN0 2.19 3 10�4 3.13 3 10�6 2.62 3 10�6 2.21 3 10�4 3.13 3 10�6 2.62 3 10�6 1.63 3 10�7

SMAD30 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.30 3 10�3

MITF0 6.91 3 10�4 4.20 3 10�2 4.23 3 10�2 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2 4.07E+00

SMAD40 9.79 3 10�2 6.52E+00 6.52E+00 9.79 3 10�2 6.52E+00 6.52E+00 6.52E+00

MAFB0 1.67 3 102 7.27 3 10�2 5.03 3 10�2 1.67 3 102 7.27 3 10�2 5.03 3 10�2 5.03 3 10�2

(Continued on next page)
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Table 5. Continued

KD gene KLF4 TBX3

Phenotypes N0 T0 M0 N0 T0 M0 H0

NR3C10 4.37 3 101 1.40 3 10�2 1.52 3 10�5 4.37 3 101 1.40 3 10�2 1.52 3 10�5 5.87 3 10�6

NR2F10 2.78E+00 1.05 3 10�3 5.62 3 10�4 9.11 3 101 1.05 3 10�3 5.62 3 10�4 1.42 3 10�4

STAT5A0 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 1.33 3 102

TBX30 1.73 3 10�3 2.12 3 10�6 1.66 3 10�6 1.75 3 10�7 2.12E-10 1.66E-10 1.66E-10

TFE30 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.35 3 10�4

ETV50 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 1.76 3 101

TFAP2A0 3.25 3 10�1 2.27 3 10�2 2.29 3 10�2 3.85 3 10�1 2.27 3 10�2 2.29 3 10�2 3.36 3 10�1

KD gene TFE3 STAT5A

Phenotypes M0 H0 U0 N0 T0 M0 H0

AHR0 8.87 3 10�3 1.71 3 10�6 6.91E+00 6.91E+00 1.00E+00 7.64 3 10�2 2.24 3 10�2

NFIC0 1.33 3 102 6.06 3 10�2 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2

FOS0 4.61 3 10�5 4.02E+00 1.76 3 10�4 1.77 3 10�4 5.46 3 10�1 3.64E+00 7.24E+00

KLF40 7.88 3 101 1.34 3 10�6 5.64E+00 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7

FOXF10 2.26 3 102 3.96E+00 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101 2.38 3 101

JUN0 3.02 3 101 2.11E+00 1.74 3 10�2 2.21 3 10�4 3.13 3 10�6 2.62 3 10�6 1.63 3 10�7

SMAD30 3.37 3 101 3.16 3 10�4 1.19 3 102 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.30 3 10�3

MITF0 1.67 3 10�4 1.98 3 101 2.40 3 10�5 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2 4.07E+00

SMAD40 2.12E+00 9.76 3 101 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00 6.52E+00

MAFB0 1.89 3 102 6.91 3 10�1 1.67 3 102 1.67 3 102 7.27 3 10�2 5.03 3 10�2 5.03 3 10�2

NR3C10 2.38 3 102 5.50 3 10�4 4.37 3 101 4.37 3 101 1.40 3 10�2 1.52 3 10�5 5.87 3 10�6

NR2F10 1.55 3 101 3.77 3 10�4 2.36 3 102 9.11 3 101 1.05 3 10�3 5.62 3 10�4 1.42 3 10�4

STAT5A0 3.69 3 101 1.82 3 102 4.91 3 10�6 4.91 3 10�6 4.91 3 10�6 4.91 3 10�6 1.61 3 10�4

TBX30 2.68 3 101 1.96 3 10�6 1.28 3 101 1.75 3 10�3 2.12 3 10�6 1.66 3 10�6 1.66 3 10�6

TFE30 3.85 3 10�1 1.94 3 10�6 2.56E+00 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.35 3 10�4

ETV50 3.46 3 10�3 4.15 3 102 2.43 3 10�3 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 1.76 3 101

TFAP2A0 1.16 3 10�1 1.04E+00 3.62 3 10�1 3.85 3 10�1 2.27 3 10�2 2.29 3 10�2 3.36 3 10�1

KD gene ETV5 TFAP2A

Phenotypes M0 H0 U0 N0 T0 M0 H0

AHR0 8.87 3 10�3 1.71 3 10�6 6.91E+00 6.91E+00 1.00E+00 7.64 3 10�2 2.24 3 10�2

NFIC0 1.33 3 102 6.06 3 10�2 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2

FOS0 4.61 3 10�5 4.02E+00 1.76 3 10�4 1.77 3 10�4 5.46 3 10�1 3.64E+00 7.24E+00

KLF40 7.88 3 101 1.34 3 10�6 5.64E+00 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7

FOXF10 2.26 3 102 3.96E+00 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101 2.38 3 101

JUN0 3.02 3 101 2.11E+00 1.74 3 10�2 2.21 3 10�4 3.13 3 10�6 2.62 3 10�6 1.63 3 10�7

SMAD30 3.37 3 101 3.16 3 10�4 1.19 3 102 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.30 3 10�3

MITF0 1.67 3 10�4 1.98 3 101 2.40 3 10�5 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2 4.07E+00

SMAD40 2.12E+00 9.76 3 101 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00 6.52E+00

MAFB0 1.89 3 102 6.91 3 10�1 1.67 3 102 1.67 3 102 7.27 3 10�2 5.03 3 10�2 5.03 3 10�2

NR3C10 2.38 3 102 5.50 3 10�4 4.37 3 101 4.37 3 101 1.40 3 10�2 1.52 3 10�5 5.87 3 10�6

NR2F10 1.55 3 101 3.77 3 10�4 2.36 3 102 9.11 3 101 1.05 3 10�3 5.62 3 10�4 1.42 3 10�4

STAT5A0 3.69 3 101 1.82 3 102 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 1.33 3 102

TBX30 2.68 3 101 1.96 3 10�6 1.28 3 101 1.75 3 10�3 2.12 3 10�6 1.66 3 10�6 1.66 3 10�6

TFE30 7.94 3 101 1.94 3 10�2 2.56E+00 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.35 3 10�4
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Table 5. Continued

KD gene ETV5 TFAP2A

Phenotypes M0 H0 U0 N0 T0 M0 H0

ETV50 3.26 3 10�7 1.00 3 10�3 2.43 3 10�3 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 1.76 3 101

TFAP2A0 1.16 3 10�1 1.04E+00 3.62 3 10�6 3.85 3 10�6 2.27 3 10�7 2.29 3 10�7 3.36 3 10�6

KD gene NR2F1

Phenotypes U0 N0 T0 M0 H0

AHR0 6.91E+00 6.91E+00 1.00E+00 7.64 3 10�2 2.24 3 10�2

NFIC0 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2

FOS0 1.76 3 10�4 1.77 3 10�4 5.46 3 10�1 3.64E+00 7.24E+00

KLF40 5.64E+00 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7

FOXF10 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101 2.38 3 101

JUN0 1.74 3 10�2 2.21 3 10�4 3.13 3 10�6 2.62 3 10�6 1.63 3 10�7

SMAD30 1.19 3 102 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.30 3 10�3

MITF0 2.40 3 10�5 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2 4.07E+00

SMAD40 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00 6.52E+00

MAFB0 1.67 3 102 1.67 3 102 7.27 3 10�2 5.03 3 10�2 5.03 3 10�2

NR3C10 4.37 3 101 4.37 3 101 1.40 3 10�2 1.52 3 10�5 5.87 3 10�6

NR2F10 2.36 3 10�2 9.11 3 10�3 1.05 3 10�7 5.62 3 10�8 1.42 3 10�8

STAT5A0 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 1.33 3 102

TBX30 1.28 3 101 1.75 3 10�3 2.12 3 10�6 1.66 3 10�6 1.66 3 10�6

TFE30 2.56E+00 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.35 3 10�4

ETV50 2.43 3 10�3 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 1.76 3 101

TFAP2A0 4.73 3 10�3 5.03 3 10�3 2.27 3 10�2 2.29 3 10�2 3.36 3 10�1

KD gene NR3C1 JUN

Phenotypes T0 M0 H0 U0 N0 T0 M0 H0

AHR0 1.00E+00 7.64 3 10�2 2.24 3 10�2 6.91E+00 6.91E+00 1.00E+00 7.64 3 10�2 2.24 3 10�2

NFIC0 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2 2.06 3 101 2.06 3 101 4.00 3 10�1 4.00 3 10�1 4.10 3 10�2

FOS0 5.41 3 10�1 3.64E+00 7.24E+00 1.76 3 10�4 1.77 3 10�4 5.46 3 10�1 3.64E+00 7.24E+00

KLF40 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7 5.53E+00 3.38 3 10�1 1.11 3 10�4 1.81 3 10�5 2.88 3 10�7

FOXF10 2.38 3 101 2.38 3 101 2.38 3 101 1.34 3 102 2.40 3 101 2.38 3 101 2.38 3 101 2.38 3 101

JUN0 3.13 3 10�6 2.62 3 10�6 1.63 3 10�7 1.74 3 10�7 2.21 3 10�9 3.13 3 10�11 2.62 3 10�11 1.63 3 10�12

SMAD30 9.06 3 10�1 5.88 3 10�2 1.30 3 10�3 1.19 3 102 1.19 3 102 9.05 3 10�1 5.88 3 10�2 1.30 3 10�3

MITF0 4.04 3 10�2 4.23 3 10�2 4.07E+00 2.46 3 10�5 6.83 3 10�4 4.20 3 10�2 4.23 3 10�2 4.07E+00

SMAD40 6.52E+00 6.52E+00 6.52E+00 9.79 3 10�2 9.79 3 10�2 6.52E+00 6.52E+00 6.52E+00

MAFB0 5.03 3 10�2 5.03 3 10�2 5.03 3 10�2 1.67 3 102 1.67 3 102 7.27 3 10�2 5.03 3 10�2 5.03 3 10�2

NR3C10 1.40 3 10�6 1.52 3 10�9 5.87E-10 4.37 3 101 4.37 3 101 1.40 3 10�2 1.52 3 10�5 5.87 3 10�6

NR2F10 1.05 3 10�3 5.62 3 10�4 1.42 3 10�4 2.36 3 102 9.11 3 101 1.05 3 10�3 5.62 3 10�4 1.42 3 10�4

STAT5A0 4.91 3 10�2 4.91 3 10�2 1.33 3 102 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 4.91 3 10�2 1.33 3 102

TBX30 2.12 3 10�6 1.66 3 10�6 1.66 3 10�6 1.28 3 101 1.75 3 10�3 2.12 3 10�6 1.66 3 10�6 1.66 3 10�6

TFE30 4.17 3 10�1 4.83 3 10�3 2.35 3 10�4 2.41E+00 2.41E+00 4.15 3 10�1 4.83 3 10�3 2.35 3 10�4

ETV50 7.63 3 10�2 7.64 3 10�2 1.76 3 101 2.43 3 10�3 2.43 3 10�3 7.64 3 10�2 7.64 3 10�2 1.76 3 101

TFAP2A0 2.21 3 10�2 2.29 3 10�2 3.36 3 10�1 3.62 3 10�1 3.85 3 10�1 2.27 3 10�2 2.29 3 10�2 3.36 3 10�1

KD = Knockdown.
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to identify molecular variables that can increase the transition probability toward a preferable state, there-

fore allowing us to push a population of cells toward a preferred state. This unleashes endless possibilities of

tweaking the system to obtain desirable outcomes or predicting the effects of such perturbations on the

outcome. Such (pseudo-) potential landscapes have been used extensively in developmental biology

from modeling to understand cell-fate decision making and differentiation and can be useful tools to un-

cover cellular dynamics during cancer progression.38,42,43

Our study delves into the effect of multiple drug-resistant phenotypes on intra-tumoral heterogeneity

(ITH). We observe that the hyperpigmented phenotype forms a very small fraction of the total tumor

population, at least in the 23 tumors investigated here in which only 2 tumors exhibited it as the domi-

nant phenotype. Similar results (reduced abundance) were seen in our simulation results too, possibly

explaining its rather recent identification/discovery, relative to that of four other melanoma pheno-

types.20 At a bulk level, it is likely that the transcriptomic signature of this phenotype is masked. To quan-

tify ITH, we used Shannon’s diversity index, an entropy-based measure of uncertainty in predicting the

phenotype of a random cell.44 Interestingly, no consistent patterns were found among the multiple tu-

mors, suggesting that variations at a genetic, microenvironmental or epigenetic level might influence

the landscape and therefore the overall composition of the tumor.45 Differences in treatment strategies

can also lead to different outcomes in tumor heterogeneity. The dataset used here (GSE115978) com-

prises samples from treatment naive patients and patients that have been treated with immune check-

point inhibitors, which might also contribute to additional variations in ITH.46

Here, we highlight the ability of landscapemodels to be used as a basis for predictive modeling of targeted

therapy strategies. Conventional drug screening for all possible combinations is time- and resource-inten-

sive. Thus, by using such predictive models, we can identify rather quickly optimal combinations of target

genes to achieve durable outcomes, making it a potential tool for primary screening of possible treatment

strategies. Moreover, the model can be expanded to suggest sequential targeting too.

Limitations of the study

While our study provides a framework to run the initial screening of targeted gene therapy for melanoma,

there are several limitations associated with our modeling framework. First, our model only accounts

for transcriptional level interactions. It fails to account for the dynamics associated with

Table 6. Steady-state solutions for dual gene knockdown

Phenotypes

MITF and SMAD3 MITF and AHR AHR and NFIC

M0 M0 T0 M0

AHR0 1.0503817 7.70 3 10�7 4.87 3 10�7 9.66 3 10�8

NFIC0 0.400316825 0.400317 4.14 3 10�6 4.24 3 10�7

FOS0 0.035743824 2.56199 3.084827594 7.242724048

KLF40 0.00011 4.63 3 10�6 4.63 3 10�6 2.25 3 10�7

FOXF10 23.78235318 23.7824 23.78235318 23.78235318

JUN0 2.62 3 10�6 2.62 3 10�6 2.62 3 10�6 1.63 3 10�7

SMAD30 1.32 3 10�7 0.00594595 0.004654585 0.001286979

MITF0 1.70 3 10�9 1.70543 3 10�9 0.042341203 4.073872874

SMAD40 6.516547013 6.51655 6.516547013 6.516547013

MAFB0 0.051194033 0.050377 0.05033268 0.05029963

NR3C10 0.000561 5.39 3 10�5 2.64 3 10�5 5.87 3 10�6

NR2F10 0.00105124 0.000804865 0.0006858 0.00014206

STAT5A0 0.049106757 0.0491068 0.049106758 133.1022196

TBX30 1.66 3 10�6 1.66 3 10�6 1.66 3 10�6 1.66 3 10�6

TFE30 0.44330092 0.00533725 0.004950661 0.000234667

ETV50 0.076287991 0.076288 0.076353649 17.64709871

TFAP2A0 0.004718464 0.0047184 0.022898683 0.335574884
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translation, phosphorylation, and other post-translational modifications that play a role in regulating

cellular signaling. Moreover, the model is unable to capture population-level variations (such as tumor

growth dynamics47) commonly associated with drug resistance. Secondly, the network used to map these

landscapes is based on a previous transcriptomic data-derived model. Because the nodes in the network

were derived using an unsupervised approach from the high-throughput data itself, several well-estab-

lished key regulators identified in the literature, such as MAPK, BRAF, and MEK, have been inadvertently

omitted from this network. To overcome this limitation and to mimic the effects of perturbing these genes

absent in the network, we have used their downstream targets (for e.g., MITF for BRAF) as a proxy for their

expression levels. Third, our model cannot capture the spatial flux of a cell population, as done in recent

mesoscopic models for phenotypic heterogeneity in melanoma,47 since it only considers structural fluxes.

Future multi-scale modeling efforts can overcome these limitations by incorporating key elements from

these diverse modeling strategies.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact Mohit Kumar jolly (mkjolly@iisc.ac.in).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyses existing, publicly available data. The accession numbers for the datasets are listed in

the key resources table.

d All original code has been deposited at https://github.com/csbBSSE/Melanoma_Landscape, and

https://github.com/chunhelilab/Melanoma_Landscape and is publicly available as of the date of publi-

cation. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

RNAseq datasets used

scRNAseq dataset GSE115978 was used for pseudo-time analysis and measuring intra-tumoral heteroge-

neity.46 The samples were filtered to remove non-tumor cells and only cells labeled asmalignant melanoma

cells were considered for the analysis. Since the dataset comprised of several single cell samples frommul-

tiple tumors, it was suitable for quantifying intra-tumor as well as inter-tumor heterogeneity.

Pseudo-time analysis

Pseudo-time analysis was done as previously reported.16 AUCell scores31 for the proliferative, hyper-pig-

mented, NCSC and invasive phenotype gene sets20 were used to identify trajectory of cells along the

pseudo-time axis.

Measuring heterogeneity

Intra-tumoral heterogeneity was measured using Shannon’s diversity Index (S) which is used to quantify the

uncertainty or entropy of a system.44 It is calculated as:

S = �
Xn

i = 1

pi ln pi

where, pi is the proportion of the ith phenotype in the population and n is the total number of phenotypes

present.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Analyzed dataset Jerby-Arnon et al., 201846 GEO: GSE115978

Software and algorithms

RACIPE (Random Circuit Perturbation) Huang et al., 201728 https://github.com/simonhb1990/RACIPE-1.0
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Simulations for gene expression

RACIPE was used, as previously described,16,28 to simulate gene expression in cells. RACIPE generates

multiple models comprising of randomized kinetic parameters, within user-defined ranges, for the shifted

Hill equation model of transcriptional regulation.

Each interaction where gene A influences the expression level of gene B is given as

_B = gB$HðA;TAB;nAB; lABÞ � kBB

where, gB is basal production rate of B, kB is degradation rate of B and HðA;TAB; nB; lABÞ is the shifted Hill

function for the interaction, which is given as,

HðA; TAB;nAB; lABÞ = lAB + ð1 � lABÞ 1�
1+

�
A
TAB

��nAB

where, TAB is the threshold level for A to influence B, nAB is the Hill’s coefficient for the reaction and lAB is

the maximum fold change in B caused by A. In this study, we have closely analyzed models (also referred to

as parameter sets) that give rise to tetra-stability (four stable states/phenotypes) and penta-stability (five

stable states/phenotypes) (Table S3).

Quantification of energy landscape

The time evolution of a dynamical system in the fluctuating environments can be described by the Langevin

equation:

x
, ðtÞ = F½xðtÞ�+ z

Here, x = ðx1ðtÞ; x2ðtÞ;.; xNðtÞÞ represents the vector of the gene expression level. F½xðtÞ� is the vector

for the driving force for system, and z is the Gaussian white noise, which satisfies E½ziðtÞ� = 0 and

E½ziðtÞzjð0Þ� = 2DdijdðtÞ. By assuming that the noise is homogeneous and only considering external noise,

we have the constant diffusion coefficient D and

�
dij = 1; i = j
dij = 0; isj

In above formula, dij means that the noise is independent for different i and j, and dðtÞ is Dirac Delta func-

tion, meaning that for one variable the noises are different at different time.

The Langevin equation is corresponding to a Fokker-Plank equation or probabilistic diffusion equation. To

obtain the potential landscape, one way is to calculate the steady state probability distribution of the

system. This requires us to solve an N-dimensional diffusion equation, which is hard to solve for a high-dimen-

sional system. Here, we used a Gaussian approximation approach to obtain the probability distribution.38,48–51

The core ideaof this approach is not directly solvingprobability diffusion equation, butworkingon themoment

equations. By assuming a Gaussian density function, once we know the two moments, i.e., the mean and the

variance, we can acquire the probability distribution. When the diffusion coefficientD (characterizing the noise

level) is small, from the diffusion equation, the moment equations can be approximated to38,52,53:

_xðtÞ = F½xðtÞ� (Equation 1)

_sðtÞ = sðtÞATðtÞ+AðtÞsðtÞ+ 2D½xðtÞ� (Equation 2)

Here, x is vector, sðtÞ and AðtÞ are matrices, and ATðtÞ is the transpose of AðtÞ. The elements of matrix A are

specified as: Aij = vFi ½XðtÞ�
vxjðtÞ .

We can solve xðtÞ and sðtÞ numerically. So, the probability density function pðx; tÞ can be obtained from a

multivariate Gaussian distribution function. Here, for simplicity, we only consider the diagonal elements

(siðtÞ) of sðtÞ based on the mean field approximation.38,48–51 The probability distribution for each variable

can be obtained from the Gaussian approximation as:

Pðxi; tÞ =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2psiðtÞ
p e

� ½xi � xi ðtÞ�2
2si ðtÞ (Equation 3)
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Here, xiðtÞ and siðtÞ with sðtÞ = diagðs1; s2;.;sNÞ are the solutions of Equations 1 and 2. From the mean

field approximation, we can extend this formula to the multidimensional case by assuming that the total

probability is the product of individual probability for each variable: Pðx1;x2;.;xN;tÞ �
QN
i

Pðxi ;tÞ. The prob-

ability distribution acquired above corresponds to the probability distribution of one attractor. If the

system has multiple stable states, there are multiple probability distributions localized at each individual

basin. The total probability of the system is the weighted sum of all these probability distributions. With

the total probability, we can construct the potential landscape by,UðxÞ = � lnPssðxÞ38,48with Pss represent-

ing steady state probability distribution.

Transition paths

Considering a stochastic dynamical system described by Langevin equation:

x
,
ðtÞ = F½xðtÞ�+ z:

Following the approaches based on the Freidlin-Wentzell theory,54 the most probable transition path from

attractor i at time 0 to attractor j at time T, can be acquired by minimizing the action functional over all

possible paths:

ST

�
4ij

�
=

1

2

ZT

0

�� _4ij � F
	
4ij


��2dt

This path is called the minimum action path (MAP). We calculated MAPs numerically by applying minimum

action methods used in previous study.55 This type of approach has been used in many chemical and bio-

logical systems.38,42,55,56

Calculation of transition matrix

The transition action characterizes the probability of transition from one attractor state to another,

i.e., smaller transition action corresponds to larger transition probability. Based on the results of transition

actions between attractors, we can estimate corresponding transition probability according to Pijf e�Sij ,

where Sij represents the transition action from attractor i to attractor j, while Pij represents the transition

probability from attractor i to attractor j. In this way, we can obtain an estimated transition probability

matrix among five stable states. Considering the state transition process among attractors as aMarkov pro-

cess, we can calculate the probability evolution of each attractor state given any initial probability distribu-

tion of five stable states.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R version 3.6.3, unless mentioned otherwise.
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