Sanyal, R and Singh, AV and Chaudhury, KN (2019) An Iterative Eigensolver for Rank-Constrained Semidefinite Programming. In: 25th National Conference on Communications, NCC 2019, 20 - 23 February 2019, Bangalore.
PDF
25th _nat_con_NCC 2019_February 2019_2019.pdf.pdf - Published Version Restricted to Registered users only Download (777kB) | Request a copy |
Abstract
Rank-constrained semidefinite programming (SDP) arises naturally in various applications such as max-cut, angular (phase) synchronization, and rigid registration. Based on the alternating direction method of multipliers, we develop an iterative solver for this nonconvex form of SDP, where the dominant cost per iteration is the partial eigendecomposition of a symmetric matrix. We prove that if the iterates converge, then they do so to a KKT point of the SDP. In the context of rigid registration, we perform several numerical experiments to study the convergence behavior of the solver and its registration accuracy. As an application, we use the solver for wireless sensor network localization from range measurements. The resulting algorithm is shown to be competitive with existing optimization methods for sensor localization in terms of speed and accuracy.
Item Type: | Conference Paper |
---|---|
Publication: | 25th National Conference on Communications, NCC 2019 |
Publisher: | Institute of Electrical and Electronics Engineers Inc. |
Additional Information: | The copyright for this article belongs to Institute of Electrical and Electronics Engineers Inc. |
Keywords: | Iterative methods, ADMM; Convergence; Eigensolvers; Registration; Semi-definite programming; Sensor network localization, Wireless sensor networks |
Department/Centre: | Division of Electrical Sciences > Electrical Engineering |
Date Deposited: | 29 Nov 2022 05:45 |
Last Modified: | 29 Nov 2022 05:45 |
URI: | https://eprints.iisc.ac.in/id/eprint/78064 |
Actions (login required)
View Item |