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A B S T R A C T

A low diffusive flux difference splitting based kinetic scheme is developed based on a discrete velocity
Boltzmann equation, with a novel three velocity model. While two discrete velocities are used for upwinding,
the third discrete velocity is utilized to introduce appropriate additional numerical diffusion only in the
expansion regions, identified using relative entropy (Kullback–Liebler divergence) at the cell-interface, along
with the estimation of physical entropy. This strategy provides an interesting alternative to entropy fix, which
is typically needed for low diffusive schemes. Grid-aligned steady discontinuities are captured exactly by
fixing the primary numerical diffusion such that flux equivalence leads to zero numerical diffusion across
discontinuities. Results for bench-mark test problems are presented for inviscid and viscous compressible flows.
1. Introduction

Kinetic or Boltzmann schemes have been interesting alternatives to
the traditional Riemann solvers for the numerical simulation of fluid
flows and this topic has been the focus of research for the past several
decades. The basic framework for this class of numerical methods is
the connection between the Boltzmann equation of the kinetic the-
ory of gases and the macroscopic equations of gas dynamics, which
can be obtained through the well-known moment method strategy. The
advantage of this strategy is the linearity of the convection terms in
the Boltzmann equation, though the collision term is nonlinear. The
linearity of the convection terms makes the application of upwinding
easier. Thus, this strategy avoids the complications of Riemann solvers,
field-by-field decompositions and the strong dependence on eigen-
structure. In this paper, a new upwind Boltzmann scheme named as
Kinetic Flux Difference Splitting (KFDS) method is presented, utilizing
the framework of a Discrete Velocity Boltzmann Equation (DVBE). The
discrete velocity Boltzmann equation is first introduced based on the
classical Boltzmann equation with a BGK model for the collision term,
by replacing the Maxwellian distribution function by a set of Dirac
delta functions. This formulation leads to simpler expressions for the
equilibrium distribution and the moment relations. Applying upwind-
ing to the discrete velocity Boltzmann equation leads to a macroscopic
flux difference splitting method with simple expressions for the split
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fluxes. The discrete velocities are chosen based on physical and nu-
merical considerations and one of the resulting schemes leads to exact
capturing of steady grid-aligned discontinuities, a feature shared by
a few of the well-known macroscopic schemes. Many of the existing
kinetic schemes, like the flux vector splitting methods, suffer from high
numerical diffusion and hence are not accurate enough compared to the
Riemann solvers. The scheme presented in this paper overcomes this
drawback, captures steady grid-aligned discontinuities exactly and is
less diffusive otherwise. An interesting alternative to entropy fix, which
is typically needed for less diffusive schemes, is introduced in this paper
based on switching over to a three velocity model instead of a two
velocity model in one dimension. The multi-dimensional extension is
based on the standard finite volume method. The component of the
discrete distribution corresponding to the additional discrete velocity
is chosen based on the variation of relative entropy (also known as
Kullback–Liebler divergence, directed divergence or 𝐷2-distance) and
entropy.

The first Boltzmann scheme was presented by Chu [1] in which
a finite difference method is applied to the Boltzmann equation with
the BGK model. Sanders & Prendergast [2] presented the Beam scheme
in which the Maxwellian is replaced by a set of weighted Dirac delta
functions (called beams) and the propagation of beams across cells is
accounted for, in an algorithm which ensures conservation. van Albada
et al. [3] demonstrated the upwinding property of Beam scheme.
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Pullin [4] introduced an Equilibrium Flux Method (EFM) in which the
fluxes across cells are calculated based on half-Maxwellians, which
is equivalent to an upwind scheme. Reitz [5] proposed a Boltzmann
scheme in which operator-splitting is used together with an appropriate
velocity discretization for solving the Boltzmann equation. Harten, Lax
and van Leer [6] gave a general description of kinetic schemes and
suggested the equilibrium distribution function as a weighted sum
of Dirac delta functions, connecting them to the eigen-structure of
macroscopic Euler equations, thus generalizing the approach of Sanders
and Prendergast. Deshpande [7] presented a second order accurate
kinetic numerical method based on utilizing the Chapman–Enskog
distribution to provide an anti-diffusive contribution to an otherwise in-
viscid scheme. Deshpande [8] and Mandal & Deshpande [9] introduced
the Kinetic Flux Vector Splitting (KFVS) method which introduces
upwinding directly to the convection terms of the Boltzmann equa-
tion, together with operator splitting and instantaneous relaxation to
equilibrium, and this leads to a macroscopic upwind scheme with
identical split flux expressions as in EFM, though the approach is
different. Boltzmann schemes in which the Maxwellian is replaced by a
compactly supported hat functions were introduced by Kaniel [10] and
Perthame [11]. Prendergast and Kun Xu [12] developed a Boltzmann
scheme without operator splitting, by using the solution of the BGK
equation with appropriate approximations and a pressure sensor to
detect the shocks. Raghurama Rao & Deshpande [13,14] introduced a
peculiar velocity based upwind method which leads to a convection-
pressure splitting at the macroscopic level, with simpler split flux
expressions avoiding error functions and exponentials. It is worth not-
ing that the macroscopic Flux Vector Splitting (FVS) method of Steger &
Warming [15] can be recovered from the Beam scheme for a particular
value of 𝛾 and similarly van Leer’s FVS method [16] can be recovered
from Perthame’s kinetic scheme. While there are several other devel-
opments based on the above strategies, a slightly different approach is
introduced with the framework of discrete velocity based kinetic schemes,
by Natalini [17] and later by Aregba-Driollet & Natalini [18]. They
introduce efficient kinetic schemes based discrete velocity Boltzmann
equation and also establish the connection between the relaxation
systems of Jin & Xin [19] and Discrete Velocity Boltzmann systems. While
there is an extensive volume of research based on discrete velocity
based kinetic schemes, some of the schemes which have the flavour
of the traditional continuous molecular velocity based kinetic schemes
are due to Bouchut et al. [20], Raghurama Rao & Balakrishna [21],
Raghurama Rao & Subba Rao [22], Bajpayi and Raghurama Rao [23],
Arun et al. [24–26], Raghavendra [27], Raghavendra and Raghurama
Rao [28], Abgrall & Torlo [29]. An interesting connection of this
discrete velocity Boltzmann framework to Lattice Boltzmann Method
is introduced by Raghurama Rao et al. [30] and Deshmukh [31] by
developing a Lattice Boltzmann Relaxation Scheme for compressible
flows.

The discrete velocity based kinetic schemes are simpler than the
continuous molecular velocity based kinetic schemes, as the integrals
are replaced by summations and the Maxwellians are simple algebraic
functions of conserved variables and fluxes. While some of the dis-
crete velocity kinetic schemes are quite efficient, none of the above
mentioned kinetic or discrete kinetic schemes can capture steady grid-
aligned discontinuities exactly, a feat achieved by some of the macro-
scopic schemes. In this paper, an exact discontinuity capturing kinetic
scheme is presented based on discrete velocity formulation, by choosing
the discrete velocity magnitudes in such a way that steady grid-aligned
discontinuities are captured without any numerical diffusion. While
the design of this kinetic scheme requires just two discrete velocities,
the three-velocity model is utilized in a novel way such that the third
component is adjusted to avoid any entropy condition violation, which
is typical of low diffusive algorithms, by utilizing the relative entropy.
The relative entropy is also known as Kullback–Liebler divergence,
the directed divergence or 𝐷2-distance (see Kullback [32]). It repre-
2

sents the information theoretic distance between two bivariate normal
distributions and its moment is an efficient indicator to distinguish
among different nonlinear waves. It is also closely connected to the
concept of Mahalanobis distance, introduced in 1936 [33]. Raghaven-
dra et al. [34] utilized the 𝐷2-Distance successfully as a tool for mesh
adaptation. In the next section, the basics of moment method strategy
are introduced and in the following section the discrete velocity Boltz-
mann equation and its moments to recover the macroscopic equations
are introduced.

2. Moment method strategy for kinetic schemes

The kinetic or Boltzmann schemes are based on the fact that Euler
equations of gas dynamics can be obtained as moments of the classical
Boltzmann equation. Thus, the Euler equations can be written in the
form
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where the moments are defined by

⟨𝛹𝑓 ⟩ = ∫

∞

0 ∫

∞

−∞ ∫

∞

−∞ ∫

∞

−∞
𝛹𝑓 𝑑𝑣1𝑑𝑣2𝑑𝑣3 𝑑𝐼 (2)

Here, 𝑓 is the molecular velocity distribution function, 𝑣 is the molec-
ular velocity, 𝐼 is the internal energy variable corresponding to non-
translational degrees of freedom and 𝐽 (𝑓, 𝑓 ) is the collision term. 𝛹
is the moment function vector, representing the mass, momenta and
energy of the molecules (which are conserved during collisions).
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The Euler equations (1), after completing the moments, are given in
their macroscopic form by

𝜕𝑈
𝜕𝑡

+
3
∑

𝑖=1

𝜕𝐺𝑖
𝜕𝑥𝑖

= 0 (4)

where 𝑈 is the conserved variable vector and 𝐺𝑖 are the inviscid flux
vectors with standard definitions representing conservation of mass,
momenta and energy.
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ere, the total energy is the sum of internal and kinetic energies.

=
𝑝

𝜌 (𝛾 − 1)
+ 1

2
(

𝑢21 + 𝑢
2
2 + 𝑢

2
3
)

(6)

𝛾 is the ratio of specific heats. A simpler model for the collision term
(𝐽 (𝑓, 𝑓 )) in the Boltzmann equation is given by the popular B–G–K
model [35], which reduces the otherwise integro-differential equation
to a PDE.

𝐽 (𝑓, 𝑓 ) = −1 [

𝑓 − 𝑓 𝑒𝑞
]

(7)

𝜖
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Here, 𝜖 is the relaxation time and 𝑓 𝑒𝑞 is the distribution representing
local thermodynamic equilibrium, given by a Maxwellian as

𝑓 𝑒𝑞 =
𝜌
𝐼0

(

𝛽
𝜋

)
3
2
𝑒−𝛽(𝑣1−𝑢1)

2−𝛽(𝑣2−𝑢2)2−𝛽(𝑣3−𝑢3)2𝑒
− 𝐼
𝐼0 (8)

where

𝛽 = 1
2𝑅𝑇

and 𝐼0 =
(2 +𝐷) − 𝛾𝐷

2 (𝛾 − 1)
𝑅𝑇 (9)

with 𝐷 being the degrees of freedom.

2.1. Strategy of kinetic schemes

2.1.1. Kinetic schemes for Euler equations
Utilizing the B–G–K model and operator splitting, the solution of the

Boltzmann equation can be split into two steps as

𝐂𝐨𝐧𝐯𝐞𝐜𝐭𝐢𝐨𝐧 𝐒𝐭𝐞𝐩 ∶
𝜕𝑓
𝜕𝑡

+ 𝜕ℎ⃗
𝜕�⃗�

= 0 (10)

𝐂𝐨𝐥𝐥𝐢𝐬𝐢𝐨𝐧 𝐒𝐭𝐞𝐩 ∶
𝑑𝑓
𝑑𝑡

= −1
𝜖
[

𝑓 − 𝑓 𝑒𝑞
]

(11)

where ℎ⃗ = 𝑣𝑓 is the flux, with the Boltzmann equation being written in
conservation form. Choosing an instantaneous relaxation to equilibrium
(𝜖 = 0), the collision step becomes a simple relaxation step as 𝑓 = 𝑓 𝑒𝑞 .
Thus, the Euler equations can be written in an intriguing form as
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(12)

he essential advantage of using this representation for macroscopic
uler equations is the linearity of the convection terms, which makes
ntroducing upwinding easier in a kinetic or Boltzmann scheme, auto-
atically leading to an upwind scheme for Euler equations. Note that

he nonlinearity is present only in the last step of taking moments.
his strategy avoids dependence on the eigen-structure of the nonlinear
uler equations and hence is a good alternative to the Riemann solvers.

.1.2. Kinetic schemes for Navier–Stokes equations
In the above formulation, 𝑓 𝑒𝑞 represents local thermodynamic equi-

ibrium and hence is insufficient to obtain Navier–Stokes equations.
or this purpose, Chapman–Enskog distribution, 𝑓𝐶𝐸 , (derived using
hapman–Enskog expansion) can be used instead of 𝑓 𝑒𝑞 . Then, we can
rite the Navier–Stokes equations in the moment form as

𝛹
(

𝜕𝑓
𝜕𝑡

+ 𝜕ℎ⃗
𝜕�⃗�

= 0, 𝑓 = 𝑓𝐶𝐸
)⟩

(13)

here the instantaneous relaxation in the collision step is to Chapman–
nskog distribution (see Junk and Raghurama Rao [36]). The
hapman–Enskog distribution, for the general case of poly-atomic
ases, is derived by Deshpande [7] for 1-D case and by Mano Kumar
t al. [37] for multi-dimensions (see also Chou & Baganoff [38] and
eshpande et al. [39]). The numerical schemes in this work begin with

he above distributions for introducing the discrete velocity versions.

.1.3. Discrete velocity Boltzmann schemes
Here, we utilize the above formulations and introduce new versions

f the equilibrium and Chapman–Enskog distribution functions based
n discrete velocities. These discrete distributions are then utilized to
ntroduce novel kinetic schemes for solving Euler and Navier–Stokes
quations. Compared to traditional kinetic schemes, the expressions
ere are much simpler, as integrations are replaced by summations
nd Maxwellians are replaced by simpler algebraic expressions. Unlike
n the Lattice Boltzmann Method, further Chapman–Enskog expansion
to fit the coefficients of viscosity and thermal conductivity) is not
3

eeded here as this formulation is based instantaneous relaxation to
axwellian or Chapman–Enskog distributions in the collision step. One
isadvantage with the B–G–K model is the limitation of unit Prandtl
umber, which is overcome here by employing a special strategy
hich introduces a correction, in a later section. It is worth noting
ere that, unlike in the Lattice Boltzmann Method, the numerical
chemes developed in this work begin with the conservation form
f the Boltzmann equation. Further, the framework of finite volume
ethod and the flux difference splitting form of numerical diffusion

nsure the preservation of the conservation form. These frameworks
nsure conservation even if we make the discrete velocities functions
f conserved variables. Such a modification only makes the numerical
iffusion part in the flux difference splitting framework nonlinear but
et preserves conservation. Further, the essential numerical diffusion
s fixed based on flux equivalence across discontinuities, which amounts
o enforcing Rankine–Hugoniot (R–H) conditions, and R–H conditions
epresent the quintessential conservation of fluxes across discontinu-
ties. This is similar to the modification of diffusion terms in expressions
or the cell-interface fluxes in the macroscopic flux difference splitting
ethods, without the loss of conservation. In the next section, the new
iscrete velocity Boltzmann equation is introduced.

. Equilibrium distribution function and its representations

The discrete velocity model is first introduced in 1-D in this section.
onsider 1-D Euler equations given by
𝜕𝑈
𝜕𝑡

+
𝜕𝐺(𝑈 )
𝜕𝑥

= 0 (14)

where 𝑈 is the conserved variable vector and 𝐺(𝑈 ) is its nonlinear flux
vector, given by

𝑈 =
⎡

⎢

⎢

⎣

𝜌
𝜌𝑢
𝜌𝐸

⎤

⎥

⎥

⎦

and 𝐺(𝑈 ) =
⎡

⎢

⎢

⎣

𝜌𝑢
𝑝 + 𝜌𝑢2

𝑝𝑢 + 𝜌𝑢𝐸

⎤

⎥

⎥

⎦

(15)

Here, 𝜌 is the density, 𝑢 is the fluid velocity, 𝑝 is the pressure and 𝐸
is the total (internal + kinetic) energy, given by 𝐸 =

𝑝
𝜌(𝛾 − 1)

+ 1
2
𝑢2.

The above equations can be obtained as moments of the 1-D Boltzmann
equation, with the BGK model, given by
𝜕𝑓
𝜕𝑡

+ 𝜕ℎ
𝜕𝑥

= −1
𝜖
[

𝑓 − 𝑓 𝑒𝑞
]

(16)

where ℎ = 𝑣𝑓 . The 1-D Maxwellian is given by

𝑓 𝑒𝑞 = 𝜌

√

𝛽
√

𝜋
𝑒−𝛽(𝑣−𝑢)

2
𝑒
− 𝐼
𝐼0 with 𝛽 = 1

2𝑅𝑇
and 𝐼0 =

(3 − 𝛾)
2 (𝛾 − 1)

𝑅𝑇 (17)

where 𝑅 is the gas constant and 𝑇 is the temperature, with the ideal gas
equation of state being given by 𝑝 = 𝜌𝑅𝑇 . The internal energy variable
corresponding to non-translational degrees of freedom, 𝐼 , takes the role
of providing the right value of 𝛾 for poly-atomic case. The moments to
obtain the macroscopic variables are defined by

𝑈𝑖 = ∫

∞

0 ∫

∞

−∞
𝜓𝑖𝑓 𝑑𝑣𝑑𝐼 and 𝐺𝑖(𝑈 ) = ∫

∞

0 ∫

∞

−∞
𝜓𝑖𝑣𝑓 𝑑𝑣𝑑𝐼, 𝑖 = 1, 2, 3

(18)

ith

=

⎡

⎢

⎢

⎢

⎣

1
𝑣

𝐼 + 1
2
𝑣2

⎤

⎥

⎥

⎥

⎦

(19)

ntroducing a truncated distribution as

̃ = ∫

∞

0
𝑓 𝑑𝐼 (20)

e can redefine the moment relations as

𝑖 =
∞
𝜓𝑖𝑓 𝑑𝑣 and 𝐺(𝑈 ) =

∞
𝜓𝑖𝑣𝑓 𝑑𝑣 (21)
∫−∞ ∫−∞
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3.1. Two velocity model

In order to obtain a discrete velocity model, let us start with the
moment relations for the equilibrium distribution function given by

𝑈𝑖 = ∫

∞

−∞
𝜓𝑖𝑓

𝑒𝑞𝑑𝑣 and 𝐺(𝑈 )𝑖 = ∫

∞

−∞
𝜓𝑖𝑣𝑓

𝑒𝑞𝑑𝑣 (22)

Introducing a set of Dirac delta functions comprising of two discrete
velocities 𝜆+ and 𝜆− (for replacing the molecular velocity 𝑣) and also
two corresponding components of 𝑓 𝑒𝑞 as 𝑓 𝑒𝑞+ and 𝑓 𝑒𝑞− (which absorb the
effect of 𝜓), we write

𝜓𝑖𝑓
𝑒𝑞 =

{

𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆
+) + 𝑓 𝑒𝑞− 𝛿(𝑣 − 𝜆

−)
}

𝑖 (23)

where 𝛿
(

𝑣 − 𝜆±
)

is the Dirac delta function. Thus, the conserved vari-
able vector becomes

𝑈𝑖 =
[

∫

∞

−∞
𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆

+)𝑑𝑣 + ∫

∞

−∞
𝑓 𝑒𝑞− 𝛿(𝑣 − 𝜆

−)𝑑𝑣
]

𝑖
(24)

Let us further assume, for simplicity, that the discrete velocities, 𝜆+ and
𝜆− for each 𝑖 are given by

𝜆+𝑖 = 𝜆𝑖 and 𝜆−𝑖 = −𝜆𝑖 (25)

Thus, we have three unknowns, namely, 𝑓 𝑒𝑞+ , 𝑓 𝑒𝑞− and 𝜆 to be fixed for
the equilibrium distribution, for each 𝑖. The moment relations in (22)
are utilized to fix 𝑓 𝑒𝑞± here. The fixing of 𝜆 is explained in later sections,
to develop a low diffusion scheme.

𝑈𝑖 = ∫

∞

−∞
𝜓𝑖𝑓

𝑒𝑞𝑑𝑣

= ∫

∞

−∞

{

𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆
+) + 𝑓 𝑒𝑞− 𝛿(𝑣 − 𝜆

−)
}

𝑖 𝑑𝑣

=
{

𝑓 𝑒𝑞+ + 𝑓 𝑒𝑞−
}

𝑖

Thus
{

𝑓 𝑒𝑞+ + 𝑓 𝑒𝑞−
}

𝑖 = 𝑈𝑖 (26)

𝐺(𝑈 )𝑖 = ∫

∞

−∞
𝑣𝜓𝑖𝑓

𝑒𝑞𝑑𝑣

= ∫

∞

−∞
𝑣
{

𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆
+) + 𝑓 𝑒𝑞− 𝛿(𝑣 − 𝜆

−)
}

𝑖 𝑑𝑣

=
{

𝑓 𝑒𝑞+ ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆+)𝑑𝑣 + 𝑓 𝑒𝑞− ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆−)𝑑𝑣

}

𝑖
,

(𝜙(𝑣) = 𝑣)

=
{

𝑓 𝑒𝑞+ 𝜆
+ + 𝑓 𝑒𝑞− 𝜆

−}
𝑖

Thus
{

𝑓 𝑒𝑞+ 𝜆
+ + 𝑓 𝑒𝑞− 𝜆

−}
𝑖 = 𝐺(𝑈 )𝑖 (27)

Solving the above two equations and simplifying of discrete velocities
for each 𝑖 using (25), we get

𝑓 𝑒𝑞+ 𝑖 =
1
2
𝑈𝑖 +

1
2𝜆𝑖

𝐺(𝑈 )𝑖 and 𝑓 𝑒𝑞− 𝑖 =
1
2
𝑈𝑖 −

1
2𝜆𝑖

𝐺(𝑈 )𝑖 (28)

Therefore, the Discrete Velocity Boltzmann Equation (DVBE) based on the
two discrete velocity model can be written as
{ 𝜕𝐟
𝜕𝑡

+ 𝜕𝐡
𝜕𝐱

= −𝟏
𝜖
[

𝐟 − 𝐟 𝐞𝐪
]

}

𝑖
𝑖 = 1, 2, 3 (29)

here 𝐡𝐢 = Λ𝐢𝐟𝐢 and

𝐢 =
[

𝑓+
𝑓−

]

𝐢
, Λ𝐢 =

[

𝜆+ 0
0 𝜆−

]

𝐢
and 𝐟 𝐞𝐪𝐢 =

[

𝑓 𝑒𝑞+
𝑓 𝑒𝑞−

]

𝐢
=

⎡

⎢

⎢

⎢

⎣

1
2
𝑈 + 1

2𝜆
𝐺(𝑈 )

1
2
𝑈 − 1

2𝜆
𝐺(𝑈 )

⎤

⎥

⎥

⎥

⎦𝐢

(30)

The Eq. (29) can be written in compact form as
𝜕𝐅 + 𝜕𝐇 = −𝟏 [

𝐅 − 𝐅𝐞𝐪] (31)
4

𝜕𝑡 𝜕𝐱 𝜖
where 𝐇 = Λ̃𝐅 is the flux and

𝐅 =
⎡

⎢

⎢

⎣

𝐟𝟏
𝐟𝟐
𝐟𝟑

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓+1
𝑓−1
𝑓+2
𝑓−2
𝑓+3
𝑓−3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and 𝐅𝐞𝐪 =
⎡

⎢

⎢

⎣

𝐟 𝐞𝐪𝟏
𝐟 𝐞𝐪𝟐
𝐟 𝐞𝐪𝟑

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞+ 1
𝑓 𝑒𝑞− 1
𝑓 𝑒𝑞+ 2
𝑓 𝑒𝑞− 2
𝑓 𝑒𝑞+ 3
𝑓 𝑒𝑞− 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

Λ̃ is given by

Λ̃ =
⎡

⎢

⎢

⎣

Λ𝟏 𝟎 𝟎
𝟎 Λ𝟐 𝟎
𝟎 𝟎 Λ𝟑

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆+1 0 0 0 0 0
0 𝜆−1 0 0 0 0
0 0 𝜆+2 0 0 0
0 0 0 𝜆−2 0 0
0 0 0 0 𝜆+3 0
0 0 0 0 0 𝜆+3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(33)

where 𝐟𝐢, Λ𝐢 and 𝐟 𝐞𝐪𝐢 are obtained from (30). It is worth noting that
moments of the above discrete velocity Boltzmann equation, for the
2-velocity model, yield the relaxation system of Jin and Xin [19], as
noted by Aregba-Driollet & Natalini [18]. To recover the macroscopic
system of equations, we take moments, which in this case will be
premultiplying the system with 𝐏, which is defined as

𝐏 =
⎡

⎢

⎢

⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎤

⎥

⎥

⎦

(34)

3.2. Three velocity model

The basic motivation for this part is to keep the additional discrete
velocity and its corresponding discrete distribution as free parameters,
to be fixed for avoiding entropy condition violation in a novel way. Let
us replace the equilibrium distribution by another combination of Dirac
delta functions as

𝜓𝑖𝑓
𝑒𝑞 =

{

𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆
+) + 𝑓 𝑒𝑞𝑜 𝛿(𝑣 − 𝜆𝑜) + 𝑓

𝑒𝑞
− 𝛿(𝑣 − 𝜆

−)
}

𝑖 (35)

Let us further assume, for simplicity, that the discrete velocities, 𝜆+ and
𝜆− for each 𝑖 are given by

𝜆+𝑖 = 𝜆𝑖 and 𝜆−𝑖 = −𝜆𝑖 (36)

Let us assume that 𝜆0 and 𝑓 𝑒𝑞0 for each 𝑖 are known (which will be
fixed later). Then, using the two moment relations in (21) we obtain
the following.

𝑈𝑖 = ∫

∞

−∞
𝜓𝑖𝑓

𝑒𝑞𝑑𝑣

= ∫

∞

−∞

{

𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆
+) + 𝑓 𝑒𝑞𝑜 𝛿(𝑣 − 𝜆𝑜) + 𝑓

𝑒𝑞
− 𝛿(𝑣 − 𝜆

−)
}

𝑖 𝑑𝑣

=
{

𝑓 𝑒𝑞+ + 𝑓 𝑒𝑞𝑜 + 𝑓 𝑒𝑞−
}

𝑖

or
{

𝑓 𝑒𝑞+ + 𝑓 𝑒𝑞−
}

𝑖 = 𝑈𝑖 − 𝑓 𝑒𝑞𝑜 𝑖 (37)

𝐺(𝑈 )𝑖 = ∫

∞

−∞
𝑣𝜓𝑖𝑓

𝑒𝑞𝑑𝑣

= ∫

∞

−∞
𝑣
{

𝑓 𝑒𝑞+ 𝛿(𝑣 − 𝜆
+) + 𝑓 𝑒𝑞𝑜 𝛿(𝑣 − 𝜆𝑜) + 𝑓

𝑒𝑞
− 𝛿(𝑣 − 𝜆

−)
}

𝑖 𝑑𝑣

=
{

𝑓 𝑒𝑞+ ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆+)𝑑𝑣 + 𝑓 𝑒𝑞𝑜 ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆𝑜)𝑑𝑣

+ 𝑓 𝑒𝑞− ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆−)𝑑𝑣

}

𝑖
, (𝜙(𝑣) = 𝑣)

=
{

𝑓 𝑒𝑞+ 𝜆
+ + 𝑓 𝑒𝑞𝑜 𝜆𝑜 + 𝑓 𝑒𝑞− 𝜆

−}
𝑖

or
{ 𝑒𝑞 + 𝑒𝑞 −} { 𝑒𝑞 }
𝑓+ 𝜆 + 𝑓− 𝜆 𝑖 = 𝐺(𝑈 )𝑖 − 𝑓𝑜 𝜆𝑜 𝑖 (38)
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Solving the above two equations and simplifying the discrete velocities
using (36), we get

𝑓 𝑒𝑞+ 𝑖 =
1
2
𝑈𝑖 +

1
2𝜆𝑖

𝐺(𝑈 )𝑖 −
{

𝜆 + 𝜆𝑜
2𝜆

𝑓 𝑒𝑞𝑜

}

𝑖

and 𝑓 𝑒𝑞− 𝑖 =
1
2
𝑈𝑖 −

1
2𝜆𝑖

𝐺(𝑈 )𝑖 −
{

𝜆 − 𝜆𝑜
2𝜆

𝑓 𝑒𝑞𝑜

}

𝑖

(39)

This is similar to the equilibria derived using the two velocity model
(28) with the respective additional −

𝜆 + 𝜆𝑜
2𝜆

𝑓 𝑒𝑞𝑜 and −
𝜆 − 𝜆𝑜
2𝜆

𝑓 𝑒𝑞𝑜 terms.
These additional terms will later be utilized in the numerical scheme
to avoid possible entropy violations.

The Discrete Velocity Boltzmann Equation (DVBE) for three velocity
model can now be written as
{ 𝜕𝐟
𝜕𝑡

+ 𝜕𝐡
𝜕𝑥

= −1
𝜖
[

𝐟 − 𝐟 𝐞𝐪
]

}

𝑖
𝑖 = 1, 2, 3 (40)

here 𝐡𝐢 = Λ𝐢𝐟𝐢, with the above Boltzmann equation being in conser-
ation form. Here

𝐢 =
⎡

⎢

⎢

⎣

𝑓+
𝑓𝑜
𝑓−

⎤

⎥

⎥

⎦𝐢

, Λ𝐢 =
⎡

⎢

⎢

⎣

𝜆+ 0 0
0 𝜆𝑜 0
0 0 𝜆−

⎤

⎥

⎥

⎦𝐢

and

𝐞𝐪
𝐢 =

⎡

⎢

⎢

⎣

𝑓 𝑒𝑞+
𝑓 𝑒𝑞𝑜
𝑓 𝑒𝑞−

⎤

⎥

⎥

⎦𝐢

=

⎡

⎢

⎢

⎢

⎢

⎣

1
2
𝑈 + 1

2𝜆
𝐺(𝑈 ) −

𝜆 + 𝜆𝑜
2𝜆

𝑓 𝑒𝑞𝑜
𝑓 𝑒𝑞𝑜

1
2
𝑈 − 1

2𝜆
𝐺(𝑈 ) −

𝜆 − 𝜆𝑜
2𝜆

𝑓 𝑒𝑞𝑜

⎤

⎥

⎥

⎥

⎥

⎦𝐢

(41)

𝑒𝑞
0 and 𝜆0 for each 𝑖 will be chosen later in such a way that entropy
ondition violation is avoided. The Eq. (40) can be written in compact
orm as
𝜕𝐅
𝜕𝑡

+ 𝜕𝐇
𝜕𝑥

= −1
𝜖
[

𝐅 − 𝐅𝐞𝐪] (42)

where

𝐅 =
⎡

⎢

⎢

⎣

𝐟𝟏
𝐟𝟐
𝐟𝟑

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓+1

𝑓𝑜1
𝑓−1

𝑓+2

𝑓𝑜2
𝑓−2

𝑓+3

𝑓𝑜3
𝑓−3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐅𝐞𝐪 =

⎡

⎢

⎢

⎢

⎣

𝐟 𝐞𝐪𝟏
𝐟 𝐞𝐪𝟐
𝐟 𝐞𝐪𝟑

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞+ 1

𝑓 𝑒𝑞𝑜 1

𝑓 𝑒𝑞− 1

𝑓 𝑒𝑞+ 2

𝑓 𝑒𝑞𝑜 2

𝑓 𝑒𝑞− 2

𝑓 𝑒𝑞+ 3

𝑓 𝑒𝑞𝑜 3

𝑓 𝑒𝑞− 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(43)

Λ̃ is given by

Λ̃ =
⎡

⎢

⎢

⎣

Λ𝟏 𝟎 𝟎
𝟎 Λ𝟐 𝟎
𝟎 𝟎 Λ𝟑

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆+1 0 0 0 0 0 0 0 0
0 𝜆𝑜1 0 0 0 0 0 0 0
0 0 𝜆−1 0 0 0 0 0 0
0 0 0 𝜆+2 0 0 0 0 0
0 0 0 0 𝜆𝑜2 0 0 0 0
0 0 0 0 0 𝜆−2 0 0 0
0 0 0 0 0 0 𝜆+3 0 0
0 0 0 0 0 0 0 𝜆𝑜3 0
0 0 0 0 0 0 0 0 𝜆−3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(44)

where 𝐟𝐢, Λ𝐢 and 𝐟 𝐞𝐪𝐢 are obtained from (41). To recover the macro-
scopic system of equations, we take moments, which in this case will
be by premultiplying the system with 𝐏, which is defined as

𝐏 =
⎡

⎢

⎢

⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎦

(45)

Let us now develop a kinetic scheme for the discrete velocity models
5

thus developed using a flux difference splitting approach. C
4. Kinetic Flux Difference Splitting (KFDS) scheme

4.1. KFDS method with two velocity model

Let us write (29) in a finite volume framework
{

𝐟𝑛+1𝑗 = 𝐟𝑛𝑗 − 𝛥𝑡
𝛥𝑥

[

𝐡𝑛
𝑗+ 1

2
− 𝐡𝑛

𝑗− 1
2

]}

𝑖
(46)

here 𝐡𝑖 = Λ𝑖𝐟𝑖. To introduce upwinding in two velocity model based
VBE, let us split the discrete velocity matrix Λ𝑖 in to two parts,

eparating the positive and negative velocities.

𝑖 =
[

𝜆+ 0
0 𝜆−

]

𝑖
=
[

𝜆+ 0
0 0

]

+
[

0 0
0 𝜆−

]

𝑖
= Λ+

𝑖 +Λ−
𝑖 (47)

It is possible to write

|Λ|𝑖 = Λ+
𝑖 −Λ−

𝑖 (48)

Thus the upwind fluxes for each 𝑖, applied on a three point stencil, can
be written as
{

𝐡𝑛
𝑗+ 1

2
= [Λ+𝐟𝑒𝑞]𝑗 + [Λ−𝐟𝑒𝑞]𝑗+1

}

𝑖
(49)

{

𝐡𝑛
𝑗− 1

2
= [Λ+𝐟𝑒𝑞]𝑗−1 + [Λ−𝐟𝑒𝑞]𝑗

}

𝑖
(50)

Using (47) and (48) we can write

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐡𝑛
𝑗+ 1

2
= 1

2
[𝐡𝑛𝑗+1 + 𝐡𝑛𝑗 ]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
average flux

− 1
2
|𝛬|[𝐟𝑒𝑞𝑗+1 − 𝐟𝑒𝑞𝑗 ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffusive flux

⎫

⎪

⎪

⎬

⎪

⎪

⎭𝑖

(51)

𝐡𝑛
𝑗− 1

2
= 1

2
[𝐡𝑛𝑗 + 𝐡𝑛𝑗−1] −

1
2
|𝛬|[𝐟𝑒𝑞𝑗 − 𝐟𝑒𝑞𝑗−1]

}

𝑖
(52)

learly, 𝛬 represents the coefficients of numerical diffusion. Choosing
he values of 𝜆𝑖 for numerical considerations is an efficient strategy
o control the numerical diffusion without losing conservation, as the
bove expressions for cell-interface fluxes in the flux difference splitting
orm enforce conservation in the basic finite volume framework. The
bove expressions can further be rewritten in flux difference splitting
orm as

𝐡𝑛
𝑗+ 1

2
= 1

2
[𝐡𝑛𝑗+1 + 𝐡𝑛𝑗 ] −

1
2
[𝛥𝐡+

𝑗+ 1
2

− 𝛥𝐡−
𝑗+ 1

2
]
}

𝑖
(53)

𝐡𝑛
𝑗− 1

2
= 1

2
[𝐡𝑛𝑗 + 𝐡𝑛𝑗−1] −

1
2
[𝛥𝐡+

𝑗− 1
2

− 𝛥𝐡−
𝑗− 1

2
]
}

𝑖
(54)

here 𝛥𝐡±
𝑗± 1

2

= [Λ±𝛥𝐟𝑒𝑞]𝑗± 1
2
. In the next sub-section, the coefficient of

umerical diffusion, which corresponds to |Λ|, is chosen a function of
both the left and right states. Thus, the flux difference splitting is the
appropriate choice rather than flux vector splitting.

To recover the macroscopic update formula, let is take moments by
multiplying with 𝑃 as given in (34). Therefore the macroscopic update
formula for the Kinetic Flux Difference Splitting (KFDS) scheme thus
developed using 2-velocity model based DVBE can be written as
{

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 − 𝛥𝑡
𝛥𝑥

[

𝐺(𝑈 )𝑛
𝑗+ 1

2
− 𝐺(𝑈 )𝑛

𝑗− 1
2

]}

𝑖
(55)

where the interface fluxes are given by
{

𝐺(𝑈 )𝑛
𝑗+ 1

2
= 1

2
[𝐺(𝑈 )𝑛𝑗+1 + 𝐺(𝑈 )𝑛𝑗 ] −

1
2
[𝛥𝐺(𝑈 )+,𝑛

𝑗+ 1
2

− 𝛥𝐺(𝑈 )−,𝑛
𝑗+ 1

2

]
}

𝑖
(56)

{

𝐺(𝑈 )𝑛
𝑗− 1

2
= 1

2
[𝐺(𝑈 )𝑛𝑗 + 𝐺(𝑈 )𝑛𝑗−1] −

1
2
[𝛥𝐺(𝑈 )+,𝑛

𝑗− 1
2

− 𝛥𝐺(𝑈 )−,𝑛
𝑗− 1

2

]
}

𝑖
(57)

{

𝛥𝐺(𝑈 )±
𝑗+ 1

2

= 1
2
[𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 ] ±

1
2
|𝜆|[𝑈𝑗+1 − 𝑈𝑗 ]

}

𝑖
(58)

𝛥𝐺(𝑈 )±
𝑗− 1

2

= 1
2
[𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1] ±

1
2
|𝜆|[𝑈𝑗 − 𝑈𝑗−1]

}

𝑖
(59)

learly, 𝜆 controls the numerical diffusion.
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4.2. Fixing 𝜆

For developing an accurate shock capturing scheme, the value of 𝜆 is
fixed such that numerical diffusion vanishes for a steady discontinuity,
as suggested in [6]. As a consequence, though there is a jump in the
conserved variables across a steady discontinuity, the fluxes on the left
and right side of the discontinuity are equal. This principle is referred
to as flux equivalence across a steady discontinuity here. Equating the
cell-interface flux separately to the left flux (𝐺(𝑈 )𝑗+ 1

2
= 𝐺(𝑈 )𝑗) and the

right flux (𝐺(𝑈 )𝑗+ 1
2
= 𝐺(𝑈 )𝑗+1) and generalizing leads to

𝐺(𝑈 ) = |𝜆|𝛥𝑈 (60)

which is nothing but the Rankine–Hugoniot (R–H) jump conditions.
Thus, we can choose

|𝜆| =
|

|

|

|

𝛥𝐺(𝑈 )
𝛥𝑈

|

|

|

|

(61)

owever, as 𝑈 and 𝐺(𝑈 ) are vectors, choosing a scalar numerical
iffusion is not easy. We choose a diagonal matrix for representing 𝜆
as in [40]) and this leads to

𝜆|𝑖 =
|

|

|

|

𝛥𝐺(𝑈 )
𝛥𝑈

|

|

|

|𝑖
, 𝑖 = 1, 2, 3 (62)

hoosing this value for 𝜆𝑖, which represent the coefficients of numerical
iffusion, will enforce R–H conditions directly in the discretization
rocess. As R–H conditions represent the quintessential conservation of
luxes across discontinuities, conservation is enforced, as is also ensured
y beginning with the conservative form of equations and the utiliza-
ion of the finite volume framework. As a consequence of the above
hoice, this 2-velocity model based KFDS scheme can capture steady
iscontinuities exactly, without numerical diffusion. However, as this
ariant is low in numerical diffusion, entropy condition violation is
ikely to occur. A 3-velocity model based KFDS scheme is introduced in
he next section in which the additional velocity and the corresponding
omponent of its distribution function are chosen in a novel way to
void any possible entropy condition violation.

It is worth noting here that though the numerical scheme initially
egins with the discrete velocity form of the Boltzmann equation, as 𝜆
urns out to be the coefficient of numerical diffusion, a suitable choice
or the value of 𝜆 (without losing conservation, in the finite volume
nd FDS framework, as noted before) changes the discrete nature of
he velocities, thus leading to an essentially new framework. Yet, the
ame DVBE is retained here, for the sake of convenience.

.3. KFDS method with three velocity model

To derive the finite volume scheme for the three velocity based
VBE, we follow the same steps as in the previous section and obtain

he update formula at kinetic level to be same as that of two velocity
VBE scheme. The definitions of 𝛬 are as given below.

𝑖 =

⎡

⎢

⎢

⎢

⎣

𝜆+ 0 0

0 𝜆𝑜 0

0 0 𝜆−

⎤

⎥

⎥

⎥

⎦𝑖

=

⎡

⎢

⎢

⎢

⎣

𝜆+ 0 0

0 𝜆+𝑜 0

0 0 0

⎤

⎥

⎥

⎥

⎦𝑖

+

⎡

⎢

⎢

⎢

⎣

0 0 0

0 𝜆−𝑜 0

0 0 𝜆−

⎤

⎥

⎥

⎥

⎦𝑖

= Λ+
𝑖 +Λ−

𝑖

(63)

gain it is possible to define |Λ| in a similar way as

Λ|𝐢 = Λ+
𝐢 −Λ−

𝐢 (64)

Following the same finite volume procedure and applying it to (46),
ogether with (63), (64) and taking moments using 𝑃 as given in (45),
e get

𝐺(𝑈 )𝑛
𝑗+ 1

2
= 1

2
[𝐺(𝑈 )𝑛𝑗+1 + 𝐺(𝑈 )𝑛𝑗 ] −

1
2
[𝛥𝐺(𝑈 )+,𝑛

𝑗+ 1
2

− 𝛥𝐺(𝑈 )−,𝑛
𝑗+ 1

2

]
}

𝑖
(65)

{

𝐺(𝑈 )𝑛 1 = 1 [𝐺(𝑈 )𝑛𝑗 + 𝐺(𝑈 )𝑛𝑗−1] −
1 [𝛥𝐺(𝑈 )+,𝑛1 − 𝛥𝐺(𝑈 )−,𝑛1 ]

}

(66)
6

𝑗− 2 2 2 𝑗− 2 𝑗− 2 𝑖
{

𝛥𝐺(𝑈 )±
𝑗+ 1

2

= 1
2
[𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 ] ±

1
2
|𝜆|[𝑈𝑗+1 − 𝑈𝑗 ]

∓1
2
(𝜆 − |𝜆𝑜|)[𝑓 𝑜𝑒𝑞𝑗+1 − 𝑓

𝑜
𝑒𝑞𝑗

]

}

𝑖

(67)

{

𝛥𝐺(𝑈 )±
𝑗− 1

2

= 1
2
[𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1] ±

1
2
|𝜆|[𝑈𝑗 − 𝑈𝑗−1]

∓1
2
(𝜆 − |𝜆𝑜|)[𝑓 𝑜𝑒𝑞𝑗 − 𝑓

𝑜
𝑒𝑞𝑗−1

]

}

𝑖

(68)

The split flux differences in the interface flux for the three velocity
DVBE model based KFDS derived in (67) have taken an interesting form
in comparison with those in the two velocity DVBE model based KFDS
derived in (58). We can write
{

𝐺(𝑈 )3𝑉 −𝐾𝐹𝐷𝑆
𝑗± 1

2

}

𝑖
=
{

𝐺(𝑈 )2𝑉 −𝐾𝐹𝐷𝑆
𝑗± 1

2
∓ 1

2
(𝜆 − |𝜆𝑜|)(𝛥𝑓 𝑜𝑒𝑞)

}

𝑖
(69)

wherein the interface flux for 3-Velocity Model is essentially that of
2-Velocity Model with additional terms, which are just functions of
𝜆0 and 𝑓 0

𝑒𝑞 . In the next subsection, 𝜆, which represents the essential
contribution to the coefficient of numerical diffusion of the scheme, is
fixed in such a way that numerical diffusion vanishes for a steady dis-
continuity, leading to the enforcement of R–H conditions, as described
in the 2-velocity model. 𝜆0 and 𝑓 0

𝑒𝑞 are chosen in such a way that
entropy condition violation is avoided and hence are activated only in
the expansion regions. This happens automatically in the formulation,
based on the utilization of relative entropy or the 𝐷2-distance. Since 𝜆0
and 𝑓 0

𝑒𝑞 are activated only in the smooth regions, their contribution to
the numerical diffusion in the scheme will be low. Here, for simplicity,
we reduce the unknowns (𝜆0 and 𝑓 0

𝑒𝑞) from two to one, by expressing
one in terms of the other. Thus, to determine 𝑓 𝑜𝑒𝑞 for each 𝑖, we equate
the diffusion flux term of Eq. (67) to zero.

1
2
|𝜆|𝛥𝑈𝑗+ 1

2
− 1

2
(𝜆 − |𝜆𝑜|)𝛥𝑓 𝑜𝑒𝑞𝑗+ 1

2
= 0 (70)

𝑜𝑟 𝛥𝑓 𝑜𝑒𝑞𝑗+ 1
2
=

|𝜆|
𝜆 − |𝜆𝑜|

𝛥𝑈𝑗+ 1
2

(71)

Thus we infer, 𝑓 𝑜𝑒𝑞 𝑖 =
|𝜆|𝑖

𝜆𝑖 − |𝜆𝑜|𝑖
𝑈𝑖 (72)

or convenience, together with 𝑓 𝑜𝑒𝑞 , a coefficient which enables a
ontrol on the additional diffusion flux is introduced. Thus we fix 𝑓 𝑜𝑒𝑞
or each 𝑖 as

𝑜
𝑒𝑞 𝑖

=
(

𝑘|𝜆|
𝜆 − |𝜆𝑜|

𝑈
)

𝑖
=
(

𝜆𝐴
𝜆 − |𝜆𝑜|

𝑈
)

𝑖
(73)

where 𝜆𝐴 is the wave speed for the additional diffusion term, which is
required to avoid any possible violation of entropy condition. The flux
differences in (67) can be rewritten as
{

𝛥𝐺(𝑈 )±
𝑗+ 1

2

= 1
2
[𝐺(𝑈 )𝑛𝑗+1 − 𝐺(𝑈 )𝑛𝑗 ] ±

1
2
|𝜆|[𝑈𝑗+1 − 𝑈𝑗 ] ∓

1
2
𝜆𝐴[𝑈𝑗+1 − 𝑈𝑗 ]

}

𝑖

(74)
{

𝛥𝐺(𝑈 )±
𝑗− 1

2

= 1
2
[𝐺(𝑈 )𝑛𝑗 − 𝐺(𝑈 )𝑛𝑗−1] ±

1
2
|𝜆|[𝑈𝑗 − 𝑈𝑗−1] ∓

1
2
𝜆𝐴[𝑈𝑗 − 𝑈𝑗−1]

}

𝑖

(75)

t can be observed from the above expressions that two parameters, 𝜆
nd 𝜆𝐴 are now required to be fixed, to control numerical diffusion. Out

of these two, 𝜆 is assigned the role of controlling the primary numerical
diffusion to capture steady discontinuities exactly, which is described
in the next subsection. 𝜆𝐴 is assigned the role of introducing additional
numerical diffusion to avoid any possible entropy condition violation,
which is described in a later subsection.
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4.4. Fixing the primary numerical diffusion through 𝜆

In the construction of the KFDS scheme, fixing of the coefficients 𝜆
and 𝜆𝐴 will be critical in determining the fundamental capabilities of
the scheme. As mentioned earlier, the idea behind introducing 𝜆𝐴 is to
provide a means to introduce additional diffusion in specific regions of
expansion in order to prevent the entropy violation which is typical
of low diffusion schemes. The basic definition of 𝜆 comes with the
assumption that 𝜆𝐴 is zero. 𝜆 is fixed to obtain a steady shock with
zero numerical diffusion. For a steady shock to be captured exactly,
when the left and right fluxes are equal the numerical diffusion must
vanish, according to Harten, Lax and van Leer [6]. This flux equivalence
across a steady shock is the consequence of flux conservation. Thus, in
the expression for the cell-interface flux 𝐺𝑗+ 1

2
for each 𝑖, we can take

𝑗 = 𝐺𝑗+ 1
2
= 𝐺𝑗+1 to obtain an expression for 𝜆. First we substitute

𝑗+ 1
2
= 𝐺𝑗 . Then, we get

𝜆𝑖|𝛥𝑈𝑖 =
(

𝐺𝑗+1 − 𝐺𝑗
)

𝑖 = 𝛥𝐺𝑖 (76)

imilarly, 𝐺𝑗+ 1
2
= 𝐺𝑗+1 leads to

𝜆|𝑖𝛥𝑈𝑖 = −𝛥𝐺𝑖 (77)

eneralizing from both the above expressions, we write

𝜆|𝑖 =
|

|

|

|

𝛥𝐺𝑖
𝛥𝑈𝑖

|

|

|

|

(78)

Therefore, the values of |𝜆| for the continuity, momentum and energy
quations in a one dimensional flow will take the form as given below.

𝜆|1 =
|

|

|

|

𝛥(𝜌𝑢)
𝛥𝜌

|

|

|

|

; |𝜆|2 =
|

|

|

|

|

𝛥(𝑝 + 𝜌𝑢2)
𝛥 (𝜌𝑢)

|

|

|

|

|

; |𝜆|3 =
|

|

|

|

𝛥(𝑝𝑢 + 𝜌𝑢𝐸)
𝛥 (𝜌𝐸)

|

|

|

|

(79)

s the coefficient of numerical diffusion is a function of both the left
nd right states across a cell-interface, flux difference splitting approach
hosen is appropriate. In order to avoid numerical overflow, |𝜆|𝑖 is
estricted to the minimum eigenvalue when 𝛥𝑈𝑖 ≤ 𝜖 where 𝜖 = 10−10.
or 𝐺𝑗 = 𝐺𝑗+1 or 𝛥𝐺 = 0, the coefficient of diffusion 𝜆 becomes zero,
hus capturing the steady shocks and contact discontinuities exactly.

.5. Need for additional diffusion

The requirement of the additional diffusion arises in smooth re-
ions of the flow. In particular, sonic points can occur in regions of
xpansions in a flow field and the low diffusive numerical schemes
ould require an entropy fix to prevent the occurrence of unphysical
xpansion shocks. Such an entropy fix introduces additional non-zero
umerical diffusion near the sonic points. However, if this is done
verywhere, the exact shock capturing ability will be lost. It is therefore
esirable to retain the low diffusive nature of the basic scheme and add
dditional numerical diffusion only near the expansive sonic points.
he identification of smooth regions, in contrast with the regions of
iscontinuity, is done in a novel way utilizing the relative entropy or
he 𝐷2-distance.

.5.1. 𝐷2-distance and entropy
Relative entropy, also known as Kullback–Liebler divergence, di-

ected divergence or 𝐷2-distance, is a measure of variation between
wo distribution functions. This measure and its variants are popularly
sed in statistics to identify the distinguishing features between two
ets of statistical data (discrete samples) or continuous functions. It is
orth noting that the form of 𝐷2-distance resembles the Boltzmann H-

unction and thereby is a comprehensive representation of entropy at
he kinetic level. The relative entropy to measure divergence between
wo distributions is given by (80).
(

𝑓 𝑒𝑞𝑘 , 𝑓
𝑒𝑞
𝑗

)

= ∫

∞

∫

∞ (

𝑓 𝑒𝑞𝑗 − 𝑓 𝑒𝑞𝑘
)

ln

(

𝑓 𝑒𝑞𝑗
𝑒𝑞

)

𝑑𝑣𝑑𝐼 (80)
7

0 −∞ 𝑓𝑘
Here, 𝑓 𝑒𝑞𝑘,𝑗 represents the equilibrium distribution and 𝑘, 𝑗 represent two
ocations, which represent in the present framework the left and right
tate of the interface. Utilizing the definition of classical Maxwellians
or the equilibrium distribution, the moment of the above 𝐷2-distance

yields [41]

𝐷2
(

𝑓 𝑒𝑞𝑘 , 𝑓
𝑒𝑞
𝑗

)

=
(

𝜌𝑗 − 𝜌𝑘
)

ln
⎡

⎢

⎢

⎣

𝜌𝑗
𝜌𝑘

(

𝑇𝑘
𝑇𝑗

)
5
2 ⎤
⎥

⎥

⎦

+
𝜌𝑘

2𝑅𝑇𝑘

[ 𝜌𝑗
𝜌𝑘

+
𝑇𝑘
𝑇𝑗

]

(

𝑢𝑘 − 𝑢𝑗
)2

+ 5
2

[

𝜌𝑘
(

𝑇𝑘 − 𝑇𝑗
)

𝑇𝑗
+
𝜌𝑗

(

𝑇𝑗 − 𝑇𝑘
)

𝑇𝑘

]

(81)

The thermodynamic entropy used in this work is obtained from gas
dynamic relations as

𝑆𝑗 = −𝑅
(

ln 𝜌𝑗 +
ln 𝛽𝑗
𝛾 − 1

+ constant
)

(82)

To evaluate the capabilities of the relative entropy as a sensor function,
numerical tests were performed on the exact solutions of several one
dimensional Euler test cases. The behaviour of the relative entropy
and the corresponding entropy for the some of most representative test
cases are shown in Figs. 1 and 2.

It can be seen that the relative entropy gives a positive signal
of distinct magnitude for shocks and contact discontinuities. Even in
case of expansion waves the function produces a positive signal whose
magnitude is one order lower than that of strong shocks and contact
discontinuities. It is evident that this function (81) senses gradients
arising in pressure, temperature, density and velocity and can be ef-
fective in identifying flow gradients and discontinuities of many kinds.
While identification of shocks, contact discontinuities or expansions
individually is challenging, the 𝐷2-distance along with the entropy
function seems to be a good indicator for this task. In the present work,
the 𝐷2-distance along with the entropy function is used to identify
xpansion regions and we introduce additional diffusion only at these
egions to avoid unphysical expansion shocks. The rendering of the
iscrete version of relative entropy to fit the discrete Boltzmann system
resented here, with the study of the required mathematical properties,
s beyond the scope of this paper and will be pursued elsewhere.

.6. Fixing the additional numerical diffusion through 𝜆𝐴

For fixing the additional numerical diffusion, 𝜆𝐴 is defined as fol-
ows.

𝐴 =
{

𝜆𝐷𝐷 for 𝐷2 > 0 & 𝛥𝑆 = 0
0 Otherwise (83)

here 𝐷2 refers to the relative entropy or 𝐷2-distance and 𝛥𝑆 is
he estimated difference in thermodynamic entropy across the cell
nterface. Two possibilities are presented here for fixing 𝜆𝐷𝐷.

4.6.1. Maximum eigenvalue based 𝜆𝐷𝐷
A simple and yet robust strategy to capture expansion region with-

out violating entropy conditions is to fix the coefficient of numerical
diffusion as the maximum of the eigenvalues, as in Rusanov of LLF
method. It is done only at expansions, as it would yet be possible retain
the steady discontinuity capturing ability of the scheme. Thus the first
possible definition of 𝜆𝐷𝐷 will be

𝜆𝐷𝐷 = 𝜆𝑚𝑎𝑥 − 𝜆 (84)
where 𝜆max = max

{

max(|𝑢 + 𝑎|, |𝑢|, |𝑢 − 𝑎|)𝐿,max(|𝑢 + 𝑎|, |𝑢|, |𝑢 − 𝑎|)𝑅
}

(85)

This makes the coefficient of the total numerical diffusion as 𝜆𝑚𝑎𝑥 at
the expansions.
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.6.2. Fluid velocity based 𝜆𝐷𝐷

Another choice for 𝜆𝐴 is to select a coefficient of numerical diffusion
ased on normal fluid velocity across the cell interface. Raghaven-
ra [27], Ramesh [42] and Ramesh et al. [43] have demonstrated
hat the numerical diffusion can be fixed based on Riemann invariants
nd have reported stable capturing of the expansion regions without
he need for an entropy fix. This approach automatically leads to the
ormal fluid velocity as the coefficient of numerical diffusion. We
efine

𝐷𝐷 = 𝜆𝑅𝐼 − 𝜆 (86)

here 𝜆 =
|𝑢𝐿| + |𝑢𝑅| (87)
8

𝑅𝐼 2 t
his makes the coefficient of total numerical diffusion in the scheme as
𝑅𝐼 in expansions.

.6.3. Activation strategy of additional numerical diffusion
To evaluate the efficiency of (83), preliminary numerical tests were

erformed on shock tube problems. The capability of the basic scheme
ith no additional diffusion is presented in Table 1 for comparison.

Upon introducing additional diffusion in regions where directed
ivergence is nonzero, the scheme is stable but loses its ability to
apture steady shocks and steady contact discontinuities exactly. When
he condition in (83) is strictly enforced, the diffusion required for the
olution to evolve in the regions of shocks and contact discontinuities is
ound to be not adequate. As a result, expansion shocks appear in SOD
est case and the solution blows up for Toro case 5. It is observed that
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Fig. 2. Entropy and 𝐷2-distance (relative entropy) for SOD test case.
Table 1
Numerical experiments to deduce activation strategy for additional numerical diffusion.
TEST CASE KFDS KFDS KFDS KFDS KFDS

No additional + DD > 0 + DD > 0 + DD > 0 + DD > 0
Diffusion +𝛥S = 0 +𝛥S ≤ Smax +𝛥S ≤ Smean

✔ ✔ ✔ ✔ ✔

Steady C.D. Exact Diffused Exact Exact Exact

✔ ✔ ✔ ✔ ✔

Steady shock Exact Diffused Exact Diffused Exact

✖ ✔ ✖ ✔ ✔

SOD case Expansion shocks Smooth Expansion shocks Smooth Smooth

✖ ✔ ✔ ✔ ✔

Overheating Blows up Smooth Smooth Smooth Smooth

✔ ✔ ✔ ✔ ✔

Toro Case 3 Not smooth Smooth Not smooth Smooth Smooth

✔ ✔ ✔ ✔ ✔

Shock collision Not smooth Smooth Not smooth Smooth Smooth

✖ ✔ ✖ ✔ ✔

Toro Case 5 Blows up Smooth Blows up Smooth Smooth
I
a
p
v
s

4

{

additional diffusion is required in regions of both shocks and expan-
sions in the unsteady test cases for the solution to evolve. This means
that the condition 𝛥S = 0 has to be revised to 𝛥𝑆 ≤ a parameter. The
numerical experiments further confirmed that the parameter cannot
be a constant and its magnitude scales up according to the maximum
energy/entropy level of the system. Therefore, the parameter has to
be a function of the primitive variables defining the system. After
careful numerical experiments, maximum entropy and mean entropy
of the system were identified as the limits, up to which entropy change
(𝛥𝑆) is acceptable to permit additional diffusion. While both the limits
provided positive solutions, the use of mean entropy limit for regulating
additional diffusion zone is capable of retaining the exact steady shock
and steady contact discontinuity capturing ability of the numerical
scheme. Therefore, the condition to introduce additional diffusion as
given in (83) is revised to the following.

𝜆𝐴 =
{

𝜆𝐷𝐷 for 𝐷2 > 0 & 𝛥𝑆 ≤ 𝑆𝑚𝑒𝑎𝑛 (88)
9

0 Otherwise
t is clear that the additional numerical diffusion to get all the typical
nd different test cases working well is quite sensitive to the involved
arameters, a fact well-known to the macroscopic CFD algorithm de-
elopers. The optimal numerical diffusion to avoid entropy violation in
mooth regions still remains an active research topic.

.7. Final expressions for KFDS scheme

The final form of the numerical scheme is given as

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 − 𝛥𝑡
𝛥𝑥

[

𝐺(𝑈 )𝑛
𝑗+ 1

2
− 𝐺(𝑈 )𝑛

𝑗− 1
2

]}

𝑖
(89)

where the interface fluxes are given by
{

𝐺(𝑈 )𝑛
𝑗+ 1

2
= 1

2
[𝐺(𝑈 )𝑛𝑗+1 + 𝐺(𝑈 )𝑛𝑗 ] −

1
2
[𝛥𝐺(𝑈 )+,𝑛

𝑗+ 1
2

− 𝛥𝐺(𝑈 )−,𝑛
𝑗+ 1

2

]
}

𝑖
(90)

{

𝐺(𝑈 )𝑛 1 = 1 [𝐺(𝑈 )𝑛𝑗 + 𝐺(𝑈 )𝑛𝑗−1] −
1 [𝛥𝐺(𝑈 )+,𝑛1 − 𝛥𝐺(𝑈 )−,𝑛1 ]

}

(91)

𝑗− 2 2 2 𝑗− 2 𝑗− 2 𝑖
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𝜆
s
b
w

4

O
c
f
a
l
a
f
o
n
S
o
𝑖
r

𝐡

𝐡

r
f
t

𝐟

L
c

𝑈

U

𝛥

The split flux differences are given by
{

𝛥𝐺(𝑈 )±
𝑗+ 1

2

= 1
2
[𝐺(𝑈 )𝑛𝑗+1 − 𝐺(𝑈 )𝑛𝑗 ] ±

1
2
|𝜆|[𝑈𝑗+1 − 𝑈𝑗 ] ∓

1
2
𝜆𝐴[𝑈𝑗+1 − 𝑈𝑗 ]

}

𝑖

(92)
{

𝛥𝐺(𝑈 )±
𝑗− 1

2

= 1
2
[𝐺(𝑈 )𝑛𝑗 − 𝐺(𝑈 )𝑛𝑗−1] ±

1
2
|𝜆|[𝑈𝑗 − 𝑈𝑗−1] ∓

1
2
𝜆𝐴[𝑈𝑗 − 𝑈𝑗−1]

}

𝑖

(93)

where |𝜆𝑖| =
|

|

|

|

𝛥𝐺(𝑈 )𝑖
𝛥𝑈𝑖

|

|

|

|

and 𝜆𝐴 for each 𝑖 is defined by

𝜆𝐴 =
{

𝜆𝐷𝐷 for 𝐷2 > 0 & 𝛥𝑆 ≤ 𝑆𝑚𝑒𝑎𝑛
0 Otherwise (94)

𝐴 is determined by the choice of the 𝜆𝐷𝐷 and correspondingly the
cheme will be named as KFDS-A for the use of maximum eigenvalue
ased wave speed and KFDS-B for the use of normal fluid velocity based
ave speed.

.8. Higher order accuracy

There are many ways to obtain higher order accuracy [44–47].
ne of the simplest of the ways is to reconstruct the primitive or the
onserved variables by a linear combination of the solution variables
rom the appropriate neighbouring cells. It is important to note that
mere linear combination can result in spurious oscillations and can

ead to unphysical results. Thus such linear combinations are generally
ccompanied with moderation of the slopes or fluxes using limiter
unctions. In this paper, second order accuracy is obtained by means
f a piece-wise linear reconstruction of the distribution functions from
eighbouring cells, at a cell-interface. We take the same approach as in
ection 4.3 for discrete kinetic upwinding, with linear reconstructions
f the distributions. Although this section is presented without suffix
for simplicity, each of the expressions does have a valid suffix 𝑖,

epresenting the respective conservation equation.
𝑛
𝑗+ 1

2
=
[(

𝛬+𝐟𝑒𝑞
)

𝐿 +
(

𝛬−𝐟𝑒𝑞
)

𝑅

]

𝑗+ 1
2

(95)

𝑛
𝑗− 1

2
=
[(

𝛬+𝐟𝑒𝑞
)

𝐿 +
(

𝛬−𝐟𝑒𝑞
)

𝑅

]

𝑗− 1
2

(96)

In order to attain second order accuracy, we do a piece-wise linear
econstruction of the conserved variable (in this case, the distribution
unction 𝑓 ) to obtain the equivalent left and right state variables for
he given cell-interface.

𝑗 (𝑥, 𝑡𝑛) =
[

𝐟𝑛𝑗 +
( 𝜕𝐟
𝜕𝑥

)

𝑗

(

𝑥 − 𝑥𝑗
)

]

(97)

The slope can be limited by a minmod limiter to obtain a non-
oscillatory behaviour.
( 𝜕𝐟
𝜕𝑥

)

𝑗
= 𝐦𝐢𝐧𝐦𝐨𝐝

[ 𝐟𝑗+1 − 𝐟𝑗
𝛥𝑥

,
𝐟𝑗 − 𝐟𝑗−1
𝛥𝑥

]

(98)

Using such piece-wise linear reconstructions at appropriate locations,
the left and right states 𝐟𝐿 and 𝐟𝑅 at the cell-interface 𝐼 = 𝑗 + 1

2 turn
out to be

𝐟𝑅,𝑗+ 1
2
= 𝐟𝑗+1 −

1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐟𝑗+2 − 𝐟𝑗+1), (𝐟𝑗+1 − 𝐟𝑗 )
]

(99)

𝐟𝐿,𝑗+ 1
2
= 𝐟𝑗 +

1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐟𝑗+1 − 𝐟𝑗 ), (𝐟𝑗 − 𝐟𝑗−1)
]

(100)

Therefore the interface flux in the finite volume update formula can
be written in flux difference split form as

𝐡𝑛
𝑗+ 1

2
= 1

2
[

𝐡𝑛𝑅 + 𝐡𝑛𝐿
]

𝑗+ 1
2
− 1

2
[𝛥𝐡+

𝑗+ 1
2

− 𝛥𝐡−
𝑗+ 1

2
] (101)

𝐡𝑛
𝑗− 1

2
= 1

2
[

𝐡𝑛𝑅 + 𝐡𝑛𝐿
]

𝑗− 1
2
− 1

2
[𝛥𝐡+

𝑗− 1
2

− 𝛥𝐡−
𝑗− 1

2
] (102)

where

𝛥𝐡± 1 = [𝛬± (

𝐟𝑅 − 𝐟𝐿
)

] 1 (103)
10

𝑗± 2
𝑗± 2
et us evaluate the moments of the above equations to recover the
orresponding macroscopic update formula. Eq. (46) gives

𝑛+1
𝑗 = 𝑈𝑛

𝑗 − 𝛥𝑡
𝛥𝑥

[

𝐺(𝑈 )𝑛
𝑗+ 1

2
− 𝐺(𝑈 )𝑛

𝑗− 1
2

]

(104)

where the interface fluxes are obtained by taking moments of (101).

𝐏𝐡𝑗+ 1
2

= 𝐺(𝑈 )𝑗+ 1
2

= 1
2
[

𝐺(𝑈 )𝑅 + 𝐺(𝑈 )𝐿
]

𝑗+ 1
2
− 1

2
[𝛥𝐺(𝑈 )+

𝑗+ 1
2

− 𝛥𝐺(𝑈 )−
𝑗+ 1

2
]

= 1
2
[

𝐺(𝑈 )𝑗 + 𝐺(𝑈 )𝑗+1
]

−1
4
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗+2 − 𝐺(𝑈 )𝑗+1), (𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 )
]

+ 1
4
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 ), (𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1)
]

−1
2
[𝛥𝐺(𝑈 )+

𝑗+ 1
2

− 𝛥𝐺(𝑈 )−
𝑗+ 1

2
]

(105)

Similarly

𝐏𝐡𝑗− 1
2

= 𝐺(𝑈 )𝑗− 1
2

= 1
2
[

𝐺(𝑈 )𝑅 + 𝐺(𝑈 )𝐿
]

𝑗− 1
2
− 1

2
[𝛥𝐺(𝑈 )+

𝑗− 1
2

− 𝛥𝐺(𝑈 )−
𝑗− 1

2
]

= 1
2
[

𝐺(𝑈 )𝑗−1 + 𝐺(𝑈 )𝑗
]

−1
4
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 ), (𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1)
]

+ 1
4
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1), (𝐺(𝑈 )𝑗−1 − 𝐺(𝑈 )𝑗−2)
]

−1
2
[𝛥𝐺(𝑈 )+

𝑗− 1
2

− 𝛥𝐺(𝑈 )−
𝑗− 1

2
]

(106)

Here, the split flux differences, namely 𝛥𝐺(𝑈 )±
𝑗± 1

2

, can be evaluated by
taking moments of (103).

𝐏𝛥𝐡+
𝑗+ 1

2

= 𝛥𝐺(𝑈 )+
𝑗+ 1

2
= 𝐏[𝛬+ (

𝐟𝑅 − 𝐟𝐿
)

]𝑗+ 1
2

= 𝐏𝛬+
[

𝐟𝑗+1 −
1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐟𝑗+2 − 𝐟𝑗+1), (𝐟𝑗+1 − 𝐟𝑗 )
]

]

−𝐏𝛬+
[

𝐟𝑗 +
1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐟𝑗+1 − 𝐟𝑗 ), (𝐟𝑗 − 𝐟𝑗−1)
]

]

(107)

pon expanding and rearranging, we get

𝐺(𝑈 )+
𝑗+ 1

2
= 1

2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+2 − 𝐺(𝑈 )𝑗+1
)

+ 1
2
|𝜆|

(

𝑈𝑗+2 − 𝑈𝑗+1
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+2 − 𝐟 𝑜𝑒𝑞,𝑗+1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−
(𝜆 − |𝜆𝑜|) (𝐟 𝑜𝑒𝑞, − 𝐟 𝑜𝑒𝑞,

)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎣
2 𝑗 𝑗−1

⎦
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𝛥

b

𝛥

Similarly the 𝛥𝐺(𝑈 )−
𝑗+ 1

2
term can be obtained as

𝐺(𝑈 )−
𝑗+ 1

2
= 1

2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+2 − 𝐺(𝑈 )𝑗+1
)

− 1
2
|𝜆|

(

𝑈𝑗+2 − 𝑈𝑗+1
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+2 − 𝐟 𝑜𝑒𝑞,𝑗+1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In the same way, the flux difference split fluxes at 𝑗 − 1
2 interface can

e obtained as

𝐺(𝑈 )+
𝑗− 1

2
= 1

2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗−1 − 𝐺(𝑈 )𝑗−2
)

+ 1
2
|𝜆|

(

𝑈𝑗−1 − 𝑈𝑗−2
)

−
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗−1 − 𝐟 𝑜𝑒𝑞,𝑗−2
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝛥𝐺(𝑈 )−
𝑗− 1

2
= 1

2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗+1 − 𝐟 𝑜𝑒𝑞,𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗 − 𝐟 𝑜𝑒𝑞,𝑗−1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗−1 − 𝐺(𝑈 )𝑗−2
)

− 1
2
|𝜆|

(

𝑈𝑗−1 − 𝑈𝑗−2
)

+
(𝜆 − |𝜆𝑜|)

2

(

𝐟 𝑜𝑒𝑞,𝑗−1 − 𝐟 𝑜𝑒𝑞,𝑗−2
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The above set of expressions can be put in a compact form by absorbing
the minmod terms in (105) & (106) into the respective flux difference
11

split terms. The resulting second order update formulation can be
written as

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 − 𝛥𝑡
𝛥𝑥

[

𝐺(𝑈 )𝑛
𝑗+ 1

2
− 𝐺(𝑈 )𝑛

𝑗− 1
2

]

(108)

where in the interface flux are computed using

𝐺(𝑈 )𝑗+ 1
2
= 1

2
[

𝐺(𝑈 )𝑗 + 𝐺(𝑈 )𝑗+1
]

− 1
2
[∆𝐆(𝐔)+

𝑗+ 1
2

−∆𝐆(𝐔)−
𝑗+ 1

2
] (109)

𝐺(𝑈 )𝑗− 1
2
= 1

2
[

𝐺(𝑈 )𝑗−1 + 𝐺(𝑈 )𝑗
]

− 1
2
[∆𝐆(𝐔)+

𝑗− 1
2

−∆𝐆(𝐔)−
𝑗− 1

2
] (110)

Using the definition of 𝑓 𝑜𝑒𝑞 , the split flux differences in the above
equation get redefined as

∆𝐆(𝐔)+
𝑗+ 1

2
= 1

2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

− 1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

+ 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗+2 − 𝐺(𝑈 )𝑗+1), (𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 )
]

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+2 − 𝐺(𝑈 )𝑗+1
)

+ 1
2
|𝜆|

(

𝑈𝑗+2 − 𝑈𝑗+1
)

−1
2
𝜆𝐴

(

𝑈𝑗+2 − 𝑈𝑗+1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(111)

∆𝐆(𝐔)−
𝑗+ 1

2
= 1

2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

+ 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 ), (𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1)
]

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+2 − 𝐺(𝑈 )𝑗+1
)

− 1
2
|𝜆|

(

𝑈𝑗+2 − 𝑈𝑗+1
)

+1
2
𝜆𝐴

(

𝑈𝑗+2 − 𝑈𝑗+1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(112)
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𝐺

w
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t
a

𝜓

L
𝜆

∆𝐆(𝐔)+
𝑗− 1

2
= 1

2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

+ 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗 ), (𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1)
]

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

+ 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

−1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

−1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗−1 − 𝐺(𝑈 )𝑗−2
)

+ 1
2
|𝜆|

(

𝑈𝑗−1 − 𝑈𝑗−2
)

−1
2
𝜆𝐴

(

𝑈𝑗−1 − 𝑈𝑗−2
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(113)

𝐆(𝐔)−
𝑗− 1

2
= 1

2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

+ 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

[

(𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1), (𝐺(𝑈 )𝑗−1 − 𝐺(𝑈 )𝑗−2)
]

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
)

− 1
2
|𝜆|

(

𝑈𝑗+1 − 𝑈𝑗
)

+1
2
𝜆𝐴

(

𝑈𝑗+1 − 𝑈𝑗
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

+ 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2
𝐦𝐢𝐧𝐦𝐨𝐝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

1
2
(

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
)

− 1
2
|𝜆|

(

𝑈𝑗 − 𝑈𝑗−1
)

+1
2
𝜆𝐴

(

𝑈𝑗 − 𝑈𝑗−1
)

}

,
{

1
2
(

𝐺(𝑈 )𝑗−1 − 𝐺(𝑈 )𝑗−2
)

− 1
2
|𝜆|

(

𝑈𝑗−1 − 𝑈𝑗−2
)

+1
2
𝜆𝐴

(

𝑈𝑗−1 − 𝑈𝑗−2
)

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(114)

.9. KFDS scheme for viscous flows

Consider 1-D Navier–Stokes equations given by

𝜕𝑈
𝜕𝑡

+
𝜕𝐺(𝑈 )
𝜕𝑥

=
𝜕𝐺𝑣(𝑈 )
𝜕𝑥

(115)

where 𝑈 is the conserved variable vector, 𝐺(𝑈 ) its nonlinear inviscid
flux vector and 𝐺𝑣(𝑈 ) is the viscous flux vector, given by

𝑈 =
⎡

⎢

⎢

⎣

𝜌
𝜌𝑢
𝜌𝐸

⎤

⎥

⎥

⎦

, 𝐺(𝑈 ) =
⎡

⎢

⎢

⎣

𝜌𝑢
𝑝 + 𝜌𝑢2

𝑝𝑢 + 𝜌𝑢𝐸

⎤

⎥

⎥

⎦

and 𝐺𝑣(𝑈 ) =
⎡

⎢

⎢

⎣

0
𝜏

𝑢𝜏 − 𝑞

⎤

⎥

⎥

⎦

(116)

Here, 𝜏 is the one dimensional component of the stress tensor and 𝑞 is
the corresponding component of the heat flux vector. 𝜇 is the coefficient
f fluid viscosity and 𝑘 is the coefficient of thermal conductivity. The
inetic theory framework for this system of equations as moments,
ased on the Boltzmann equation with the BGK model, can in a similar
ay as in (16), be given by

𝜕𝑓
𝜕𝑡

+ 𝜕ℎ
𝜕𝑥

= −1
𝜖
[

𝑓 − 𝑓𝐶𝐸
]

(117)

and the 1-D Navier–Stokes equations can be recovered by taking mo-
ments as
⟨

𝛹
(

𝜕𝑓
+ 𝜕ℎ = 0, 𝑓 = 𝑓𝐶𝐸

)⟩

(118)
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𝜕𝑡 𝜕𝑥 𝜆
ere, the distribution function instantaneously relaxes to 𝑓𝐶𝐸 , the
hapman–Enskog distribution function, in the collision step. The deriva-
ion of this non-equilibrium distribution and its moments to recover the
iscous conservation equations are well documented in [7,37,38]. The
hapman–Enskog distribution function for 1D is given by

𝐶𝐸 = 𝑓 𝑒𝑞(1 + 𝑃𝐶𝐸 ) (119)

where 𝑓 𝑒𝑞 = 𝜌

√

𝛽
√

𝜋
𝑒−𝛽(𝑣−𝑢)

2
𝑒
− 𝐼
𝐼0 (120)

The perturbation term 𝑃𝐶𝐸 is given by

𝑃𝐶𝐸 =
𝜏𝐶𝐸
𝑝
𝑍𝜏 −

𝑞𝐶𝐸
𝑝
√

2𝑅𝑇
𝑍𝑞 (121)

where

𝜏𝐶𝐸 = (3 − 𝛾)𝜖𝑝 𝜕𝑢
𝜕𝑥

𝑎𝑛𝑑 𝑞𝐶𝐸 =
𝛾

𝛾 − 1
𝜖𝑝 𝜕
𝜕𝑥

(

𝑝
𝜌

)

(122)

The coefficients 𝑍𝜏 and 𝑍𝑞 are given by

𝑍𝜏 (𝑣, 𝐼) =
3𝛾 − 5
2(3 − 𝛾)

+
(𝑣 − 𝑢)2

2𝑅𝑇
−

4(𝛾 − 1)2

(3 − 𝛾)2
𝐼

2𝑅𝑇
(123)

𝑍𝑞(𝑣, 𝐼) =
(𝛾 − 1)
𝛾𝑅𝑇

[

(𝑣 − 𝑢)3
√

2𝑅𝑇
− 5

2
(𝑣 − 𝑢)

√

2𝑅𝑇 +
4(𝛾 − 1)
3 − 𝛾

𝐼(𝑣 − 𝑢)
√

2𝑅𝑇

]

(124)

Thus perturbation term is a function of (𝑣−𝑢) and 𝐼 with the analogous
fluid viscosity and thermal conductivity coefficients. The moments to
obtain the macroscopic variables [7] are defined by

𝑈𝑖 = ∫

∞

0 ∫

∞

−∞
𝜓𝑖𝑓𝐶𝐸 𝑑𝑣𝑑𝐼 and

𝐺𝑇 ,𝑖(𝑈 ) = 𝐺(𝑈 )𝑖 − 𝐺𝑣,𝑖(𝑈 ) = ∫

∞

0 ∫

∞

−∞
𝜓𝑖𝑣𝑓𝐶𝐸 𝑑𝑣𝑑𝐼

(125)

with

𝜓 =

⎡

⎢

⎢

⎢

⎣

1
𝑣

𝐼 + 1
2
𝑣2

⎤

⎥

⎥

⎥

⎦

and 𝑖 = 1, 2, 3 (for 1 − D case) (126)

ntroducing a truncated distribution as

�̃�𝐸 = ∫

∞

0
𝑓𝐶𝐸 𝑑𝐼 (127)

e can redefine the moment relations as

𝑖 = ∫

∞

−∞
𝜓𝑖𝑓𝐶𝐸 𝑑𝑣 and 𝐺𝑇 ,𝑖(𝑈 ) = ∫

∞

−∞
𝜓𝑖𝑣𝑓𝐶𝐸 𝑑𝑣 (128)

.9.1. Prandtl number fix
The KFDS schemes are based on BGK model for the collision terms.

he limitation of this model is the Prandtl number being always unity.
n order to overcome this limitation, a Prandtl number fix is employed
o the heat flux term at the macroscopic level as suggested in [48]. The
randtl number fix for the viscous flux term in 1D is given by

′
𝑣(𝑈 ) = 𝐺𝑣(𝑈 ) +

⎡

⎢

⎢

⎣

0
0

(1 − 𝑃𝑟)𝑞

⎤

⎥

⎥

⎦

(129)

here Pr refers to the actual Prandtl number.

.9.2. Discrete velocity model for viscous flow
To arrive at a discrete velocity model for the above framework,

he continuous Chapman–Enskog distribution 𝑓𝐶𝐸 is approximated by
combination of Dirac delta functions as

𝑖𝑓𝐶𝐸 =
{

𝑓𝐶𝐸+𝛿(𝑣 − 𝜆
+) + 𝑓𝐶𝐸𝑜𝛿(𝑣 − 𝜆𝑜) + 𝑓𝐶𝐸−𝛿(𝑣 − 𝜆

−)
}

𝑖 (130)

et us further assume, for simplicity, that the discrete velocities, 𝜆+ and
− for each 𝑖 are given by
+ −

𝑖 = 𝜆𝑖 and 𝜆𝑖 = −𝜆𝑖 (131)
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Let us assume that 𝜆𝑜 and 𝑓 𝑒𝑞𝐶𝐸𝑜 for each 𝑖 are known (which will be
ixed later, as done in the inviscid case). Then, using the two moment
elations in (128) we obtain the following.

𝑖 = ∫

∞

−∞
𝜓𝑖𝑓𝐶𝐸𝑑𝑣

= ∫

∞

−∞

{

𝑓𝐶𝐸+𝛿(𝑣 − 𝜆
+) + 𝑓𝐶𝐸𝑜𝛿(𝑣 − 𝜆𝑜) + 𝑓𝐶𝐸−𝛿(𝑣 − 𝜆

−)
}

𝑖 𝑑𝑣

=
{

𝑓𝐶𝐸+ + 𝑓𝐶𝐸𝑜 + 𝑓𝐶𝐸−
}

𝑖

r

𝑓𝐶𝐸+ + 𝑓𝐶𝐸−
}

𝑖 = 𝑈𝑖 − 𝑓𝐶𝐸𝑜𝑖 (132)

𝑇 ,𝑖(𝑈 ) = ∫

∞

−∞
𝑣𝜓𝑖𝑓𝐶𝐸𝑑𝑣

= ∫

∞

−∞
𝑣
{

𝑓𝐶𝐸+𝛿(𝑣 − 𝜆
+) + 𝑓𝐶𝐸𝑜𝛿(𝑣 − 𝜆𝑜) + 𝑓𝐶𝐸−𝛿(𝑣 − 𝜆

−)
}

𝑖 𝑑𝑣

=

⎧

⎪

⎨

⎪

⎩

𝑓𝐶𝐸+ ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆+)𝑑𝑣 + 𝑓𝐶𝐸𝑜 ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆𝑜)𝑑𝑣

+𝑓𝐶𝐸− ∫

∞

−∞
𝜙(𝑣)𝛿(𝑣 − 𝜆−)𝑑𝑣

⎫

⎪

⎬

⎪

⎭

𝑖

, (𝜙(𝑣) = 𝑣)

=
{

𝑓𝐶𝐸+𝜆+ + 𝑓𝐶𝐸𝑜𝜆𝑜 + 𝑓𝐶𝐸−𝜆−
}

𝑖
r

𝑓𝐶𝐸+𝜆
+ + 𝑓𝐶𝐸−𝜆

−}
𝑖 = 𝐺𝑇 ,𝑖(𝑈 ) −

{

𝑓𝐶𝐸𝑜𝜆𝑜
}

𝑖 (133)

olving the above two equations and simplifying, we get

𝐶𝐸+𝑖 =
1
2
𝑈𝑖 +

1
2𝜆𝑖

𝐺𝑇 ,𝑖(𝑈 ) −
{

𝜆 + 𝜆𝑜
2𝜆

𝑓𝐶𝐸𝑜

}

𝑖
and

𝐶𝐸−𝑖 =
1
2
𝑈𝑖 −

1
2𝜆𝑖

𝐺𝑇 ,𝑖(𝑈 ) −
{

𝜆 − 𝜆𝑜
2𝜆

𝑓𝐶𝐸𝑜

}

𝑖

(134)

The Discrete Velocity Boltzmann Equation (DVBE) for three velocity
model thus derived can be written as
{ 𝜕𝐟
𝜕𝑡

+ 𝜕𝐡
𝜕𝑥

= −1
𝜖
[

𝐟 − 𝐟𝐂𝐄
]

}

𝑖
with 𝑖 = 1, 2, 3 (135)

where

𝐟𝐂𝐄𝐢 =
⎡

⎢

⎢

⎣

𝑓𝐶𝐸+
𝑓𝐶𝐸𝑜
𝑓𝐶𝐸−

⎤

⎥

⎥

⎦𝐢

, Λ𝐢 =
⎡

⎢

⎢

⎣

𝜆+ 0 0
0 𝜆𝑜 0
0 0 𝜆−

⎤

⎥

⎥

⎦𝐢

and (136)

𝐟𝐂𝐄𝐢 =

⎡

⎢

⎢

⎢

⎣

𝑓𝐶𝐸+

𝑓𝐶𝐸𝑜
𝑓 𝑒𝑞𝐶𝐸−

⎤

⎥

⎥

⎥

⎦𝐢

=

⎡

⎢

⎢

⎢

⎢

⎣

1
2
𝑈 + 1

2𝜆
(

𝐺(𝑈 ) − 𝐺𝑣(𝑈 )
)

−
𝜆 + 𝜆𝑜
2𝜆

𝑓𝐶𝐸𝑜

𝑓𝐶𝐸𝑜
1
2
𝑈 − 1

2𝜆
(

𝐺(𝑈 ) − 𝐺𝑣(𝑈 )
)

−
𝜆 − 𝜆𝑜
2𝜆

𝑓𝐶𝐸𝑜

⎤

⎥

⎥

⎥

⎥

⎦𝐢

(137)

It is interesting to note that the discrete velocity model for the inviscid
flow is a subset of the model for viscous flow, can be obtained in the
limit of viscous fluxes being set to zero and therefore the model is
consistent.

4.9.3. KFDS scheme for viscous flows
We follow the same procedures as in Section 4.3 to arrive at the

finite volume formulation for viscous flows along with the Prandtl
number fix. We get the update formula as
(

𝑈 𝑛+1
𝑗 = 𝑈 𝑛

𝑗 − 𝛥𝑡
𝛥𝑥

[

𝐺(𝑈 )𝑛
𝑗+ 1

2

− 𝐺(𝑈 )𝑛
𝑗− 1

2

]

+ 𝛥𝑡
𝛥𝑥

[

𝐺𝑣(𝑈 )𝑛
𝑗+ 1

2

− 𝐺𝑣(𝑈 )𝑛
𝑗− 1

2

])

𝑖

(138)

here 𝑖 = 1, 2, 3 for 1D system of equations. The interface fluxes are
iven by
(

𝐺(𝑈 )𝑗+ 1
2
= 1

2
[

𝐺(𝑈 )𝑗+1 + 𝐺(𝑈 )𝑗
]

− 1
2

[

𝛥𝐺(𝑈 )+
𝑗+ 1

2

− 𝛥𝐺(𝑈 )−
𝑗+ 1

2

])

𝑖

(139)
(

𝐺(𝑈 )𝑗− 1
2
= 1

2
[

𝐺(𝑈 )𝑗 + 𝐺(𝑈 )𝑗−1
]

− 1
2

[

𝛥𝐺(𝑈 )+
𝑗− 1

2

− 𝛥𝐺(𝑈 )−
𝑗− 1

2

])

𝑖

13

(140)
and
(

𝛥𝐺(𝑈 )±
𝑗+ 1

2

= 1
2
[

𝐺(𝑈 )𝑗+1 − 𝐺(𝑈 )𝑗
]

± 1
2
|𝜆|

[

𝑈𝑗+1 − 𝑈𝑗
]

∓ 1
2
𝜆𝐴

[

𝑈𝑗+1 − 𝑈𝑗
]

)

𝑖

(141)
(

𝛥𝐺(𝑈 )±
𝑗− 1

2

= 1
2
[

𝐺(𝑈 )𝑗 − 𝐺(𝑈 )𝑗−1
]

± 1
2
|𝜆|

[

𝑈𝑗 − 𝑈𝑗−1
]

∓ 1
2
𝜆𝐴

[

𝑈𝑗 − 𝑈𝑗−1
]

)

𝑖

(142)

The viscous interface fluxes are computed as
(

𝐺𝑣(𝑈 )𝑗+ 1
2
= 1

2
(

𝐺𝑣(𝑈 )𝑗 + 𝐺𝑣(𝑈 )𝑗+1
)

)

𝑖
(

𝐺𝑣(𝑈 )𝑗− 1
2
= 1

2
(

𝐺𝑣(𝑈 )𝑗−1 + 𝐺𝑣(𝑈 )𝑗
)

)

𝑖

(143)

The values of 𝜆 and 𝜆𝐴 for each 𝑖 in the above update formulation can be
ixed using the methodologies described earlier for the inviscid case.

. KFDS scheme in 2-D

The 2-D KFDS scheme is derived from a 2-D version of discrete velocity
oltzmann equation, which is based on the isotropic relaxation system

ntroduced by Raghurama Rao and utilized in [24–26,49]. Consider a two
imensional hyperbolic system of conservation laws as given by

𝜕𝑈
𝜕𝑡

+
𝜕𝐺1(𝑈 )
𝜕𝑥

+
𝜕𝐺2(𝑈 )
𝜕𝑦

= 0 (144)

A five velocity DVBE for the above system can be derived as

𝜕𝐟
𝜕𝑡

+
𝜕𝐡𝟏
𝜕𝑥

+
𝜕𝐡𝟐
𝜕𝑦

= −1
𝜖
[

𝐟 − 𝐟 𝑒𝑞
]

(145)

here 𝐡𝟏 = Λ𝟏𝐟 ,𝐡𝟐 = Λ𝟐𝐟 and the discrete velocity matrices are given by

1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝜆 0 0 0 0
0 𝜆 0 0 0
0 0 𝜆𝑜 0 0
0 0 0 𝜆 0
0 0 0 0 −𝜆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝛬2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝜆 0 0 0 0
0 −𝜆 0 0 0
0 0 𝜆𝑜 0 0
0 0 0 𝜆 0
0 0 0 0 𝜆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(146)

and the equilibria are given by

𝐟 𝑒𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞1
𝑓 𝑒𝑞2
𝑓 𝑒𝑞3
𝑓 𝑒𝑞4
𝑓 𝑒𝑞5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
4
𝑈 − 1

4𝜆
𝐺1 −

1
4𝜆
𝐺2 −

𝜆 − 2𝜆𝑜
4𝜆

𝑓 𝑒𝑞𝑜
1
4
𝑈 + 1

4𝜆
𝐺1 −

1
4𝜆
𝐺2 −

1
4
𝑓 𝑒𝑞𝑜

𝑓 𝑒𝑞𝑜
1
4
𝑈 + 1

4𝜆
𝐺1 +

1
4𝜆
𝐺2 −

𝜆 + 2𝜆𝑜
4𝜆

𝑓 𝑒𝑞𝑜
1
4
𝑈 − 1

4𝜆
𝐺1 +

1
4
𝜆𝐺2 −

1
4
𝑓 𝑒𝑞𝑜

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(147)

Let us denote 𝐡𝑥 = Λ1𝐟 ,𝐡𝑦 = Λ2𝐟 as the fluxes along the 𝑥− and 𝑦−
directions. For a quadrilateral finite volume, the cell-interface fluxes are
constructed to be normal to the interfaces and can be obtained as

𝐡𝐿 =
(

𝐡𝑥 cos 𝜃 + 𝐡𝑦 sin 𝜃
)

𝐿 (148)

𝐡𝑅 =
(

𝐡𝑥 cos 𝜃 + 𝐡𝑦 sin 𝜃
)

𝑅 (149)

where the suffix L and R represent the left and the right states of the cell-
interface. A finite volume update formula for the 2D Euler system, for a
quadrilateral mesh, can be derived as

𝐟𝑛+1𝑗,𝑘 = 𝐟𝑛𝑗,𝑘 −
𝛥𝑡
𝐴𝑗,𝑘

4
∑

𝐼𝑐=1
𝐡𝑛𝑛𝐼𝑐𝛥𝑠𝐼𝑐 (150)

where 𝐴𝑗,𝑘 is the area of the cell centred at (𝑗, 𝑘) and 𝛥𝑠𝐼𝑐 is the length of
the cell interface 𝐼𝑐 . Applying the Kinetic Flux Difference Splitting across a
inite volume cell-interface, we get

𝑛,𝐼𝑐 =
1
2
[

ℎ𝑅 + ℎ𝐿
]

− 1
2

[

𝛥ℎ+𝐼,𝑛 − 𝛥ℎ
−
𝐼,𝑛

]

(151)

where

𝛥ℎ± =
(

𝛬 cos 𝜃
)± 𝑒𝑞 ( )± 𝑒𝑞
𝐼,𝑛 1 𝛥𝐟𝐼,𝑛 + 𝛬2 sin 𝜃 𝛥𝐟𝐼𝑛 (152)
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Upon taking moments of the above equations and extending the same
techniques that we had applied in one dimensional system in determining
the diffusion coefficients and 𝑓 𝑒𝑞𝑜 , we recover the macroscopic update
ormula as

𝑛+1
𝑗,𝑘 = 𝐔𝑛

𝑗,𝑘 −
𝛥𝑡
𝐴𝑗,𝑘

4
∑

𝐼𝑐=1
𝐆𝑛
𝑛,𝐼𝑐
𝛥𝑠𝐼𝑐 (153)

where

𝐆𝑛,𝐼𝑐 =
1
2
[

𝐺(𝑈 )𝑛,𝑅 + 𝐺(𝑈 )𝑛,𝐿
]

− 1
2

[

𝛥𝐺(𝑈 )+𝐼𝑐 − 𝛥𝐺(𝑈 )−𝐼𝑐
]

(154)

𝛥𝐺(𝑈 )±𝐼𝑐 =
1
2
[

𝐺(𝑈 )𝑛,𝑅 − 𝐺(𝑈 )𝑛,𝐿
]

]

± 1
2
|𝜆|

[

𝑈𝑛,𝑅 − 𝑈𝑛,𝐿
]

∓ 1
2
𝜆𝐴

[

𝑈𝑛𝑅 − 𝑈𝑛𝐿
]

. (155)

Here again, the primary diffusion coefficient |𝜆| is fixed based on the
rinciple of flux equivalence across a steady discontinuity. It is interesting
o note that unlike in the one dimensional cases, there is inherent multi-
imensional diffusion in the 2D version of the numerical scheme owing to
he standard finite volume formulation which lacks truly multidimensional
odelling. Therefore the strategy for adding additional definition does not

equire an entropy scale to allow for additional diffusion. However, the
umerical errors in calculating the change in thermodynamic entropy still
eed to be considered. Therefore the strategy for fixing additional diffusion
s defined as follows.

𝐴 =

{

𝜆𝐷𝐷 for 𝐷2 > 0 & 𝛥𝑆 ≤ 𝜖
0 Otherwise

(156)

here 𝜖 is a small number and is taken as 1.0 × 10−10. As in 1-D, two
ariations are introduced for evaluating 𝜆𝐷𝐷 in the 2-D case, for the finite
olume method.

.1. Maximum eigenvalue based 𝜆𝐷𝐷

The definition of 𝜆𝐷𝐷 in 2D at the cell-interface is

𝐷𝐷 = 𝜆𝑚𝑎𝑥 − 𝜆 (157)

here

max = max
{

max(|𝑢𝑛 + 𝑎|, |𝑢𝑛|, |𝑢𝑛 − 𝑎|)𝐿,max(|𝑢𝑛 + 𝑎|, |𝑢𝑛|, |𝑢𝑛 − 𝑎|)𝑅
}

(158)

with
(

𝑢𝑛 = 𝑢1 cos 𝜃 + 𝑢2 sin 𝜃
)

𝐿,𝑅 (159)

This makes the coefficient of the total numerical diffusion as 𝜆𝑚𝑎𝑥 at the
expansions.

5.2. Fluid velocity based 𝜆𝐷𝐷

𝜆𝐷𝐷 = 𝜆𝑅𝐼 − 𝜆 (160)

where 𝜆𝑅𝐼 =
|𝑢𝑛,𝐿| + |𝑢𝑛,𝑅|

2
(161)

6. Results and discussion

The Kinetic Flux Difference Splitting (KFDS) method is tested systemati-
cally on various 1-D and 2-D benchmark test cases to evaluate and establish
its capabilities. Presented in this section are the one dimensional test cases
[46] which are meant to evaluate the robustness of the scheme, involving
nonlinear waves and their interactions. Following them, the numerical
scheme is tested for typical benchmark cases in two dimensional Eulerian
flow fields, which present various shock waves, contact discontinuities,
expansion waves and their interactions. Finally, the scheme is tested for
viscous fluid flows involving boundary layers and their interactions with
nonlinear waves. Before presenting the results, the experimental order
of convergence (EOC) studies are presented in the following subsection,
demonstrating the order of accuracy of KFDS scheme.
14
Table 2
EOC using L1 and L2 error norms for KFDS-1O with a smooth periodic test case.
N Grid spacing L1 Error EOC L2 Error EOC

10 0.10000 0.011613777927 0.009267137803
20 0.05000 0.006088680399 0.93164 0.004795147573 0.95055
40 0.02500 0.003097630000 0.97496 0.002436038922 0.97704
80 0.01250 0.001566789511 0.98335 0.001234024541 0.98117
160 0.00625 0.000838144804 0.90254 0.000692443990 0.83360

Table 3
EOC using L1 and L2 error norms for KFDS-2O with a smooth periodic test case.
N Grid spacing L1 Error EOC L2 Error EOC

10 0.10000 0.004957979218 0.004141851951
20 0.05000 0.001549110966 1.67831 0.001495025225 1.47011
40 0.02500 0.000482411631 1.68310 0.000513302408 1.54229
80 0.01250 0.000136000286 1.82666 0.000166466154 1.62458
160 0.00625 0.000035931520 1.92029 0.000042902870 1.95608

6.1. Experimental Order of Convergence (EOC)

Here, a typical test is presented for evaluating the Experimental Order
of Convergence (EOC) for the KFDS scheme. Consider a one dimensional
computational domain of size [0,2]. The flow variables in the domain are
initialized with a sinusoidal variation in the density while keeping the
pressure and velocity constant. The exact solution for such initial conditions
is given below.

𝜌(𝑥, 𝑡) = 1.0 + 0.2 sin(𝜋(𝑥 − 𝑢𝑡)) (162)
𝑢(𝑥, 𝑡) = 0.1, 𝑝(𝑥, 𝑡) = 0.5 (163)

The numerical simulations are carried out by changing the number of
computational cells methodically as 10, 20, 40, …, 160 cells. The solutions
are computed with each grid size for the final time of 0.5 s. The exact
solution is used for both initializing the computational domain and for en-
forcing the periodic boundary condition. The L1 and L2 errors represented
by ‖

‖

𝐾‖‖𝐿1 𝑎𝑛𝑑 ‖
‖

𝐾‖‖𝐿2 are calculated at 𝑡 = 0.5 s using Eqs. (164) and (165)
as given below.

‖

‖

𝐾 (𝑡)‖
‖𝐿1 = 𝛥𝑥

𝐾
∑

𝑗=1

|

|

|

𝜌𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑗 − 𝜌𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑗
|

|

|

(164)

‖

‖

𝐾 (𝑡)‖
‖𝐿2 =

√

√

√

√𝛥𝑥
𝐾
∑

𝑗=1

(

𝜌𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑗 − 𝜌𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑗

)2
(165)

here 𝐾 is the number of cells. As we expect the error to behave as
‖ = 𝐶𝛥𝑥𝑝 + 

(

𝛥𝑥𝑝+1
)

for 𝑝𝑡ℎ order accuracy, we can write

𝜌𝛥𝑥 − 𝜌𝑒𝑥𝑎𝑐𝑡
𝜌 𝛥𝑥

2
− 𝜌𝑒𝑥𝑎𝑐𝑡

=
𝐶𝛥𝑥𝑝 + 

(

𝛥𝑥𝑝+1
)

𝐶
(

𝛥𝑥
2

)𝑝
+ 

(

𝛥𝑥
2

)𝑝+1
= 2𝑝 +  (𝛥𝑥) (166)

Thus,

log2

(

𝜌𝛥𝑥 − 𝜌𝑒𝑥𝑎𝑐𝑡
𝜌 𝛥𝑥

2
− 𝜌𝑒𝑥𝑎𝑐𝑡

)

= 𝑝 +  (𝛥𝑥) (167)

s 𝐾 ∝ 1
𝛥𝑥

, the Experimental Order of Convergence (EOC) is computed using
(168) as follows.

EOC = log2
⎛

⎜

⎜

⎝

‖

‖

‖

𝐾∕2
‖

‖

‖

‖

‖

𝐾‖‖

⎞

⎟

⎟

⎠

(168)

The L1 and L2 norms obtained for each of the test cases of both first
order accurate and second order accurate versions of KFDS scheme and are
tabulated in Tables 2 and 3 respectively. The log–log plots comparing the
L1 and L2 norm errors with slope 2 are shown in Figs. 3 and 4 respectively.

6.2. Test cases for 1-D Euler equations

The initial conditions for the one dimensional Euler test cases are
summarized in Table 4.
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Table 4
1D Euler equations: Test case matrix.

S No. Test case 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅
1 Steady shock 1.0 1.0 0.17875 2.6665 0.375 0.80357
2 Steady contact discontinuity 1.4 0 0.4 1.0 0 0.4
3 Shock tube 1.0 0.75 1.0 0.125 0 0.1
4 Overheating 1.0 −2.0 0.4 1.0 2.0 0.4
5 Toro Case 3 1.0 0 1000 1.0 0 0.01
6 Shock collision 5.99924 19.5975 460.894 5.99242 −6.19633 46.0950
7 Toro Case 5 1.0 −19.5975 1000 1.0 −19.59745 0.01
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Fig. 3. L1 norm errors for KFDS-1O and KFDS-2O schemes.

Fig. 4. L2 norm errors for KFDS-1O and KFDS-2O schemes.

The first two test cases involve the steady shock and steady contact
iscontinuity respectively. The test results for the two test cases are shown
n Figs. 5 and 6. The KFDS scheme has the ability to capture steady shock
aves and steady contact discontinuities exactly, without numerical diffu-

ion. The introduction of additional numerical diffusion for smooth regions
s regulated by the 𝐷2-distance and entropy difference. Thus, the exact
iscontinuity capturing ability of the scheme is undisturbed, as observed
n the results.

The third test case is a classic shock tube test case wherein the gases
re maintained at different thermodynamic states on either side of the
iaphragm. Upon rupturing the diaphragm, the abrupt difference in the
ressure, density and temperature results in the formation and evolution
f an expansion wave, a contact discontinuity and a shock wave in the
low field. While the flow is unsteady in nature, this test case assesses the
15

g

accuracy of the scheme as well as its ability to capture each of the nonlinear
and linear waves in the flow field. Ideally, most low diffusive schemes
would require an entropy fix to overcome the problems of unphysical
expansion shocks that arise in the expansion regions. The use of 𝐷2-distance
based additional diffusion has ensured an alternate way of overcoming this
problem as is evident in the results [Fig. 7].

The fourth test case is the well-known overheating problem where the
initial strong velocity gradient results in the evolution of two expansion
waves moving in the opposite directions, separated by a contact disconti-
nuity. This case challenges the ability of the numerical scheme to provide
physically relevant results. Both the versions of KFDS scheme could generate
stable results [Fig. 8] without blowing up, but with a significant deviation
in the internal energy near the contact discontinuity. Test cases 5, 6 and
7 (Figs. 9, 10 and 11) are meant to test the robustness of the scheme
and its ability to handle very strong gradients in pressure. Again it can
be seen that both versions of KFDS scheme are able to provide solutions
without any unphysical behaviour. However, mild oscillations are observed
in KFDS-B solutions in certain test cases and appear to die out with lower
CFL numbers.

6.3. Test case for 2-D Euler equations

6.3.1. Slip flow
The first of the test cases is a check on the ability to capture grid aligned

contact discontinuities [50]. The test case involves a uniform flow of two
identical fluids with different speeds of u = 2 and 3, which slip over each
other. The computational domain [0,1][0,1] is discretized into a 20 × 20
rid and the domain is initialized with uniform pressure and density. The
pper half of the left boundary is maintained at u = 3 while the lower half
f the left boundary is maintained at u = 2. The computational results for
ach version of the KFDS scheme are shown in Fig. 12. The basic ability of
he KFDS scheme to capture grid aligned discontinuities exactly is retained.

.3.2. Oblique shock reflection
The computational domain for this test case [51] is rectangular: [0, 3] ×

0, 1]. An oblique shock wave is introduced from the top-left corner by
eans of inflow boundary conditions at the left boundary and the post-

hock boundary conditions on the top side of the domain – 𝐼𝑛𝑓𝑙𝑜𝑤 ∶
𝜌, 𝑢, 𝑣, 𝑝)0,𝑦,𝑡 = (1.0, 2.9, 0, 1∕1.4) and 𝑃𝑜𝑠𝑡 − 𝑠ℎ𝑜𝑐𝑘 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∶ (𝜌, 𝑢, 𝑣, 𝑝)𝑥,1,𝑡 =
1.69997, 2.61934,−0.50633, 1.52819) [19]. The bottom side is maintained as

a solid wall where flow tangency boundary condition is applicable and at
the right boundary the supersonic outflow boundary condition is prescribed.
The computational grid used for the numerical simulation is 240 × 80. The
test results are shown for both versions of KFDS scheme with first order
and second order accuracy in Fig. 13. The shock positions and the point of
reflection match well with the results presented in [40]. There is a marked
improvement in the shock crispness between the first order and second
order accurate results.

6.3.3. Supersonic flow over a compression ramp
The computational domain for this test case [52] involves a 15◦ ramp at

he bottom wall of the computational domain of size [0, 3] × [0, 1]. A steady
nflow of Mach 2 over the ramp results in the generation of an oblique shock
ave at the compression corner. This oblique shock hits the top wall and
ets further reflected down the flow. This reflected shock wave interacts
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Fig. 5. Test case 1: (a) KFDS-A and (b) KFDS-B.
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Fig. 6. Test case 2: (a) KFDS-A and (b) KFDS-B.



Computers and Fluids 250 (2023) 105702

18

K.S. Shrinath et al.

Fig. 7. Test case 3: (a) KFDS-A and (b) KFDS-B.
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Fig. 8. Test case 4: (a) KFDS-A and (b) KFDS-B.
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Fig. 9. Test case 5: (a) KFDS-A and (b) KFDS-B.
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Fig. 10. Test case 6:(a) KFDS-A and (b) KFDS-B.
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Fig. 11. Test case 7: (a) KFDS-A and (b) KFDS-B.
ith the expansion wave generated from the upper corner of the ramp.
his test case involves evolution of both shock and expansion waves and
heir interactions. The test results are shown for both the versions of KFDS
22
with first order and second order accuracy in Fig. 14. No expansion shocks
are seen, thus confirming the efficacy of the strategy of adding additional
numerical diffusion based on 𝐷2-distance.
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h

Fig. 12. Test case: Slip Flow (20 × 20) – Mach contours (2.0: 0.025: 3.0) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 13. Test case: Oblique shock reflection (240 × 80) – pressure contours (0.7: 0.1: 2.9) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 14. Test case: Supersonic flow over a ramp (240 × 80) – pressure contours 1.1 : 0.05 :3.8 – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
w

6.3.4. Supersonic flow over a bump
This test case [53] involves a channel having a 4% thick circular arc

bump on the bottom side of the test domain of [−1,2] × [0,1]. The bump
as a chord length of 1 unit and is located at 𝑥 = 0.5. The left side is marked

as a supersonic inlet with free stream Mach number 1.4. The bottom side is
defined as free slip wall. The top side of the domain is defined as an inviscid
wall, while the right side of the domain is marked as supersonic outlet. The
results for each version of the scheme is shown in Fig. 15. Both versions of
KFDS scheme capture the shock initiation, reflections and interactions, and
the positions of reflections and interactions are captured with reasonable
accuracy .

6.3.5. Hypersonic flow over a half cylinder
This test case involves hypersonic inflows at Mach 6 and Mach 20
23

interacting with the leading half side of the cylinder. Ideally the flow would i
result in the evolution of a bow shock wave which is located upstream of the
cylinder and is detached from it. The profile of the shock is dependent on
the upstream Mach number. Incidentally some numerical schemes resolve
these detached bow shock waves with anomalies known as carbuncle shock
waves, upstream of the bow shock on the stagnation line, and are reported
as shock instabilities [54]. The density contours for both the versions of
KFDS scheme for Mach 6 are shown in Fig. 16. Similarly, The density
contours for both the versions of KFDS scheme for Mach 20 are shown in
Fig. 17. As can be seen, both the schemes do not exhibit any form of shock
instabilities and resolve the bow shocks with reasonable accuracy.

6.3.6. Planar shock reflection over a wedge
This test case [54] comprises of a computational domain [0, 2] × [0, 1.5]

ith a 30◦ wedge positioned from 𝑥 = 0.5. The test case involves the
nteraction of a normal shock wave moving at Mach 5.5 with the wedge.
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t

Fig. 15. Test case: Supersonic flow over a bump (240 × 80) – pressure contours (0.7: 0.025: 1.5) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 16. Testcase: Hypersonic flow over a half cylinder at Mach 6 – Mach contours (0.0:0.4:7.6) – (160 × 80) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 17. Testcase: Hypersonic flow over a half cylinder at Mach 20 – Mach contours (0.0:0.4:20.0) – (160 × 80) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
The initial shock is located at 𝑥 = 0.25 and the computational domain to
he right of x = 0.25 is initialized with stationary fluid with density 1.4

and pressure 1. The domain to the left of the shock is initialized with
primitive variable values corresponding to the shock as obtained from the
24
moving shock relations. The supersonic nature of the inflow results in an
evolution of an oblique shock at the root of the wedge which interacts with
the moving normal shock and gets reflected, thereby forming a triple point
of shocks. Essentially this test case evaluates the ability of the numerical
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Fig. 18. Test case: Double Mach reflection over a wedge – density contours (5.0:0.5:20.0) (400 × 400) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
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scheme to handle shock instabilities and to provide a physically realistic
solution. Many popular numerical schemes produce kinked Mach stems near
the triple point which are unphysical. The results obtained from both the
versions of KFDS scheme at t = 0.25 s are shown in Fig. 18. Both versions of

FDS scheme capture the triple point well and do not produce unphysical
inked Mach stems.

.3.7. Shock diffraction
This test case [54] is important to assess the presence of shock in-

tabilities and unphysical features in the strong expansion fan appearing
ith some numerical schemes. The test case involves the forward travel
f a strong shock with incident Mach Number 5.09 wherein the domain
omprises of a sudden expansion around a 90◦ corner. The shock diffracts

around the corner [X = 0.05, Y = 0.625]. At the corner, the sudden area
expansion leads to a strong expansion fan. Both the above nonlinear waves
further interact. For this test case we discretize the computational domain
[0,1][0,1] into a 400 × 400 grid. The initial shock position is specified at
x = 0.05. The domain is initialized with the initial conditions (𝜌, 𝑢, 𝑣, 𝑝) =
[1.4, 0, 0, 1.0] to the left of the shock and with post shock conditions to the
right of the shock (computed from moving shock relations). The results
obtained from the KFDS schemes at 𝑡 = 0.1561 s are shown in Fig. 19.

s can be observed, the both versions of KFDS scheme resolve the flow
eatures arising due to the strong initial gradients well and do not produce
ny anomalies.

.4. 2D viscous flow test cases

.4.1. Blasius flow
This test problem is essentially a validation for the viscous part in a

umerical scheme. The test involves viscous laminar flow over a flat plate
t zero angle of incidence. The inlet has a freestream Mach number of 0.15
nd Reynolds number 10 000. The computational domain [−0.2, 1.8] × [0, 1]
s rectangular with the flat plate on the bottom side from 𝑥 = 0 to 𝑥 = 1.8
25
defined as a viscous wall. The inlet is defined with uniform total pressure
and total temperature with zero vertical velocity component. The top and
the outlet are defined with free stream boundary conditions. The remaining
portion upstream of the plate is defined with symmetry boundary condition.
The boundary layer evolves over the viscous wall and the grows in thickness
in proportion to the length of the flat plate. A stretched grid of 105 × 65,

ith a geometrically increasing ratio of 1.025 is used. The boundary layer
rofile for each version of KFDS scheme is shown in Fig. 20. The skin
riction distribution and the velocity profiles are shown in Figs. 21 and
2 respectively. Comparison with analytical solution (Blasius profile) is
rovided. Second order versions of the KFDS schemes agree well with the
nalytical results, while the effect of numerical diffusion can be seen in the
irst order results.

.4.2. Supersonic viscous flow over a bump
This test case [55] involves a channel having a 4% thick circular arc

ump on the bottom side of the test domain [−1,2] × [0,1]. The bump has
chord length of 1 unit and is located at 𝑥 = 0.5. The left side is marked as
supersonic inlet with free stream Mach number 1.4 and Reynolds number
000. Symmetry boundary condition is imposed on the bottom wall from
= −1 to 𝑥 = 0. The remaining portion of the bottom side is marked as a

iscous wall. The top side of the domain is defined as an inviscid wall, while
he right side of the domain is marked as supersonic outlet. A geometrically
tretched grid of size 240 × 80, with a 4.5% increase is used. The results
or each version of the KFDS scheme are shown in Fig. 23. The interaction
f the reflected shock wave with separated flow region to the right of the
ump results in a weak reflection as can be seen in the results. The skin
riction coefficients for the test case are shown in Fig. 24, are compared
ith those from the Ref. [55] and show reasonable agreement.

.4.3. Shock wave–boundary layer interaction
This test case [56] constitutes an interaction of an oblique shock wave

ith a laminar boundary layer that evolves on the bottom side of the
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Fig. 19. Test case: Shock Diffraction in a sudden expansion region – density contours (0.5:0.25:6.75) (400 × 400) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 20. Test case: Blasius flow over a flat plate (105 × 65) — (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
w
c
i
a
0

omputational domain [−0.2,1.8] × [0,1]. The interaction results in the
ormation of a streak of compression waves reflecting from the boundary
ayer accompanied by an adjacent expansion fan. Further, a recirculation
one in the form of a bubble develops on the surface around which the
low separates from the surface and gets reattached. It is evident that a
26
ide combination of flow features evolve in the solution and thus tests the
apability of the numerical scheme to capture each phenomenon listed. The
nlet boundary comprises of a supersonic inflow with Mach number 2.0
nd Reynolds number 100 000 till y = 0.765. The inlet region above y =
.765 and the topside of the domain is initialized with post-shock boundary
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Fig. 21. Test case: Blasius flow over a flat plate (105 × 65) – 𝐶𝑓 plots – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 22. Test case: Blasius flow over a flat plate (105 × 65) – Velocity Profiles – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
conditions. The right side of the domain is treated as a supersonic outlet.
A geometrically stretched grid of size 141 × 121, with a 4.5% increase is
used. Fig. 25 presents the pressure contours for the numerical scheme. The
scheme is able to resolve the incident and reflected shock wave along with
the expansion regions. Fig. 26 portrays the flow vectors and the streamlines
closer to the bottom wall. The bubble resulting from the flow separation
and reattachment can be observed. The computed skin friction coefficients
and pressure coefficients are shown in Figs. 27 and 28 respectively. Both
versions of KFDS schemes are able to capture the relevant flow features
with reasonable accuracy.
27
7. Conclusions

A new discrete velocity model based kinetic flux difference splitting
scheme is introduced and its capability to handle the complex flow features
of compressible flows without the need of an entropy fix, yet retaining
its basic ability to exactly capture grid aligned steady shocks and contact
discontinuities, is demonstrated. Enforcing the principle of flux equivalence
across a steady discontinuity results in satisfying R–H conditions in the
discretization, which leads to exact capturing of steady discontinuities.
The use of 𝐷2-distance as a gradient sensor enables in precise addition of
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Fig. 23. Test case: Supersonic viscous flow over a bump (240 × 80) – Mach contours (0: 0.0215: 1.5) – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.

Fig. 24. Test case: Supersonic viscous flow over a bump (240 × 80), 𝐶𝑓 plots — (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.

Fig. 25. Test case: Shock wave–boundary layer interaction (141 × 121) — pressure contours (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
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Fig. 26. Test case: Shock wave–boundary layer interaction (141 × 121) — pressure contours (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
Fig. 27. Test case: Shock wave–boundary layer interaction (141 × 121) – 𝐶𝑓 plots – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
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umerical diffusion only in the expansion regions and thus helps avoiding
ny entropy condition violations. Various benchmark test cases for inviscid
nd viscous flows demonstrate the robustness and accuracy of the scheme.
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ppendix. Some important moments for DVBE

𝐟 𝑒𝑞 = 𝑈 (A.1)

𝛬𝐟 𝑒𝑞 = 𝐺(𝑈 ) (A.2)

+ + 𝑒𝑞
𝐺 (𝑈 ) = 𝐏𝛬 𝐟 (A.3)
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Fig. 28. Test case: Shock wave–boundary layer interaction (141 × 121) – pressure coefficient plots – (a) 1O-KFDS-A (b) 1O-KFDS-B (c) 2O-KFDS-A (d) 2O-KFDS-B.
herefore

+(𝑈 )𝑖 = [1 1 1]

⎡

⎢

⎢

⎢

⎣

𝜆+ 0 0
0 𝜆+𝑜 0
0 0 0

⎤

⎥

⎥

⎥

⎦𝑖

⎡

⎢

⎢

⎢

⎣

𝐟+𝑒𝑞

𝐟𝐨𝑒𝑞

𝐟−𝑒𝑞

⎤

⎥

⎥

⎥

⎦𝑖
=

{

𝜆+𝐟+𝑒𝑞 + 𝜆+𝑜 𝐟𝐨
𝑒𝑞}

𝑖

hich upon simplifying gives

+(𝑈 )𝑖 =
{

1
2
𝐺(𝑈 ) + 𝜆

2
𝑈 −

(𝜆 − |𝜆𝑜|)
2

𝐟𝐨𝑒𝑞
}

𝑖
(A.4)

Similarly, starting with 𝐺−(𝑢) = 𝐏𝛬−𝐟 𝑒𝑞 , we get

𝐺−(𝑈 )𝑖 = [1 1 1]

⎡

⎢

⎢

⎢

⎣

0 0 0
0 𝜆−𝑜 0
0 0 𝜆−

⎤

⎥

⎥

⎥

⎦𝑖

⎡

⎢

⎢

⎢

⎣

𝐟+𝑒𝑞

𝐟𝐨𝑒𝑞

𝐟−𝑒𝑞

⎤

⎥

⎥

⎥

⎦𝑖
=

{

𝜆−𝑜 𝐟𝐨
𝑒𝑞 + 𝜆−𝐟−𝑒𝑞

}

𝑖

hich upon simplifying gives

−(𝑈 )𝑖 =
{

1
2
𝐺(𝑈 ) − 𝜆

2
𝑈 +

(𝜆 − |𝜆𝑜|)
2

𝐟𝐨𝑒𝑞
}

𝑖
(A.5)

Further

𝐏|𝛬|𝐟 𝑒𝑞𝑖 = [1 1 1]

⎡

⎢

⎢

⎢

⎣

𝜆 0 0
0 𝜆𝑜 0
0 0 𝜆

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐟+𝑒𝑞

𝐟𝐨𝑒𝑞

𝐟−𝑒𝑞

⎤

⎥

⎥

⎥

⎦𝑖
=

{

𝜆𝐟+𝑒𝑞 + 𝜆𝑜𝐟𝐨𝑒𝑞 + 𝜆𝐟−𝑒𝑞
}

𝑖
=

{

𝜆𝑈 − (𝜆 − |𝜆𝑜|)𝐟𝐨𝑒𝑞
}

𝑖

Similarly

𝐏𝐟𝐶𝐸 = 𝐏𝐟 𝑒𝑞 − 𝐏𝐟𝐯𝑒𝑞 = 𝑈 (A.6)
𝐏𝛬𝐟𝐶𝐸 = 𝐏𝛬𝐟 𝑒𝑞 − 𝐏𝛬𝐟𝐯𝑒𝑞 = 𝐺(𝑈 ) − 𝐺𝑣(𝑈 ) (A.7)
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