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A B S T R A C T   

The preference for the axial dipole in planetary dynamos is investigated through the analysis of wave motions in 
spherical dynamo models. Our study focuses on the role of slow magnetostrophic waves, which are generated 
from localized balances between the Lorentz, Coriolis and buoyancy (MAC) forces. Since the slow waves are 
known to intensify with increasing field strength, simulations in which the field grows from a small seed towards 
saturation are useful in understanding the role of these waves in dynamo action. Axial group velocity mea-
surements in the energy-containing scales show that fast inertial waves slightly modified by the magnetic field 
and buoyancy are dominant under weak fields. However, the dominance of the slow waves is evident for strong 
fields satisfying ∣ωM/ωC∣ ∼ 0.1, where ωM and ωC are the frequencies of the Alfvén and inertial waves respec-
tively. A MAC wave window of azimuthal wavenumbers is identified in which helicity generation by the slow 
waves strongly correlates with dipole generation. Analysis of the magnetic induction equation suggests a 
poloidal–poloidal field conversion in the formation of the dipole. Finally, the attenuation of slow waves may 
result in polarity reversals in a strongly driven Earth’s core.   

1. Introduction 

Planetary dynamos are driven by thermochemical convection in 
their fluid cores. The axial dipole dominates a large region of the 
parameter space in convection-driven dynamos where the effect of 
planetary rotation, measured by the Coriolis forces, is large relative to 
that of both nonlinear inertia and viscosity (Sreenivasan and Jones, 
2006; Schaeffer et al., 2017). Rapid rotation produces anisotropic con-
vection with equatorially antisymmetric axial motions, the helicity of 
which is thought to be essential for dynamo action (Moffatt, 1978). A 
long-standing question in planetary dynamo theory is whether the 
preference for the axial dipole is due to a purely hydrodynamic process 
influenced by rotation or due to a magnetohydrodynamic process 
influenced by both rotation and the self-generated magnetic field. 
Answering this question would also help us constrain the parameter 
space that admits polarity reversals in strongly driven dynamos (e.g. 
Sreenivasan et al., 2014). 

An early study by Busse (1976) used the linear theory of magneto-
convection to explore the onset of dynamo action in an annulus. Busse 
found that the effect of a magnetic field on convection enhanced mag-
netic field generation. This interesting idea was explored further by 

Sreenivasan and Jones (2011) who showed that the presence of a 
magnetic field substantially enhanced the kinetic helicity of columnar 
convection. They considered linear magnetoconvection in a spherical 
shell in the rapidly rotating limit E→0, where E is the Ekman number 
that gives the ratio of viscous to Coriolis forces. Although the spatially 
varying magnetic field in a nonlinear dynamo does not substantially 
lower the threshold for convective onset relative to that in the 
nonmagnetic system, a substantial enhancement of helical convection 
occurs in the neighbourhood of the length scale of energy injection 
(Sreenivasan and Kar, 2018). The growth of convection is notably absent 
in a kinematic dynamo, which fails to produce the axial dipole with the 
same parameters and initial conditions. While nonlinear dynamo models 
strongly relate field-induced helicity generation in the energy- 
containing scales to dipole formation, the primary force balance in 
these scales is known to be approximately geostrophic (Aurnou and 
King, 2017; Aubert et al., 2017), which raises the question of how the 
field acts on these scales so as to enhance helicity. The present study 
addresses this question by analyzing wave motions in the energy- 
containing scales in planetary dynamo models. 

Wave motions in planetary cores arise from the effects of rotation, 
magnetic field and buoyancy. Torsional oscillations propagating radially 
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at the Alfvén speed across concentric cylinders have been simulated in 
low-inertia numerical models of the geodynamo (Wicht and Christensen, 
2010; Teed et al., 2014). Non-axisymmetric Alfvén waves propagating 
along the cylindrical radius are conceivable (Jault, 2008; Bardsley and 
Davidson, 2016; Aubert and Finlay, 2019) since the convection is made 
up of thin columns aligned with the rotation axis. Slow Magneto-Coriolis 
(MC) Rossby waves, thought to produce the westward drift of the Earth’s 
magnetic field, have been realized in dynamo simulations (Hori et al., 
2015). While convection can onset in the form of Alfvén waves in a non- 
rotating Bénard layer (Roberts and Zhang, 2000), the planetary regime 
of strong rotation can support convection through fast and slow 
Magnetic-Archimedean-Coriolis (MAC) waves. The fast MAC waves are 
inertial waves weakly modified by the magnetic field and buoyancy; the 
slow MAC, or magnetostrophic, waves are slow MC waves modified by 
buoyancy (Braginsky, 1967; Busse et al., 2007). Buoyancy-driven fast 
inertial waves generate and segregate oppositely signed helicity in 
spherical dynamos (Ranjan et al., 2018). That said, the intensity of slow 
MAC wave motions would be comparable to that of the fast waves for ∣ 
ωM/ωC∣ ∼ 0.1, where ωM and ωC are the Alfvén wave and inertial wave 
frequencies respectively (Sreenivasan and Maurya, 2021). Here, we 
examine the role of the slow MAC waves in helicity generation in the 
energy-containing scales of the dynamo, and hence in axial dipole for-
mation. While earlier studies have related axisymmetric MAC waves in 
the stably stratified layer at the top of the core to the decadal oscillations 
in the Earth’s field (Buffett et al., 2016), the focus of the present study is 
to relate non-axisymmetric MAC waves in an unstably stratified core to 
the formation of the dipole field. Because slow MAC waves intensify 
with increasing field strength, a nonlinear simulation in which the field 
grows from a small seed towards saturation would help us understand 
when the slow waves have a dominant presence alongside the fast waves 
in the dynamo. 

Parker (1955) proposed that cyclonic motions arising from convec-
tion can generate a poloidal magnetic field from a toroidal field. Nu-
merical dynamo simulations (Olson et al., 1999; Kageyama and Sato, 
1997) lend support to this mechanism for poloidal field generation in the 
cores of Earth and other planets. While Takahashi and Shimizu (2012) 
and Penña et al. (2018) performed a detailed analysis of terms in the 
magnetic induction equation, the present study examines the dominant 
term contributions to the axial dipole field and brings out the differences 
between kinematic and nonlinear dynamos in this respect. 

In Section 2, we describe the dynamo model and define the main 
dimensionless parameters used in this study. Section 3 builds on a recent 
study that suggested field-induced helicity generation in the relatively 
large scales of the dynamo (Sreenivasan and Kar, 2018) and shows 
through force balances that local magnetostrophy can exist in these 
scales where the Lorentz forces are small in the global balance. Section 4 
analyses the fundamental frequencies in the dynamo and shows that the 
MAC wave window of azimuthal wavenumbers is indeed where the axial 
dipole is predominantly generated. In Section 5, the slow MAC waves in 
nonlinear dynamo simulations are identified by group velocity mea-
surements. Section 6 gives the contributions to the axial dipole of the 
dominant terms in the induction equation in nonlinear and kinematic 
dynamo simulations. In conclusion, the main results of this study are 
summarized and its implications for polarity reversals in strongly driven 
dynamos are discussed. 

2. Numerical dynamo model 

We consider dynamo action in an electrically conducting fluid 
confined between two concentric, corotating spherical surfaces that 
correspond to the inner core boundary (ICB) and the CMB. The ratio of 
inner to outer radius is 0.35. Fluid motion is driven by thermal 
buoyancy-driven convection, although our set of equations may also be 
used to study thermochemical convection using the codensity formula-
tion (Braginsky and Roberts, 1995). The other body forces acting on the 
fluid are the Lorentz force, arising from the interaction between the 

induced electric currents and the magnetic fields and the Coriolis force 
originating from the background rotation. The governing equations are 
those in the Boussinesq approximation (Kono and Roberts, 2002). 
Lengths are scaled by the thickness of the spherical shell L, and time is 
scaled by the magnetic diffusion time, L2/η, where η is the magnetic 
diffusivity. The velocity field u is scaled by η/L, the magnetic field B is 
scaled by (2Ωρμη)1/2 where Ω is the rotation rate, ρ is the fluid density 
and μ is the magnetic permeability. The root mean square (rms) and 
peak values of the scaled magnetic field (Elsasser number Λ) are outputs 
derived from our dynamo simulations, where the mean is a volume 
average. 

The non-dimensional magnetohydrodynamic (MHD) equations for 
the velocity, magnetic field and temperature are given by, 

EPm− 1
(

∂u
∂t

+ (∇ × u) × u
)

+ ẑ × u = − ∇p⋆ + RaPmPr− 1 T r

+(∇ × B) × B + E∇2u,
(1)  

∂B
∂t

= ∇×(u×B)+∇2B, (2)  

∂T
∂t

+(u⋅∇)T = PmPr− 1 ∇2T, (3)  

∇⋅u = ∇⋅B = 0, (4) 

The modified pressure p* in eq. (1) is given by p+ EPm− 1 |u|2. The 
dimensionless parameters in the above equations are the Ekman number 
E = ν/2ΩL2, the Prandtl number, Pr = ν/κ, the magnetic Prandtl 
number, Pm = ν/η and the modified Rayleigh number gαLΔT/2Ωκ. Here, 
g is the gravitational acceleration, ν is the kinematic viscosity, κ is the 
thermal diffusivity and α is the thermal expansion coefficient. 

The basic-state temperature profile represents a basal heating given 
by T0(r) = β/r, where β is a constant. We set isothermal conditions at 
both boundaries. The velocity and magnetic fields satisfy the no-slip and 
electrically insulating conditions, respectively. The calculations are 
performed by a pseudospectral code that uses spherical harmonic ex-
pansions in the angular coordinates (θ,ϕ) and finite differences in radius 
r (Willis et al., 2007). 

For the Ekman numbers E ∼ 10− 5–10− 6 used in this study, the values 
of Pm chosen (Table 1) are greater than the critical values prescribed for 
strong-field numerical dynamos (Dormy, 2016). Furthermore, our 
choice of Pm ensures that the inertial forces are small relative to the 
Coriolis forces in the equation of motion (Sreenivasan and Jones, 2006), 
an essential regime for rapidly rotating planetary cores. 

The convection-driven hydrodynamic dynamo is obtained by solving 
the equations for momentum, heat and magnetic field simultaneously, 
except that the Lorentz force is absent in the momentum equation. This 
dynamo is essentially kinematic in the sense that the back-reaction of the 
magnetic field on the flow is absent (see Ponty et al., 2001; Currie and 
Tobias, 2019). 

3. Helicity generation during magnetic field growth from a seed 

In line with earlier studies (Sreenivasan and Jones, 2011; Sreeniva-
san and Kar, 2018), we examine the evolution of the dynamo from an 
initial dipole-dominated seed magnetic field of intensity B̄ = 0.01. The 
initial velocity field is the same as that in the equivalent saturated non- 
magnetic run. The key output parameters of the simulations, given in 
Table 1, are time-averaged values in the saturated state of the dynamo. 
Here, the mean spherical harmonic degrees for convection and energy 
injection are defined by. 

lc =
ΣlEk(l)
ΣEk(l)

; lE =
ΣlET(l)
ΣET(l)

, (5)  

where Ek(l) is the kinetic energy spectrum and ET(l) is the spectrum 
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obtained from the product of urT and its conjugate. The local Rossby 
number Roℓ, which gives the ratio of inertial to Coriolis forces on the 
characteristic length scale of convection (Christensen and Aubert, 2006) 
takes values < 0.1 (Table 1), which indicates that nonlinear inertia is not 
significant in our calculations. 

The value of fdip, which measures the relative energy contained in the 
axial dipole (Christensen and Aubert, 2006), shows that the field loses its 
dipolar character and only regains it after passing through a non-dipolar 
phase (Fig. 1). The snapshots of the radial magnetic field at the outer 
boundary during this process can be found in a previous paper (Sree-
nivasan and Kar, 2018) and hence not reproduced here. By visual in-
spection of the radial field at the outer boundary, the dipole is said to 
have formed when the reverse flux patches in the Northern and Southern 
hemispheres disappear. All runs starting from a seed magnetic field 
produce an approximately dipolar field for fdip > 0.7. Dynamo satura-
tion occurs only later than dipole formation. The time for formation of 
dipole decreases at high Ra. The progressive increase of the magnetic 
field intensity during dynamo evolution is accompanied by an increase 
of the axial velocity in the “large” energy-containing scales. The scales 
are separated by the mean harmonic degree of energy injection, lE. There 
is little or no increase of the velocity in the scales l > lE. 

From Fig. 2, we note that the time of formation of the dipole roughly 
corresponds with the saturation of the axial velocity uz in the large 
scales. For the moderate forcing considered here (Ra/Rac ∼ 10), the 
extraction of kinetic energy from the small scales, due to the Lorentz 
force occurs only near the formation of the dipole. The magnetic field is 
fed by this kinetic energy but the growth of magnetic energy is not much 
due to this process. The extraction of energy occurs in a relatively short 
time. Thus, the growth of energy in the large scales and extraction of 
energy from the small scales remains fairly independent. We hypothe-
size that a quasi-linear wave excitation in the large scales of the dynamo 
would cause the enhancement of convective velocity over that in the 
equivalent nonmagnetic state. As the forcing is increased, the extraction 

of energy from the small scales happens before the formation of the 
dipole. This would mean that at higher Ra/Rac, the growth of magnetic 
field is partially fed by the kinetic energy from the small scales. 

The kinetic helicity u⋅ζ, where ζ is the vorticity, is considered to be an 
important quantity for dynamo action (e.g. Moffatt, 1978). Fig. 3 (a) and 
(b) show the enhancement of kinetic helicity in the large scales for the 
two dynamo simulations considered in Fig. 2. In cylindrical coordinates 
(s,ϕ, z), the magnetic field enhances the axial (z) and radial (s) parts of 
the helicity in equal measure (Sreenivasan and Jones, 2011). Therefore, 
the sum of the z and s parts of the helicity is considered. A notable 
finding is that the dipole forms from a chaotic multipolar state when the 
helicity in the large scales increases by a magnitude nearly equal to the 
initial helicity in these scales, associated with convection in the equiv-
alent nonmagnetic system. In the run at E = 1.2 × 10− 6 and Ra = 400, 
the kinetic energy computed from the s and z velocities is found to in-
crease by 90% of its initial value while the enstrophy (integral of the 
square of the vorticity) increases by 30%. Table 2 shows the sum of peak 
z and s helicity attained during the growth of the magnetic field for the 
lower half of the shell. For moderate Ra, the total helicity over all scales 
during the growth of the magnetic field is higher than the nonmagnetic 
value as extraction of kinetic energy from the small scales occurs only 
near the dipole formation time. This is illustrated in Fig. 3 (c), where at 
td = 0.26, peak helicity growth occurs such that the helicity in the dy-
namo exceeds the nonmagnetic helicity for all scales. By time td = 0.28 
(Fig. 3 (d)), energy extraction would begin and the helicity in the small 
scales would fall below the nonmagnetic values. By the time the dynamo 
reaches saturation, the helicity in the small scales would have fallen 
even further. The helicity deficit in the small scales dominates the hel-
icity generated in the large scales and therefore the total helicity in the 
saturated dynamo is always less than its nonmagnetic counterpart. For 
higher Ra, the total helicity would always be less than that in the 
nonmagnetic case as the energy extraction from the small scales occurs 
much before dipole formation. The helicity in the large scales would, 

Table 1 
Summary of the key input and output parameters in the dynamo simulations considered in the present study. Here, Nr is the number of radial grid points, lmax is the 
maximum spherical harmonic degree, B̄ is the volume-averaged root mean square value of the magnetic field, BP

10 is the poloidal axial dipole field, Rac is the critical 
Rayleigh number for the onset of nonmagnetic convection, Rm is the magnetic Reynolds number, lc and lE are the mean spherical harmonic degrees for convection and 
energy injection respectively (defined in (5)) and Roℓ is the local Rossby number. The values given in brackets are those for the reference nonmagnetic runs.  

S.No. E Ra Ra/Rac Pm Pr Nr lmax B̄ BP
10 Rm lc lE Roℓ 

a 1.2× 10− 5 220 4.2 5 5 120 100 0.7 0.30 105 21 (28) 20 (29) 8.42× 10− 4 

b 1.2× 10− 5 500 9.6 5 5 144 120 1.68 0.80 184 23 (34) 23 (32) 1.61× 10− 3 

c 1.2× 10− 5 1000 19.2 5 5 168 176 2.31 0.88 326 26 (35) 29 (37) 3.23× 10− 3 

d 1.2× 10− 5 2000 38.5 5 5 192 224 3.05 0.96 558 28 (39) 33 (40) 5.96× 10− 3 

e 1.2× 10− 5 5000 96.1 5 5 180 224 3.79 0.87 1218 31 (22) 42 (31) 1.44× 10− 2 

f 1.2× 10− 5 15,000 288.4 5 5 288 280 6.21 0.84 2710 33 (21) 46 (36) 3.41× 10− 2 

g 1.2× 10− 6 400 7.3 1 1 192 220 0.86 0.3 215 39 (43) 31 (49) 3.20× 10− 3  

Fig. 1. Evolution in time (measured in units of magnetic diffusion time) of the magnetic field intensity given by its volume averaged root mean square value, B̄ and 
fdip (a measure of the axial dipole strength). The axial dipole formation time, marked by the vertical dashed line, is at td = 0.125 in (a) and td = 0.28 in (b). 
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however, still exceed the helicity of the nonmagnetic case. 
Ranjan et al. (2020) show that the helicity source term due to the 

Lorentz force is negatively correlated with the overall helicity distri-
bution. They attributed the distribution of helicity in the core to inertial 
waves. No scale separation was performed, so the overall helicity for the 
saturated dynamo was lower than that for the nonmagnetic state. Their 
result is consistent with our analysis considering all scales (Table 2). To 
show that the slow MAC waves might cause the increase of dynamo 
helicity over the nonmagnetic value at scales l ≤ lE, one must first look at 
the scale-separated force balance in the dynamo. 

3.1. Scale-dependent balance of forces 

Dipole-dominated dynamos are known to exist in the so-called MAC 
regime where Lorentz, buoyancy and Coriolis forces are dominant 

(Sreenivasan and Jones, 2006) and the nonlinear inertial and viscous 
forces are negligible. The Lorentz forces may, however, be localized due 
to spatially inhomogeneous magnetic flux. In line with earlier studies 
(Sreenivasan and Jones, 2006), we examine the ratio of the Lorentz, 
Coriolis and buoyancy forces in the z vorticity equation to the highest 
force among them for two distinct ranges of the spherical harmonic 
degree. 

In the dynamo simulation at E = 1.2 × 10− 6 and Ra = 400, the Co-
riolis and buoyancy forces are in approximate balance for the relatively 
large scales l ≤ 31 (Fig. 4 (b) and (c)). However, as seen in Fig. 4(a), the 
Lorentz forces become significant in patches and balance the Coriolis 
forces. Therefore, localized excitation of slow MAC waves in these scales 
is anticipated. For the small scales of l > 100, the buoyancy forces are 
restricted to the outer periphery of the shell (Fig. 4 (e)). The dominant 
balance in these scales is between the Lorentz and Coriolis forces (Fig. 4 

Fig. 2. Root mean square value of the axial velocity uz for two ranges of spherical harmonic degree, l. The scales considered are l ≤ 23 (red) in (a) and l ≤ 31 (red) in 
(b), l > 23 (blue) in (a) and l > 31 (blue) in (b). The mean harmonic degree of energy injection lE serves as the basis for separation of scales. The vertical dashed lines 
indicate the dipole formation times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. (a) & (b) Sum of the axial (z) and 
radial (s) helicity < H > for the lower half of 
the spherical shell, plotted against time 
(measured in units of the magnetic diffusion 
time td). The scales considered are l ≤ 23 for 
(a) and l ≤ 31 for (b). The dynamo parame-
ters are Ra = 500, Pm = Pr = 5, E = 1.2 ×

10− 5 for (a) and Ra = 400, Pm = Pr = 1, 
E = 1.2 × 10− 6 for (b). The dashed vertical 
line indicates dipole formation time. (c) & 
(d) Distribution of helicity over spherical 
harmonic degree at two times near dipole 
formation for the simulation in (b).   
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(d) and 4 (f)). In either range of harmonic degrees, the nonlinear inertial 
and viscous forces are small compared with the other forces in the bulk 
of the volume, and hence not shown. 

Before discussing the role of the slow MAC waves in the dynamo, we 
examine the relative magnitudes of the fundamental frequencies and 
show that wave motions correlate with helicity generation and dipole 
formation in the energy-containing scales. 

4. MAC waves, helicity and dipole formation 

Forced MHD waves in planetary cores are produced by isolated 
density disturbances that evolve subject to background rotation and a 
mean magnetic field. For simplicity, we relate a density perturbation ρ′

to the temperature perturbation T′ by ρ′

= − ραT′ , where ρ is the 
ambient density and α is the coefficient of thermal expansion. The ve-
locity perturbation u′ produced by T′ interacts with the mean magnetic 
field to generate the induced field b

′

. For zero mean flow, the linearized 
equations for u′ , b

′

and T′ are solved by seeking plane wave solutions for 
the perturbation variables. In the diffusionless limit (ν = κ = η = 0), the 
following characteristic equation is obtained for the frequencies of the 
system (Busse et al., 2007; Sreenivasan and Maurya, 2021): 
(
ω2 − ω2

M − ω2
A

)(
ω2 − ω2

M

)
− ω2

Cω2 = 0, (6)  

where the fundamental frequencies ωM, ωA and ωC represent Alfvén 
waves, internal gravity waves and linear inertial waves respectively. In 
unstable stratification that drives planetary core convection, ω2

A < 0, 
where ∣ωA∣ is simply a measure of the strength of buoyancy. Although 
the magnetic field in the dynamo is time varying, wave motions can be 
analyzed in small time intervals where the ambient field is approxi-
mately steady. 

The dimensional frequencies ω2
M, − ω2

A and ω2
C in the dynamo are 

given by 

ω2
M =

(B⋅k)2

μρ , − ω2
A = gαβ

(
k2

z + k2
ϕ

k2

)

, ω2
C =

4(Ω⋅k)2

k2 ,

and scaling the frequencies by η/L2, we obtain in dimensionless units, 

ω2
M =

Pm
E
(B⋅k)2

, − ω2
A =

Pm2Ra
PrE

(
kz

2 + k2
ϕ

k2

)

, ω2
C =

Pm2

E2

k2
z

k2, (7)  

where ks, kϕ and kz are the radial, azimuthal and axial wavenumbers in 
cylindrical coordinates (s,ϕ, z), kϕ = m/s, where m is the spherical 
harmonic order, and k2 = k2

s + k2
ϕ + k2

z . Here, ωA is evaluated on the 
equatorial plane where the buoyancy force is maximum; ωM is based on 
the measured peak magnetic field in the dynamo. The wavenumber kϕ is 
evaluated at s = 1, approximately mid-radius of the spherical shell. 

For the inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣, the roots of eq. (6), 

ωf = ±
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
A + ω2

C + 2ω2
M +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω4
A + 2ω2

Aω2
C + 4ω2

Mω2
C + ω4

C

√√

, (8)  

ωs = ±
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
A + ω2

C + 2ω2
M −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω4
A + 2ω2

Aω2
C + 4ω2

Mω2
C + ω4

C

√√

. (9)  

represent the fast (f) and slow (s) MAC waves. While the fast waves are 
linear inertial waves weakly modified by the magnetic field and buoy-
ancy, the slow waves are magnetostrophic (Braginsky, 1967; Acheson 
and Hide, 1973; Busse et al., 2007). 

In fig. 5(a) and (b), the magnitudes of the fundamental frequencies 
are shown as a function of the azimuthal wavenumber m. Two times are 
analyzed in the growth phase of the dynamo run at E = 1.2× 10− 6, Ra =

400 and Pr = Pm = 1. The frequencies are computed from (7) using the 
mean values of the s and z wavenumbers. For example, real space 
integration over (s,ϕ) gives the kinetic energy as a function of z, the 
Fourier transform of which gives the one-dimensional spectrum û2

(kz). 
Subsequently, we obtain 

k̄z =
Σkz û2

(kz)

Σû2
(kz)

. (10) 

A similar approach gives k̄s. The computed frequencies in fig. 5(a) 
and (b) satisfy the inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣ in the energy-containing 
scales of the dynamo spectrum, indicating that the MAC waves would be 
generated in these scales. We emphasize that this inequality would be 
obtained only if the measured peak magnetic field is used in the eval-
uation of ωM, corresponding to local Elsasser numbers Λ≫1 (see Sree-
nivasan and Maurya (2021) and Fig. 14 in Section 7). The range of scales 
with the above frequency inequality narrows as the field intensity in-
creases in time, and close to dipole formation (td = 0.275), this 
inequality is confined to wavenumbers m < 19. The wavenumbers of 
helicity generation (shown in shaded grey bands) are obtained from the 
differences between the helicity spectra of the dynamo and equivalent 
nonmagnetic runs, and show the scales where the dynamo helicity is 
greater than the nonmagnetic helicity. Notably, the region of helicity 
generation overlaps with the scales where the MAC waves are generated. 
The slow MAC wave frequency merges with the Alfvén wave frequency 
at large m, where ωM is the dominant frequency. 

The power supplied by convection to the poloidal axial dipole field 
BP

10 is given by (e.g. Buffett and Bloxham, 2002) 

ΓP
10 =

∫

V
BP

10⋅[∇× (u×B) ]dV. (11) 

The spectral distribution of ΓP
10, given by 

P10 =

∫

V
BP

10⋅
[
∇×(u × B)m

]
dV,

is the power supplied to the dipole field from individual spherical har-
monic order (m) components of ∇× (u × B). From Fig. 5 (c) and (d), it is 
evident that the largest contribution to the dipole field occurs in the 
scales where helicity is generated by the magnetic field. The strong 
correlation between MAC wave formation, helicity generation, and in 
turn, the axial dipole field energy, is also noted in the dynamo simula-
tions at E = 1.2× 10− 5. 

Fig. 6(a) and (b) shows the fundamental frequencies and the slow 
MAC wave frequency plotted against time for two dynamo simulations 
that begin from a small seed magnetic field. The frequencies are calcu-
lated at a wavenumber m̄, obtained through a weighted average as in 
(10), but over the range of m where the inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣ 
holds at dipole formation time. The dimensionless magnetic diffusion 
frequency is given by ωη = k̄2L2, where k̄2

= k̄2
s + k̄2

ϕ + k̄2
z . 

Approximation of the right-hand side of (9) by retaining terms up to 

Table 2 
Sum of the axial (z) and and radial (s) parts of the kinetic helicity for the large 
(energy-containing) scales and for all scales evaluated at two times during the 
evolution of the dynamo magnetic field from a seed state. The helicity is eval-
uated for the lower half of the spherical shell. The nonmagnetic helicity is given 
in brackets. The large scales are those for l ≤ lE, where lE is the mean harmonic 
degree of energy injection in the dynamo.  

S.No. E, Ra time (td) Scales Helicity 

(i) 1.2× 10− 5, 500 0.095 l ≤ 23 3.21 × 105 ( 1.34 × 105)

All 7.66 × 106 ( 7.23 × 106)

0.125 l ≤ 23 2.81 × 105 ( 1.34 × 105)

All 6.41 × 106 ( 7.23 × 106)

(ii) 1.2× 10− 6, 400 0.26 l ≤ 31 6.89 × 105 ( 3.05 × 105)

All 7.15 × 106 ( 4.85 × 106)

0.28 l ≤ 31 6.72 × 105 ( 3.05 × 105)

All 3.89 × 106 ( 4.85 × 106)
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second order in ωM/ωC and ωA/ωC gives (Braginsky, 1967; Busse et al., 
2007) 

ωs ≈
ω2

M

ωC

(

1 +
ω2

A

ω2
M

)1/2

, (12)  

where ω2
M/ωC is the Magneto-Coriolis (MC) wave frequency. In an un-

stably stratified fluid, slow MAC waves would be generated only for 
∣ωM∣ > ∣ωA∣, the boundary of which is marked by the dashed vertical 
lines in Fig. 6. Notably, the increase in fdip, which measures the relative 
axial dipole strength (Fig. 1), occurs at times after the onset of slow MAC 

waves (Fig. 6). 
The Lehnert number in the dynamo simulations, evaluated by 

Le = ∣B∣
(

E
Pm

)1/2 m
2π, (13)  

has its origin in (ωM/ωC)0, the frequency ratio at the initial state of a 
buoyant blob released into the flow (Sreenivasan and Maurya, 2021). As 
blobs evolve in time into columns, the wavenumber kz decreases relative 
to m, so the instantaneous value of (ωM/ωC) is at least one order of 
magnitude higher than Le (Table 3). For values of (ωM/ωC) ∼ 0.1, the 

Fig. 4. The ratio of magnitudes of the magnetic Lorentz (M), buoyancy (A) and Coriolis (C) force terms in the z-vorticity equation to the magnitude of the largest 
force among them, is plotted on the horizontal section z = 0.1 for two ranges of scales l ≤ 31 in ((a)-(c)) and l > 100 in ((d)-(f)). The model parameters are Ra = 400, 
Pm = Pr = 1, E = 1.2× 10− 6. 
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intensity of slow MAC wave motions would be comparable to that of the 
fast waves (Sreenivasan and Maurya, 2021). Consequently, one would 
expect the helicity generated by the slow wave motions to be of the same 
order of magnitude as that of the fast waves. The approximately two-fold 
increase in the helicity as the dynamo evolves from a seed magnetic field 
(fig. 3 (a) & (b)) suggests that the helicity generated by slow wave 
motions in the dynamo may be comparable to that produced by the fast 
inertial waves in nonmagnetic convection. 

While the frequency diagrams in Fig. 5 and Fig. 6 suggest the active 
role of slow MAC waves in dipole formation, conclusive evidence for the 
existence of these waves necessitates visualization of their propagation, 
which is presented in the following section. 

5. Identification of slow MAC waves in the dynamo 

Isolated blobs of buoyant fluid evolve into columnar vortices aligned 
with the axis of rotation through the propagation of damped fast and 

Fig. 5. (a) & (b): Absolute values of fre-
quencies plotted for two snapshots of time 
during the evolution of the dynamo from a 
small seed field magnetic field. The magni-
tudes of the following frequencies are shown: 
ωC (linear inertial wave), ωM (Alfvén wave), 
ωA (internal gravity wave) and ωs (slow MAC 
wave). Since ω2

A < 0 in unstable stratifica-
tion, ωA is simply a measure of the strength 
of buoyancy in the dynamo. The shaded grey 
area shows the scales where helicity is 
generated in the dynamo simulation relative 
to the nonmagnetic simulation. The thin 
solid vertical line shows the mean wave 
number of energy injection. (c) & (d): Spec-
tral distribution of the power supplied to the 
axial dipole, given by P10 =
∫

VBP
10⋅
[
∇× (u × B)m

]
dV. The vertical 

dotted lines show the same range of scales as 
in (a) & (b), where helicity is generated. The 
dynamo parameters are Ra = 400, Pm = Pr 
= 1, E = 1.2× 10− 6.   

Fig. 6. Absolute values of the dynamo fre-
quencies plotted against time (in units of the 
magnetic diffusion time td). Both the simu-
lations study the evolution of the dynamo 
starting from a small seed magnetic field. 
The frequencies are calculated at the mean 
azimuthal wavenumber (m̄ = 10 for (a) and 
11 for (b)) of the range of scales where MAC 
waves are active at dipole formation time. 
The axial dipole forms from a multipolar 
state at td ≈ 0.125 in (a) and td ≈ 0.28 in (b). 
The dashed vertical lines indicate the times 
at which the slow MAC waves are first 
generated. The frequencies shown (with line 
colours in brackets) are as follows: ωM (blue), 
ωC (red), ωA (green), ωη (magenta), ωs 

(black). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)   

Table 3 
Comparison of the values of the Lehnert number Le and the frequency ratio ωM/

ωC at three points in time (in units of the magnetic diffusion time td) during the 
growth phase of two dynamo models. The times considered are those at incipient 
slow MAC wave generation, onset of helicity generation, and axial dipole for-
mation. The evolution in time of the measured frequencies in these models is 
shown in Fig. 6(a) and (b).  

E = 1.2× 10− 5, Ra = 500 E = 1.2× 10− 6, Ra = 400 

td ωM/ωC Le td ωM/ωC Le 

0.033 0.108 0.005 0.041 0.076 0.003 
0.04 0.147 0.006 0.14 0.162 0.0065 
0.125 0.310 0.014 0.28 0.345 0.014  
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slow MAC waves. This process is best understood by studying axial 
motions in rapidly rotating dynamos for several small windows of time 
spanning the evolution of magnetic field. The ambient magnetic field 
and the wavenumbers are approximately constant in these time win-
dows. Analysis of simulations in which the magnetic field increases from 
a small seed value gives a good insight into the conditions for the for-
mation and eventual dominance of slow MAC waves. Following from 
Section 3, where the generation of field-induced helicity was found to 
occur in the energy-containing scales l ≤ lE, the measurement of axial 
motions is limited to these scales. 

Two videos given in Supplementary Information show the propa-
gation of isolated blobs situated in the axial flow (uz) field in a dynamo 
simulation starting from a small seed magnetic field. The parameters E =

1.2× 10− 6, Ra = 400, and Pr = Pm = 1 are used. In a small time win-
dow in the neighbourhood of td ≈ 0.23, the axial location of blob fronts 
(zf ) is measured at cylindrical radius s = 1. The average velocities of 
propagation obtained from the two videos (2853 and 2308 respectively) 
are compared with the axial group velocity of waves generated in the 
time window. This velocity is estimated for the fast (f) and slow (s) MAC 
waves by taking the derivatives of the respective frequencies given in (8) 
and (9) with respect to the z wavenumber (Vallis, 2006, pp. 238–239), 

Uf =
∂ωf

∂kz
; Us =

∂ωs

∂kz
. (14) 

The frequencies above are calculated using all three components of 
the magnetic field at the peak-field location, mean wavenumbers k̄s and 
k̄z in the range l ≤ lE, and the mean wavenumber m̄ over the m-range 
where the inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣ holds (within l ≤ lE). In the 
neighbourhood of time td ≈ 0.23, Uf ≈ 38000 and Us ≈ 2700; it is 
therefore evident that the blob fronts propagate at a speed comparable 
to the group velocity of the slow MAC waves. While recent studies (Hori 
et al., 2015; Chi-Durn et al., 2020) have measured propagation velocities 

for a selected wavenumber m, here we measure the velocity of structures 
within l ≤ lE with no restriction on the wavenumber, which gives a 
meaningful comparison with the group velocity. 

Fig. 7 shows the measurement of wave motion in the dynamo 
simulation with E = 1.2 × 10− 6 and Ra = 400 at different time windows 
during the growth of the field from a small seed value. Wave motion is 
analyzed through contour plots of u̇z at points on the cylindrical radius 
s = 1. These contours show the propagation paths of the fluctuating z 
velocity; the contours of uz would be nearly similar due to the small 
mean z velocity. The range l ≤ lE narrows down with increasing field 
intensity. At early times (td = 0.0375–0.039), when the field intensity is 
so small that ∣ωM∣ < ∣ωA∣, only fast MAC waves are present (Fig. 7(a) and 
Table 4). As the field intensity increases with time in the dynamo, the 
group velocity measurements confirm the presence of slow MAC waves 
in the large scales. Slow wave parcels originating from points far from 
the equatorial plane (z = 0) are seen to propagate in opposite directions 
with nearly equal velocity (e.g. Fig. 7(b)). While the slow waves co-exist 
with the fast waves (not at the same location) at times td = 0.231–0.233 
(Fig. 7(c)), the slow waves are dominant close to dipole formation (td =

0.271–0.276; Fig. 7(d)). The measured group velocity Ug,z increases 
with field intensity (Table 4), which is the hallmark of the slow waves 
whose frequency ωs increases with increasing ωM. Because Uf is at least 
one order of magnitude higher than Us, the fair agreement between Ug,z 

and Us cannot be missed. The dominance of the fast waves for weak 
fields and the slow waves for strong fields is further evident in Fig. 8, 
where the fast Fourier transform (FFT) of u̇z is shown. In line with the 
group velocity measurements, the flow is made up of waves of frequency 
ω ∼ ωf for weak fields (Fig. 8(a)), whereas for the stronger fields close to 
dipole formation ((Fig. 8(b)), waves of much lower frequency ω ∼ ωs are 
dominant. 

The contour plots of the time variation of the magnetic field Ḃz 
indicate that slow MAC wave motions are dominant even at early times 

Fig. 7. (a) Contour plot of u̇z at cylindrical 
radius s = 1 for the time interval td =

0.0375–0.039 and l ≤ 42. (b) u̇z for the time 
interval td = 0.166–0.168 and l ≤ 40. (c) u̇z 

for the time interval td = 0.231–0.234 and 
l ≤ 36. (c) u̇z for the time interval td =

0.275–0.276 and l ≤ 31. The parameters of 
the dynamo simulation are E = 1.2× 10− 6, 
Ra = 400, Pm = Pr = 1. The nearly parallel 
black lines indicate the predominant direc-
tion of travel of the waves and their slope 
gives the group velocity. The estimated 
group velocity of the fast and slow MAC 
waves (Uf and Us respectively) and the 
measured group velocity Ug,z are given in 
Table 4.   
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when the field is weak (Fig. 9(a)). The measured group velocity Ug,z is in 
fair agreement with the estimated slow wave velocity Us while the fast 
wave velocity Uf is O

(
102) higher (Table 4). (Here, the mean wave-

numbers used for the theoretical estimate are those of the magnetic 
field.) This interesting distinction between the wave motions of the flow 
and field is well explained by Sreenivasan and Maurya (2021), who 
found that the induced magnetic field preferentially propagates as slow 
MAC waves for a wide range of ωM/ωC≪1 to ∼ 1. 

The signature of the slow waves in the energy-containing scales is 
also visible in strongly driven dipolar dynamos (Fig. 10). As the intensity 
of the self-generated field increases with increased forcing, the range of 
azimuthal wavenumbers m over which ∣ωC∣ > ∣ωM∣ narrows down 
considerably (Table 4). Consequently, the generation of helicity due to 
the slow MAC waves is weakened, which can explain why the axial 

dipole field BP
10 diminishes in strength with increased forcing (for Ra/

Rac > 40 in Table 1). The decrease in dipole field intensity is likely not 
due to the growth of inertial forces, for the local Rossby number Roℓ is 
small even in the strongly driven dynamo runs. There is, however, a 
growing dominance of fast waves in the large scales, which does not 
contribute to dipole field generation. At lower Ekman number E, one 
would expect the MAC wave window to widen as ∣ωC∣ increases relative 
to ∣ωM∣. The choice of Pm≳1 ensures a low-inertia regime conducive to 
MAC waves in the simulations at E ∼ 10− 5–10− 6. From our results, we 
anticipate that the low-E, low-Pm regime of planetary cores would 
support the axial dipole through slow MAC waves in strongly driven 
convection. Finally, we note that only linear inertial waves are produced 
in kinematic dynamo simulations which produce multipolar fields 
(Fig. 11 and case (ix) in Table 4). 

Table 4 
Summary of the data for MAC wave identification in the dynamo simulations. Scales given by l ≤ lE, where lE is the mean harmonic degree of energy injection, are 
considered in each case. The sampling frequency ωn is chosen to ensure that the fast MAC waves are not missed in the measurement of group velocity. The values of ω2

M, 
− ω2

A and ω2
C are calculated from (7) using the mean wavenumbers m̄, k̄s and k̄z. The measured group velocity in the z direction (Ug,z) may be compared with the 

estimated fast (Uf ) or slow (Us) MAC wave velocity, as appropriate. *Case (ix) is a kinematic dynamo simulation, which does not produce an axial dipole.  

S.No. E Ra Fig. no. ωn
(
× 105) Scales m̄ k̄s k̄z ω2

M
(
× 109) − ω2

A
(
× 109) ω2

C
(
× 109) Us Uf Ug,z 

(i) 1.2× 10− 6 400 7(a) 6.67 l ≤ 42 24 3.32 2.91 0.17 0.33 9.87 − 33820 28333 
(ii)   7(b) 6.67 l ≤ 40 23 3.15 2.14 0.49 0.33 5.85 1089 34036 1350 
(iii)   7(c) 5 l ≤ 36 20 3.02 2.19 0.77 0.32 8.04 1982 38374 2667 
(iv)   7(d) 5 l ≤ 31 10 3.05 2.11 3.66 0.31 27.1 5295 69765 6534 
(v)   9(a) 6.67 l ≤ 42 11 3.61 1.43 3.9 0.30 10.4 780 69137 966 
(vi)   9(b) 5 l ≤ 31 9 3.45 1.67 1.68 0.29 23.4 3625 78988 3750 
(vii) 1.2× 10− 5 2000 10(a) 3.33 l ≤ 40 12 4.24 2.34 4.25 0.74 5.7 5071 25957 6100 
(viii) 1.2× 10− 5 15000 10(b) 1.67 l ≤ 46 4 4.78 2.63 12.9 0.36 31.2 4856 43656 5187 
(ix)* 1.2× 10− 6 400 11 10 l ≤ 42 16 4.95 2.64 – – 1.68 – 48396 55000  

Fig. 8. (a) FFT spectrum of u̇z at cylin-
drical radius s = 1 for the scales l ≤ 42 in 
the time interval td = 0.08 − 0.082. (b) 
FFT spectrum of u̇z at s = 1 for l ≤ 31 in 
the time interval td = 0.274 − 0.278. The 
spectra are computed at discrete ϕ points 
and then averaged azimuthally. The 
range l ≤ lE narrows down as the field 
intensity increases with time. The dy-
namo parameters are Ra = 400, Pm = Pr 
= 1, E = 1.2× 10− 6. The vertical dashed 
lines correspond to ω/ωf = 1 in (a) and 
ω/ωs = 1 in (b), where ωf and ωs are the 
estimated fast and slow MAC wave fre-
quencies. In (b), ω*

f = ωf/ωs.   

Fig. 9. Contour plots of Ḃz at cylindrical 
radius s = 1 shown for two time intervals. (a) 
td = 0.063 − 0.068, l ≤ 42. (b) td = 0.274 −

0.278, l ≤ 31. The nearly parallel black lines 
indicate the predominant direction of travel 
of the waves and their slope gives the 
measured group velocity. The dynamo pa-
rameters are Ra = 400, Pm = Pr = 1, E =

1.2× 10− 6. The estimated group velocity of 
the fast and slow MAC waves (Uf and Us 

respectively) and the measured group ve-
locity Ug,z are given in Table 4.   
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Buoyancy-induced inertial waves have been found in dynamo sim-
ulations though group velocity measurements (Ranjan et al., 2018). The 
present study has shown that slow MAC wave motions are measurable 
only when large scales of l ≤ lE are considered. Within this range, the 
slow waves are predominantly generated in the MAC wave window, 
where ∣ωC∣ > ∣ωM∣ > ∣ωA∣. To identify the scales where fast and slow 
MAC waves are active and distinguishable from each other, a scale- 
dependent analysis of the dynamo spectrum is essential. 

5.1. Non-axisymmetric Alfvén waves 

The generation of MAC waves in the dynamo is accompanied by non- 
axisymmetric waves along the cylindrical radius whose group velocity 
matches with that of Alfvén waves. The frequencies of waves that 
propagate orthogonal to the axis of rotation – obtained by letting ωC = 0 
in eqs. (8) and (9) – would be Alfvénic for strong-field dynamos where 
∣ωC∣ > ∣ωM∣ > ∣ωA∣. In the dynamo simulation at E = 1.2 × 10− 6 and 
Ra = 400, coherent radial motion with estimated Alfvén velocities is 
only noted after diffusion time td ≈ 0.1. Since slow MAC waves are first 
excited at td ≈ 0.04 during the growth phase of the dynamo (Fig. 6(b)), it 
is reasonable to suppose that the Alfvén waves exist as the degenerate 
form of the MAC waves. In the contour plots of u̇z given in fig. 12 (a) and 
(b), the wave velocity is the slope measured over small time windows. 
Fig. 12 (c) shows the variation of the wave velocity with cylindrical 
radius s for the two time intervals in (a) and (b), with the earlier interval 

showing lower velocity. The peak wave velocities measured throughout 
the simulation show a fair agreement with the Alfvén velocities calcu-
lated from the peak value of Bs. The increase in the measured wave 
velocity with the increasing intensity of Bs in time is evident in fig. 12 
(d). The waves slow down at the outer boundaries where the field in-
tensity is weak. As we see below, the non-axisymmetric waves explain 
the growth of uz in the s direction, an essential process in dipole for-
mation from a seed magnetic field. 

6. Termwise contributions to the axial dipole 

To understand how wave motion influences the formation of the 
axial dipole field through the magnetic induction equation, we look at 
stretching and advection terms in this equation which influence the 
dipole. In cylindrical polar coordinates, the relative contributions of the 
s and z components of the terms to the dipole are given by 
∫

V

[
ês⋅BP

10

]
[.]dV

ΓP
10

,

∫

V

[
êz⋅BP

10

]
[.]dV

ΓP
10

(15)  

where ΓP
10 is defined in eq. (11) and the quantity within square brackets 

[.] would be the s or z component terms given in Table 5. The ϕ 
component terms do not make any contribution to the axial dipole. The 
two terms which make the highest positive contribution to the axial 
dipole are Bs∂uz/∂s and Bs∂us/∂s. A positive contribution is also noted for 
the term Bz∂uz/∂z. The terms Bs∂us/∂s and Bz∂uz/∂z are related to the 
production of current coils in dynamo simulations (Kageyama et al., 
2008; Takahashi and Shimizu, 2012). The term Bs∂uz/∂s represents axial 
field generation due to shear of axial (z) flow in the radial (s) direction. 
This process would be influential during the growth phase of the 
nonlinear dynamo, where columnar convection is excited through slow 
MAC wave motions. In Table 5, the termwise contributions to the dipole 
in nonlinear simulations are compared with those in a kinematic simu-
lation at E = 1.2 × 10− 5 and Ra = 140, which also produces an axial 
dipole. Kinematic simulations at higher Ra do not produce an axial 
dipole (Sreenivasan and Kar, 2018), and hence cannot be used for 
comparison with the nonlinear simulations. Even in the absence of slow 
wave motion, the term Bs∂uz/∂s contributes positively to dipole growth 
in the kinematic dynamo due to the growth of Bs. Surprisingly, the 
toroidal–poloidal field conversion via the term 

(
Bϕ/s

)
∂us/∂ϕ – a domi-

nant process in the kinematic simulation – makes a negative contribu-
tion to the dipole in the nonlinear simulation (Table 5). In fact, Bs

10, the 
axial dipole part of the radial field component, is negatively correlated 
with 

(
Bϕ/s

)
∂us/∂ϕ in the nonlinear simulation (Fig. 13). The contribu-

tion of this term to the overall poloidal field is, however, positive, which 
suggests that the classical alpha effect (Moffatt, 1978) is still influential 

Fig. 10. (a) Contour plot of u̇z at cylindrical radius s = 1 for l ≤ 40 and the parameters E = 1.2× 10− 5, Ra = 2000, Pr = Pm = 5. (b) u̇z for l ≤ 46 and the pa-
rameters E = 1.2× 10− 5, Ra = 15000, Pr = Pm = 5. The nearly parallel black lines indicate the direction of travel of the waves and their slope gives the measured 
group velocity. The estimated group velocity of the fast and slow MAC waves (Uf and Us respectively) and the measured group velocity Ug,z are given in Table 4. 

Fig. 11. Contour plot of u̇z at cylindrical radius s = 1 for the scales l ≤ 42 in a 
kinematic dynamo simulation with the parameters E = 1.2× 10− 6, Ra = 400, 
Pm = Pr = 1. The nearly parallel black lines indicate the direction of travel of 
the waves and their slope gives the measured group velocity. Similar plots are 
obtained for any time window in the simulation. The estimated group velocity 
of the fast and slow MAC waves (Uf and Us respectively) and the measured 
group velocity Ug,z are given in Table 4. 

A. Varma and B. Sreenivasan                                                                                                                                                                                                                



Physics of the Earth and Planetary Interiors 333 (2022) 106944

11

in generating the full poloidal field from the toroidal field. 

7. Concluding remarks 

The formation of the axial dipole field in a planetary dynamo is 
strongly dependent not only on the rotation of the planet but also the 
self-generated magnetic field within its core. As suggested by earlier 
studies (Sreenivasan and Jones, 2011; Sreenivasan and Kar, 2018), the 
role of the magnetic field in dipole formation is well understood from 
dynamo models that follow the evolution of the magnetic field from a 
small seed state. At early times of evolution, the fast MAC waves, whose 
frequency is close to that of linear inertial waves, are abundantly pre-
sent. As the field exceeds a threshold, marked by ∣ωM∣ > ∣ωA∣, slow MAC 
waves appear; however, it is only when the field is strong enough to have 

∣ωM/ωC∣ ∼ 0.1 that the slow waves have a dominant presence in the 
dynamo (Table 3 and Fig. 7(c)). The value of ∣ωM∣ here must be based on 
the peak rather than the root mean square value of the field, for the so- 
called MAC wave window that satisfies the inequality ∣ωC∣ > ∣ωM∣ > ∣ωA∣ 
does not otherwise exist in the energy-containing scales of the dynamo. 
A recent study on the evolution of isolated blobs subject to this 
inequality (Sreenivasan and Maurya, 2021) indicates that the peak 
Elsasser number, 

Λ ∼

(
ω2

M

ωCωη

)

0
,

would likely be O
(
102) for parity between the intensities of fast and slow 

wave motions. The subscript ‘0′ here refers to the “isotropic” state of the 
blob that is released into the flow by buoyancy. In other words, the 

Fig. 12. (a) and (b) Contour plots of 
z-averaged u̇z for two time intervals for the 
large scales l ≤ 31. The group velocity of the 
waves is measured from the slope of the 
black line. (c) Comparison of estimated 
(theoretical) and measured velocities at each 
instant of time for the time intervals in (a) 
and (b), shown in blue and red respectively. 
The solid line gives the estimated wave ve-
locity and symbols represent the measured 
values. (d) Comparison of peak velocities 
measured in the simulations (symbols) with 
the estimated wave velocity. The group ve-
locity is estimated using the peak value of Bs. 
The vertical dashed line shows the dipole 
formation time. The dynamo parameters are 
Ra = 400, Pm = Pr = 1, E = 1.2× 10− 6.   

Table 5 
Relative contribution (in per cent) to the axial dipole by the stretching and advection terms in the magnetic induction equation, calculated from the ratio (15). In the 
nonlinear simulations, the values are evaluated at a time instant just before dipole formation. The energy-containing range of scales l ≤ lE is considered for the 
nonlinear simulations while the entire range of scales is considered for the kinematic simulations, marked by the superscript *.  

E, Ra Bs∂us/∂s Bs∂uz/∂s Bz∂uz/∂z Bz∂us/∂z 
(
Bϕ/s

)
∂uz/∂ϕ 

(
Bϕ/s

)
∂us/∂ϕ 

1.2× 10− 6,400 96.90 136.40 14.20 2.60 − 49.90 − 83.20 
1.2× 10− 5,220 136.2 56.1 32.10 4.70 − 44.10 − 57.10 
1.2× 10− 5,500 48.14 76.72 33.70 − 10.41 − 23.50 − 30.64 
1.2× 10− 5,2000 65.45 52.20 32.01 − 7.53 − 25.35 − 37.51 
*1.2× 10− 5,140 − 45.76 131.85 8.23 4.24 − 68.12 60.05 

E, Ra − uz∂Bz/∂z − us∂Bs/∂s − uz∂Bs/∂z − us∂Bz/∂s −
(
uϕ/s

)
∂Bz/∂ϕ −

(
uϕ/s

)
∂Bs/∂ϕ 

1.2× 10− 6,400 9.40 65.9 31.7 9.40 − 40.0 − 93.50 
1.2× 10− 5,220 39.90 24.50 34.5 − 46.1 − 39.4 − 40.10 
1.2× 10− 5,500 35.09 27.74 6.52 − 110.7 67.3 − 19.11 
1.2× 10− 5,2000 66.10 38.90 4.58 14.08 − 60.42 − 42.50 
*1.2× 10− 5,140 − 10.32 67.13 − 15.71 − 53.04 75.19 − 53.07  
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leading-order slow MAC wave frequency ωs would be O
(
102) times the 

magnetic diffusion frequency ωη. The peak value of Λ in simulations at 
E ∼ 10− 6 vary from O

(
101)–O

(
102) as the dynamo field increases to-

wards the saturated state (Fig. 14). The instantaneous value of ωs/ωη is 
higher than Λ due to the anisotropy of the convection as blobs elongate 
to form columns aligned with the axis of rotation. We anticipate that 
simulations at lower E would give Λ of O

(
102) for a wider range of ∣ωM/

ωC∣ ∼ 0.1 than in this study. The large peak value of Λ supports the 
localized excitation of slow magnetostrophic waves at several points in 
the large scales of spherical harmonic degree l ≤ lE, even as a global 
geostrophic balance exists at these scales (e.g. Aurnou and King, 2017). 
The generation of dynamo helicity – of the same order of magnitude as 
the nonmagnetic helicity (Fig. 3(a) and (b)) – is consistent with the 
excitation of the slow waves at these scales. The fact that the large-scale 
kinetic energy in the dynamo run at E = 1.2 × 10− 6 increases by 90% of 
its nonmagnetic value suggests that the kinetic energy of the slow MAC 
wave motions would be of the same order of magnitude as that of the 
inertial waves. 

An interesting aspect of dipole field generation through wave motion 
is that of poloidal–poloidal field conversion via the term Bs∂uz/∂s in the 
induction equation. While this term contributes to dipole formation at 
low Ra in kinematic dynamos through the monotonic increase of Bs, its 
effect is more pronounced in the nonlinear dynamo over a wide range of 
Ra, where the generation of radial gradients of uz happens through the 
radial propagation of columnar vortices at the Alfvén speed. The 

twisting of the toroidal field by the radial motion makes a strongly 
positive contribution to the poloidal dipole field in the kinematic dy-
namo, whereas it extracts energy from the dipole field in the nonlinear 
dynamo (Fig. 13). 

Since the present study has largely focused on the formation of the 
axial dipole through magnetostrophic waves, moderately driven 
dynamos where ∣ωA∣ < ∣ωM∣ have been analyzed in detail. This regime is 
motivated in part by the thermally convecting core of early Earth, which 
would have produced an axial dipole from a chaotic multipolar field 
(Sreenivasan and Kar, 2018). The stronger self-generated field that ac-
companies stronger forcing in numerical dynamos narrows down the 
MAC wave window in the large scales, although this would not shut 
down the MAC waves in the rapidly rotating, low-E core. If forcing is so 
strong that ∣ωA∣ ∼ ∣ωM∣, then the slow MAC wave frequency would be 
considerably attenuated. Consequently, the helicity associated with the 
slow waves would diminish relative to that of the fast waves, which are 
practically unaffected by the strength of forcing. If geomagnetic re-
versals are indeed buoyancy-driven (Sreenivasan et al., 2014), then the 
attenuation of the slow waves should provide a useful constraint on the 
parameter space that admits reversals. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.pepi.2022.106944. 
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