
Analysis of Knowledge Transfer in Kernel Regime
Ashkan Panahi

Chalmers University of Technology

Gothenburg, Sweden

ashkan.panahi@chalmers.se

Arman Rahbar

Chalmers University of Technology

Gothenburg, Sweden

armanr@chalmers.se

Chiranjib Bhattacharyya

Indian Institute of Science

Bangalore, India

chiru@iisc.ac.in

Devdatt Dubhashi

Chalmers University of Technology

Gothenburg, Sweden

dubhashi@chalmers.se

Morteza Haghir Chehreghani

Chalmers University of Technology

Gothenburg, Sweden

morteza.chehreghani@chalmers.se

ABSTRACT
Knowledge transfer is shown to be a very successful technique

for training neural classifiers: together with the ground truth data,

it uses the "privileged information" (PI) obtained by a "teacher"

network to train a "student" network. It has been observed that

classifiers learnmuch faster andmore reliably via knowledge transfer.

However, there has been little or no theoretical analysis of this

phenomenon. To bridge this gap, we propose to approach the

problem of knowledge transfer by regularizing the fit between the

teacher and the student with PI provided by the teacher. Using tools

from dynamical systems theory, we show that when the student

is an extremely wide two layer network, we can analyze it in the

kernel regime and show that it is able to interpolate between PI and

the given data. This characterization sheds new light on the relation

between the training error and capacity of the student relative to

the teacher. Another contribution of the paper is a quantitative

statement on the convergence of student network. We prove that

the teacher reduces the number of required iterations for a student

to learn, and consequently improves the generalization power of

the student. We give corresponding experimental analysis that

validates the theoretical results and yield additional insights.
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1 INTRODUCTION
Knowledge transfer considers improving learning processes by

leveraging the knowledge learned from other tasks or trained

models. Several studies have demonstrated the effectiveness of

knowledge transfer in different settings. For instance, in [3], knowledge

transfer has been used to improve object detectionmodels. Knowledge

transfer has been applied in different levels to neural machine

translation in [10]. It has also been employed for Reinforcement

learning in [20]. Recommender systems can also benefit from knowledge

transfer as shown in [13].

An interesting case of knowledge transfer is privileged information
[17, 18] where the goal is to supply a student learner with privileged

information during training session. Another special case is concerned

with knowledge distillation [8] which suggests to train classifiers

using the real–valued outputs of another classifier as target values

than using actual ground–truth labels. These two paradigms are

unified within a consistent framework in [11].

The privileged information paradigm introduced in [18] aims at

mimicking some elements of human teaching in order to improve

the process of learning with examples. In particular, the teacher

provides some additional information for the learning task along

with training examples. This privileged information is only available

during the training phase. The work in [14] outlines the theoretical

conditions required for the additional information from a teacher

to a student. If a teacher satisfies these conditions, it will help to

accelerate the learning rate. Two different mechanisms of using

privileged information are introduced in [16]. In the firstmechanism,

the concept of similarity in the training examples in the student

is controlled. In the second one, the knowledge in the space of

privileged information is transferred to the space where the student

is working.

In 2014, Hinton et al. [8] studied the effectiveness of knowledge

distillation. They showed that it is easier to train classifiers using the

real–valued outputs of another classifier as target values than using

actual ground–truth labels. They introduced the term knowledge
distillation for this phenomenon. Since then, distillation–based

training has been confirmed in several different types of neural

networks [3, 21, 22]. It has been observed that optimization is

generally more well–behaved than with label-based training, and

it needs less regularization or specific optimization tricks.

While the practical benefits of knowledge transfer in neural

networks (e.g. via distillation) are beyond doubt, its theoretical

justification remains almost completely unclear. Recently, Phuong
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and Lampert [15] made an attempt to analyze knowledge distillation

in a simple model. In their setting, both the teacher and the student

are linear classifiers (although the student’s weight vector is allowed
a over-parametrized representation as a product of matrices). They

give conditions under which the student’s weight vector converges

(approximately) to that of the teacher and derive consequences for

generalization error. Crucially, their analysis is limited to linear

networks.

Knowledge transfer in neural networks and privileged information

are related through a unified framework proposed in [11]. In this

work knowledge transfer in neural networks is examined from a

theoretical perspective via casting that as a form of learning with

privileged information. However, [11] uses a heuristic argument for

the effectiveness of knowledge transferwith respect to generalization

error rather than a rigorous analysis.

In our knowledge transfer analysis, we assume the so-called

kernel regime. A series of recent works, e.g., [1, 2, 5, 12] achieved

breakthroughs in understanding how (infinitely) wide neural network

training behaves in this regime, where the dynamics of training by

gradient descent can be approximated by the dynamics of a linear

system. We extend the repertoire of the methods that can be applied

in such settings.

Contributions:We carry out a theoretical analysis of knowledge

transfer which consistently covers aspects of privileged information

for non-linear neural networks. We situate ourselves in the recent

line of work that analyzes the dynamics of neural networks under

the kernel regime. It was shown that the behaviour of training by

gradient descent (GD) in the limit of very wide neural networks

can be approximated by linear system dynamics. This is dubbed
the kernel regime because it was shown in [9] that a fixed kernel

– the neural tangent kernel – characterizes the behavior of fully-

connected infinite width neural networks in this regime.

Our framework is general enough to encompass Vapnik’s notion

of privileged information and provides a unified analysis of generalized
distillation in the paradigm ofmachines teaching machines as in [11].
For this analysis, we exploit new tools that go beyond the previous

techniques in the literature, as in [1, 2, 5, 12] - we believe these new

tools will contribute to further development of the nascent theory.

Our main results are:

i) We formulate the knowledge transfer problem as a least squares

optimization problem with regularization provided by privileged

knowledge. This allows us to characterize precisely what is learnt

by the student network in Theorem 3.1 showing that the student

converges to an interpolation between the data and the privileged

information guided by the strength of the regularizer.

ii) We characterize the speed of convergence in Theorem 3.2 in

terms of the overlap between a combination of the label vector and

the knowledge vectors and the spectral structure of the data as

reflected by the vectors.

iii)We introduce novel techniques from systems theory, in particular,

Laplace transforms of time signals to analyze time dynamics of

neural networks. The recent line of work e.g. in [1, 2, 5, 12] has

highlighted the dynamical systems view in statistical learning by

neural networks. We introduce a more coherent framework with a

wider ranger of techniques to exploit this view point. This is in fact

necessary since the existing approaches are insufficient in our case

because of the asymmetry in the associated Gram matrix and its

complex eigen-structure. We use the poles of the Laplace transform

to analyze the dynamics of the training process in section 4.2.

iv) We discuss the relation of the speed of convergence to the

generalization power of the student and show that the teacher may

improve the generalization power of the student by speeding up its

convergence, hence effectively reducing its capacity.

v)We experimentally demonstrate different aspects of our knowledge

transfer framework supported by our theoretical analysis.We exploit

the data overlap characterization in Theorem 3.2 using optimal

kernel-target alignment [4] to compute kernel embeddings which

lead to better knowledge transfer.

2 PROBLEM FORMULATION AND MAIN
RESULTS

We study knowledge transfer in an analytically tractable setting:

the two layer non–linear model studied in [1, 2, 5, 6]:

𝑓 (x) =
𝑚∑︁
𝑘=1

𝑎𝑘√
𝑚
𝜎 (w𝑇

𝑘
x), (1)

Here the weights {w𝑘 }𝑚𝑘=1
are the model variables corresponding to

𝑚 hidden units, 𝜎 (. ) is a real (nonlinear) activation function and the
weights {𝑎𝑘 } are fixed. While we assume that the student network

maintains the form in (1) throughout this paper, the teacher may

not assume a definite architecture. However, we often specialize

our results for the case that the teacher also takes the form in (1)

with a larger number 𝑚̄ of hidden units.

For training the student, we introduce a general optimization

framework that considers knowledge transfer. Given a dataset

{(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1
comprising of𝑛 data samples {x𝑖 } and their corresponding

labels {𝑦𝑖 }, our framework is given by

min

{w𝑘 }

∑︁
𝑖

(𝑦𝑖 − 𝑓 (x𝑖 ))2 + 𝜆
∑︁
𝑖

∑︁
𝑘

(
𝜙 (𝑘 ) (x𝑖 ) − 𝑓 (𝑘 ) (x𝑖 )

)
2

, (2)

where 𝑓 (. ) is stated in (1)and 𝑓 (𝑘 ) (x) = 𝜎 (w𝑇
𝑘
x) is the corresponding

𝑘th hidden feature of the student network. As seen in (2), our

framework consists of a least squares optimization problem:min

∑(𝑦𝑖−
𝑓 (x𝑖 ))2

with an additional regularization term incorporating the

teacher’s knowledge represented by the privileged knowledge terms

𝜙 (𝑘 )
. The coefficient 𝜆 ≥ 0 is the regularization parameter.

Our analysis considers generic forms of the privileged knowledge

functions 𝜙 (𝑘 )
. However, we are particularly interested in a setup

where these functions are selected from the hidden neurons of a pre-

trained teacher. More precisely, 𝜙 (𝑘 ) (x) = 𝜎 (⟨wteacher

𝑘
, x⟩) where

wteacher

𝑘
is the trained weight of the 𝑘th selected unit of the teacher

with the architecture in (1). Note that

{
wteacher

𝑘

}
is a subset of the

teacher weights. This case is closely connected to a well-known

knowledge distillation (KD) setup empirically studied in e.g. [3].

We study the generic behavior of the gradient descent (GD)

algorithm when applied to the optimization in (2). In the spirit

of the analysis in [1, 6], shortly explained in Section 4, we carry

out an investigation on the dynamics for GD that answers two

fundamental questions: i. What does the (student) network learn? ii.
How fast is the convergence by the gradient descent? The answer to
both these questions emerges from the analysis of the dynamics

of GD. From the perspective of KD, this approach complements
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related recent studies, such as [15] that address similar questions.

However, our work is different, as [15] is limited to a single hidden

unit (𝑚 = 1), Sigmoid activation 𝜎 and cross-entropy replacing

the square-error loss. While convexity plays a major role in [15],

our analysis concerns the non-convex setup in (2) with further

conditions on initialization. Additionally, our result is applicable

to a different regime with a large number 𝑚 of units and high

expression capacity.

3 MAIN RESULTS ON DYNAMICS
3.1 General Linear Systems Theory Framework
The existing analysis of dynamics for neural networks in a series

of recent papers [1, 2, 5] is tied centrally to the premise that the

behaviour of GD for the optimization can be approximated by a

linear dynamics of finite order. To isolate the negligible effect of

learning rate 𝜇 in GD, it is also conventional to study the case

𝜇 → 0 where GD is alternatively represented by an ordinary

differential equation (ODE), known as the gradient flow, with a

continuous "time" variable 𝑡 replacing the iteration number 𝑟 (being

equivalent to the limit of 𝑟 𝜇). Let us denote by f (𝑡) the vector of the
output 𝑓 (x𝑖 , 𝑡) of the network at time 𝑡 . Then, the theory of linear

systems with a finite order suggests the following expression for

the evolution of f (𝑡):

f (𝑡) = f∞ + 𝜹 (𝑡), (3)

where f∞ is a constant and

𝜹 (𝑡) = u1𝑒
−𝑝1𝑡 + u2𝑒

−𝑝2𝑡 + . . . + u𝑑𝑒
−𝑝𝑑𝑡 . (4)

Here,𝑑 is the order of the linear system and complex-valued vectors

u1, . . . , u𝑚 and nonzero complex values 𝑝1, 𝑝2, . . . , 𝑝𝑑 are to be

determined by the specifications of the dynamics. The constants

{𝑝 𝑗 ≠ 0} are called poles, that also correspond to the singular

points of the Laplace transform F(𝑠) of f (𝑡) (except for 0, which

corresponds to the constant f∞ in our formulation). We observe that

such a representation may only have a convergence (final) value at

𝑡 → ∞ if the poles have strictly positive real parts, in which case

f∞ is the final value. Moreover, the asymptotic rate of convergence

is determined by the dominating term in (4), i.e. the smallest value

ℜ(𝑝 𝑗 ) with a nonzero vector u𝑗 . We observe that identifying f∞
and the dominating term responds to the aforementioned questions

of interest. In this paper, we show that these values can be calculated

as the number𝑚 of hidden units increases.

Definitions: Let us take w𝑘 = w𝑘 (0) as the initial values of

the weights and define H𝑘 = (𝜎′ (w𝑇
𝑘
x𝑖 )𝜎′ (w𝑇

𝑘
x𝑖 )x𝑇𝑖 x𝑗 ) as the 𝑘

th

realization of the "associated gram matrix" where 𝜎′ denotes the
derivative function of 𝜎 (that can be defined in the distribution

sense). Further, denote by f𝑘 (0) the vector of the initial values

𝑓 𝑘 (x𝑖 ) = 𝜎 (w𝑇
𝑘
x𝑖 ) of the 𝑘th unit for different data points {x𝑖 }

and take 𝑎 =
∑
𝑘 𝑎2

𝑘/𝑚. Finally, take 𝑝1, 𝑝2, . . . , 𝑝𝑑 for 𝑑 = 𝑛 ×𝑚 as

positive values where at 𝑠 = −𝑝𝑖 , the value −1 is the eigenvalue of

the matrix T(𝑠) = ∑
𝑘

𝑎2

𝑘

𝑚 (𝑠I + 𝜆H𝑘 )−1H𝑘 , with v1, v2, . . . , v𝑑 being

the corresponding eigenvectors (T(𝑠) is symmetric).

3.2 What does the student learn?
This result pertains to the first question above, concerning the final

value of f . For this, we prove the following result:

Theorem 3.1. Suppose that𝑚 is large and ∥𝝓𝑘−f𝑘 (0)∥ = 𝑂 (1/𝑚).
Under mild conditions (Section 6), it holds that lim

𝑡→∞
f (𝑡) = f∞ where

f∞ =
1

𝑎 + 𝜆

(
𝑎y + 𝜆

∑︁
𝑘

𝑎𝑘𝝓𝑘√
𝑚

)
+ 𝑜𝑚 (1) . (5)

This is an intuitive result: the final output of the student is

mixture of the true labels y and the teacher’s provided knowledge

vectors 𝝓𝑘 .
Random Privileged Knowledge Setup: Indeed, an interesting

case is when the teacher is itself a strong predictor of the labels b :=∑
𝑘

𝑎𝑘𝝓𝑘√
𝑚

= y+𝑜𝑚 (1), which further yields a perfect prediction by the

student. This can be the case when the teacher is a wider network

in the form of (1) with 𝑚̄ hidden neurons and their corresponding

weights w̄teacher

𝑙
and bounded coefficients 𝑎teacher

𝑙
in the second

layer. The results in [6] guarantee that such a network can be

perfectly trainable over the samples. Let us consider the case where

{𝑎teacher

𝑘
,wteacher

𝑘
} ⊂ {𝑎teacher

𝑙
, w̄teacher

𝑙
} is independently randomly

selected. Then, we may invoke Theorem 3.1 by taking 𝜙 (𝑘 ) (x) =
𝜎 (⟨wteacher

𝑘
, x⟩) and 𝑎𝑘 = 𝑞𝑎teacher

𝑘
, where 𝑞 =

√︃
𝑚̄
𝑚 . Then, we have

E [b] = f teacher, Var[b] = 𝑂
(
𝑚̄
𝑚 − 1

)
. This shows that for large

𝑚̄ taking a sufficiently large fraction of the units will introduce

negligible harm to the student’s solution.

3.3 How fast does the student learn?
Now,we turn our attention to the question of the speed of convergence,

for which we have the following result:

Theorem 3.2. Define

f (𝑘 )∞ =
𝑎𝑘

𝜆
√
𝑚

(y − f∞) + 𝝓𝑘 .

With similar assumptions to Theorem 3.1 (given in Section 6), the
dynamics of f can be written as1

f (𝑡) = f∞ +
𝑛∑︁
𝑗=1

𝑒−𝑝 𝑗 𝑡𝛼 𝑗u𝑗 + 𝑜𝑚 (1),

where

𝛼 𝑗 =
∑︁
𝑘

𝑎2

𝑘

𝑚

〈
v𝑗 ,H𝑘 (𝑝 𝑗 I − 𝜆H𝑘 )−1 (f (𝑘 )∞ − f (𝑘 ) (0))

〉
.

A straightforward consequence of Theorem 3.2 is that

∥f (𝑡) − f∞∥2 = 𝑂
(
𝑒−𝑝min𝑡

)
,

where 𝑝min is theminimumvalue of 𝑝 𝑗 s. In otherwords, convergence

is linear. In practice, the discrete time process of gradient descent

with a step size 𝜇 is used. Although our analysis is instead based on

the common choice of gradient flow, we remark that with a similar

approach, one can show that for a sufficiently small step size, e.g.

1
The rate analysis is in𝐿1 sense, i.e.𝑎 (𝑡 ) = 𝑏 (𝑡 )+𝑜𝑚 (1) means

∞∫
0

∥𝑎 (𝑡 )−𝑏 (𝑡 ) ∥2d𝑡 =

𝑜𝑚 (1) .
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𝜇 < 1

2𝑝max

with 𝑝max being the largest of 𝑝 𝑗 s, the convergence rate

remains linear:

∥f𝑛 − f∞∥2 = 𝑂
(
(1 − 𝜇𝑝min)𝑛

)
,

wherewith a slight abuse of notation, f𝑛 denotes the network output

in the 𝑛th iteration of GD.

From the definition, 𝛼 𝑗 can be interpreted as an average overlap

between a combination of the label vector y and the knowledge

vectors 𝝓𝑘 , and the "spectral" structure of the data as reflected

by the vectors (𝑝 𝑗 I − 𝜆H𝑘 )−1H𝑘v𝑗 . This is a generalization of the

geometric argument in [1] in par with the "data geometry" concept

introduced in [15]. We will later use this result in our experiments

to improve knowledge transfer by modifying the data geometry of

𝛼 𝑗 coefficients.

3.4 Further Remarks
The above two results have a number of implications on the knowledge

transfer process:

Extreme Cases: First, note that the case 𝜆 = 0 reproduces the

results in [6]: The final value simply becomes y while the poles

will become the singular values of the matrix H =
∑
𝑘

𝑎2

𝑘

𝑚 H𝑘 . The

other extreme case of 𝜆 = ∞ corresponds to pure transfer from the

teacher, where the effect of the first term in (2) becomes negligible

and hence the optimization boils down to individually training

each hidden unit by 𝜙𝑘 . One may then expect the solution of this

case to be 𝑓𝑘 = 𝜙𝑘 . However, the conditions of the above theorems

become difficult to verify, but we shortly present experiments that

numerically investigate the corresponding dynamics.

Speed-accuracy trade-off: As previously pointed out, for a

finite value of 𝜆, the final value f∞ is a weighted average, depending

on the quality of 𝝓𝑘 . Defining 𝑒 = ∥f∞ − y∥ as the final error,

we simply conclude that 𝑒 = 𝜆
𝑎+𝜆 ∥

∑
𝑘

𝑎𝑘𝝓𝑘

𝑚 − y∥, where the term

∥∑
𝑘

𝑎𝑘𝝓𝑘

𝑚 − y∥ reflects the quality of teacher in representing the

labels. Also for an imperfect teacher the error 𝑒 monotonically

increases with 𝜆. At the same time, we observe that larger 𝜆 has a

positive effect on the speed of learning.

Theorem 3.3. Given, the above definition, it holds that 𝑝 𝑗 ≥ 𝜆𝜎0,
where 𝜎0 is the smallest nonzero eigenvalue of all H𝑘 s.

This sets an intuitive trade-off, where increasing 𝜆, i.e. relying

more on the teacher, improves the speed of learning, whilemagnifying

potential teacher’s imperfections. Note that 𝜎0 remains finite and

of 𝑂 (
√
𝑛), even if the number𝑚 of H𝑘 s increases.

Effect of data geometry: As we demonstrate in Section 6,

the vectors H𝑘 (𝑝 𝑗 − 𝜆H𝑘 )−1v𝑗 constitute an eigen-basis structure

corresoonding to the poles 𝑝 𝑗 . If the data has a small overlap with

the eigen-basis corresponding to small values of 𝑝 𝑗 , then the values

𝛼 𝑗 for small poles 𝑝 𝑗 will drop and the dynamics is mainly identified

by the large poles 𝑝 𝑗 , speeding up the convergence properties. This

defines a notion of a suitable geometry for knowledge transfer.

On initializing the student: Finally, the assumption ∥𝝓𝑘 −
f (𝑘 ) (0)∥ = 𝑂 (1/𝑚) can be simply satisfied with single hidden layer,

where we have𝜙𝑘 (x) = 𝜎 (⟨wteacher

𝑘
, x⟩) and initializing the weights

of the student by that of the teacher w𝑘 (0) = wteacher

𝑘
leads to

𝝓𝑘 = f (𝑘 ) (0). We further numerically investigate the consequences

of violating this assumption.

3.5 Consequences on Generalization
In [1], a bound on the generalization of the NN in (1), when trained

by GD, is given. Their approach is to show that for GD, the trained

weights w𝑘 and their initial values satisfy∑︁
𝑘

∥w𝑘 −w𝑘 (0)∥2 ≤ y𝑇H−1y + 𝑜 (1) (6)

They proceed by showing that the family of such neural notworks

have a bounded Rademacher complexity and hence the generalization

power. The bound in (6) is a natural consequence of the fact that the

learning rate of eachweight, at each time, is on average proportional

to the convergence rate of the network, which is shown to be

exponential. In other words, the weights will not have enough

time to escape the ball defined by (6). Our analysis of convergence

in Theorem 3.2 leads to a similar generalizaton bound for the

student network. In fact, as 𝜆 increases we get faster convergence

by Theorem 3.2 since the weights have less time to update, leading

to a tighter bound. This claim is intuitive too: as learning relies

more on the teacher, less variation is expected, leading to better

generalization. This provides additional insights on the success of

knowledge transfer in practice.

4 ANALYSIS AND INSIGHTS
The study in [6] on the dynamics of backpropagation serves as

our main source of inspiration, which we review first. The point

of departure in this work is to represent the dynamics of BP or

gradient descent (GD) for the standard ℓ2 risk minimization, as in

(2) and (1) with 𝜆 = 0. In this case, the associated ODE to GD reads:

dw𝑘

d𝑡
(𝑡) = 𝑎𝑘√

𝑚
L(w𝑘 (𝑡)) (y − f (𝑡)), (7)

where y, f (𝑡) are respectively the vectors of {𝑦𝑘 } and 𝑓 (x𝑘 ), calculated
in (1) by replacingw𝑘 = w𝑘 (𝑡). Moreover, the matrix L(w) consists
of 𝜎′ (w𝑇 x𝑘 )x𝑘 as its 𝑘th column. While the dynamics in (7) is

generally difficult to analyze, we identify two simplifying ingredients

in the study of [6]. First, it turns the attention from the dynamics

of weights to the dynamics of the function, as reflected by the

following relation:

df
d𝑡

(𝑡) =
∑︁
𝑘

𝑎𝑘√
𝑚
L𝑇
𝑘

dw𝑘

d𝑡
= H(𝑡) (y − f (𝑡)), (8)

where L𝑘 = L𝑘 (𝑡) is a short-hand notation for L(w𝑘 (𝑡)) andH(𝑡) =∑
𝑘

𝑎2

𝑘
L𝑇
𝑘
L𝑘/𝑚. The second element in the proof can be formulated

as follows:

Kernel Hypothesis (KH): In the asymptotic case of𝑚 → ∞,

the dynamics of H(𝑡) has a negligible effect, such that it may be

replaced by H(0), resulting to a linear dynamics.

The reason for our terminology of the KH is that under this

assumption, the dynamics of BP resembles that of a kernel regularized

least squares problem. The investigation in [6] further establishes

KH under mild assumptions and further notes that for random

initialization ofweightsH(0) concentrates on itsmean value, denoted

by H∞
.
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4.1 Dynamics of Knowledge Transfer
Following the methodology of [6], we proceed by providing the

dynamics of the GD algorithm for the optimization problem in

(2) with 𝜆 > 0. Direct calculation of the gradient leads us to the

following associated ODE for GD:

dw𝑘

d𝑡
= L𝑘

[
𝑎𝑘√
𝑚

(y − f (𝑡)) + 𝜆(𝝓 (𝑘 ) − f (𝑘 ) )
]
, (9)

where L𝑘 , y, f (𝑡) are similar to the previous case in (7). Furthermore,

f (𝑘 ) , 𝝓 (𝑘 )
are respectively the vectors of {𝑓 (𝑘 ) (x𝑖 )}𝑖 and {𝜙 (𝑘 ) (x𝑖 )}𝑖 .

We may now apply the methodology of [6] to obtain the dynamics

of the features. We also observe that unlike this work, the hidden

features {f (𝑘 ) } explicitly appear in the dynamics:

df (𝑘 )
d𝑡

(𝑡) = L𝑇
𝑘

dw𝑘

d𝑡
=

H𝑘 (𝑡)
[
𝑎𝑘√
𝑚
(y − f (𝑡)) + 𝜆(𝝓 (𝑘 ) − f (𝑘 ) (𝑡))

]
, (10)

where H𝑘 (𝑡) = L𝑇
𝑘
L𝑘 and

f (𝑡) =
∑︁
𝑘

𝑎𝑘√
𝑚
f (𝑘 ) (𝑡) . (11)

This relation will be central in our analysis and we may slightly

simplify it by introducing 𝜹 (𝑘 ) = f (𝑘 ) − f (𝑘 )∞ and 𝜹 = f − f∞. In

this case the dynamics in (10) and (11) simplifies to:

d𝜹 (𝑘 )
d𝑡

(𝑡) = −H𝑘 (𝑡)
[
𝑎𝑘√
𝑚
𝜹 (𝑡) + 𝜆𝜹 (𝑘 ) (𝑡)

]
,

𝜹 (𝑡) = ∑
𝑘

𝑎𝑘√
𝑚
𝜹 (𝑘 ) (𝑡) . (12)

Finally, we give a more abstract view on the relation in (12) by

introducing the block vector 𝜼(𝑡) where the 𝑘th block is given by

𝜹 (𝑘 ) (𝑡). Then, we may write (12) as d𝜼/d𝑡 (𝑡) = −H̄(𝑡)𝜼(𝑡), where
H̄(𝑡) is a block matrix withH𝑘 (𝑡)

(𝑎𝑘𝑎𝑙
𝑚 + 𝜆𝛿𝑘,𝑙

)
as its 𝑘, 𝑙 block (𝛿𝑘,𝑙

denotes the Kronecker delta function).

4.2 Dynamics Under Kernel Hypothesis:
Analysis by Laplace Transform

Now, we follow [6] by simplifying the relation in (10) under the

kernel hypothesis, which in this case assumes the matrices H̄(𝑡)
to be fixed to its initial value H̄ = H̄(0), leading again to a linear

dynamics:

𝜼(𝑡) = 𝑒−H̄𝑡𝜼(0) . (13)

Despite similarities with the case in [1, 6], the relation in (13) is not

simple to analyze due to the asymmetry in H̄ and the complexity

of its eigen-structure. For this reason, we proceed by taking the

Laplace transform of (12) (assuming H𝑘 = H𝑘 (𝑡) = H𝑘 (0)) which
after straightforward manipulations gives:

𝚫
(𝑘 ) (𝑠) = (𝑠I + 𝜆H𝑘 )−1

[
𝜹 (𝑘 ) (0) − 𝑎𝑘√

𝑚
H𝑘𝚫(𝑠)

]
,

𝚫(𝑠) = (I + T(𝑠))−1
∑
𝑘

(𝑠I + 𝜆H𝑘 )−1𝜹 (𝑘 ) (0), (14)

where 𝚫
(𝑘 ) (𝑠) and 𝚫(𝑠) are respectively the Laplace transforms of

𝜹 (𝑘 ) (𝑦) and 𝜹 (𝑡).
Hence, 𝜹 (𝑡) is given by taking the inverse Laplace transform of

𝚫(𝑠). Note that by construction, 𝚫(𝑠) is a rational function, which

shows the finite order of the dynamics. To find the inverse Laplace

transform, we only need to find the poles of 𝚫(𝑠). These poles can
only be either among the eigenvalues ofH𝑘 or the values−𝑝𝑘 where

the matrix I + T(𝑠) becomes rank deficient. Under Assumption 1

and 2, we may conclude that the poles are only −𝑝𝑘 , which gives

the result in Theorem 1 and 2. More details of this approach can be

found in the Section 6, where the kernel hypothesis for this case is

also rigorously proved.

5 EXPERIMENTAL RESULTS
In this section we present validation for the main results in the

paper which helps understanding the theorems and reinforces them.

We perform our numerical analysis on a commonly-used dataset for

validating deep neural models, i.e., CIFAR-10. This dataset is used

for the experiments in [1]. As in [1], we only look at the first two

classes and set the label 𝑦𝑖 = +1 if image 𝑖 belongs to the first class

and 𝑦𝑖 = −1 if it belongs to the second class. The images {𝑥𝑖 }𝑛𝑖=1

are normalized such that | |𝒙𝑖 | |2 = 1 for all 𝑖 = 1, . . . , 𝑛. The weights

in our model are initialized as follows:

𝒘𝑖 ∼ N(0, 𝑘2
I), 𝑎𝑟 ∼ Unif({−1, 1}),∀𝑟 ∈ [𝑚] . (15)

For optimization, we use (full batch) gradient descent with the

learning rate 𝜂. In our experiments we set 𝑘 = 10
−2, 𝜂 = 2 × 10

−4

similar to [1]. In all of our experiments we use 100 hidden neurons

for the teacher network and 20 hidden neurons for the student

network.

(a) Training loss (b) Test loss

(c) Training loss (d) Test loss

Figure 1: Dynamics of knowledge transfer (a,b) and Effect of
different regularization 𝜆 (c,d).

5.1 Dynamics of knowledge transfer
The experiments in this section show the theoretical justification (in

Theorem 3.1 and 3.2) of the experimentally well-studied advantage

of a teacher. We study knowledge transfer in different settings.

We first consider a finite regularization in Eq. 2 by setting 𝜆 =

0.01. Figures 1(a) and 1(b) show the dynamics of the results in

different settings, i) no teacher, i.e., the student is independently

trained without access to a teacher, ii) student training, where the

student is trained by both the teacher and the true labels according

to Eq. 2, and iii) the teacher, trained by only the true labels. For
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each setting, we illustrate the training loss and the test loss. The

horizontal axes in the plots show the number of iterations of the

optimizer. In total, we choose 50000 iterations to be sure of the

optimization convergence. This corresponds to the parameter 𝑟

of the dynamical system proposed in section 3.1. Note that true

labels are the same for the teacher and the students. Teacher shows

the best performance because of its considerably larger capacity.

On the other hand, we observe, i) for the student with access to

the teacher its performance is better than the student without

access to the teacher. This observation is verified by the result in

Theorem 3.1 that states the final performance of the student is a

weighted average of the performances of the teacher and of the

student with no teacher. This observation is also consistent with the

discussion in section 3.4, where the final performance of the student

is shown to improve with the teacher. ii) The convergence rate of

the optimization is significantly faster for the student with teacher

compared to the other alternatives. This confirms the prediction of

Theorem 3.2. This experiment implies the importance of a proper

knowledge transfer to the student network via the information

from the teacher.

In the followingwe study the effect of the regularization parameter

(𝜆) on the dynamics, when a teacher with a similar structure to

the student is utilized. The teacher is wider than the student and

randomly selected features of the teacher are used as the knowledge

𝜙𝑘 transferred to the student. Specifically, we study two special

cases of the generic formulation in Eq. 2 where 𝜆 → 0 and 𝜆 → ∞.

Figures 1(c) and 1(d) compare these two extreme cases with the

studentwith 𝜆 = 0.01 and the teacherw.r.t. training loss and test loss.

We observe that the student with a finite regularization (𝜆 = 0.01)

outperforms the two other students in terms of both convergence

rate (optimization speed) and the quality of the results. In particular,

when the student is trained with 𝜆 → ∞ and it is initialized with

the weights of the teacher, then the generic loss in Eq. 2 equals 0.

This renders the student network to keep its weights unchanged for

𝜆 → ∞ and the performance remains equal to that of the privileged

knowledge

∑
𝑘

𝑎𝑘√
𝑚
𝝓𝑘 without data labels.

(a) Training loss (b) Test loss

Figure 2: Dynamics of knowledge transfer with perfect and
imperfect teacher.

5.2 Dynamics of knowledge transfer with
imperfect teacher

In this section, we study the impact of the quality of the teacher

on the student network. We consider the student-teacher scenario

in three different settings, i) perfect teacher where the student is

initialized with the final weights of the teacher and uses the final

teacher outputs in Eq. 2, ii) imperfect teacher where the student

is initialized with the intermediate (early) weights of the teacher

network and uses the respective intermediate teacher outputs in Eq.

2, and iii) no student initialization where the student is initialized

randomly but uses the final teacher outputs. In all the settings, we

assume 𝜆 = 0.01.

Figure 2 shows the results for these three settings, respectively

w.r.t. training loss and test loss. We observe that initializing and

training the student with the perfect (fully trained) teacher yields

the best results in terms of both quality (training and test loss) and

convergence rate (optimization speed). This observation verifies

our theoretical analysis on the importance of initialization of the

student with fully trained teacher, as the student should be very

close to the teacher.

5.3 Kernel embedding
To provide the teacher and the studentwithmore relevant information

and to study the role of the data geometry (Theorem 3.2), we can

use properly designed kernel embeddings. Specifically, instead of

using the original features for the networks, we could first learn an

optimal kernel which is highly aligned with the labels in training

data, implicitly improving the combination of {𝛼 𝑗 } in Theorem 3.2

and then we feed the features induced by that kernel embedding

into the networks (both student and teacher).

For this purpose, we employ the method proposed in [4] that

develops an algorithm to learn a new kernel from a group of kernels

according to a similarity measure between the kernels, namely

centered alignment. Then, the problem of learning a kernel with

a maximum alignment between the input data and the labels is

formulated as a quadratic programming (QP) problem. The respective

algorithm is known as alignf [4].

Let us denote by 𝐾𝑐
the centered variant of a kernel matrix 𝐾 .

To obtain the optimal combination of the kernels (i.e., a weighted

combination of some base kernels), [4] suggests the objective function

to be centered alignment between the combination of the kernels

and𝑦𝑦𝑇 , where𝑦 is the true labels vector. By restricting the weights

to be non-negative, a QP can be formulated as minimizing 𝑣𝑇𝑀𝑣 −
2𝑣𝑇𝑎 𝑤.𝑟 .𝑡 . 𝑣 ∈ 𝑅𝑃+ where 𝑃 is the number of the base kernels and

𝑀𝑘𝑙 = ⟨𝐾𝑐
𝑘
, 𝐾𝑐

𝑙
⟩𝐹 for 𝑘, 𝑙 ∈ [1, 𝑃], and finally 𝑎 is a vector wherein

𝑎𝑖 = ⟨𝐾𝑐
𝑖
, 𝑦𝑦𝑇 ⟩𝐹 for 𝑖 ∈ [1, 𝑃]. If 𝑣∗ is the solution of the QP, then

the vector of kernel weights is given by 𝜇∗ = 𝑣∗/∥𝑣∗∥ [4, 7].
Using this algorithm we learn an optimal kernel based on seven

different Gaussian kernels. Then, we need to approximate the kernel

embeddings. To do so, we use the Nyström method [19]. Then we

feed the approximated embeddings to the neural networks. The

results in Figure 3 show that using the kernel embeddings as inputs

to the neural networks, helps both teacher and student networks

in terms of training loss (Figure 3(a)) and test loss (Figure 3(b)).

5.4 Spectral analysis
Here, we investigate the overlap parameter of different networks,

where we compute a simplified but conceptually consistent variant

of the overlap parameter 𝛼 𝑗 in theorem 3.2. For a specific network,

we consider the normalized columns of matrix𝜙 (as defined in Eq. 2)

corresponding to the nonlinear outputs of the hidden neurons, and

compute the dot product of each column with the top eigenvectors

of H∞
, and take the average. We repeat this for all the columns and
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(a) Training loss (b) Test loss

Figure 3: Dynamics of knowledge transfer with teacher
trained using kernel embedding.

depict the histogram. For a small value of 𝜆, the resulting values

are approximately equal to {𝛼 𝑗 } in Theorem 3.2.

Figure 4 shows such histograms for two settings. In Figure 4(a)

we compare the overlap parameter for two teachers, one trained

partially (imperfect teacher) and the other trained fully (perfect

teacher). We observe that the overlap parameter is larger for the

teacher trained perfectly, i.e., there is more consistency between

its outputs 𝜙 and the matrix H∞
. This analysis is consistent with

the results in Figure 2 which demonstrates the importance of fully

trained (perfect) teacher. In Figure 4(b), we show that this improvement

is transferred to the student.

(a) Teachers (b) Students

Figure 4: Spectral analysis of teachers (4(a)) and students
(4(b)) in different settings.

6 PROOFS
6.1 Elaborations on Assumptions
Our analysis will also be built upon a number of assumptions:

Assumption 1. Nonzero eigenvalues of the matrices {H𝑘 } are all
distinct. Note that they are always strictly positive as {H𝑘 } are by
construction positive semi-definite (psd).

Assumption 2. The values of 𝑝1, 𝑝2, . . . , 𝑝𝑑 are all distinct and
different to the eigenvalues of {H𝑘 }.

Assumption 3. The function 𝜎 and its derivative 𝜎′ are Lipschitz
continuous.

Assumption 4. We assume𝑚 → ∞, such that ∥𝝓𝑘 − f𝑘 (0)∥ =

𝑂 (1/
√
𝑚) and ∥y − ∑

𝑘

a𝑘𝜙𝑘√
𝑚

∥ = 𝑂 (1).

Assumption 5. ∥x𝑖 ∥s and 𝑎𝑘 s are bounded.

Assumption 6.

∑
𝑘

𝑎2

𝑘

𝑚̄ ∥𝝓𝑘 ∥2 is bounded.

Assumption 1-5 are required for Theorem 1. Assumption 1-6 are

required for Theorem 3.

In practice, these assumptions are mild, as we elaborate in the

following:

1. Assumption 1 and 2 are equivalent to assuming that all eigenvalues

of H̄, defined in the concluding lines of section 4.1, are distinct. Note
that H̄ depends on the data and hence inherits its random nature.

Accordingly, the event that such a randommatrix has an eigenvalue

with multiplicity is “zero-measure”, i.e almost impossible in reality.

2. Assumption 3 holds for virtually every popular activation functions,

including ReLU and Sigmoid.

3. Assumption 4 is equivalent to the scenario in the experiments of

section 5.3, referred to as almost perfect initialization of student by
teacher. Note that it can be rather viewed as a design specification

and our experiments verify its merits. The other experiments of

section 5.3 identify another consistent (but still weaker) scenario,

beyond this assumption.

4. Assumptions 5 can be easily be imposed by normalizing the data.

Similar assumptions also exist in [1, 6], but ours are slightly weaker.

for example, they merely assume binary values for 𝑎𝑘 .

5. Assumption 6 is also very mild. For the student-teacher scenario

for example, it requires the features of the teacher to be bounded

in the ℓ2 sense, which is met by standard network architectures.

6.2 Proof of Theorem 1 and 2
We continue the discussion in (12 of paper) and remind that 𝜎max is

the largest singular value of matrices and ∥∥ means the 2-norm of

vectors. Note that the values 𝑠 = −𝑝𝑖 correspond to the points where
det(I + T(𝑠)) = 0. We also observe that these values correspond to

the negative of eigenvalues of the matrix H̄(𝑡 = 0). We conclude

that under assumption 2, the eigenvalues of H̄ = H̄(𝑡 = 0) are
distinct and strictly positive, hence this matrix is diagonalizable.

Now, we write H̄(𝑡) = H̄ + ΔH̄(𝑡) and state the following lemma:

Lemma 6.1. Suppose that H̄ is a diagonalizable matrix with strictly
positive eigenvalues and denote its smallest eigenvalue by 𝑝 . Take
ΔH̄(𝑡) as a matrix valued function of the continuous valiable 𝑡 such
that for a given fixed value of 𝑡

𝑞 = 𝑞(𝑡) =
sup

𝜏∈[0 𝑡 ]
𝜎max (ΔH̄(𝜏))

𝑝
< 1

Let 𝜼(𝑡) denote the solution to d𝜼/d𝑡 (𝑡) = −H̄(𝑡)𝜼(𝑡), with H̄(𝑡) =

H̄ + ΔH̄(𝑡). Then,
𝑡∫

0




𝜼(𝜏) − 𝑒−H̄𝜏𝜼(0)


 d𝜏 ≤ 𝑞∥𝜼(0)∥
𝑝 (1 − 𝑞)

Proof. Consider the iteration 𝜼𝑟+1 = T𝜼𝑟 that generates a

sequence of function functions 𝜼𝑟 (𝑡) for 𝑟 = 0, 1, . . . where 𝜼𝑟 (0) =
𝑒−H̄𝑡𝜼(0) and 𝜼′ = T𝜼 is the solution to

d

d𝑡
𝜼′ (𝑡) = −H̄𝜼′ (𝑡) − ΔH̄(𝑡)𝜼(𝑡) (16)

with 𝜼′ (0) = 𝜼(0), which can also be written as

𝜼′ (𝑡) = 𝑒−H̄𝑡𝜼(0) −
𝑡∫

0

𝑒−H̄(𝑡−𝜏 )ΔH̄(𝜏)𝜼(𝜏)d𝜏 (17)
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We observe that T on the interval [0 𝑡] is a contraction map under

𝐿1 norm as we have

Δ𝜼′ (𝑡) = −
𝑡∫

0

𝑒−H̄(𝑡−𝜏 )ΔH̄(𝜏)Δ𝜼(𝜏)d𝜏 (18)

and hence by the triangle inequality , we get

∥Δ𝜼′ (𝑡)∥2 ≤ sup

𝜏∈[0 𝑡 ]
𝜎max (ΔH̄(𝜏)) ×

𝑡∫
0

𝑒−𝑝 (𝑡−𝜏 ) ∥Δ𝜼(𝜏)∥2d𝜏 (19)

we conclude that

𝑡∫
0

∥Δ𝜼′ (𝜏)∥2d𝑡 ≤

sup

𝜏∈[0 𝑡 ]
𝜎max (ΔH̄(𝜏)) ×

𝑡∫
0

1 − 𝑒−𝑝 (𝑡−𝜏 )
𝑝

∥Δ𝜼(𝜏)∥2

≤ 𝑞
𝑡∫

0

∥Δ𝜼(𝜏)∥2d𝑡

which shows that T is a contraction. Then, from Banach fixed-point

theorem we conclude that 𝜼𝑟 converges uniformly on the interval

[0 𝑡] to the fixed-point 𝜼 of T , which coincides with the solution

of (14 in paper). Moreover,

𝑡∫
0

∥𝜼 − 𝜼0 (𝜏)∥2d𝜏 ≤

𝑡∫
0

∥𝜼1 (𝜏) − 𝜼0 (𝜏)∥2d𝜏

1 − 𝑞

Now, we observe that

𝜼1 (𝑡) − 𝜼0 (𝑡) = −
𝑡∫

0

𝑒−H̄(𝑡−𝜏 )ΔH̄(𝜏)𝑒−H̄(𝜏 )𝜼(0)d𝜏

Hence,

∥𝜼1 (𝑡) − 𝜼0 (𝑡)∥ ≤
𝑡∫

0

𝑒−𝑝 (𝑡−𝜏 )𝜎max (ΔH̄(𝜏))𝑒−𝑝𝜏 ∥𝜼(0)∥d𝜏

≤ 𝑡𝑒−𝑝𝑡 sup

𝜏∈[0 𝑡 ]
𝜎max (ΔH̄(𝜏))∥𝜼(0)∥

and

𝑡∫
0

∥𝜼1 (𝜏) − 𝜼0 (𝜏)∥d𝜏 ≤

sup

𝜏∈[0 𝑡 ]
𝜎max (ΔH̄(𝜏))∥𝜼(0)∥

𝑡∫
0

𝜏𝑒−𝑝𝜏d𝜏 ≤ 𝑞

𝑝
∥𝜼(0)∥

which completes the proof. □

Now, we state two results that connect 𝜎max (𝚫H) to the change

of w𝑘 (𝑡):

Lemma 6.2. Under Assumption 3, the following relation holds:

𝜎max (H̄(𝑡)) ≤
√

2

√√√√
𝜆2 +

(∑︁
𝑘

𝑎2

𝑘

𝑚

)
2

max

𝑘
𝜎max (ΔH𝑘 (𝑡)) (20)

where ΔH𝑘 (𝑡) = H𝑘 (𝑡) − H𝑘 (0).

Proof. Take an arbitrary block vector 𝜼 = [𝜹𝑘 ]𝑘 with ∥𝜼∥ = 1

and note that

∥ΔH̄(𝑡)𝜼∥2 =
∑︁
𝑘

∥ΔH𝑘 (𝑡) (
𝑎𝑘√
𝑚
𝜹 + 𝜆𝜹𝑘 )∥2

≤ 2 max

𝑘
𝜎2

max
(ΔH𝑘 (𝑡))

∑︁
𝑘

(
𝑎2

𝑘

𝑚
∥𝜹 ∥2 + 𝜆∥𝜹𝑘 ∥2

)
= 2 max

𝑘
𝜎2

max
(ΔH𝑘 (𝑡))

(
∥𝜹 ∥2

∑︁
𝑘

𝑎2

𝑘

𝑚
+ 𝜆2

)
,

where 𝜹 =
∑
𝑘

𝑎𝑘√
𝑚
𝜹𝑘 . We obtain the desired result by observing that

∥𝜹 ∥2 =






∑︁
𝑘

𝑎𝑘√
𝑚
𝜹𝑘






2

≤
(∑︁
𝑘

𝑎2

𝑘

𝑚

) ∑︁
𝑘

∥𝜹𝑘 ∥2 =
∑︁
𝑘

𝑎2

𝑘

𝑚
.

□

Next, we show

Lemma 6.3. We have

𝜎max (ΔH𝑘 (𝑡)) ≤ 𝐿2𝜎2

𝑥 max

𝑖
∥x𝑖 ∥2×

∥w𝑘 (𝑡) −w𝑘 (0)∥(∥w𝑘 (𝑡) −w𝑘 (0)∥ + 2∥w𝑘 (0)∥)
where 𝜎𝑥 is the maximal eigenvalue of the the data matrix X =

[x1 x2 . . . x𝑛] and 𝐿 is the largest of the Lipschitz constants of 𝜎, 𝜎′.

Proof. Note that since ΔH𝑘 is symmetric, we have (e.g. by eigen-

decomposition)

𝜎max (ΔH𝑘 (𝑡)) = max

𝜹 | ∥𝜹 ∥=1

|𝜹𝑇ΔH𝑘 (𝑡)𝜹 |

Taking an arbitrary normalized 𝜹 , we observe that

𝜹𝑇ΔH𝑘 (𝑡)𝜹 =
��∥L(w𝑘 (𝑡))𝜹 ∥2 − ∥L(w𝑘 (0))𝜹 ∥2

��
On other hand,

L(w𝑘 (𝑡))𝜹 = L(w𝑘 (0))𝜹 +
∑︁
𝑖

x𝑖𝜎𝑖𝛿𝑖 ,

where 𝜎𝑖 = 𝜎
′ (w𝑘 (𝑡)𝑇 x𝑖 ) − 𝜎′ (w𝑘 (0)𝑇 x𝑖 ). Hence,

𝜹𝑇ΔH𝑘 (𝑡)𝜹 ≤





∑︁

𝑖

x𝑖𝜎𝑖𝛿𝑖






2

+ 2






∑︁
𝑖

x𝑖𝛿𝑖𝜎𝑖






 ∥L(w𝑘 (0))𝜹 ∥

We also observe that




∑︁
𝑖

x𝑖𝜎𝑖𝛿𝑖






 ≤ 𝜎𝑥
√︄∑︁

𝑖

𝛿2

𝑖
𝜎2

𝑖

and from Lipschitz continuity,

𝜎2

𝑖 ≤ 𝐿2⟨x𝑖 ,w𝑘 (𝑡) −w𝑘 (0)⟩2 ≤ 𝐿2∥x𝑖 ∥2∥w𝑘 (𝑡) −w𝑘 (0)∥2

We conclude that




∑︁
𝑖

x𝑖𝜎𝑖𝛿𝑖






 ≤ 𝐿𝜎𝑥 ∥w𝑘 (𝑡) −w𝑘 (0)∥ × max

𝑖
∥x𝑖 ∥
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Similarly, we obtain

∥L(w𝑘 (0))𝜹 ∥ ≤ 𝐿𝜎𝑥 × max

𝑖
∥x𝑖 ∥

which completes the proof. □

We finally connect the magnitude of the change w𝑘 (𝑡) −w𝑘 (0)
to 𝜹𝑘 :

Lemma 6.4. With the same definitions as in Lemma 3, we have

∥w𝑘 (𝑡) −w𝑘 (0)∥ ≤ |𝑎𝑘 |√
𝑚
𝐿𝜎𝑥 max

𝑖
∥x𝑖 ∥

𝑡∫
0

∥𝜹𝑘 (𝜏)∥d𝜏 (21)

Proof. Note that w𝑘 (𝑡) − w𝑘 (0) = − 𝑎𝑘√
𝑚

𝑡∫
0

L(w𝑘 (𝜏))𝜹𝑘 (𝜏)d𝜏

and hence ∥w𝑘 (𝑡) −w𝑘 (0)∥ ≤ |𝑎𝑘 |√
𝑚

𝑡∫
0

∥L(w𝑘 (𝜏))𝜹𝑘 (𝜏)∥d𝜏 From a

similar argument as in Lemma 3, we have

∥L(w𝑘 (𝜏))𝜹𝑘 (𝜏)∥ ≤ 𝐿𝜎𝑥 max

𝑖
∥x𝑖 ∥∥𝜹𝑘 (𝜏)∥

which completes the proof. □

We may now proceed to the proof of Theorem 1 and 2. Define

𝑇 = {𝑡 | ∀𝜏 ∈ [0 𝑡]; 𝑞(𝜏) < 1

2

}

Note that 𝑇 is nonempty as 0 ∈ 𝑇 and open since 𝑞 is continuous.

We show that for sufficiently large𝑚, 𝑇 = [0,∞). Otherwise 𝑇 is

an open interval [0 𝑡0) where 𝑞(𝑡0) = 1

2
. For any 𝑡 ∈ 𝑇 , we have

from Lemma 1

𝐴 =

𝑡∫
0

∥𝜼(𝜏)∥d𝜏 ≤
(

1 − 𝑒−𝑝𝑡
𝑝

+ 𝑞

𝑝 (1 − 𝑞)

)
∥𝜼(0)∥ ≤ ∥𝜼(0)∥

𝑝 (1 − 𝑞)

Denote 𝑏 = max

𝑘
|𝑎𝑘 | and 𝐵 = max

𝑖
∥x𝑖 ∥. We further define 𝐶 =

√
2

𝑝 𝐿
3𝜎3

𝐵
𝑥3𝑏

√
𝜆2 + 𝑎2 . Then Lemma 2,3 and 4 give us 𝑞 ≤ 𝐶𝐴√

𝑚
.We

conclude that

𝑞(𝑡) ≤ 𝐶 ∥𝜼(0)∥
𝑝 (1 − 𝑞(𝑡))

√
𝑚

Note that by Assumption 4, we have

𝜹𝑘 (0) =
𝑎𝑘

(𝜆 + 𝑎)
√
𝑚

(y −
∑︁
𝑘

𝑎𝑘𝝓𝑘√
𝑚

) + 𝝓𝑘 − f𝑘 (0) = 𝑂 (1/
√
𝑚)

and hence 𝜼(0) = 𝑂 (1). This shows that there exists a constant 𝐶0

such that 𝑞(𝑡) (1 − 𝑞(𝑡)) ≤ 𝐶0√
𝑚

for 𝑡 ∈ 𝑇 . But for large values of𝑚
this is in contradiction to𝑞(𝑡0) = 1/2. Hence, for such values 𝑡0 does

not exist and 𝑞(𝑡) < 1/2 for all 𝑡 . We conclude that for sufficiently

large values of𝑚 we have 𝑞(𝑡) < 3𝐶0/
√
𝑚 for all 𝑡 . Then, according

to Lemma 1 and the monotone convergence theorem, we have

∞∫
0




𝜼(𝜏) − 𝑒−H̄𝜏𝜼(0)


 d𝜏 = 𝑂 ( 1

√
𝑚
)

This shows that

lim

𝑡→∞
∥𝜼(𝑡) − 𝑒−H̄𝑡𝜼(0)∥ = 0

Note that as H̄ is diagonalizable and has strictly positive eigenvalues,

we get that

lim

𝑡→∞
𝑒−H̄𝑡𝜼(0) = 0,

which further leads to

lim

𝑡→∞
𝜼(𝑡) = 0,

This proves Theorem 1. For Theorem 2, we see that

𝜼(𝑡) = 𝑒−H̄𝑡𝜼(0) +𝑂 (1/
√
𝑚)

It suffices to show that the expression in Theorem 2 coincides with

𝑒−H̄𝑡𝜼(0). This is simple to see through the following lemma:

Lemma 6.5. According to Assumption 2, the right and left eigenvectors
of H̄ corresponding to 𝑝 𝑗 are respectively given by vectors 𝜼r

𝑗
= [v𝑗

𝑘
]𝑘

and 𝜼l

𝑗
= [u𝑗

𝑘
]𝑘 , where v

𝑗

𝑘
=

𝑎𝑘√
𝑚
(𝑝 𝑗 I − 𝜆H𝑘 )−1H𝑘v𝑗 and u𝑗

𝑘
=

𝑎𝑘√
𝑚
(𝑝 𝑗 I − 𝜆H𝑘 )−1u𝑗 . Moreover, v𝑗 =

∑
𝑘

𝑎𝑘√
𝑚
v𝑗
𝑘
.

Proof. According to the definition of H̄, we have that

H𝑘 (
𝑎𝑘√
𝑚
v + 𝜆v𝑗

𝑘
) = 𝑝v𝑗

𝑘

where v =
∑
𝑘

𝑎𝑘√
𝑚
v𝑗
𝑘
which gives v𝑗

𝑘
=

𝑎𝑘√
𝑚
(𝑝 𝑗 I − 𝜆H𝑘 )−1H𝑘v

Replacing this expression in the definition of v shows that v = v𝑗 .
The case for u𝑗

𝑘
is similarly proved. □

Theorem 2 simply follows by replacing the result of Lemma 5 to

the eigen-decomposition of 𝑒−H̄𝑡 :

𝑒−H̄𝑡 =
∑︁
𝑗

𝑒−𝑝 𝑗 𝑡 | 𝜼r

𝑗 ⟩⟨𝜼
l

𝑗 |

6.3 Proof of Theorem 3
Note that for 𝑝 = 𝑝 𝑗 there exists an eigen vector v of T(−𝑝) such
that v𝑇 T(−𝑝)v = −1. This leads to −1 =

∑
𝑘

𝑎2

𝑘

𝑚 v𝑇 (−𝑝I + 𝜆H𝑘 ) H𝑘v.

If the result does not hold, we have that −𝑝I + 𝜆H𝑘 ⪰ 0. Hence,
the right hands side is non-negative, as H𝑘 is also psd and the

two matrices commute, leading to a contradiction. This proves the

result.

7 CONCLUSIONS
We give a theoretical analysis of knowledge transfer for non–

linear neural networks in the model and regime of [1, 2, 5] which

yields insights on both privileged information and knowledge

distillation paradigms. We provide results for both what is learnt by

the student and on the speed of convergence. We further provide a

discussion about the effect of knowledge transfer on generalization.

Our numerical studies further confirm our theoretical findings

on the role of data geometry and knowledge transfer in the final

performance of student.
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