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1. Introduction

A ‘‘bootstrap’’ method or process is one that is self-generating or self-sustaining. As such, the bootstrap philosophy in
uantum field theory refers to an ambitious program to use only basic symmetries and consistency conditions such as
oincaré invariance, unitarity, crossing symmetry and analyticity to constrain observables like the S-matrix elements [1].
n the 1960s, the bootstrap program was pursued with the hope of understanding the strong interactions [2]. In the
970s, a similar program was initiated to understand the physics of second order phase transitions, described by quantum
ield theories with conformal symmetries, i.e., Conformal Field Theories (CFTs). This program is called the Conformal
ootstrap [3,4]. In addition to the familiar Poincaré symmetries, CFTs enjoy scale symmetry as well as special conformal
ymmetries. These extra symmetries completely fix the structure of two- and three-point correlators [5]. One of the goals
f the conformal bootstrap is to constrain the dynamical content appearing in four-point correlators in CFTs.
Conformal symmetry allows one to classify operators annihilated by the special conformal generators as ‘‘primaries’’.

here are an infinite class of operators called ‘‘descendants’’ which are derivatives of these primary operators. The central
dea of the conformal bootstrap program is to fix the operator product expansion (OPE) of any pair of local primary
2
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Fig. 1. The relation of sections in this review.

perators in the theory. Once this is accomplished, any n-point correlation function of local operators can be recursively
alculated, at least in principle. In addition to conformal invariance, one uses crossing symmetry in a judicious manner.
n the context of Euclidean correlators, crossing symmetry arises due to operator associativity. This leads to the notion
f different channels, which in an overlapping region of convergence are set equal, leading to the so-called crossing
onditions. Naively, these are an infinite number of conditions and finding any consistent solution seems to be a Herculean
ask. In fact, while the idea of the conformal bootstrap framework has been around since the 1970s, the main success it
ncountered, until recently, was restricted to two dimensional CFTs [5,6]. In 2008, the work of [7] introduced a new
umerical paradigm in the game. This paradigm enables us to extract, arguably, some of the most numerically accurate
ritical exponents for the 3d Ising model [8–10]. In addition to this flagship result, numerical methods have enabled a
ystematic study of ‘‘islands’’ of CFTs allowed by unitarity and crossing symmetry. These developments have been recently
eviewed in [11].

In addition to these remarkable numerical results, it is worthwhile to develop analytic tools. There are several reasons
or this. First, establishing potentially universal results for generic CFTs would require an analytic handle. Second, there
s a plethora of results, both old and new, that the Feynman diagrammatic approach has produced; one would like to see
ow the bootstrap method compares to the successes of the diagrammatic approach. Finally, it is important to identify
nd establish techniques that can produce results that are hard using other established methods.
In this present review, we will guide the reader on a journey through certain selected topics covering modern

echniques in analytic conformal bootstrap in spacetime dimensions d ≥ 3. The road map of the journey that we will
ake the reader on is depicted in Fig. 1. It begins with an ‘‘appetizer’’ Section 2, which discusses boundary conformal field
heories (BCFT). These are CFTs in the presence of a boundary or a co-dimension 1 defect. In nature, such systems may
ccur at the surface of a crystal. The two-point functions in such a scenario carry dynamical information, both of the
ulk properties and of the new data due to the presence of a boundary. For technical reasons (lack of positivity in the
o-called ‘‘bulk channel’’), setting up numerics in this scenario is hard. However, BCFTs allow for a rich phase structure
orresponding to different boundary conditions. It is therefore important to develop analytic techniques. For our purpose,
he case of BCFTs also serves as a simplifying example where we clarify some of the general ideas used in the analytic
ethods. Kinematically, this setup is very similar to CFTs placed on a real projective space. We will therefore also discuss
nalytic techniques for real projective space CFTs in the same section.
3
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We then discuss three possible routes. The first route begins in Section 3 and discusses large spin perturbation theory
LSPT). This is arguably the standard example in any discussion of the analytic conformal bootstrap. The main idea
ere is to reproduce contributions of certain known operators in one channel in the crossing equation in terms of the
ther channel. Typically, this needs an infinite number of operator contributions. One can argue that to reproduce the
ontribution of the identity operator, there have to be generalized free field (GFF) operators in the spectrum. This is done
y analyzing the large spin tail of such contribution. As we will review, this strategy works when there is a twist gap
etween the identity operator and other operators in the spectrum. We will study this canonical example in some detail
nd show how one can further go on to deriving leading order anomalous dimensions for the GFF spectrum. A natural
ontinuation of this route is to discuss the now-famous Lorentzian inversion formula. This remarkable formula enables
s to express the OPE coefficients as a convolution of the so-called double discontinuity of the position space correlator
gainst an analytically continued (in spin) conformal block. This formula can then be used in the context of AdS/CFT to
xtract information about tree-level and loop-level AdS Witten diagrams.
Both the second and the third routes embark on perturbing away from the GFF spectrum (Section 4). The perturbation

arameter, by anticipating a connection with the AdS/CFT correspondence, is generically denoted by 1/N , where N is
related to the central charge and taken to be large. Calculations along these routes are facilitated by a transition to Mellin
space (Section 6). Using Mellin techniques one can either continue the journey by discussing correlators in the ϵ-expansion
the second route) or in the 1/N expansion (the third route).

In the second route (Sections7–9), the ϵ-expansion makes contact with the Wilson–Fisher fixed point [12] and extracts
the anomalous dimensions of certain operators in a perturbative expansion in ϵ where the spacetime dimension is written
s d = 4 − ϵ. Quite remarkably, not only can all the results of the famous Wilson–Kogut review [13] be reproduced, but
ne can also easily get novel results for OPE coefficients which are difficult to calculate using the diagrammatic approach.
n order to extract OPE data analytically, it is convenient to use Polyakov’s 1974 seminal idea [4], where he postulated
hat the bootstrap equations can be solved analytically by starting with a basis that is manifestly crossing symmetric. As
e will review, this approach, in modern parlance, is tied with the crossing symmetric Witten diagrams in AdS space.
he crossing symmetric AdS Witten diagrams provide a convenient kinematical basis for expanding the Mellin space
orrelator. Since the basis is crossing symmetric, constraints arise on demanding consistency with the OPE, leading to
he so-called Polyakov conditions. This needs a discussion of crossing symmetric dispersion relations (Section 8) which
nables one to fix the so-called contact term ambiguities.
In the third route (Sections10–13), we discuss efficient modern techniques to compute holographic correlators in

arious top-down string theory/M-theory models. We will focus on the regime where the bulk dual descriptions are
eakly coupled and local. The basic observables are holographic correlators which correspond to on-shell scattering
mplitudes in AdS. From these objects we can extract analytic data of the strongly coupled boundary theories by
erforming standard CFT analysis. The models which we will consider include the paradigmatic example of the strongly
oupled 4d N = 4 super Yang–Mills, which is dual to IIB supergravity on AdS5×S5, along with others preserving a certain
mount of supersymmetry. Due to the presence of a compact internal manifold in these models, the Kaluza–Klein reduced
ffective theory in AdS contains infinitely many particles. The extreme complexity of the bulk effective action together
ith the proliferation of curved-space diagrams render the standard diagrammatic expansion method practically useless
eyond just a few simplest cases. However, as we will see, using symmetries and consistency conditions allows us to fix the
orrelators completely and therefore circumvents these difficulties. After a brief review of the superconformal kinematics
n Section 10.1, we will discuss in detail three complementary bootstrap methods to compute tree-level correlators
Sections 10, 11). These methods yield all four-point tree-level correlators of arbitrary Kaluza–Klein modes in all maximally
uperconformal theories, and reveal remarkable simplicity and structures hidden in the Lagrangian description. We also
iscuss various extensions: higher-point correlators (Section 10.3), correlators corresponding to super gluon scattering in
dS (Section 11.4), and loop-level correlators (Section 12). The results and techniques which we will review in this part
f the review also bear great resemblance with the on-shell scattering amplitude program in flat space, as we will point
ut along the way.
In organizing this review, we have presented the material in a way such that these routes are relatively independent

nd can be read separately. We also accompanied the discussions with many pedagogical examples. All the journeys along
hese different routes end with a brief discussion of open questions in this research area. We also conclude in Section 14
ith a discussion of further reading material which covers a broader range of topics. Where possible, we will delegate

engthy formulas and algebraic steps to the appendices. The third appendix (Appendix C) also constitutes a self-contained
eview of various properties of Witten diagrams which make appearances at multiple places in this review. We will
ssume some familiarity with CFTs on the part of the reader. For introductory material on this topic, we refer the reader
o [5,11,14,15]. For introductory material on the AdS/CFT correspondence we refer the reader to [16–18]. There will be
pecial functions like Gauss and generalized hypergeometric functions used in several places. Most of these functions are
nbuilt in Mathematica. For authoritative references, we ask the reader to consult [19,20].

. Overture: Bootstrap with two-point functions

This section serves as an appetizer for the reader to get a taste of the kind of analytic conformal bootstrap techniques
hich we will present in the review. To this end, we would like to choose systems which are as simple as possible (yet still
4
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ontrivial). One toy example that comes to mind is the one dimensional CFT where the simplest nontrivial observables
re the four-point functions. Though conceptually closer to the higher dimensional case as it deals with the same kind of
bservables, the application of 1d CFTs is quite limited. Therefore, we choose to investigate instead two closely related but
erhaps less familiar setups, namely, CFTs with a conformal boundary and CFTs on real projective space. These setups are
qually simple compared to CFT1 but can be discussed in arbitrary spacetime dimensions. This gives them a wider range
f physical applicability. In particular, BCFTs have important applications in various condensed matter systems. Therefore,
e believe that the greater effort needed to get acquainted with these new CFT systems is justified and will be rewarding

n the end. The most noticeable feature of these setups is that conformal symmetry is only partially preserved. But as
result, there are new observables. The simplest nontrivial observables are the two-point functions. We will use these

wo-point functions to demonstrate the power of analytic conformal bootstrap without too much technical complexity.
ote that this section is structured to be independent from the other sections. Therefore, if the reader wishes to go directly
o the three routes of the review, skipping it will not affect their understanding.

The rest of this section is organized as follows. In Section 2.1 we introduce the setups and discuss the kinematics.
n Section 2.2 we review analytic bootstrap methods for studying two-point functions. In Section 2.3 we give a short
iscussion of CFTs in other backgrounds. As we already mentioned, the two setups which we will study in this section are
lso interesting in their own right. For readers who are interested in learning more about these topics, we refer them to
he original papers. An incomplete sampling of the literature on BCFTs from the bootstrap perspective includes [21–31].
or works on CFTs on real projective space, see [32–42].

.1. Kinematics

To discuss the conformal symmetry these systems preserve, it is most convenient to use the embedding space
ormalism. We can represent each point xµ ∈ Rd−1,1 by a null ray in the embedding space Rd,2

PA, A = 1, 2, . . . , d + 2, P · P = 0, P ∼ λP . (2.1)

perators are defined on the null rays with the condition

O∆(λP) = λ−∆O∆(P). (2.2)

et us choose the signature of the embedding space to be (−,+,−,+, . . . ,+). Then we can choose a particular λ to
arameterize the null vector as

PA
=
(1 + x2

2
,
1 − x2

2
, xµ

)
(2.3)

here x2 = xµxµ. Conformal group transformations correspond to SO(d, 2) rotations on PA. Their actions on xµ are
btained by further rescaling P1

+ P2 of the rotated embedding vector to 1.
Let us now introduce two fixed vectors

Nb = (0, 0, 0, . . . , 1), Nc = (1, 0, 0, . . . , 0), (2.4)

hich will correspond to two different systems. Either vector partially breaks the conformal group. In the first case, the
urface with Nb · P = 0 gives rise to a planar boundary located at xd = 0. We will often denote xd as x⊥ as is common in
the BCFT literature. Therefore, this case is related to boundary CFTs, and the residual conformal symmetry is SO(d− 1, 2).
This SO(d−1, 2) symmetry is just the conformal group of the d−1 dimensional boundary. Note that we can also perform
a conformal transformation to change the planar boundary into a sphere. This can be accomplished by choosing the fixed
vector Ñb = (0, 1, 0, . . . , 0), and the boundary is a unit sphere centered at x = 0. Now we consider the second case. The
symmetry group preserving the vector Nc is SO(d, 1). Using this vector, we can define a transformation

P → −2(P · Nc)Nc − P, (2.5)

which upon rewriting in the form (2.3) by rescaling gives the conformal inversion transformation

xµ → −
xµ

x2
. (2.6)

pon identifying xµ ∼ −xµ/x2, we obtain the real projective space RPd.2 To consider CFTs on this quotient space, we also
eed to identify the operators inserted at points related by inversion. For scalar operators, we have

O±

∆(x) ↔ ±x2∆O±

∆(x
′), x′µ

= −
xµ

x2
. (2.8)

here we have two choices for the parity of the operator.

2 A more familiar definition of the real projective space is to take the Z2 quotient of a sphere Sd

X2
= 1, X ∈ Rd+1, X ∼ −X. (2.7)

ince we are considering CFTs, we can perform a Weyl transformation to map it to the flat space by xµ =
Xµ

1−Xd+1 , µ = 1, . . . , d and ds2Rd =
(1+x2)2

4 ds2
Sd
.

In two dimensions, this is also known as a crosscap.
5
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Let us now discuss correlators of local operators. For these systems, the simplest correlators are one-point functions.
ecause there are residual Lorentz symmetries, spinning operators cannot have one-point functions and we only need to
onsider scalar operators. The only invariants which we can construct from the embedding vector P and the fixed vectors
re P ·Nb and P ·Nc . Moreover, using the scaling behavior (2.2) we can fix the one-point functions up to an overall constant.
or BCFTs this gives

⟨O∆⟩b =
ab,∆

(2P · Nb)∆
=

ab,∆
(2x⊥)∆

, (2.9)

nd for RPd CFTs we have

⟨O+

∆⟩c =
ac,∆

(−2P · Nc)∆
=

ac,∆
(1 + x2)∆

(2.10)

or operators with + parity and zero for the other choice.3 The coefficients ab,∆ and ac,∆ are new CFT data defining the
theories.4

Let us move on to two-point functions. In this case, one can construct cross ratios which are invariant under the
residual conformal symmetry and independent rescalings of the embedding vectors. The cross ratio for the BCFT case is

ξ =
(−2P1 · P2)

(2Nb · P1)(2Nb · P2)
=

(x1 − x2)2

4x1,⊥x2,⊥
, (2.11)

and the cross ratio for the real projective space case is

η =
(−2P1 · P2)

(−2Nc · P1)(−2Nc · P2)
=

(x1 − x2)2

(1 + x21)(1 + x22)
. (2.12)

he two-point functions can be written as functions of the cross ratios after extracting a kinematic factor

⟨O∆1 (x1)O∆2 (x2)⟩b =
G(ξ )

|2Nb · P1|∆1 |2Nb · P2|∆2
=

G(ξ )
|2x1,⊥|

∆1 |2x2,⊥|
∆2
, (2.13)

⟨O±

∆1
(x1)O±

∆2
(x2)⟩c =

G±(η)
(−2Nc · P1)∆1 (−2Nc · P2)∆2

=
G±(η)

(1 + x21)∆1 (1 + x22)∆2
. (2.14)

Note that for two-point functions to be nonzero in real projective space CFTs, the two operators must have the same
parity so that the two-point function is neutral under the parity Z2. We can expand the two-point functions in the
limits of operator product expansion (OPE), and the contributions are organized by the residual conformal symmetry
into conformal blocks. We look at these two cases separately.

In BCFTs we have two distinct OPEs. The first one is usually referred to as the bulk channel OPE (Fig. 2(a)) where the
two operators are taken to be close to each other

O∆1 (x1)O∆2 (x2) =
δ12

(x1 − x2)2∆1
+

∑
k

C12kD[x1 − x2, ∂x2 ]O∆k (x2) (2.15)

where C12k are OPE coefficients and the differential operators D[x1 − x2, ∂x2 ] are determined by conformal symmetry. For
simplicity, we have only displayed in the OPE the scalar operators which contribute to the two-point function. Using this

3 When we perform a Weyl transformation and map it to Sd , the one-point functions are just constants. Identifying operators on antipodal points
with a minus sign forces their expectation values to be zero.
4 To see the coefficients correspond to new data, let us try to absorb them by changing the normalization of the operators. However, this

would change the normalization of two-point functions. Note that when the points are very close to each other, we can ignore the presence of the
boundary or the identification under inversion. The limiting two-point functions to should approach those in the CFT in infinite flat space with the
same normalization.
6
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PE, two-point functions can be expressed as an infinite sum of one-point functions. The contribution of each primary
perator and its descendants can be resummed into a bulk-channel conformal block [43]

gbulk
b,∆ (ξ ) = ξ

∆−∆1−∆2
2 2F1

(∆+∆1 −∆2

2
,
∆+∆2 −∆1

2
;∆−

d
2

+ 1; −ξ
)
, (2.16)

nd the two-point function can be written as

G(ξ ) = δ12ξ
−∆1 +

∑
k

µb,12k gbulk
b,∆k

(ξ ), (2.17)

ith µb,12k = ab,∆kC12k. The second OPE is the so-called boundary channel OPE (Fig. 2(b)) where operators are taken near
he boundary and expressed in terms of operators living on the boundary at x⊥ = 0

O∆(x) =
ab,∆

|2x⊥|
∆

+

∑
l

ρlC[x]̂O∆̂l
(x). (2.18)

ere ρl are OPE coefficients and the differential operators C[x] are fixed by conformal symmetry. Using this OPE we can
rite the two-point function as an infinite sum of two-point functions on the boundary which are fixed by the residual
onformal symmetry. The contribution of each operator is resummed into a boundary channel conformal block [43]

gboundary
b,∆̂ (ξ ) = ξ−∆̂

2F1
(
∆̂, ∆̂−

d
2

+ 1; 2∆̂+ 2 − d; −
1
ξ

)
. (2.19)

In terms of the boundary channel conformal blocks, we can write the two-point function as

G(ξ ) = a2b,∆δ12 +

∑
l

ρ1,lρ2,lg
boundary
b,∆̂l

(ξ ). (2.20)

imilar to four-point conformal blocks in CFTs without boundaries, the bulk channel and the boundary channel conformal
locks are also more conveniently computed as the eigenfunctions of conformal Casimir operators [21]. The two ways of
xpanding two-point functions are equivalent, and the equivalence gives rise to the BCFT crossing equation

δ12ξ
−∆1 +

∑
k

µb,12k gbulk
b,∆k

(ξ ) = a2b,∆δ12 +

∑
l

ρ1,lρ2,lg
boundary
b,∆̂l

(ξ ). (2.21)

ere in both channels we have explicitly singled out the identity operator exchange. We can also absorb them into the
ums by extending the sums to include operators with dimension zero.
In real projective space CFTs, the situation is slightly different. We still have the bulk channel OPE (2.15), which allows

s to express the two-point function as a sum of one-point functions. The contribution of an operator resums into the
onformal block [35]

gc,∆(η) = η
∆−∆1−∆2

2 2F1
(∆+∆1 −∆2

2
,
∆+∆2 −∆1

2
;∆−

d
2

+ 1; η
)
, (2.22)

nd the two-point function can be written as

G±(η) = δ12η
−∆1 +

∑
k

µc,12k gc,∆k (η) (2.23)

here µc,12k = ac,∆kC12k. On the other hand, we no longer have the boundary channel OPE since there is no boundary.5
nstead, we can move O2 towards the inversion image of O1. Due to the operator identification (2.8), we can apply the
ame OPE (2.15). This gives rise to a new channel which we will refer to as the image channel. These two OPE channels
re illustrated in Fig. 3. The image channel conformal blocks are given by [35]

ḡc,∆(η) = (1 − η)
∆−∆1−∆2

2 2F1
(∆+∆1 −∆2

2
,
∆+∆2 −∆1

2
;∆−

d
2

+ 1; 1 − η
)
, (2.24)

nd the two-point function can be written as

G±(η) = δ12(1 − η)−∆1 +

∑
k

µc,12k ḡc,∆k (η). (2.25)

The conformal blocks in the two channels can also be obtained from solving Casimir equations. Equating these two
conformal block decompositions, we arrive at the following crossing equation

δ12η
−∆1 +

∑
k

µc,12k gc,∆k (η) = ±
(
δ12(1 − η)−∆1 +

∑
k

µc,12k ḡc,∆k (η)
)

(2.26)

where ± is the common parity of the two operators.

5 For this reason, there are a lot more data in the BCFT case which are associated to the operators living on the boundary.
7
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Fig. 3. Two OPE channels in real projective space CFTs. The circle represents the unit sphere at x = 0, and O′

1(x
′

1) is the inversion image of O1(x1)
with respect to the unit sphere.

Fig. 4. The ξ -plane for a BCFT two-point function. Three interesting points on this plane are the bulk channel OPE limit (ξ = 0), the boundary
hannel OPE limit (ξ = ∞), and the Regge limit (ξ = −1).

Finally, let us comment that we can complexify the cross ratios, and study the analytic property of correlators on the
omplex plane. For BCFTs, the complex ξ -plane is shown in Fig. 4. The two special points ξ = 0 and ξ = ∞ correspond
to the bulk channel and boundary channel OPE limits respectively. In Euclidean spacetime, the cross ratio is restricted
to the semi-infinite real axis ξ ∈ [0,∞). However, there is another interesting point at ξ = −1 which can be reached
via analytic continuation. In Lorentzian signature, ξ = −1 corresponds to one operator approaching the lightcone of the
other operator’s image with respect to the boundary (Fig. 5). This limit is referred to as the Regge limit. In a unitary BCFT,
one can prove that the growth of the two-point function in the Regge limit is bounded by the exchange of the operator
with the lowest conformal dimension in the bulk channel. The proof takes advantage of the so-called ρ coordinate [44],
and the positivity of the conformal block decomposition coefficients in the boundary channel. Details of the proof can be
found in Appendix A of [26].

The complex η-plane for real projective space CFTs is shown in Fig. 6. There are also three points of special interest. The
points η = 0 and η = 1 respectively correspond to the bulk channel OPE and the image channel OPE limits, and η ∈ [0, 1]
for Euclidean space. The point η = ∞ plays a similar role as the Regge limit in BCFT two-point functions [39], and can
only be reached via analytic continuation in Euclidean signature. However, unlike in the BCFT case, there is no analogue
of the boundary channel where the conformal block decomposition coefficients are positive. Therefore, one cannot adapt
the proof for BCFTs to prove boundedness of two-point functions in the Regge limit.

2.2. Analytic methods

In this subsection we discuss analytic methods for BCFTs [26,27] and real projective space CFTs [39] which are based
on ‘‘analytic functionals’’. Such functional methods were originally introduced for four-point functions in 1d CFTs [45–47],
and later generalized to higher dimensions in [48–50]. While the level of technical sophistication varies greatly in these
different setups, the essential ideas remain the same. Here we will exploit the simpler kinematics of two-point functions
to demonstrate the main features of such an approach.

To help the reader navigate through this subsection, let us give below a quick summary of these features and also
point out the connections. We will argue that the ‘‘double-trace’’ conformal blocks, from both the direct and the crossed
8
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Fig. 5. The Regge limit of a BCFT two-point function in Lorentzian spacetime. The vertical line represents the conformal boundary, and time is one
of the dimensions of the boundary. The Regge limit ξ = −1 is reached when O2 approaches the lightcone of the image of O1 .

Fig. 6. The η-plane for a real projective space CFT two-point function. Three interesting points on this plane are the bulk channel OPE limit (η = 0),
he image channel OPE limit (η = 1), and the Regge limit (η = ∞).

channels, form a new basis for expanding the correlators. These double-trace conformal blocks are associated with special
product operators of which the conformal dimensions are the sums of the elementary building operators. This should be
contrasted with the standard conformal block decomposition which exploits only one channel at a time and does not
require the spectrum to be discrete. The dual of the double-trace conformal blocks are the analytic functionals. Their
actions on the crossing equation turn it into sum rules for the CFT data. We will develop this functional approach both from
a dispersion relation, and by exploiting the structure of Feynman diagrams (Witten diagrams) [51] in certain holographic
setups. The first argument can be viewed as a toy example of the CFT dispersion relation for four-point functions [52]. The
second argument is closely related to Polyakov’s original version of the conformal bootstrap [4], which will be reviewed
later in Section 8. As we will see, the Witten diagrams also give rise to another set of basis which are essentially those
used in [4]. Moreover, the sum rules from the functionals are just a modern paraphrase of the consistency conditions
imposed by Polyakov in his approach.

2.2.1. Real projective space CFTs
Let us first consider a simplified example of a two-point functions in a 2d real projective CFT where the external

dimensions are equal ∆1 = ∆2 = ∆ϕ , following the discussion in [39]. The two-point function can be written as

G(η) =

∮
dζ
2π i

G(ζ )
ζ − η

(2.27)

sing Cauchy’s integral formula. To lighten the notation we will suppress the parity choice ± of the operators in this
ubsection. We can deform the contour to wrap it around the two branch cuts [1,∞), (−∞, 0] as in Fig. 7. Assuming that
the two-point function has the following behavior in the Regge limit

|G(η)| ≲ |η|−ϵ, η → ∞, (2.28)
9
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Fig. 7. Deformation of contours in the dispersion relation.

where ϵ is an infinitesimal positive number, we can drop the contribution from the arcs at infinity. In other words, no
subtraction is needed in this case. The two-point function becomes

G(η) = G1(η) + G2(η) (2.29)

here

G1(η) =

∫
C1

dζ
2π i

G(ζ )
ζ − η

=

∫
∞

1

dζ
2π i

Disc1[G(ζ )]
ζ − η

,

G2(η) = −

∫
C2

dζ
2π i

G(ζ )
ζ − η

=

∫ 0

−∞

dζ
2π i

Disc2[G(ζ )]
ζ − η

,

(2.30)

nd
Disc1[G(ζ )] =G(ζ + i0+) − G(ζ − i0+), ζ ∈ (1,∞),
Disc2[G(ζ )] =G(ζ + i0+) − G(ζ − i0+), ζ ∈ (−∞, 0).

(2.31)

The two functions G1(η) and G2(η) are related by crossing symmetry

G2(η) = ±G1(1 − η). (2.32)

Here we have also assumed that the integrals converge, i.e., Disc2[G(ζ )] ∼ ζ−a with a < 1 as ζ → 0. To proceed, let us
define a function

kh(η) = ηh2F1(h, h; 2h, η) (2.33)

which has the following orthonormal property∮
|η|=ϵ

dη
2π i

η−2kx+n(η)k1−x−m(η) = δnm. (2.34)

We note that the conformal blocks with d = 2, ∆1 = ∆2 = ∆ϕ are related to kh(η) by

gc,∆(η) = η−∆ϕk∆
2
(η). (2.35)

e will now show that the two-point function G(η) can be decomposed in terms of a special class of conformal blocks
ith dimensions ∆d.t.

n = 2∆ϕ + 2n in both OPE channels. Here the superscript d.t. stands for double-trace as ∆d.t.
n is

he conformal dimension of a double-trace operator of the schematic form : ϕ□nϕ :. These are operators which appear
niversally in the mean field theory, and their dimensions are just the sums of the dimensions of the building blocks.6 To
how this, we note that the kernel in the Cauchy integral admits the following expansion in terms double-trace conformal
locks

1
ζ − η

=

∞∑
n=0

Hn(ζ )gc,∆d.t.
n

(η) (2.36)

6 The operator ϕ has dimension ∆ϕ and □ has dimension 2. Therefore, : ϕ□nϕ : has dimension 2∆ϕ + 2n. The terminology ‘‘double-trace’’ is
borrowed from gauge theory to denote the fact such an operator is made of two ‘‘single-trace’’ operators φ. Here ‘‘trace’’ refers to the trace over gauge
group indices because a single-trace operator in gauge theories has the form tr(X1X2 . . . Xn), with operators Xi = Xa

i T
a in the adjoint representation

f the gauge group. For the moment, these terminologies can just be regarded as names if they are not familiar to the reader.
10
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ith coefficients which are functions of ζ . These coefficients can be computed using the orthonormal property of kh(η)

Hn(ζ ) =

∮
|η|=ϵ

dη
2π i

η∆ϕ−2

ζ − η
k1−∆ϕ−n(η), (2.37)

and gives

Hn(ζ ) =
(−4)−n(∆ϕ)n(2∆ϕ − 1)n

n!(∆ϕ −
1
2 )n

ζ−1
3F2(1,−n, 2∆ϕ + n − 1;∆ϕ,∆ϕ; ζ−1). (2.38)

nserting (2.36) into (2.30), we find that G1(η) can be expanded in terms of double-trace conformal blocks

G1(η) =

∞∑
n=0

rn,1 gc,∆d.t.
n

(η), (2.39)

ith

rn,1 =

∫
C1

dζ
2π i

Hn(ζ )G(ζ ). (2.40)

o get this result, we have assumed that we can exchange the order of the integral and the infinite sum. However, to
void being overly technical in this introductory section, we will not discuss when this assumption is valid. Now using
rossing symmetry (2.32), we find that G2(η) can be expanded in terms of double-trace conformal blocks in the image
channel

G2(η) =

∞∑
n=0

rn,2 ḡc,∆d.t.
n

(η), (2.41)

where rn,2 = ±rn,1. This proves that any two-point function G(η), suitably bounded in the Regge limit as in (2.28), can
be decomposed as a linear combination of double-trace conformal blocks {gc,∆d.t.

n
(η), ḡc,∆d.t.

n
(η)} from both channels. Note

this is quite different from the standard conformal block decomposition where we use only one OPE channel and the
conformal dimensions of the conformal blocks are not forced to take discrete values.

The conclusions we reached in this simple example in fact generalize to the general case. Let us consider a two-point
function in a d-dimensional real projective space CFT with dimensions ∆1 and ∆2. If the two-point function satisfies the
boundedness condition (2.28), then a basis is given by the conformal blocks in the bulk channel and the image channel

{gc,∆d.t.
n

(η), ḡc,∆d.t.
n

(η)}, n = 0, 1, 2, . . . (2.42)

here

∆d.t.
n = ∆1 +∆2 + 2n. (2.43)

ith this basis of functions, we can define a dual basis whose elements are the functionals

{ωc,n, ω̄c,n}, n = 0, 1, 2, . . . . (2.44)

hese functionals are defined to have the following orthonormal action on the basis vectors
ωc,m(gc,∆d.t.

n
) = δnm, ωc,m(ḡc,∆d.t.

n
) = 0,

ω̄c,m(gc,∆d.t.
n

) = 0, ω̄c,m(ḡc,∆d.t.
n

) = δnm.
(2.45)

To fully specify these functionals, we need to know how they act on a generic conformal block, i.e., computing

ωc,n(gc,∆), ωc,n(ḡc,∆), ω̄c,n(gc,∆), ω̄c,n(ḡc,∆), (2.46)

or a general conformal dimension ∆. Let us consider decomposing a conformal block in the above double-trace basis

gc,∆(η) =

∑
n

Mn gc,∆d.t.
n

(η) +

∑
n

Nn ḡc,∆d.t.
n

(η). (2.47)

cting on it with the basis functionals and using the orthonormal relation (2.45), we find

Mn = ωc,n(gc,∆), Nn = ω̄c,n(gc,∆). (2.48)

imilarly, the actions ωc,n(ḡc,∆), ω̄c,n(ḡc,∆) appear in the decomposition coefficients of the image channel conformal block
¯c,∆. Once we know the actions of these functionals, we can act with them on the crossing equation of two-point functions
2.26) to systematically extract the constraints on the CFT data in the form of sum rules7∑

k

µc,12k ωn(gc,∆k ) = ±

∑
k

µc,12k ωn(ḡc,∆k ). (2.49)

7 Here we have absorbed the identity exchange into the infinite sum. Moreover, we have assumed that we are allowed to swap the infinite
summation with the action of the functionals. However, this may not always be true. For a detailed discussion on this swapping subtlety, see [47,53].
11
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Fig. 8. The quotient AdS space obtained by identifying points related by the inversion with respect to the unit radius hemisphere. The point Z ′ is
he inversion image of Z . The north pole Nc of the hemisphere is invariant under inversion.

Fig. 9. Tree-level Witten diagrams. On the LHS, we have a single exchange Witten diagram in the quotient AdS space. On the RHS, we use the
method of images to express it in terms of the exchange Witten diagram in the full AdS space and its image diagram where one boundary point
x1 has been moved to its inversion image x′

1 .

In the 2d example considered above, these actions can be computed as contour integrals (2.40) with G(η) taken to be
a conformal block. However, these coefficients can also be computed in a different way, by considering a seemingly
unrelated problem of conformal block decomposition of tree-level Witten diagrams in AdS space, as we now explain.

We consider the following simple setup that realizes the kinematics of a real projective space CFT in AdS space. We
first extend the inversion (2.6) in Rd to AdSd+1 by

z0 →
z0

z20 + z⃗2
, z⃗ → −

z⃗
z20 + z⃗2

(2.50)

where z = (z0, z⃗) are the Poincaré coordinates of AdS and z0 is the radial direction. Note that at the conformal boundary
z0 = 0, (2.50) reduces to (2.6). This transformation can also be obtained from (2.5) by replacing the embedding space
vector P by the embedding space vector Z of an AdS point

ZA
=

1
z0

(
1 + z20 + z⃗2

2
,
1 − z20 − z⃗2

2
, z⃗
)
. (2.51)

eometrically, (2.50) corresponds to an inversion with respect to a unit radius hemisphere located at z0 = 0, z⃗ = 0, as is
llustrated in Fig. 8. The kinematics of real projective space CFTs can be realized in the quotient space AdSd+1/Z2 which
is defined by identifying points under the inversion (2.50)

z0 ↔
z0

z20 + z⃗2
, z⃗ ↔ −

z⃗
z20 + z⃗2

. (2.52)

ote that (2.50) has a special fixed point at z0 = 1, z⃗ = 0, which corresponds to the north pole of the hemisphere. In fact,
written in terms of the embedding space coordinates, this point is nothing but the fixed vector Nc .

Let us now consider scalar fields on this quotient AdS space, and require the fields to have the same value at points
related by inversion

Φ(Z) = ±Φ(Z ′), (2.53)

p to a sign which corresponds to the parity of the dual CFT operator. Here Z ′ is the inversion image of Z . We further
ssume that the effective action of these fields contains a cubic term

∫
dZΦ1(Z)Φ2(Z)Φ(Z), and a linear term Φ(Nc) that

s localized at the fixed point Nc . We can then consider an exchange Witten diagram V exchange
∆ in the quotient AdS space

s is shown on the LHS of Fig. 9. The propagators in this diagram need to be consistent with the condition (2.53) on
he hemisphere. The insertion point of the cubic vertex is integrated over the quotient AdS space, while the end Nc is
eld fixed. By using the method of images, we can express this exchange diagram in terms of exchange Witten diagrams
efined on the full AdS space without taking the quotient (Fig. 9)

V exchange(P , P ) = W exchange(P , P ) ± (x2)−∆1W̄ exchange(P , P ). (2.54)
∆ 1 2 ∆ 1 2 1 ∆ 1 2

12
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W exchange
∆ (P1, P2) =

∫
AdSd+1

dd+1ZG∆BB(Nc, Z)G
∆1
B∂ (Z, P1)G

∆2
B∂ (Z, P2), (2.55)

W̄ exchange
∆ (P1, P2) = W exchange

∆ (P ′

1, P2), (2.56)

are defined with the standard AdS bulk-to-boundary propagator

G∆B∂ (Z, P) =
1

(−2Z · P)∆
, (2.57)

nd the bulk-to-bulk propagator satisfying(
□Z −∆(∆− d)

)
G∆BB(Z,W ) = δ(Z,W ). (2.58)

he integration region of the cubic vertex insertion points is the entire AdSd+1 space. There appears to be two more
diagrams where the sources are inserted at (P ′

1, P
′

2) and (P1, P ′

2). but one can show that they are the same as the two
diagrams above. Let us also extract the kinematic factor from (2.54), and then we have

V exchange
∆ (P1, P2) =

1
(1 + x21)∆1 (1 + x22)∆2

(
Wexchange
∆ (η) ± W̄exchange

∆ (η)
)
, (2.59)

with

W̄exchange
∆ (η) = Wexchange

∆ (1 − η). (2.60)

After this long detour into AdS, let us finally get to our point: the functional actions (2.46) can be extracted from the
conformal block decomposition coefficients of the Witten diagrams Wexchange

∆ (η), W̄exchange
∆ (η). One can show that both

diagrams obey the boundedness condition (2.28) in the Regge limit. Moreover, under conformal block decomposition the
exchange Witten diagram Wexchange

∆ (η) is comprised of a single-trace conformal block and infinitely many double-trace
conformal blocks in the same channel

Wexchange
∆ (η) = A gc,∆(η) +

∞∑
n=0

An gc,∆d.t.
n

(η), (2.61)

and infinitely many double-trace conformal blocks in the crossed channel

Wexchange
∆ (η) =

∞∑
n=0

Bn ḡc,∆d.t.
n

(η). (2.62)

We are stating here these decomposition properties merely as facts to avoid going into unnecessary technicalities. But
they follow directly from a study of these integrals and the details of the analysis can be found in [39]. Comparing
these two expansions with (2.47), one finds that the functional actions can be expressed in terms of the conformal block
decomposition coefficients of exchange Witten diagrams as

ωc,n(gc,∆) = −
An

A
, ω̄c,n(gc,∆) =

Bn

A
. (2.63)

s was shown in [39], one can explicitly evaluate the exchange Witten diagram integral (2.55) in terms of hypergeometric
unctions, and recursively compute all the conformal block decomposition coefficients. Here we do not give the explicit
xpressions of these coefficients, and refer the reader to [39] for details. Similarly, the image diagram decomposes as

W̄exchange
∆ (η) =

∞∑
n=0

Bn gc,∆d.t.
n

(η) = A ḡc,∆(η) +

∞∑
n=0

An ḡc,∆d.t.
n

(η), (2.64)

which follows from the crossing relation (2.60). From these identities we find

ωc,n(ḡc,∆) = ω̄c,n(gc,∆), ω̄c,n(ḡc,∆) = ωc,n(gc,∆). (2.65)

All in all, these Witten diagrams give us an efficient holographic method to obtain these functionals.
In fact, there is a further use of these Witten diagrams. As we now show, they also furnish a new basis of functions to

decompose conformal correlators. The decomposition reads

G(η) =

∑
k

µc,12k

A
(Wexchange

∆k
(η) ± W̄exchange

∆k
(η)) (2.66)

here we sum over the same spectrum appearing in the conformal block decomposition (2.23) and µc,12k are the same
oefficients. To prove it, we expand both Wexchange

∆k
(η) and W̄exchange

∆k
(η) in the η → 0 channel. This gives

G(η) =

∑
µc,12kgc,∆k (η) +

∑ ∞∑
µc,12k

(
−ωc,n(g∆k ) ± ω̄c,n(gc,∆k )

)
gc,∆d.t.

n
. (2.67)
k k n=0

13
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nterchanging the order of the sums and using (2.65), we find the second term vanishes when the sum rules (2.49) are
sed. The expansion in terms of Witten diagrams then reduces to the conformal block decomposition in the bulk channel.
hile this new expansion is very similar to the conformal block expansion, we must note the important difference that

t exploits building blocks from both channels at the same time. Basis of this kind first appeared in the original work
f Polyakov [4]. Finally, we can also reverse the logic starting from (2.66). Requiring that double-trace conformal blocks
anish in the conformal block decomposition gives rise to sum rules (2.49).

n application
The zeros in the functional actions (2.45) at the double-trace conformal dimensions can considerably simplify the sum

ules (2.49) if the theory spectrum contains such operators. The simplest (and almost trivial) example is the mean field
heory. However, we can also consider CFTs which can be viewed as small perturbations around the mean field theory.
his special feature of the analytic functionals therefore makes them particularly suitable for studying such theories. As a
imple application, let us show how to use functionals to bootstrap the one-point function coefficients of the O(N) model
n real projective space. We will only outline the computation, and refer the reader to [39] for the explicit details.
The CFT of interest is the Wilson–Fisher fixed point of the Lagrangian theory

S =
Γ ( d2 − 1)

4π
d
2

∫
ddx
(
1
2
(∂µϕI )2 +

λ

4
(ϕIϕI )2

)
, I = 1, . . . ,N, (2.68)

at d = 4−ϵ dimension. We consider the ⟨ϕIϕJ
⟩ two-point function. To order ϵ2, the only operators that can be exchanged

are the identity and the double-trace operators [ϕϕ]n = ϕ□nϕ, and we parameterize the deviations from the mean field
theory values as follows

µϕϕn = µ(0)
ϕϕn + ϵµ(1)

ϕϕn + ϵ2µ(2)
ϕϕn, ∆ϕ =

d
2

− 1 + ϵ2γ (2)
ϕ , ∆[ϕϕ]n = ∆d.t.

n + ϵγ (1)
n + ϵ2γ (2)

n . (2.69)

We have used the well known fact that the anomalous dimension of ϕ starts at ϵ2.
To proceed, we act on crossing equation with the functionals and expand the sum rules in powers of ϵ

ωc,n(gc,0) +

∑
n

µϕϕn ωc,n(gc,∆[ϕϕ]n
) = ±

(
ωc,n(ḡc,0) +

∑
n

µϕϕn ωc,n(ḡc,∆[ϕϕ]n
)
)
+ O(ϵ3). (2.70)

t the zeroth order, we have just the mean field theory and one can check that the sum rules

ωc,n(gc,0) + µ(0)
ϕϕn = ±ωc,n(ḡc,0) (2.71)

ive the correct mean field theory coefficients

µ(0)
ϕϕn = ±δn,0. (2.72)

oreover, one finds ωn(gc,0) = 0. Using these results in the next order and we find that the sum rules at O(ϵ) are given
y

µ(1)
ϕϕn ±

[
ωc,n(gc,∆d.t.

0 +ϵγ
(1)
0

)
]
O(ϵ) = ±

[
ωc,n(ḡc,0)

]
O(ϵ) +

[
ωc,n(ḡc,∆d.t.

0 +ϵγ
(1)
0

)
]
O(ϵ). (2.73)

Solving these equations, we find

µ
(1)
ϕϕ0 = −

γ
(1)
0

2
, µ

(1)
ϕϕ1 =

γ
(1)
0

4
, µ

(1)
ϕϕ n≥2 = 0, (2.74)

hich agrees with [38]. Note that the fact that only finitely many coefficients are nonzero at this order is very useful. It
mplies that at the next order the sum rules will continue to have only finitely many terms. Explicitly, we find at O(ϵ2)

µ(2)
ϕϕn ±

[
ωc,n(gc,∆d.t.

0 +ϵγ
(1)
0 +ϵ2γ

(2)
0

)
]
O(ϵ2) + µ

(1)
ϕϕ0

[
ωc,n(gc,∆d.t.

0 +ϵγ
(1)
0

)
]
O(ϵ)

+ µ
(1)
ϕϕ1

[
ωc,n(gc,∆d.t.

1 +ϵγ
(1)
1

)
]
O(ϵ) = ±

[
ωc,n(ḡc,0)

]
O(ϵ2) +

[
ωc,n(ḡc,∆d.t.

0 +ϵγ
(1)
0 +ϵ2γ

(2)
0

)
]
O(ϵ2)

± µ
(1)
ϕϕ0

[
ωc,n(ḡc,∆d.t.

0 +ϵγ
(1)
0

)
]
O(ϵ) ± µ

(1)
ϕϕ1

[
ωc,n(ḡc,∆d.t.

1 +ϵγ
(1)
1

)
]
O(ϵ).

(2.75)

From these equations, we can solve the coefficients µ(2)
ϕϕn in terms of the bulk data of anomalous dimensions. After using

their values in the O(N) model, we find, for example

µϕϕ0 = ±1 −
N + 2

2(N + 8)
ϵ −

3(N + 2)(2N + 6 ± (N + 8))
2(N + 8)3

ϵ2 + O(ϵ3),

µϕϕ1 =
N + 2

4(N + 8)
ϵ −

(N + 2)
4(N + 8)2

(76 + N(N + 10)
2(N + 8)

± (N − 2)
)
ϵ2 + O(ϵ3).

(2.76)

hese results are consistent with the analytic results obtained from large N analysis [39], and also with the numerical
ootstrap results [34] which considered ϵ = 1, N = 1. Proceeding to O(ϵ3) and higher orders however is difficult. Due
o the fact that all µ(2)

ϕϕn are nonzero, the functional sum rules at the next order inevitably contain infinitely many terms,
aking them difficult to solve analytically.
14



A. Bissi, A. Sinha and X. Zhou Physics Reports 991 (2022) 1–89

2

t
N
N

c

f
d

Fig. 10. Exchange Witten diagrams in the half AdS space. Here spacetime stops after the vertical wall.

.2.2. Boundary CFTs
Two-point functions in BCFTs also admit a similar functional treatment [26,27], which is closely related to mean field

heories with boundaries. Analogous to the choice of parity in the real projective CFT case, here one can choose either
eumann or Dirichlet boundary conditions for the associated mean field theory. For definiteness, we will only discuss the
eumann boundary condition case here. The Dirichlet case is similar and its discussion can be found in [27].
We start with the conformal block decomposition of the mean field theory two-point function with Neumann boundary

ondition

⟨ϕ(x1)ϕ(x2)⟩Neumann =
1

(2x1,⊥)∆ϕ (2x2,⊥)∆ϕ
(
ξ−∆ϕ + (ξ + 1)−∆ϕ

)
. (2.77)

In the bulk channel, we find infinitely many double-trace operators with dimensions ∆d.t.
n = 2∆φ+2n, n = 0, 1, . . .. In the

boundary channel, we find an infinite tower of boundary modes ϕ̂n with dimensions ∆̂n = ∆ϕ+2n, n = 0, 1, . . .. If we had
considered the Dirichlet boundary condition, we would have found a different tower with dimensions ∆̂n = ∆ϕ +2n+1.

Let us now consider a two-point function with ∆1 ̸= ∆2. We will also make a technical assumption that the two-point
function satisfies the following boundedness condition in the Regge limit

|G(ξ )| ≲ |ξ + 1|−
∆1+∆2−1

2 +ϵ, ξ → −1+, (2.78)

or some ϵ > 0. This behavior was referred to as Regge super-boundedness in [26], and here we assume it to simplify the
iscussion. The claim is that the following set of conformal blocks in both bulk and boundary channels, which are closely

related to the mean field theory spectrum, furnishes a basis for Regge super-bounded functions

gbulk
b,∆d.t.

n
, with ∆d.t.

n = ∆1 +∆2 + 2n, n = 0, 1, . . . ,

gboundary
b,∆̂i

n
, with ∆̂i

n = ∆i + 2n, n = 0, 1, . . . , i = 1, 2.
(2.79)

The dual basis is given by the set of functionals {ωn, ω̂
(i)
n } defined by the orthonormal relations

ωm(gbulk
b,∆d.t.

n
) = δmn, ωm(g

boundary
c,∆̂i

n
) = 0,

ω̂(j)
m (gbulk

b,∆d.t.
n

) = 0, ω̂(j)
m (gboundary

c,∆̂i
n

) = δmnδij.
(2.80)

Similar to the real projective CFT case, a convenient way to see that {gbulk
b,∆d.t.

n
, gboundary

b,∆̂i
n

} provides a basis is to use holography.
It also allows us to obtain the actions of the dual functionals.

Let us consider the following holographic setup where we take half of the AdSd+1 space by requiring z⊥ ≥ 0. This
amounts to extending the boundary of the BCFT at x⊥ = 0 into a wall in AdSd+1. The mean field theory boundary
condition is also extended by requiring scalar fields in the half AdS space to obey Neumann boundary condition on the
wall. We can then consider the following two types of diagrams: the bulk channel exchange Witten diagram 10(a) and
the boundary channel exchange Witten diagram 10(b). Here both the bulk-to-bulk and the bulk-to-boundary propagators
need to obey the Neumann boundary condition at the AdSd subspace z⊥ = 0. In the bulk channel diagram, the cubic vertex
insertion point is integrated over the half AdSd+1 space, and the other end of the bulk-to-bulk propagator is integrated
over the entire AdSd wall. In the boundary channel diagram, the bulk-to-bulk propagator lives in AdSd and both vertex
insertion points are integrated over AdSd. Again, by using the method of images, we can express these diagrams in terms
of diagrams defined in the full AdSd+1 (Fig. 11). In this new setup, we have a AdSd probe brane located at z⊥ = 0 which is
just an interface. There are localized degrees of freedom living on this subspace, but the brane does not back-react to the
geometry. The half AdS space diagram 10(a) is equivalent to the sum of a bulk channel exchange diagram in the full AdS
space and its mirror diagram in which O is inserted at −x . These two diagrams are shown in Fig. 11(a), and we denote
1 1,⊥

15
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Fig. 11. Exchange Witten diagrams in the full AdS space. Here the AdSd subspace is just an interface which hosts localized degrees of freedom and
does not back-react to the geometry.

them by Wbulk
∆ , Wmirror

∆ respectively. The integration over the cubic vertex insertion points is now over the entire AdSd+1
space. On the other hand, x1,⊥ → −x1,⊥ in an AdSd+1 boundary channel exchange diagram does not change its value.
Therefore, doubling the space does not affect the boundary channel exchange Witten diagrams and the two diagrams
10(b) and 11(b) are the same. We denote 11(b) by Wboundary

∆̂
.

The crucial property we need to make progress is how these Witten diagrams decompose into conformal blocks. Using
for example the Mellin representation for BCFTs [24], one can show that Wbulk

∆ + Wmirror
∆ decomposes into single-trace

and double-trace conformal blocks in the bulk channel

Wbulk
∆ (ξ ) + Wmirror

∆ (ξ ) = E gbulk
b,∆ (ξ ) +

∞∑
n=0

En gbulk
b,∆d.t.

n
(ξ ), (2.81)

and only double-trace conformal blocks in the boundary channel

Wbulk
∆ (ξ ) + Wmirror

∆ (ξ ) =

∞∑
n=0

∑
i=1,2

F (i)
n gboundary

b,∆̂i
n

(ξ ), (2.82)

Similarly, the boundary channel exchange diagram Wboundary
∆̂

decomposes as

Wboundary
∆̂

(ξ ) = Kgboundary
b,∆̂ (ξ ) +

∞∑
n=0

∑
i=1,2

K (i)
n gboundary

b,∆̂i
n

(ξ ) (2.83)

in the boundary channel, and

Wboundary
∆̂

(ξ ) =

∞∑
n=0

Ln gbulk
b,∆d.t.

n
(ξ ) (2.84)

in the bulk channel. Equating the two decompositions in each case, we find that conformal blocks gbulk
b,∆ (ξ ), gboundary

b,∆̂ (ξ )
with arbitrary conformal dimensions ∆, ∆̂ can be expanded in terms of the double-trace conformal blocks (2.79). This
almost leads to our claim that (2.79) is a basis. However, we need to check if the Regge behaviors of the Witten diagrams
satisfy the condition (2.78). One can show that as ξ → −1+, these diagrams behave as [26]

|Wbulk
∆ (ξ ) + Wmirror

∆ (ξ )| ∼ |ξ + 1|−
∆1+∆2−1

2 , |Wboundary
∆̂

(ξ )| ∼ |ξ + 1|−
∆1+∆2−3

2 . (2.85)

herefore, only Wboundary
∆̂

is Regge super-bounded and Wbulk
∆ +Wmirror

∆ is only Regge bounded in the parlance of [26]. To see
why this point is important, we note that there is another Regge-bounded diagram Wcontact (Fig. 12) which decomposes
into only {gbulk

b,∆d.t.
n
, gboundary

b,∆̂i
n

} in both channels

Wcontact(ξ ) =

∞∑
n=0

Rn gbulk
b,∆d.t.

n
(ξ ) =

∞∑
n=0

∑
i=1,2

S(i)n gboundary
b,∆̂i

n
(ξ ). (2.86)

This implies a linear relation among the basis vectors. However, we can avoid this relation by insisting that we are in the
smaller space of functions defined by (2.78). It turns out that there is a unique combination of the exchange diagrams
and the contact diagram

Vbulk
∆ (ξ ) = Wbulk

∆ (ξ ) + Wmirror
∆ (ξ ) + θWcontact(ξ ) (2.87)

uch that Vbulk
∆ has improved Regge behavior |ξ + 1|−

∆1+∆2−3
2 and is therefore super-bounded. Then in this Regge super-

bounded space a basis is given by (2.79). Moreover, the actions of the dual functionals can be read off from the conformal
16
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Fig. 12. The contact Witten diagram. This diagram is given by the product of two bulk-to-boundary propagators with the vertex point integrated
over the AdSd brane.

block decomposition coefficients of the combination Vbulk
∆ and Wboundary

∆̂

ωm(gbulk
b,∆ ) = −

1
E
(Em + θRm), ω̂(j)

m (gbulk
b,∆ ) =

1
E
(F (j)

m + θS(j)m ),

ωm(g
boundary
b,∆̂ ) =

Lm
K
, ω̂(j)

m (gboundary
b,∆̂ ) = −

K (j)
m

K
.

(2.88)

imilar to the real projective case, one can also show that Vbulk
∆ and Wboundary

∆̂
form a Polyakov style basis for expanding

orrelators.
The above discussion assumed ∆1 ̸= ∆2. However, the story of the equal weight case ∆1 = ∆2 = ∆ϕ is similar and

equires only minor modifications. In this case the two towers of boundary channel conformal blocks in the basis (2.79)
ecome degenerate, but the degeneracy can be compensated by turning one tower into derivative conformal blocks

gbulk
b,∆d.t.

n
, with ∆d.t.

n = 2∆ϕ + 2n, n = 0, 1, . . . ,

gboundary
b,∆̂n

, ∂gboundary
b,∆̂n

, with ∆̂n = ∆ϕ + 2n, n = 0, 1, . . . ,
(2.89)

Here ∂gboundary
b,∆̂ = ∂∆̂g

boundary
b,∆̂ . This basis again can be found by examining the conformal block decomposition of Witten

diagrams with equal external weights, where the derivative conformal blocks are related to anomalous dimensions. The
dual functional basis is then defined to be {ωn, ω̂n, ω̃n}, which acts on the basis vectors {gbulk

b,∆d.t.
n
, gboundary

b,∆̂n
, ∂gboundary

b,∆̂n
} in the

orthonormal way. Their actions on general conformal blocks (and their derivatives) can be read off from the conformal
block decomposition coefficients of Vbulk

∆ and Wboundary
∆̂

.
Finally, the functionals discussed in this subsection can be applied to a variety of analytic bootstrap problems. For

example, [27] used the functionals to recover the Wilson–Fisher BCFT data to order ϵ2. In [26], the functionals were used
to study a deformation of the mean field theory which interpolates the Neumann and Dirichlet boundary conditions. These
applications are similar to the O(N) model example we studied in the real projective space CFT subsection, and therefore
will not be further discussed. We refer the reader to the original papers for the details.

2.3. CFTs on other backgrounds

The two situations we reviewed in this section can be viewed more generally as special cases of CFTs on backgrounds
which are not conformally equivalent to (empty) Rd. There has been a lot of progress in applying bootstrap techniques
to study such CFTs.

Closely related to boundary CFTs are CFTs with conformal defects of various codimensions. There is a vast literature
on this topic in the context of conformal bootstrap, see, e.g., [22,54–74]. Another important background is Rd−1

× S1 and
is related to CFTs at finite temperature. There the simplest nontrivial observable is also the two-point function, and the
Kubo–Martin–Schwinger condition is cast into a crossing equation. Therefore, the situation is quite similar to the cases
of BCFTs and CFTs on real projective space. For works in this direction, see [75–79].

3. Large spin analytic bootstrap

In this section we would like to discuss how crossing symmetry, the structure of the OPE and basic properties of the
conformal blocks imply the presence of operators with large spins, and how to characterize them. These developments
are based on [80–82]. For reader’s convenience, we also offer a quick review of some basic concepts of CFT in Section 3.1.
However, for the readers who already have a working knowledge of CFT, this subsection can be safely skipped.
17
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.1. Important concepts: A lightning review

In this subsection, we will briefly summarize the important concepts needed in order to understand the rest of the
eview which deals with mostly four-point functions. For readers who have read Section 2, they will already find great
amiliarity with these concepts. Nevertheless, we will still go through them due to their essential importance and also
o set up the notations that we will use in the review. It should be noted that this subsection is not intended to be a
edagogical introduction to CFT since these basic concepts have already been discussed in great detail in many excellent
eviews [11,14,15,18]. Our discussion will be concise, and the reader is referred to these references for further details. For
his subsection, we will focus on external scalar operators.

• Operator product expansion (OPE): The concept of OPE holds the center stage in the discussion of the conformal
bootstrap. In quantum field theory, the idea of OPE enables us to replace the product of two operators which are
close to each other by an infinite set of operators inserted at the midpoint. Unlike QFT, where OPE is asymptotic,
in CFT the OPE has a finite radius of convergence. For scalar primary operators ϕ1(x), ϕ2(x), we have the following
operator equation8

ϕ1(x1)ϕ2(x2) =
δ12

(x1 − x2)2∆ϕ1
+

∑
O

C12O D[x1 − x2, ∂x2 ]O(x2) , (3.1)

where the sum is over primary operators O. C12O are the OPE coefficients and D[x1−x2, ∂x2 ] are differential operators
whose form is fixed by conformal invariance. The goal of the bootstrap is to constrain the OPE coefficients as well as
the spectrum (scaling dimensions) of primary operators that appear in the OPE. In the CFT literature, the operator
spectrum and the OPE coefficients are often referred to as the CFT data. If a theory is unitary then there are unitarity
bounds that the scaling dimensions of operators have to obey, namely

∆ ≥
d − 2
2

, ℓ = 0 , (3.2)

∆ ≥ d − 2 + ℓ , ℓ > 0 , (3.3)

where ℓ denotes the spin of the operator. The quantity τ ≡ ∆− ℓ is referred to as the twist of the operator.
• Four-point functions: The spacetime dependence of two- and three-point functions are completely fixed by con-

formal invariance. Starting at four points, however, there are quantities which are invariant under all conformal
transformations.9 These are the conformal cross ratios10

U =
x212x

2
34

x213x
2
24
, V =

x214x
2
23

x213x
2
24
, (3.4)

As a result, conformal symmetry can only determine a four-point function up to an arbitrary function of U and V .
For example, we can write the correlation function of four identical scalar primary operators ϕ with dimension ∆ϕ
as

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
1(

x212x
2
34

)∆ϕ G(U, V ) . (3.5)

• Conformal blocks: Four-point functions can be deconstructed by using the OPE. Performing the OPE (3.1) for ϕ(x1) and
ϕ(x2) we reduce the four-point function to a sum of three-point functions which are fixed by conformal symmetry
up to the OPE coefficients. Equivalently, we can perform (3.1) for ϕ(x1), ϕ(x2) and ϕ(x3), ϕ(x4) to reduce the four-
point function as a sum of two-point functions of operators which are contained in both OPEs. In other words, the
four-point function can be interpreted as the sum of infinitely many operator exchanges. The contribution to the four-
point function from exchanging a conformal primary operator and its conformal descendants is known as a conformal
block g∆,ℓ(U, V ).11 It can be obtained by directly resumming these contributions contained in the RHS of (3.1) for a
specific primary operator O. But more efficiently, the conformal block can be obtained as the eigenfunction of the
bi-particle quadratic conformal Casimir operator. Explicit expressions for g∆,ℓ(U, V ) in any spacetime dimensions
can be found in [83] and they have a closed form expression in even spacetime dimensions. Using conformal blocks,
we can write the decomposition of the four-point function more explicitly as follows

G(U, V ) = 1 +

∑
∆,ℓ

a∆,ℓU
∆−ℓ
2 g∆,ℓ(U, V ). (3.6)

8 We already encountered this OPE in (2.15).
9 These statements are easy to see in the embedding space formalism introduced in Section 2.1.

10 They are the analogues of the cross ratios ξ and η for BCFTs and real projective space CFTs defined in (2.11) and (2.12).
11 Recall that we had similar notions for BCFTs and real projective CFTs. Depending on the OPE which we use, we have the bulk channel conformal
block (2.16) and the boundary channel conformal block (2.19) for BCFTs. Similarly, we have the bulk channel conformal block (2.22) and the image
channel conformal block (2.24) for real projective space CFTs.
18
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Here we have separated out the contribution of the identity operator, whose presence we shall assume. The
coefficients a∆,ℓ = C2

ϕϕO∆,ℓ
are the squares of the OPE coefficients. For unitary theories a∆,ℓ are positive as the OPE

coefficients are real. It should be noted that the OPE coefficients depend on the normalizations which one chooses
for the conformal blocks g∆,ℓ(U, V ). For a survey of different normalizations used in the literature, see [11].

• Crossing equation: In (3.6), we made a particular choice of applying the OPE (3.1) to ϕ(x1), ϕ(x2) and ϕ(x3), ϕ(x4). We
could have also used the OPE for ϕ(x1), ϕ(x4) and ϕ(x2), ϕ(x3) instead. Equating the two cases leads to the following
crossing equation

G(U, V ) =

(
U
V

)∆ϕ
G(V ,U) . (3.7)

Note that the crossing equation does not obviously follow from the conformal block decomposition (3.6). Instead,
they together impose infinitely many constraints on the CFT data and form the cornerstone of the Numerical
Conformal Bootstrap. The goal of the Analytic Conformal Bootstrap program is to develop analytic techniques to
extract information from these equations.

• Generalized Free Fields: In this review, we will frequently refer to generalized free fields (GFF) or the mean field
theories (MFT) which constitute the simplest examples of conformal theories. These theories also arise as the leading
order approximation in the expansion of certain small parameters. GFF theories exhibit similar features as free
theories. For example, if we consider the four-point function of identical scalars with scaling dimension ∆ϕ , the
exchanged spectrum consists of operators with dimensions

∆n,ℓ = 2∆ϕ + 2n + ℓ , (3.8)

and spin ℓ. These operators are the normal ordered products with the schematic form : ϕ□∂ℓϕ : and their conformal
dimensions are just the engineering dimensions. The motivation behind these operators is that one can use Wick
contraction to get their contribution. In what we will discuss, we will consider corrections to the scaling dimensions
of these operators (anomalous dimensions) and also their OPE coefficients. These small corrections are subleading
in the expansion parameter.12

• Holographic correlators: Much of the discussion that will follow is motivated by the AdS/CFT correspondence [51,84,
85]. This correspondence is an equivalence between a specific string theory (or M-theory) in anti de Sitter (AdS)
space in d + 1 dimensions and a CFT in d dimensions. Correlation functions in the CFT are mapped to scattering
amplitudes in AdS space under this duality. In the bulk, the Feynman diagrams with external points anchored at
the boundary of the AdS space are referred to as Witten diagrams. Similar to Feynman diagrams in flat space, we
can classify Witten diagrams according to their topologies. For example, Witten diagrams relevant for four-point
functions at tree level can be either contact diagrams or exchange diagrams.13

.2. Euclidean vs Lorentzian

In this section we need to discuss some important differences when discussing CFTs in Euclidean or Lorentzian
inematics. In the Lorentzian case, it is possible to define the so called lightcone limit, which amounts to sending x2 → 0

while being on the lightcone. This is realized because it is possible to send one of the lightcone coordinates to zero while
keeping at least another one fixed. Let us write the conformal cross ratios as

U = zz̄ , V = (1 − z)(1 − z̄) . (3.9)

While in Euclidean signature z∗
= z̄, in the Lorentzian case z and z̄ are independent from each other. If we consider a

four-point function in a space-like configuration in Minkowski signature, it is possible to use conformal symmetry to set
the coordinates of the four points to be one at the origin x1 = (0, 0), one at x2 = (z, z̄), one at x3 = (1, 1) and x4 is sent to
infinity along both directions, see Fig. 13. Then the lightcone limit amounts to taking z small with z̄ fixed. An interesting
limit is the so called double lightcone limit, in which we send z → 0, and then with z̄ → 1, where z ≪ 1 − z̄ ≪ 1.
The study of the conformal block decomposition, or of the OPE, in the Lorentzian regime necessarily probes the operators
with small twists and large spins.14 This is exactly the spirit of the following section. Throughout the section, we will also
use U , V interchangeably with z, z̄.

12 We encountered examples of GFF and studied perturbations around them in Section 2. The discussions of four-point functions will be similar
in spirit.
13 In Section 2.2, we have seen similar Witten diagrams in more complicated setups, and they played an important role in the construction of the
functional approach.
14 Notice that in Lorentzian signature the value of the spin is continuous, differently from the Euclidean counterpart. Despite the fact that we deal
with local operator having integer spin, this is essential in the context of the Lorentzian inversion formula [86] which we will review in Section 5,
see also [87].
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Fig. 13. Kinematics in Lorentzian signature.

.3. Necessity of a large spin sector

In this section we would like to study the regime of large spins and understand how crossing symmetry applied to the
our-point function of a scalar operator ϕ constrains the CFT data in this regime. Let us start with the simplest example
f generalized free fields in four space–time dimensions,15 which are the dual of free field theories in AdS. We will study
he four-point correlator of four identical scalars of dimension ∆ϕ in such a theory. Correlators in mean field theory are
iven by the sum of two-point contractions, giving

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
1(

x212x
2
34

)∆ϕ +
1(

x213x
2
24

)∆ϕ +
1(

x214x
2
23

)∆ϕ
=

1(
x212x

2
34

)∆ϕ
(
1 + U∆ϕ +

(
U
V

)∆ϕ)

=
1(

x212x
2
34

)∆ϕ G(U, V ) (3.10)

where in the last line we have defined G(U, V ) for later convenience. If we decompose the above correlator in conformal
blocks, assuming that we are taking the OPE of ϕ(x1)ϕ(x2) together with ϕ(x3)ϕ(x4), we obtain that

G(U, V ) = 1 +

∑
∆,ℓ

a∆,ℓU
∆−ℓ
2 g∆,ℓ(U, V ). (3.11)

We observe that in addition to exchanging the identity operator, there is a tower of intermediate operators of the form
ϕ∂2n∂µ1 . . . ∂µℓϕ = [ϕ, ϕ]n,ℓ being exchanged. Their dimensions are ∆n,ℓ = 2∆ϕ + 2n + ℓ and the corresponding a∆,ℓ’s
ead16

aMF
n,ℓ =

2ℓ+1(ℓ+ 1)(ℓ+ 2(∆ϕ + n − 1))Γ (n +∆ϕ − 1)2

(∆ϕ − 1)2n!Γ (∆ϕ − 1)4Γ (ℓ+ n + 2)

×
Γ (n + 2∆ϕ − 3)Γ (ℓ+ n +∆ϕ)2Γ (ℓ+ n + 2∆ϕ − 2)

Γ (2n + 2∆ϕ − 3)Γ (2ℓ+ 2n + 2∆ϕ − 1)
.

(3.12)

e can set up this problem more abstractly and consider the constraints of crossing symmetry which are

G(U, V ) =

(
U
V

)∆ϕ
G(V ,U) . (3.13)

15 The generalization of this discussion to generic even dimensions is straightforward, see for instance [82].
16 Notice that we use the following normalization for the four dimensional conformal blocks g∆,ℓ(z, z̄) =

2−ℓ

(z−z̄)

(
(−z)ℓzk∆+ℓ(z)k∆−ℓ−2(z̄) − (z ↔ z̄)

)
and with k (z) = F

( a , a , a, z
)
.
a 2 1 2 2
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his relation implies that we can decompose both sides in conformal blocks, leading to

1 +

∑
τ ,ℓ

aτ ,ℓU
τ
2 gτ ,ℓ(U, V ) =

(
U
V

)∆ϕ (
1 +

∑
τ ,ℓ

aτ ,ℓV
τ
2 gτ ,ℓ(V ,U)

)
, (3.14)

here we have introduced the conformal twist τ = ∆ − ℓ. Before proceeding, it is useful to discuss some properties of
he conformal blocks [83,88,89]. While we are showing them explicitly only for four-dimensional conformal blocks, such
roperties are much more general and can be easily generalized to any dimension. We discuss three properties of the
onformal blocks that will be relevant later on.

• Small U limit: This limit is already explicit and it is controlled by the twist of the operator. Specifically, the conformal
block behaves as

U
τ
2 gτ ,ℓ(U, V )

U≪1
−−→ −2−ℓUτ/2(1 − V )ℓ2F1

(τ
2

+ ℓ,
τ

2
+ ℓ, τ + 2ℓ, 1 − V

)
+ · · · . (3.15)

This limit has to be understood as z → 0, for any value of z̄.
• Small V limit: This limit is more subtle. We will discuss at length this limit later, but the structure is as follows

gτ ,ℓ(U, V )
V≪1
−−→ a(U, V ) log(V ) + b(U, V ) (3.16)

where a(U, V ) and b(U, V ) admit a regular series expansion in the small U and V limits, meaning z ≪ 1 − z̄ ≪ 1.
In particular, the relation above should be understood as meaning that a small V expansion of a single conformal
block does not contain any power-law divergence and the only divergence appearing is logarithmic.

• Casimir operator: The conformal blocks are eigenfunctions of the quadratic and quartic Casimir operators of the
conformal group, whose eigenvalues depend on the twist and spin of the intermediate operator. Specifically to four
dimensions, we have

D2

(
U
τ
2 gτ ,ℓ(U, V )

)
=

1
2
((ℓ+ τ − 4)(ℓ+ τ ) + ℓ(ℓ+ 2))

(
U
τ
2 gτ ,ℓ(U, V )

)
, (3.17)

D4

(
U
τ
2 gτ ,ℓ(U, V )

)
= ℓ(ℓ+ 2)(ℓ+ τ − 3)(ℓ+ τ − 1)

(
U
τ
2 gτ ,ℓ(U, V )

)
(3.18)

where

D2 = D + D̄ + 2
zz̄

z − z̄

(
(1 − z)∂ − (1 − z̄)∂̄

)
, (3.19)

D4 =

(
zz̄

z − z̄

)2

(D − D̄)
(
z − z̄
zz̄

)2

(D − D̄). (3.20)

Here D = (1 − z)z2∂2 − z2∂ .

After this digression, let us come back to (3.14). By taking the limit of U ≪ 1 on both sides of the relation, we note
hat there is a potential paradox. In particular, we observe that

1 ∼
U∆ϕ

V∆ϕ
∑
τ ,ℓ

aτ ,ℓV τ/2gτ ,ℓ(V ,U), (3.21)

H⇒
1

U∆ϕ
∼

1
V∆ϕ

∑
τ ,ℓ

aτ ,ℓV τ/2gτ ,ℓ(V ,U). (3.22)

he LHS has a divergence U−∆ϕ as U → 0 while each conformal block on the RHS, following (3.16), has a logarithmic
ivergence. Then the question becomes: how is it possible to reproduce a power-law divergence with a sum of logarithmic
ivergences? This is only possible by having an infinite sum of conformal blocks on the RHS, with twist τ = 2∆ϕ . This
s the case because the sum does not converge for all real U . In particular, when

√
U < 0 the sum diverges and by

analytically continuing the sum to the region of convergence, it can be seen that it contains a power-law behavior which
fixes the problem. The next step is to understand if there are any parameters controlling such divergence. It is possible
to study the limit of large τ = 2∆ϕ + 2n, at fixed ℓ, and it is possible to see that

Uτ/2gτ ,ℓ(U, V )
U,V≪1
−−−−→ Uτ/2V τ/2 + · · · . (3.23)

Moreover, aτ ,ℓ for large τ are bounded [90], ensuring that the sum for small U and V converges.
The limit of large spin ℓ and fixed τ is instead different. Let us study it in a more detailed way. We would like to study

the RHS of (3.22). In particular, if we consider the small V limit, again in the regime in which z ≪ 1− z̄ ≪ 1, of this term
we have∑(

−
1
2

)ℓ
aτ ,ℓV τ/2−∆ϕ (1 − U)ℓ 2F1

(
ℓ+

τ

2
, ℓ+

τ

2
, 2ℓ+ τ , 1 − U

)
. (3.24)
ℓ
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n this sum, most of the contribution comes from the region of U goes to zero, when the spin ℓ is large. Thus we can
make the following change of coordinates

ℓ =
x

√
U
, (3.25)

here x is a constant that does not depend on U . In this way, we can replace the sum with an integral over the parameter
x. At the same time, we also consider the integral representation of the hypergeometric function

2F1 (a, b, c, q) =

∫ 1

0
dt

Γ (c)
Γ (b)Γ (c − b)

tb−1(1 − t)c−b−1(1 − tq)−a. (3.26)

To start with, we would like to see how the example of generalized free field works. Thus we can use aMF
τ ,ℓ as the squared

OPE coefficients and by combining all the pieces together and performing the change of coordinates t → 1− t
√
U in the

→ 0 limit we obtain17

4V τ/2U−∆ϕΓ
(
τ
2 − 1

)2
Γ
(
−∆ϕ +

τ
2 − 3

)
(−∆ϕ − 1)2Γ (∆ϕ + 1)4Γ (τ − 3)Γ

( 1
2 (τ − 2−∆ϕ) + 1

) ∫ ∞

0
dxx2−∆ϕ−1K0(2x)

=
V τ/2U−∆ϕΓ (∆ϕ)2Γ

(
τ
2 − 1

)2
Γ
(
∆ϕ +

τ
2 − 3

)
(∆ϕ − 1)2Γ (∆ϕ − 1)4Γ (τ − 3)Γ

( 1
2 (τ − 2∆ϕ) + 1

) , (3.27)

here the function K0 is the modified Bessel function of the second kind. If we combine this result with (3.22) we can
ee that it has several interesting features. We have proven that the tail of large spin of the sum in (3.22) is essential to
eproduce the divergence as U → 0 that we were studying. In particular, we see that in order to reproduce the leading
erms in a small U, V expansion, the CFT under study needs to have infinitely many operators with twist that accumulates
t τ = 2∆ϕ . Remarkably

U−∆ϕΓ (∆ϕ)2Γ
(
τ
2 − 1

)2
Γ
(
∆ϕ +

τ
2 − 3

)
(∆ϕ − 1)2Γ (∆ϕ − 1)4Γ (τ − 3)

( 1
2 (τ − 2∆ϕ)

)
!

τ=2∆ϕ
−−−−→ V τ/2U−∆ϕ , (3.28)

o it exactly reproduces the LHS of (3.22). In addition, at any order in V we need to have the same behavior and thus
the twist should accumulate around τ = 2∆ϕ + 2n, with n being an integer. To sum up: in this particular regime, where
z ≪ 1− z̄ ≪ 1, the leading contribution in the direct channel is controlled by operators with small twist and it is mapped
in the crossed channel to the large spin contribution.18 An interesting remark is that the regime of U , V going both to
zero can only be reached in Minkowski spacetime. With this starting point it is also possible to study several cases, and
in particular it is possible to see how to study corrections around large spins [81,82].19 In addition, in [93] it has been
shown that at any order in the perturbative series in large spin ℓ it is possible to compute all the terms in such expansion
of the squared of the three-point functions and of the dimension away from the degenerate point by matching all the
divergences in the direct and crossed channels.

3.3.1. Anomalous dimensions at large spin
The starting point is the situation that we reviewed in the previous subsection, in particular we consider a setup in

which there exists a family of operators of a given twist, that is unbounded in the spin. In this large spin regime, there
is a family of operators whose twist is independent on the spin, as soon as we consider finite values of the spin the
operators start gaining an anomalous dimension and this degeneracy is lifted. We parameterize this perturbation with
the anomalous dimension γℓ that we require to be small. Explicitly, we write

∆n,ℓ = 2∆ϕ + 2n + ℓ+ γn,ℓ , γ0,ℓ ≡ γℓ . (3.29)

he case γℓ = 0 corresponds to the case of the previous subsection. Now we would like to understand the constraints
oming from crossing symmetry, unitarity and the structure of the conformal block decomposition on the correction to the
nomalous dimensions. In order to do so, we need to explore more orders in the small U and V expansion. In particular,
n the OPE ϕϕ there will be an operator with twist τmin and spin ℓ0 with associated squared OPE coefficient aτmin,ℓ0 and
hus the expansion in small U reads

G(U, V ) = 1 + aτmin,ℓ0U
τmin
2 (V − 1)ℓ0 2F1(ℓ0 + τmin/2, ℓ0 + τmin/2, 2ℓ0 + τmin, 1 − V ) + · · · . (3.30)

rossing symmetry then implies a term of the form

G(U, V ) =
U∆ϕ

V∆ϕ

(
1 + aτmin,ℓ0V

τmin
2 (U − 1)ℓ0 2F1(ℓ0 +

τmin

2
, ℓ0 +

τmin

2
, 2ℓ0 + τmin, 1 − U) + · · ·

)
17 Notice that there is a factor of 1

2 comes from the fact that we are summing only over even spins.
18 Notice that when we mention the small U and V limit in the following sections we refer to this particular kinematical regime.
19 It is also possible to apply similar techniques to higher point functions, see [91,92].
22
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=
U∆ϕ

V∆ϕ

(
1 + aτmin,ℓ0V

τmin
2 (α logU + β + · · · )+ · · ·

)
, (3.31)

where α, β are related to a(U, V ) and b(U, V ) in (3.16). The dots stand for more suppressed powers in U and V . As
discussed in [81,82,93,94], crossing symmetry together with the structure of conformal blocks imply that the powers of
V multiplying V τmin/2 are integers. In a small U limit, we have then∑

ℓ

aℓU∆ϕ+γℓ/2(1 − V )ℓ 2F1
(
∆ϕ + ℓ+

γℓ

2
,∆ϕ + ℓ+

γℓ

2
, 2(∆ϕ + ℓ+

γℓ

2
), 1 − V

)
=

U∆ϕ

V∆ϕ

(
1 + aτmin,ℓ0V

τmin
2 (α logU + β + · · · )+ · · ·

)
. (3.32)

The divergence in U∆ϕ

V∆ϕ
fixes the behavior of aℓ to be the same as the one of aMF

0,ℓ at large ℓ, as we have already discussed.
n order to study the consequences of (3.32) having only integer powers of V times V τmin/2−∆ϕ , let us make a few remarks.
The main idea is to go through similar steps compared to the previous subsection to obtain equations constraining the
OPE data. Firstly, it is convenient to rescale the squared OPE coefficient in the following way

aℓ =
2ℓ+1Γ

(
ℓ+

γℓ
2 +∆ϕ

)2
Γ
(
ℓ+

γℓ
2 + 2∆ϕ − 1

)
Γ (∆ϕ)2Γ

(
ℓ+

γℓ
2 + 1

)
Γ
(
2ℓ+

γℓ
2 + 2∆ϕ − 1

) âℓ. (3.33)

At leading order in the expansion, we have γℓ = 0, âℓ = 1. This rescaling makes the manipulation in (3.27) less lengthy.
The second insight resides in the usage of the quadratic Casimir operator (3.19). In particular, since we are working in
a small U expansion, we need to compute the limit of the Casimir operator in (3.19) and the corresponding eigenvalues
can be written as

J2 = (ℓ+∆ϕ + γℓ/2)(ℓ+∆ϕ + γℓ/2 − 1). (3.34)

he most interesting point is that if we act with the Casimir operator on the RHS of (3.31) it increases the power divergence
s V → 0 of the equation, and correspondingly it follows that the LHS has an enhanced behavior for large ℓ. This is crucial,
nd allows us to act repeatedly to the crossing equation to explore more and more divergences as V → 0, and probe
ubleading corrections of the CFT data in the large spin limit. To do so, we can rewrite both γℓ and âℓ as functions of
, and expand them in inverse powers of J . Then we see that the leading behavior at large J is fixed by the divergence
τmin
2 −∆ϕ to be

γℓ =
c1
Jτmin

+ · · · , (3.35)

âℓ = 1 +
d1
Jτmin

+ · · · (3.36)

here the coefficients c1, d1 can be fixed in terms of α, β in (3.32). The subleading corrections depend on the value of
min. For instance τmin = 2, which corresponds to the presence of the stress tensor, has an expansion of the form

γℓ =
c1
J2

+
c2
J3

+
c3
J4

+
c4
J5

+ · · · , (3.37)

âℓ = 1 +
d1
J2

+
d2
J3

+
d3
J4

+
d4
J5

+ · · · . (3.38)

To fix the coefficients ci and di, we plug the expressions (3.37) into (3.32) and we follow a similar procedure to the one in
the previous section. Now J2 has to scale as V−2, and then using (3.26) and the same scalings as previously, we end up with
integral relations containing γJ and âJ . These expansions are valid also to subleading order as V → 0, and by requiring
such expansion not to have half-integer divergent powers of V we find arbitrarily many relations for the coefficients ci
and di. The final results can be summarized by saying that the expansion of γ (J) for large J contains only even powers of

1/J , and the expansion of â(J)
(
1 −

√
1+4J2

4J γ ′(J)
)

for large J contains only even powers of 1/J . These expansions provide

all orders in the large spin expansion.
The same technology, as presented in [93], can be used in the case of perturbative theories. In this case the minimal

twist that appears in the crossed channel is generically τ0 but the same analysis can be carried over. It is also possible to
use similar methods to compute anomalous dimensions [95,96] to operators with leading dimension ∆ = 2∆ϕ + 2n + ℓ,
with n ̸= 0 and n ≪ ℓ. In the next subsection we will discuss how to construct these corrections using a more powerful
technology, which is based on the simple observations that we made so far.

3.4. Twist conformal blocks and large spin perturbation theory

In this section we are going to review [97], from which the definition of the twist conformal blocks stems. This
approach builds on what was described in the previous sections and most importantly, provides an algebraic way of
23
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olving the constraints of crossing symmetry which was also observed in [98].20 The plan of this section is to lightly
eview the abstract construction of the twist conformal blocks and their properties. The main aim is, in Section 4, using
his technology to study one of the most interesting applications of this method which are theories admitting a large
entral charge expansion. We will again restrict our discussion to the d = 4 case.
The main idea of [97] is to introduce a family of functions H (ρ)

τ (U, V ), called twist conformal blocks, that can be easily
expanded both around small U and V in the Lorentzian regime, differently from the conformal blocks.

3.4.1. Degenerate point
As we have seen in the case of generalized free fields, there are infinitely many double-trace operators whose spins

are not bounded. We will then define∑
ℓ

a(0)τ ,ℓU
τ/2gτ ,ℓ(U, V ) = H (0)

τ (U, V ) (3.39)

where we have introduced the notation a(0)τ ,ℓ = aMF
τ ,ℓ. The properties of the functions H (0)

τ (U, V ) are21

• H (0)
τ (U, V )

U→0
−−→ Uτ/2.

• H (0)
τ (U, V )

V→0
−−→ V−∆ϕ .

• HτH (0)
τ (U, V ) =

τ
4 (τ−6)(τ−4)(τ−2)H (0)

τ (U, V ) where Hτ is a combination of the Casimir operators of the conformal
group given by Hτ = D4 − D2

2 + ((τ − 6)τ + 6)D2.

he first two properties come from the fact that we can decompose these objects into conformal blocks both in the direct
nd the crossed channels. In particular, they need to reproduce the identity conformal block in the crossed channel. On
he other hand, the last property resides on the fact that since H (0)

τ (U, V ) does not depend on the spin, it has to be the
igenfunction of a specific differential operator whose eigenvalues do not depend on the spin either.
Now the idea is to use the second property to write down an expansion for the twist conformal blocks, and then plug

t into the differential equation given by the Casimir and use the first property to fix the boundary conditions.

.4.2. Large spin perturbation
When we consider corrections to the regime of infinite spin, we need to consider the following contributions∑

ℓ

a(0)τ ,ℓ
Uτ/2

J2mτ ,ℓ
gτ ,ℓ(U, V ) = H (m)

τ (U, V ). (3.40)

In particular, we define the following Casimir operator

Cτ = D2 +
1
4
τ (6 − τ ). (3.41)

his Casimir operator is slightly different from the one in (3.19), and its eigenvalues can be easily computed as

J2τ ,ℓ =
1
4
(2ℓ+ τ )(2ℓ+ τ − 2). (3.42)

e will assume that the dimensions and the squared of the OPE coefficients have the following structure in the expansion
n inverse powers of J around large spins ℓ. The functions H (m)

τ are not eigenfunctions of the quadratic Casimir Cτ . But its
ction defines a recurrence relation which relates twist conformal blocks associated to a given twist τ but with different
alues of m

CτH (m+1)
τ (U, V ) = H (m)

τ (U, V ). (3.43)

nalogously to the small U and V limits of H (0)
τ (U, V ), it is possible to see that

• H (m)
τ (U, V )

U→0
−−→ U

τ
2 .

• H (m)
τ (U, V )

V→0
−−→ V−∆ϕ+m.

Note that when ∆ϕ −m is an integer, it is also possible to get a log2 V . By using this properties and expanding in different
regimes, it is possible to compute these functions.

We would like to end this section with some remarks on this method. While in spirit its applicability is generic, it is best
suited when one considers a perturbation around a regime in which there is degeneracy, meaning that there are infinitely
many operators with a given twist τ0 and unbounded spin. This situation is present in several interesting expansions, for

20 An analysis of the accuracy of the resummation of the large spin expansion down to low spins has been performed in [99,100].
21 Notice that we are specifying our discussion to the four dimensional case. But with minor modification it can be extended to any number of
spacetime dimensions, as it is discussed in [97].
24
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nstance in the ϵ-expansion or the 1/N expansion that we are going to review in the next section. In these situations,
t is possible to construct the twist conformal blocks, for any value of τ0 and ∆ϕ by using the recurrence relation and
ixing the coefficients of the V → 0 expansion. In particular, in all the considered cases, while τ0 and ∆ϕ are generically
ot integer, there are combinations of them that are integers and lead to perturbative series in U, V → 0 which can be
xpanded in the precise meaning discussed in this section.22 This can be seen as a limitation of this set of techniques,
hich can be overcome by introducing a fully non perturbative setup to express the CFT data as an integral over a specific

unction encoding the V → 0 divergence of the correlator as will be discussed in Section 5.

. Large N

In this section we are going to review the perturbative expansion around large N , which corresponds to the limit of
he large central charge. This is a setup which is most interesting when studying holographic theories, where N plays the
ole of the degrees of freedom. In particular this study has been pioneered to understand the family of large N CFTs that
an have weakly coupled and local gravity duals. For concreteness, in this section we will implicitly identify N with the
ank of SU(N) gauge group in four dimensional gauge theories. However, the discussion of large N expansion is universal
nd N can take other meanings. It should be noted that the expansion powers may differ depending on the context. The
ain reference of this topic is [102]. We will review the content and results of the paper and also discuss the expansion
t subleading orders [103].

.1. Setup

We consider a setup in which we have a generic CFT with a large N expansion and a large gap in conformal dimensions.
olographically, this corresponds to a local quantum field theory in AdS with a large mass gap. More precisely, we assume
hat there exists a ‘‘single-trace’’ type23 of scalar field ϕ which has a fixed dimension ∆ϕ . We consider the four-point
unction

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
G(U, V )

x2∆ϕ12 x2∆ϕ34

, (4.1)

nd its large N expansion which takes the form

G(U, V ) = G(0)(U, V ) +
1
N2 G

(1)(U, V ) +
1
N4 G

(2)(U, V ) + · · · . (4.2)

he displayed first three orders of the expansion will respectively correspond to the disconnected, tree-level and one-loop
evel contributions in AdS. We will assume that the OPE content of ϕϕ is

ϕϕ = 1 + ϕ + Tµν + [ϕϕ]n,ℓ + [TT ]n,ℓ + [ϕT ]n,ℓ + [ϕϕϕ]n,ℓ + · · · (4.3)

here the dots denote higher-traces operators. The stress tensor Tµν is dual to the graviton field in AdS.

.2. Leading order: N0

To simplify even further the setup, we can assume that there is a Z2 symmetry which will allow for only double-trace
perators [ϕϕ]n,ℓ. Notice however that as we have seen, double-trace operators are necessary since the identity operator
n one channel requires their presence in the crossed channel. We assume also that at this order in N the stress-tensor is
ot present.24
At this order in N , the only contributions come from the disconnected part of the four-point correlator, thus practically

his is a mean field theory correlator (3.10). For completeness, let us reproduce it

G(0)(U, V ) = 1 +

(
U
V

)∆ϕ
+ U∆ϕ . (4.4)

he OPE data are the ones discussed in (3.12). In particular, the intermediate operators are double-trace operators (besides
he unit operator) with dimensions and squared OPE coefficients

∆
(0)
n,ℓ = 2∆ϕ + 2n + ℓ, (4.5)

a(0)n,ℓ = aMF
n,ℓ =

2ℓ+1(ℓ+ 1)(ℓ+ 2(∆ϕ + n − 1))Γ (n +∆ϕ − 1)2

(∆ϕ − 1)2n!Γ (∆ϕ − 1)4

×
Γ (n + 2∆ϕ − 3)Γ (ℓ+ n +∆ϕ)2Γ (ℓ+ n + 2∆ϕ − 2)
Γ (ℓ+ n + 2)Γ (2n + 2∆ϕ − 3)Γ (2ℓ+ 2n + 2∆ϕ − 1)

. (4.6)

22 For a detailed analysis of an example in which the dimension ∆ϕ is completely generic, we refer the reader to [101].
23 Here and below, when writing ‘‘single-trace’’, ‘‘double-trace’’, etc., we are borrowing the terminology from gauge theories. It should be noted,
however, that in a generic large N theory we do not necessarily need to have the notion of traces. Roughly speaking, we may think of single-trace
nd double-trace as single-particle and double-particle in AdS space.
24 Notice that the Z symmetry forbids the presence of double trace operators of the form [ϕT ] .
2 n,ℓ

25
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s we have discussed, even if we did not know the structure of the four-point correlator, we could have arrived at this
nswer by using the fact that the identity operator is exchanged in one channel. Under crossing, this generates a power
aw divergence that requires an infinite number of double-trace operators in the OPE.

.3. First order: N−2

We would like to understand how to fix the corrections to the OPE data at order N−2. In particular notice that crossing
ymmetry should be satisfied at each order. Also, there are two scenarios that can be studied now. One situation is to
onsider corrections to the OPE data, in the absence of any other operators appearing at order N−2. The other situation
s to consider the corrections to the OPE data of the double-trace operators in the presence of a new operator appearing
t order N−2. It requires the OPE coefficient of the new operator to scale as N−1.

.3.1. Absence of new operators
Let us study the first scenario, which has been extensively analyzed in [102]. In this case the OPE expansion looks like

ϕϕ = 1 + [ϕϕ]. (4.7)

hus we will focus on the correction to the dimensions of the double-trace (or double-twist) operators and to their squared
hree-point functions. They can be expanded to this order as

∆n,ℓ = ∆
(0)
n,ℓ +

1
N2 γ

(1)
n,ℓ + · · · , (4.8)

an,ℓ = a(0)n,ℓ +
1
N2 a

(1)
n,ℓ + · · · . (4.9)

f we insert them into the four-point function and expand to order N−2, we obtain

G(1)(U, V ) =

∑
n,ℓ

U∆ϕ+n
(
a(1)n,ℓ +

1
2
a(0)n,ℓγ

(1)
n,ℓ

(
logU +

∂

∂n

))
g2∆ϕ+2n,ℓ(U, V ). (4.10)

rossing symmetry would require then a term of the form

G(1)(V ,U) =
U∆ϕ

V∆ϕ
∑
n,ℓ

V∆ϕ+n
(
a(1)n,ℓ +

1
2
a(0)n,ℓγ

(1)
n,ℓ

(
log V +

∂

∂n

))
g2∆ϕ+2n+ℓ,ℓ(V ,U). (4.11)

et us study the limit of small V . Different from the previous order, there is no power-law divergence due to the fact
hat we have only double-trace operators. The consequence of this simple observation is striking, there is no need for
nfinitely many operators with large spins since they would otherwise produce an enhanced divergence in the small V
imit. Thus the correction to the OPE data are different from zero only for a finite range of spins. In the language of twist
onformal blocks, we have exactly the same structure. In particular, since there is no divergence in V , there cannot be
ny twist conformal block Hm(U, V ) with m = 0, 1, . . .∆ϕ − 1. On the other hand, since ∆φ is an integer, all the higher
terms would produce terms of the form (log V )2 which are incompatible with crossing, due to the fact that the only

ossible logarithmic term is log(U). Another option would have been to have Hm(V ,U) but those are also absent due to
he fact that there is no divergence in V to allow for them. Thus it is possible to state that

a(1)n,ℓ ̸= 0 ∀ ℓ = 0, 2, . . . , L, (4.12)

γ
(1)
n,ℓ ̸= 0 ∀ ℓ = 0, 2, . . . , L. (4.13)

he precise structure of this solution can be found by studying the small U and V limits of the crossing equations, and
sing projectors to isolate the contribution of only a finite number of spins. In particular there are (L+2)(L+4)

8 undetermined
onstants for each spin L, this means that the structure of the conformal block decomposition together with crossing
ymmetry is not enough to fix completely the OPE data. The details can be found in [102]. As an example, one finds

γ
(1)
n,0 = α

(
2∆ϕ − 1

)
(n + 1)

(
2∆ϕ + n − 3

) (
∆ϕ + n − 1

)(
∆ϕ − 1

) (
2∆ϕ + 2n − 3

) (
2∆ϕ + 2n − 1

) (4.14)

here α is an unfixed parameter corresponding to the freedom we discussed before. Generically, for the squared OPE
oefficient it is possible to find a derivative relation, meaning that

a(1)n,ℓ =
1
2
∂n

(
a(0)n,ℓγ

(1)
n,ℓ

)
ℓ = 0, 2, . . . L. (4.15)

e can now make contact with the AdS physics. In particular, these solutions correspond to quartic vertex of the kind
4, ϕ2

∇
2ϕ2 and so on.25

25 Here we are abusing the notation slightly by using ϕ to denote both the CFT operator and the field in AdS. Notice also that there are no cubic
vertices since we are in the simplest setup where we imposed a Z symmetry.
2
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Fig. 14. The quartic tree-level contact diagram, which is the only one at order N−2 in the case where only double-trace operators are exchanged.

Also in this case, we can count how many interactions with 2L derivatives are present which contribute a spin up to L
and we have exactly the same number (L+2)(L+4)

8 . Notice that the results that we have presented in this section are valid
hen ∆ϕ is an integer (see Fig. 14).

.3.2. Presence of new operators
The situation changes when the OPE contains another operator ϕτ ,s which contributes to the four-point function at

rder N−2

ϕϕ = 1 + [ϕϕ] +
1
N
ϕτ ,s. (4.16)

he new operator has conformal twist τ and spin s. As a result, corrections to the OPE data of the double-trace operators
ill depend also on the presence of ϕτ ,s. We are interested in understanding how crossing symmetry fixes the corrections
f the form (4.8). The situation is different compared to the previous case. In particular, the four-point function receives
contribution corresponding to the conformal block associated with the exchange of the new operator

aτ ,sUτ/2gτ ,s(U, V ) (4.17)

here aτ ,s is the squared three-point function coefficient ⟨ϕϕϕτ ,s⟩
2. If we use crossing, we observe that it requires the

presence of a term of the form

G(1)(U, V ) =
U∆ϕ

V∆ϕ−
τ
2
aτ ,sgτ ,s(V ,U) + · · · (4.18)

This already signals that for any positive non-integer ∆ϕ −
τ
2 the corrections to the CFT data need to have an infinite

support in the spin. This is because, differently from the previous section, there is a divergence as V → 0 that needs to
e reproduced by the divergent part of this sum

G(1)(U, V ) =
1
2

∑
n,ℓ

a(0)n,ℓγn,ℓU
∆ϕ+ngn,ℓ(U, V ) logU + · · · (4.19)

here the dots denote terms which are analytic as z goes to zero. This means that

1
2

∑
n,ℓ

a(0)n,ℓγn,ℓU
∆ϕ+ngn,ℓ(U, V ) ∼

U∆ϕ

V∆ϕ−
τ
2
aτ ,sgτ ,s(V ,U)|logU (4.20)

here this equation means that we need to consider the divergence on the LHS as V → 0. To control this problem, we
need to construct the twist conformal blocks and in particular∑

m,n

Bm,nH (m)
n (U, V )|div =

U∆ϕ

V∆ϕ−
τ
2
aτ ,sgτ ,s(V ,U)|logU (4.21)

here it is assumed that γn,ℓ = 2
∑

m
Bmn
J2m

and J2 is the conformal spin.

Intermezzo on twist conformal blocks. Let us fill in more detail regarding the twist conformal blocks. Similar to Section 3.4,
we can define them as

H (m)
n (z, z̄) =

∑
an,ℓ

(zz̄)∆ϕ+n

J2m
gn,ℓ(z, z̄) (4.22)
ℓ
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here J2 = (ℓ+ n+∆ϕ)(ℓ+ n+∆ϕ − 1). To solve the problem above we are interested in to the divergent contribution
f such blocks in the limit in which z̄ → 1. To this end, we can construct∑

n

H (0)
n (z, z̄) =

(
zz̄

(1 − z)(1 − z̄)

)∆ϕ
. (4.23)

n addition, the structure of the conformal blocks fixes the form to be∑
n

H (0)
n (z, z̄) =

1
z̄ − z

z∆ϕ+nF∆ϕ+n−1(z)H̄ (0)
n (z̄) (4.24)

where Fβ (z) = 2F1(β, β, 2β, z). By matching the series expansion of both sides of (4.23), it is possible to find the full
structure for H̄ (0)

n (z̄) which reads

H̄ (0)
n (z̄) =

(
z̄

1 − z̄

)∆ϕ
dn(1 + bn(1 − z̄)). (4.25)

Here

dn = −

√
π2−2∆ϕ−2n+4Γ (n +∆ϕ − 1)Γ (n + 2∆ϕ − 3)
Γ (∆ϕ − 1)2Γ (n + 1)Γ

(
n +∆ϕ −

3
2

) , (4.26)

nd

bn = −
(∆ϕ − 1)2 + n2

+ (2∆ϕ − 3)n
(∆ϕ − 1)2

. (4.27)

e can use then the recurrence relation to extrapolate this result to any positive m. The idea is to use the fact that the
Casimir operator acts on the twist conformal blocks in the following way

CτH (m+1)
n (z, z̄) = H (m)

n (z, z̄) (4.28)

hich, due to the factorization in z and z̄, leads to a recurrence relation for H̄ (m)
n (z, z̄) as

DH̄ (m+1)
n (z, z̄) = H̄ (m)

n (z, z̄). (4.29)

Here D = z̄D̄z̄−1 and D is defined in (3.19). For a fixed twist, it is possible to write down an expansion of the form

H̄ (m)
n (z, z̄) =

(
z̄

1 − z̄

)∆ϕ−m

h(m)
0 (1 + h(m)

1 (1 − z̄) + h(m)
2 (1 − z̄)2 + · · · ), (4.30)

and the coefficients h(m)
n can be found iteratively.

With this piece of information we can tackle the main problem (4.21). Due to the factorization property of (4.22), it
is possible to see that also the functions Bmn satisfy a similar equation. In particular, by inserting the expansion of the
anomalous dimension in (4.21) one gets∑

mn

BmnF∆ϕ+n−1(z)
z∆ϕ+n

z − z̄
H̄ (m)

n (z̄) =
aτ ,s(zz̄)∆ϕ

((1 − z)(1 − z̄))∆ϕ−τ/2 (4.31)

×
(1 − z̄)s+1Fτ/2+s(1 − z̄)Fτ/2−1(1 − z)

z − z̄

⏐⏐
log z .

hen we can factor out the dependence on m in the following way

Bmn = κτ−2(n)ρ(τ+2s)
m (J) − κτ+2s(n)ρ(τ−2)

m (n). (4.32)

Inputting this expression in (4.31) we get two decoupled equations for κ and ρ respectively∑
n

κτ−2(n)zn+∆ϕ F∆ϕ+n−1(z) =
1
dn

Γ (τ − 2)
Γ 2
(
τ−2
2

) z∆ϕ

(1 − z)∆ϕ
(1 − z)τ/22F1

(
τ − 2

2
,
τ − 2

2
, 1, z

)
,

∑
m

ρ(τ+2s)
m (n)H̄ (m)

n (z̄) = aτ ,sdn
z∆ϕ

(1 − z̄)∆ϕ
(1 − z̄)τ/2+s+1Fτ/2+s(1 − z̄). (4.33)

Expanding order by order (4.33) in z and 1 − z̄ it is possible to find all κ and ρ, for any twist τ and spin s. Moreover, it
is possible to show that crossing fixes the range for m to be integer and m = τ/2 + s + 1, τ/2 + s + 2, . . . .

We give the solution for τ = 2. This case is important because it corresponds to, when s = 2, the stress–energy tensor
which is always present in consistent CFTs. The solution of (4.33) gives all the coefficients in the large J expansion. For
this case, the expansion can be resummed to give

γ as
n,ℓ = −a2,s

2κ2+2s(n)(∆ϕ − 1)2
. (4.34)
(ℓ+ 1)(ℓ+ 2∆ϕ + 2n − 2)
28
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Fig. 15. In the presence of a single-trace intermediate operator exchange, there are two contributions to the anomalous dimension and three-point
functions of double-trace operators at order N−2 , that come from the quartic and cubic vertices depicted.

The function κ2+2s(n) is a degree 2s polynomial in n. For the exchange of a scalar operator, with spin s = 0, κ2(n) = 1
while for s = 2 such as the stress–energy tensor we have

κ6(n) = 30
6n4

+ 12(2∆ϕ − 3)n3
+ 6(5∆2

ϕ − 14∆ϕ + 11)n2
+ 6(2∆3

ϕ − 7∆2
ϕ + 10∆ϕ − 6)n

∆2
ϕ(∆ϕ − 1)2

+ 30. (4.35)

y plugging the solution for τ = 2 back into (4.20) it is possible to show that such anomalous dimension do not solve
rossing. In fact, it needs to be supplemented with a correction γ fin

n,ℓ which is different from zero only for ℓ = 0, 1, . . . , s.
he precise structure can be found in a very similar way as in [102]. As an example, for the scalar exchange of twist two,
.e., τ = 2 and s = 0, this extra piece differs from zero only for ℓ = 0 and is given by

γ
fin
n,0 =

1
2
a2,0

(n + 1)(2∆ϕ + n − 3)(∆ϕ − 1)2

(∆ϕ + n − 1)(2∆ϕ + 2n − 3)(2∆ϕ + 2n − 1)
. (4.36)

n this way we have that the full anomalous dimension is given by γ as
n,ℓ + γ

fin
n,0. In addition, it is always possible to add

solutions truncated in the spin, which are crossing symmetric by themselves and for which (4.20) does not put any
constraints. More examples of such anomalous dimensions can be found in [101].

The corrections to the three-point functions a(1)n,ℓ can be found in a very similar way as the correction to the anomalous
dimensions. The only difference is that they are not proportional to logU , as it is clear from (4.10).

Quite nicely, the structure of a(1)n,ℓ is simple and it is given by

a(1)n,ℓ =
1
2
∂n

(
a(0)n,ℓγn,ℓ

)
+ a(0)n,ℓâ

(1)
n,ℓ, (4.37)

nd generically γn,ℓ = γ as
n,ℓ + γ

fin
n,ℓ and â(1)n,ℓ = 0 for ∆ϕ = 2, 3, . . . , τ/2 + 1 + s. This form is reminiscent of the situation

in which there are no new operator, except for the extra piece. Explicit results for this term can be found in [101] (see
Fig. 15).

4.4. Second order: N−4

In this section we would like to understand the corrections to order N−4 of the anomalous dimension and of the
squared three-point functions [103]. In particular, we assume that at order N−2 there are no new operators, thus we only
have corrections to the anomalous dimensions and OPE coefficients of double-trace operators which have support on
finitely many spins. We also implicitly assume that there is only one operator with the same quantum numbers, which
are the dimension and the spin. Thus the OPE data admit the following expansion

∆ = 2∆ϕ + 2n + ℓ+
1
N2 γ

(1)
n,ℓ +

1
N4 γ

(2)
n,ℓ , (4.38)

an,ℓ = a(0)n,ℓ +
1
N2 a

(1)
n,ℓ +

1
N4 a

(2)
n,ℓ (4.39)

here γ (1)
n,ℓ ̸= 0 and a(1)n,ℓ for ℓ = 0, 2, . . . , L. This expansion together with the conformal block decomposition imply that

he correction to the four-point function at order N−4 has the form

G(2)(U, V ) =

∑
U∆ϕ+n

(
a(2)n,ℓ +

1
2
a(0)n,ℓγ

(2)
n,ℓ

(
logU +

∂

∂n

)
(4.40)
n,ℓ
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a
(

+
1
2
a(1)n,ℓγ

(1)
n,ℓ

(
logU +

∂

∂n

)
+

1
8
a(1)n,ℓ

(
γ

(1)
n,ℓ

)2 (
log2 U + 2 logU

∂

∂n
+
∂2

∂n2

))
g2∆ϕ+2n+ℓ,ℓ(U, V ).

The corrections to the CFT data appearing at order N−4 are only in the first line of the equation above while the remaining
two lines pertain to corrections to order N−2 and N0 that we already determined from solving constraints from crossing
at previous orders. Most importantly, due to the order of the perturbation, there is a logarithmic singularity log2 U , which
correspondingly is mapped to log2 V under crossing. This simple observation already signals the fact that γ (2)

n,ℓ and a(2)n,ℓ need
to be different from zero for arbitrarily large spins, because a finite number of conformal blocks can have a divergence
which is at most log V . Let us now analyze the problem in more detail.

• The term proportional to log2 U corresponds to

1
8

∑
n

L∑
ℓ=0

U∆ϕ+na(0)n,ℓ

(
γ

(1)
n,ℓ

)2
g2∆ϕ+2n+ℓ,ℓ(U, V ) = U∆ϕ (g1(U, V ) log V + g2(U, V )) (4.41)

where the functions g1(U, V ) and g2(U, V ) can be expanded in positive integer powers in U and V and the presence
of the log V makes manifest the fact that the sum over the spin is truncated, up to spin L. For later convenience we
define limV→0 g1(U, V ) = g̃1(U).

• Crossing symmetry implies that G(2)(U, V ) contains

U∆ϕ log2 V (g1(V ,U) logU + g2(V ,U)) . (4.42)

This is the only term which contains a log2 V .
• The last two lines of (4.40) involve only finite sums over the spin, so they cannot reproduce the log2 V divergence.

This implies that the only candidate is the first line of (4.40), in particular
1
2

∑
n,ℓ

Una(0)n,ℓγ
(2)
n,ℓg2∆ϕ+2n+ℓ,ℓ(U, V )|log2 V = g1(V ,U), (4.43)

and similarly for a(2)n,ℓ. This provides an equation for γ (2)
n,ℓ , which is given in terms of g1(V ,U), a fully specified function

once we know γ
(1)
n,ℓ and a(0)n,ℓ.

In order to solve this equation one would need to compute the sum (4.41), which is an infinite sum over n. Instead of
erforming the sum directly, it is convenient to compute the contribution to the sum of a single conformal block and then
um these terms. From now on, we will consider the leading twist correction for the anomalous dimension γ (2)

0,ℓ . Despite
ts simplicity, this case already contains several interesting information that we can extract from this problem. To extract
his contribution it is enough to focus on the leading U → 0 term of the LHS of (4.43). Conversely, (4.43) tells us that we
should focus on the leading term as V → 0 of (4.41), corresponding to g̃1(V ). More compactly, the answer can be written
s

γ
(2)
0,ℓ =

1
8

∑
n,s

a(0)n,s

(
γ (1)
n,s

)2
γ

(2)
0,ℓ |(n,s) (4.44)

where γ (2)
0,ℓ |(n,s) denotes the contribution to the anomalous dimension for a single conformal block corresponding to

exchanged operators with quantum number n, s. The procedure of computing γ (2)
0,ℓ |(n,s) is general but its final result

depends on the quantum numbers. The idea is very similar to what we have seen in the previous section and it amounts
to computing the contribution of a single conformal block to g̃1(U) and then acting with the Casimir operator to probe
higher orders terms in J . With this piece of information we can insert the specific γ (1)

n,s and perform the sum.
Let us report the results for a specific case in which the operator ϕ has dimension two and we have a ϕ4 type interaction

at order N−2. The corresponding anomalous dimension is

γ
(1)
n,0 =

3(n + 1)3

(1 + 2n)(3 + 2n)
α, (4.45)

nd α is a proportionality constant that cannot be fixed using solely crossing symmetry. By inserting this information in
4.44), we find for the first few values of the spin that

γ
(2)
0,0 → divergent, (4.46)

γ
(2)
0,2 =

2(174π2
− 1925)

3465
α2, (4.47)

γ
(2)

=
150600π2

− 1520519
α2, (4.48)
0,4 2252250
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d

Fig. 16. In the presence of only quartic vertices, this is the set of allowed Witten diagrams to the order N−4 . These diagrams are also supplemented
by the crossing symmetric counterpart.

and generically as a function of J

γ
(2)
0,ℓ = −

12
J4

(
1 +

18
5

1
J2

+
96
7

1
J4

+
360
7

1
J6

+ · · ·

)
α2. (4.49)

With these results at hand it is possible to reconstruct the full Mellin amplitude as the polar terms can be reconstructed
with (4.49) supplemented by crossing symmetry (the Mellin representation will be introduced in Section 6). The presence
of the divergence at spin zero could be worrisome but actually it is consistent with the expectations from its AdS
interpretation. In particular, we expect any bulk loop diagram in AdS that can be considered in the specific setup to
have UV divergences. Since the curvature of AdS can be ignored in the UV, these divergences have to behave in the same
way as the flat space ones. This necessitates the presence of counterterms that are contact diagrams and need be included
in the effective field theory description to make the CFT data finite. In fact, each local bulk term comes with an arbitrary
coefficient, that is expected to be responsible of the cancellation of the divergences. In particular, there is a divergent
part which is precisely needed to cancel the divergence and an arbitrary finite part. From the CFT point of view, the same
happens since each of the terms that we considered at order N−2 comes with a coefficient that cannot be fixed with any
consideration based on symmetries.

There are two main lessons that can be learnt from solving crossing up to order N−4:

• It is possible to reconstruct fully the one-loop answer using lower order CFT data, supplemented with crossing
symmetry, the structure of the OPE and the singularity pattern.

• The CFT analysis contains all the ingredients that are expected from the dual AdS picture (see Fig. 16).

5. Lorentzian inversion formula

In this section we are going to review a method that goes under the name of Lorentzian inversion formula, first
introduced by Caron-Huot in [86]. This approach serves as a proof of the fact that the large spin expansion is analytic,
down to spin one. Thus the resummations that we presented in the previous sections are not accidental but are instead
solidly based on this fact. More importantly, it provides us with an alternative way of computing OPE data from the
singularities of the correlators. The plan of this section is to first present the main formula. Then we will motivate it and
discuss a few applications of this formula.

5.1. Motivation and sketch of a proof

For simplicity, let us consider the correlator of four identical scalar operators.26 The correlator can be decomposed into
conformal blocks as

G(z, z̄) =

∑
∆,ℓ

a∆,ℓG∆,ℓ(z, z̄) (5.1)

where G∆,ℓ(z, z̄) = (zz̄)
∆−ℓ
2 g∆,ℓ(z, z̄) and g∆,ℓ(z, z̄) is the conformal block associated to the exchange of an operator of

imension ∆ and spin ℓ. The OPE coefficients in a unitary CFT are not arbitrary. In particular, they are not independent

26 The discussion of [86] is valid for any external scalar operator.
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f each other but give rise to an analytic function which fixes completely their structure. Based on that, it is possible to
xploit the analytic properties of the correlator to extract the OPE data, such as the conformal dimensions and three-point
unction coefficients. The reason behind analyticity in spins resides in the fact that generically Euclidean physics needs to
esum into a function which is sensible at high energy, so it is intimately related to causality. Following [86], we would
ike to present a simple example which shows the logic behind the inversion formula.

Let us consider a function

f (x) =

∞∑
j=1

fjxj, (5.2)

ith the properties that

• f (x) is analytic in the whole complex plane, except for the branch cuts at real x > 1,
•
⏐⏐ f (x)

x

⏐⏐ → 0 as x → ∞.

his allows us to use Cauchy’s theorem to extract the coefficients fj as

fj =
1

2π i

∮
dx
x
x−jf (x). (5.3)

y deforming the contour and using the second property above we can write

fj =
1
2π

∫
∞

1

dx
x
x−jDiscf (x) (5.4)

here Discf (x) = −i[f (x(1 + i0)) − f (x(1 − i0))]. From this relation, it is clear that the coefficients fj are analytic for
e(j) ≥ 1 and fully determined by the imaginary part of f (x).
In spirit, this is the same that happens for the Froissart–Gribov formula [104,105], which forms the foundation of

he Regge theory by proving that the relativistic S-matrix is analytic in spins. In that case, the role of xj in the simple
xample is played by Legendre polynomials, and the formula is proven by ‘‘inverting’’ these polynomials. It turns out that
uclidean CFTs admit a similar treatment and the idea of [86] was to adapt such a reasoning to the case of CFT four-point
unctions. In particular, it is possible to start with the usual Euclidean decomposition of the four-point function G(z, z̄)
into conformal blocks, or more precisely into conformal partial waves. This step has been achieved in [106]27

G(z, z̄) = δ12δ34 +

∞∑
ℓ=0

∫ 2+i∞

2−i∞

d∆
2π i

c(ℓ,∆)Fℓ,∆(z, z̄) (5.5)

here the first term is the contribution of the identity operator and the functions Fℓ,∆ is a single-valued combination
of the conformal blocks G∆,ℓ and their shadows Gd−∆,ℓ. Notice that in this decomposition the spin ℓ takes integer values
while the dimension ∆ is continuous. Now the idea is to use the orthogonality of the functions Fℓ,∆ to invert such integral
nd obtain c(ℓ,∆). This can be achieved and it reads

c(ℓ,∆) = N(ℓ,∆)
∫

d2z
z2z̄2

(
z − z̄
zz̄

)2

Fℓ,∆(z, z̄)G(z, z̄) (5.6)

The function N(ℓ,∆) can be computed by using the behavior of the functions Fℓ,∆(z, z̄) around z = 0. Notice that the
xpression (5.6) is valid in the Euclidean signature, so z̄ = z∗ and the integration is over the complex Euclidean z plane.

The most important observation is that the conformal block decomposition is satisfied if the spectral function c(ℓ,∆) has
oles and residues related to the conformal dimensions and OPE coefficients of the exchanged operator respectively.28
In order to make it Lorentzian, we need to introduce appropriate variables and do the following manipulations [44]

z =
4ρ

(1 + ρ)2
, w =

√
ρ

ρ̄
= eiθ ,

∫
d2z →

∫ 1

0
d|ρ|

∮
dw
w

(5.7)

et us recall that for any d, the conformal blocks are eigenfunctions of the quadratic and quartic Casimir operators, and
t is possible to see that generically solving the differential equations associated to these eigenvalue problems leaves us
ith 8 solutions. These solutions can be built starting from pure power laws in the configuration 0 ≪ z ≪ z̄ ≪ 1, and
hey are given by29

g∆,ℓ(z, z̄) ∼ z
∆−ℓ
2 z̄

∆−ℓ
2 (5.8)

27 Notice that we specialized this formula to d = 4, the bound of integration is also related to d.
28 There are subtleties related to the convergence of this integral and on the precise location of the shadow poles. We refer the interested reader
to Section 3 and Appendix A of [86].
29 The symmetries are ℓ ↔ 2 − d − ℓ, ∆ ↔ d −∆ and ∆ ↔ 1 − ℓ. Thus by using them, it is possible to generate all the solutions.
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hen in principle the functions Fℓ,∆ are complicated linear combinations of these 8 solutions. In order to close the
-contour we would like to roughly decompose the function Fℓ,∆ = F+(ℓ,∆) + F−(ℓ,∆) such that

F+(ℓ,∆) → wℓ as w → 0 (5.9)

nd

F−(ℓ,∆) → w−ℓ as w → ∞ (5.10)

his is not straightforward and a priori it is not guaranteed to be possible. Quite remarkably, as shown in [86], with some
anipulations it is possible to find a precise linear combination which brings (5.6) to its Lorentzian counterpart (5.13),
roperly integrated on the Lorentzian diamond. Now it becomes clear that we have a relation which gives the s-channel
PE data as an integral of the dDisc which is convergent in the t-channel and a kernel which is essentially the Lorentzian
ounterpart of the conformal blocks, and it is convergent for spin larger than 1. What happens for spins smaller or equal
han 1 is that the contribution of the arc in the w-plane cannot be dropped.30 This ends our sketch of the derivation of
he Lorentzian inversion formula. We refer to the original paper [86] and to [107] for a more detailed and rigorous proof,
nd in the next section we give the explicit expression.

.2. Main formula

In this section we would like to write down all the ingredients of the Lorentzian inversion formula that can be used to
nvert the OPE decomposition, meaning that it gives the OPE data from the analytic structure of the four-point correlator.
e first need to analytically continue to the Lorentzian regime and define the double-discontinuity

dDisc [G(z, z̄)] = GEucl(z, z̄) −
1
2
G⟳(z, z̄) −

1
2
G⟲(z, z̄). (5.11)

Here GEucl(z, z̄) is the Euclidean correlator and the other terms are the two possible analytic continuations around the
branch point z̄ = 1. We have all the ingredients to write down the inversion formula which reads

cℓ,∆ = c(t)ℓ,∆ + (−1)ℓc(u)ℓ,∆ (5.12)

where

c(t)ℓ,∆ =
1
4
k∆+ℓ

2

∫ 1

0
dzdz̄

(
z − z̄
zz̄

)2 Gℓ+3,∆−3(z, z̄)
z2z̄2

dDisc [G(z, z̄)] , (5.13)

with kα =
Γ (α)4

2π2Γ (2α−1)Γ (2α)
and c(u)ℓ,∆ has the same form as c(t)ℓ,∆ but with x1 ↔ x2. This relation is fully analytic in the spin,

except the term (−1)ℓ..31 The spectral functions cℓ,∆ are related to a∆,ℓ In particular, it is related to the s-channel OPE
data in this way

cℓ,∆ −−−→
∆→∆k

a∆k,ℓ

∆k −∆
. (5.14)

5.3. Examples

Let us analyze this formula (5.13), in particular in connection with the discussion about large spin reconstruction. The
first point to make is that this formula is analytic up to spin one, so it is possible to invert the four-point correlator up
to this value of the spin. The second is that it turns out that the information contained in the double discontinuity is the
same as the one obtained when considering the singularities as V → 0 of the correlators. To understand these points, let
us list the double discontinuity of some useful functions:

dDisc[log(1 − z̄)] = 0,

dDisc[log2(1 − z̄)] = 4π2, (5.15)

dDisc
[(

1 − z̄
z̄

)p]
=

(
1 − z̄
z̄

)p

2 sin2(πp) .

his set of functions are the ones that we have encountered in the previous sections, in particular in the discussion of large
CFTs. We have seen that the functions that perform a singularity as V → 0 are the last two in (5.15) which appear

t order N−4 and N0 respectively. Let us discuss more in details the last line. If we consider the four-point correlator

30 Notice that in the discussion presented here the spin of intermediate operators can only be even, since we started from a four-point function
of identical scalar operators. Thus we can say that the inversion formula is valid for j > 0.
31 In the case discussed here (−1)ℓ = 1 since the spin of the intermediate operators is always even.
33
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ntroduced in (3.10), we see that written in terms of z and z̄ the function has a non-vanishing double discontinuity only
ue to the presence of the term(

zz̄
(1 − z)(1 − z̄)

)∆ϕ
. (5.16)

hus we have that

cℓ,∆ =
1 + (−1)ℓ

4
k∆+ℓ

2

∫ 1

0
dzdz̄

(
z − z̄
zz̄

)2 Gℓ+3,∆−3(z, z̄)
z2z̄2

dDisc

[(
zz̄

(1 − z)(1 − z̄)

)∆ϕ]

=
1 + (−1)ℓ

4
k∆+ℓ

2

∫ 1

0
dzdz̄

(
z − z̄
zz̄

)2 Gℓ+3,∆−3(z, z̄)
z2z̄2

(
zz̄

(1 − z̄)(1 − z)

)∆ϕ
2 sin2(π∆ϕ)

=
22−∆(∆− 2)∆ϕ

(
(−1)ℓ + 1

)
(ℓ+ 1)Γ (2 −∆ϕ)2Γ (−∆ϕ)Γ (−∆+ ℓ+ 4)

Γ (1 −∆ϕ)Γ (∆ϕ)2Γ
( 1
2 (−∆+ ℓ+ 4)

)2
Γ (∆+ ℓ− 1)Γ

( 1
2 (−∆− 2∆ϕ + ℓ+ 8)

)
×
Γ
(
∆+ℓ
2

)2
Γ
(
−
∆
2 +∆ϕ +

ℓ
2

)
Γ
( 1
2 (∆+ 2∆ϕ + ℓ− 4)

)
Γ
( 1
2 (∆− 2∆ϕ + ℓ+ 4)

) . (5.17)

e can see that

Res∆=2∆ϕ+2n+ℓcℓ,∆ = aMF
n,ℓ. (5.18)

his confirms our previous observation that the presence of the term
(U
V

)∆ϕ in the four-point function fully fixes the OPE
data. Using the inversion formula, one recovers from it both the dimensions of the exchanged operators ∆ = 2∆ϕ+2n+ℓ

which correspond to the poles, and the squared three-point functions coefficients which correspond to the residues at
the pole. Let us also point out that the third equation in (5.15) is responsible for the double discontinuity of a conformal
block where p = τ −2∆ϕ . Note that when τ = 2∆φ +2n for n ∈ Z≥0, i.e., when the exchanged operator is a double-trace
operator, the double discontinuity vanishes and it does not contribute to the spectral function. This is a welcome feature
of the Lorentzian inversion formula, in particular in applications to tree-level correlators in AdS where we only need to
consider the contribution of single-trace operators.

6. Mellin space

6.1. General comments

The Mellin space formalism was introduced in [108,109] (see also [110,111]) and is a natural language for discussing
holographic correlators. In position space, these are rather complicated functions of the conformal cross ratios. However,
in this formalism the analytic structure of holographic correlators becomes drastically simplified, and manifests the
underlying scattering amplitude nature of these objects.

Consider the correlation function of n scalar operators.32 The correlator can be written as a multi-dimensional inverse
Mellin transformation

⟨O1(x1) . . .On(xn)⟩ =

∫
[dδij]

(∏
i<j

(−2Pi · Pj)−δijΓ [δij]

)
M(δij). (6.1)

Here we have used the embedding coordinates33 defined in Section 2.1

PA
=
(1 + x2

2
,
1 − x2

2
, xµ

)
, (6.2)

here the signature of the first two components are respectively − and +, and xµ are the coordinates of the operators.
his gives

−2Pi · Pj = x2ij. (6.3)

e can set

δij = δji, δii = −∆i. (6.4)

32 For spinning correlators, the Mellin formalism is more difficult to define. See [112] for the case of n-point function with one spinning operator,
and [113,114] for correlators of four spinning operators. Mellin formalism can also be developed for boundary CFT [24] and defect CFTs [115].
33 The use of the embedding space manifests the conformal covariance but is not strictly necessary. One can also prove the statements within the
physical space with coordinates xµ .
34
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equiring the correlator to have the correct scaling behavior under Pi → λiPi imposes the conditions
n∑

j=1

δij = 0. (6.5)

he integration is over the independent δij and along the imaginary axes.34 All the information of the correlator is
ransferred to the function M(δij) which is defined to be the Mellin amplitude.

To see why it is natural to call M(δij) an amplitude, we note that the conditions on δij can be automatically solved by
arameterizing δij using auxiliary flat-space momenta p⃗i

δij = p⃗i · p⃗j. (6.6)

ere the momenta are conserved and on-shell∑
i

p⃗i = 0, p⃗2i = −∆i, (6.7)

ith the squared masses replaced by the conformal dimensions. Therefore, the independent δij, which count the
ndependent conformal cross ratios of the form (Pi·Pj)(Pk·Pl)

(Pi·Pk)(Pj·Pj)
, are in correspondence to the independent Mandelstam variables

efined from the auxiliary momenta.
In fact, we can further show that the auxiliary momenta live in a d+1 dimensional spacetime by performing a simple

ounting. Consider first the CFT side. For n points in a CFTd, the number of independent cross ratios should equal to
he number of independent parameters after using all nontrivial conformal symmetry actions. This is the number of all
oordinates minus the dimension of the conformal group

nd
coordinates of n points

−
1
2
(d + 1)(d + 2)  

dimension of SO(d+1,1)

. (6.8)

owever, this counting is only correct for n > d + 2 as for n ≤ d + 2 there is a nontrivial stability group. To see this
xplicitly, we can use a conformal transformation to send two points to 0 and ∞. The remaining n − 2 points define an

n− 2 dimensional hyperplane. The rotation group SO(d+ 2− n) in directions orthogonal to the plane is a stability group,
nd we should subtract this group when it is nontrivial. Adding back its dimension, we get

n(n − 3)
2

. (6.9)

nother way to understand this change of counting behaviors is that for n > d + 2 an M × M matrices with elements
Pi · Pj} and d + 2 < M ≤ n are no longer of the full rank. There are additional relations given by det{Pi · Pj} = 0. Let
s now perform the counting of independent Mandelstam variables on the amplitude side. Here we consider n on-shell
omenta in RD−1,1. For n > D + 1, we have similarly

n(D − 1)  
coordinates of n on-shell momenta

−
1
2
D(D + 1)  

dimension of the Poincaré group

, (6.10)

here we note that the on-shell condition eliminates one degree of freedom for each particle. For n ≤ D+1, there is also
stability group which can be seen as follows. We can go to the frame in which the total momentum is zero∑

i

p⃗i = 0. (6.11)

hen these momenta span an n−1 dimensional subspace, which remains invariant under an SO(D−n+1) rotation group
which is orthogonal to it. Adding back the dimension of the stability group, we again arrive at

n(n − 3)
2

. (6.12)

Note that the answers from the two counting problems coincide precisely if D = d + 1. This indicates that a correlation
function in CFTd can be mapped into a scattering amplitude in a d + 1 dimensional spacetime. Of course, this is not
surprising as we know that the AdS/CFT correspondence is a way to establish such a relation.

Before we move on, let us make a quick comment regarding (6.1). In writing (6.1), we are implicitly thinking that we
are in the case of (6.9) where the spacetime dimension is sufficiently high with respect to the number of operators and
we are free of the determinant relations. While (6.1) remains a valid representation even when we are in the case of (6.8),

34 Note that for n = 2 and n = 3, these constraints completely fix δij . There is no integral and the Mellin representation just gives the standard
wo- and three-point functions.
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ne might imagine that there is an alternative formalism better suited for this situation with fewer Mellin variables. This
s particularly relevant for the case of CFT1 where starting from the first nontrivial case with n = 4 one encounters only
he case (6.8), and the case (6.9) never shows up. On the other hand, it is also useful to think of this problem from the dual
erspective. It is well known that remarkable properties of S-matrices such as integrability crucially rely on the special
inematics in 2d. The redundant parametrization in (6.1), however, does not reflect these special kinematic features. It
ould therefore be of great interest to find another Mellin representation that is intrinsic to the CFT1 kinematics. Relevant
orks on the 1d Mellin representation include [116,117], but it is not yet clear how to establish such a formalism for
eneral n-point functions.
Let us get back to the definition (6.1). Operators exchanged in a CFT correlator are manifested as poles in the Mellin

ormalism. To see this, let us consider the OPE

O1(x1)O2(x2) =

∑
k

C12k(x212)
∆k−∆1−∆2

2 (Ok(x2) + hx212∂
2Ok(x2) + · · · ). (6.13)

ere we have restricted to the scalar operators for simplicity. The constant h is fixed by conformal symmetry and
ultiplies the first of the descendant terms with the others collectively denoted by . . .. We now perform this OPE in

he n-point function and compare it with the Mellin representation. In the limit of x212 → 0, it is convenient to integrate
ver δ12 by closing the contour to the left in the complex plane. In order to match the OPE, it is clear that the integrand
f the inverse Mellin transformation must have poles at

δ12 =
∆1 +∆2 −∆k − 2m

2
, m = 0, 1, 2, . . . . (6.14)

he residues of these poles are proportional to the product of the OPE coefficient C12k and the Mellin amplitude of the
ower-point correlator. In other words, OPE in the CFT correlator leads to factorization in the Mellin amplitude. The precise
elation was derived in [112]. Similar reasoning also applies to the general case where we exchange a spinning operator
ith dimension ∆k and spin ℓk. The corresponding poles are at

δ12 =
∆1 +∆2 − (∆k − ℓk) − 2m

2
, m = 0, 1, 2, . . . . (6.15)

Note that in the definition (6.1), we have included a factor of Gamma functions which contain poles at integer locations.
hese poles correspond to the ‘‘double-trace’’ operators which are ubiquitous in holographic theories (in the strict central
harge c → ∞ limit they are just mean field theories). It turns out that separating out their contributions in this way
s convenient when considering holographic correlators, as we will explain in more detail in the next subsection in the
our-point function context.

.2. Four-point function case

Since the focus of most of this review will be on four-point functions, here we spell out the details of the Mellin
epresentation formalism for n = 4.

In this case, the general definition (6.1) reduces to

⟨O1(x1) . . .O4(x4)⟩ =
1

(x212)
∆1+∆2

2 (x234)
∆3+∆4

2

(
x214
x224

)a (x214
x213

)b

G(U, V ), (6.16)

ith a =
1
2 (∆2 −∆1), b =

1
2 (∆3 −∆4), and

G(U, V ) =

∫ i∞

−i∞

dsdt
(4π i)2

U
s
2 V

t
2 −

∆2+∆3
2 M(s, t)Γ (∆1+∆2−s

2 )Γ (∆3+∆4−s
2 )

× Γ (∆1+∆4−t
2 )Γ (∆2+∆3−t

2 )Γ (∆1+∆3−u
2 )Γ (∆2+∆4−u

2 ).
(6.17)

Here to make it more symmetric we have also introduced the third Mandelstam variable u satisfying

s + t + u =

4∑
i=1

∆i. (6.18)

he integration contours of s and t run parallel to the imaginary axis and separate semi-infinite series of poles running to
he left and to the right. Bose symmetry acts by permuting s, t , u and the operator labels. Therefore the Mellin amplitude
as the same symmetry properties as a flat-space amplitude. For example, for four identical operators the Mellin amplitude
atisfies

M(s, t) = M(s, u) = M(t, u). (6.19)
36



A. Bissi, A. Sinha and X. Zhou Physics Reports 991 (2022) 1–89

T
o
i

b
T
t

t

I
o

T
d

w

Fig. 17. Disconnected Witten diagrams.

Let us consider again the OPE of the four-point function in the s-channel. Then (6.15) gives rise to poles in s and the
Mellin amplitude takes the following form

M(s, t) ⊃

∞∑
m=0

C12kC34k
Qℓk,m(t)

s − (∆k − ℓk) − 2m
. (6.20)

he numerators Qℓ,m(t) are kinematic polynomials of degree ℓ in t and are known as the Mack polynomials. They can be
btained by, for example, matching the position space expressions of the conformal blocks after evaluating the Mellin
ntegrals.

Let us note that the above form (6.20) of OPE in Mellin space is reminiscent of flat-space tree-level scattering. Such a
ehavior strengthens the analogy between correlators and amplitudes which we argued about in the previous subsection.
o further appreciate this analogy, let us examine the structure of tree-level Witten diagrams in Mellin space. These
ree-level Witten diagrams are the leading corrections in the 1/N-expansion of correlators in a local holographic theory.

For simplicity, let us consider four identical operators of dimension ∆ϕ . The four-point function can be expanded in
he following way

G = Gdisc +
1
N2 Gtree +

1
N4 G1−loop + · · · . (6.21)

n the N → ∞ limit, the leading order contribution to the correlator is given by the mean field theory, and is comprised
f products of two-point functions

Gdisc = 1 + U∆ϕ +

(
U
V

)∆ϕ
. (6.22)

his corresponds to the disconnected diagrams depicted in Fig. 17. Decomposing it into conformal blocks we find only
ouble-trace operators of the schematic form

: ϕ□n∂ℓϕ :, (6.23)

hich have conformal dimension∆n,ℓ = 2∆ϕ+2n+ℓ and spin ℓ. They correspond to poles in the integrand at s = 2∆ϕ+2n
which are precisely the poles of the s-channel Gamma functions. At the next order, we have connected tree-level diagrams
depicted in Fig. 18. These tree-level diagrams can further be divided into exchange diagrams and contact diagrams. They
are built out of propagators following Feynman rules similar to those in flat space. For example, the contact diagram
following from a quartic vertex without derivatives is defined as, see, e.g., [17,51,118]

Wcon(xi) =

∫
AdSd+1

dz
4∏

i=1

G∆ϕB∂ (xi, z), (6.24)

and the s-channel exchange diagram of a scalar field with dimension ∆ is defined as

W∆,ℓ=0(xi) =

∫
AdSd+1

dzdwG∆ϕB∂ (x1, z)G
∆ϕ

B∂ (x2, z)G
∆
BB(z, w)G∆ϕB∂ (x3, w)G∆ϕB∂ (x4, w). (6.25)

Here G∆B∂ (x, z) and G∆BB(z, w) are the bulk-to-boundary and the bulk-to-bulk propagators in AdS respectively. Since these
tree diagrams are corrections to the mean field theory correlator, the double-trace operators appearing in the OPE at
the disconnected order will also appear at this order. Their presence is conveniently captured by the Gamma function
factor. In addition, in the exchange diagrams there is a ‘‘single-trace’’ operator which is dual to the exchanged field in
AdS. This requires the Mellin amplitude of an s-channel exchange diagram to contain the contribution (6.20). Since there
are no other operators exchanged in the OPE at this order, we conclude that the Mellin amplitude of the exchange Witten
diagram is just

M∆,ℓ(s, t) =

∞∑ Qℓ,m(t)
s − (∆− ℓ) − 2m

+ Rℓ−1(s, t) (6.26)

m=0
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Fig. 18. Tree-level Witten diagrams.

here Rℓ−1(s, t) is a degree-(ℓ−1) polynomial free of poles and we have set C12k and C34k to 1 for convenience. By contrast,
he contact diagrams contain only double-trace operators in the conformal block decomposition. Therefore, their Mellin
mplitudes are regular in the Mandelstam variables. For example, the Mellin amplitude of the zero-derivative contact
iagram (6.24) is just a constant. More generally, the Mellin amplitude of a contact diagram with 2L contracted derivatives
n the quartic vertex is a degree-L polynomial

Mcon, 2L-der = PL(s, t). (6.27)

Evidently, the Mellin amplitudes of AdS tree-level diagrams are highly similar to the flat-space tree-level amplitudes.
his similarity makes the Mellin formalism a very useful tool to study holographic correlators and allows us to apply
any intuitions from flat-space scattering.

.3. Flat-space limit

We have considered scattering processes of a relativistic theory placed in an AdS space, and we have implicitly set
ts radius R to be 1 when discussing the diagrams. Here let us restore the R dependence and make it tunable. If we take
to be much larger than any length scales in the theory, then clearly the curvature effects should be negligible. The
dS scattering amplitude should correspondingly reduce to the flat-space scattering amplitude in this limit. The Mellin
ormalism provides a convenient way to extract the flat-space limit of AdS scattering amplitudes.

The precise relation was given in [109]. On the one hand, we have the Mellin amplitude M(δij) of an n-point scalar
orrelator where the conformal dimension of each operator is ∆i. On the other hand, we have the scattering amplitude
n of n massless particles in flat space. The flat-space amplitude is effectively reproduced from the high-energy limit of
he Mellin amplitude

Tn(sij) = NR
n(d−1)

2 −d−1 lim
R→∞

∫ i∞

−i∞
dαeαα

d−2−
∑

i ∆i
2 M

(
δij = −

R2sij
4α

,∆a = Rma

)
. (6.28)

ere s = 2p⃗i · p⃗j are the Mandelstam variables in the flat space, and N is an overall factor depending on the external
imensions ∆i. The dimensions ∆a belong to exchanged internal fields. They scale linearly with R if we wish to assign a
onzero mass ma in the flat-space limit.35 Finally, the integration contour of α runs to the right of all poles in the Mellin
mplitude and the branch cut from α

d−2−
∑

i ∆i
2 . The relation (6.28) was presented as a conjecture in [109] and was checked

n many explicit examples, including contact and exchange diagrams at tree level, and four-point one-loop amplitudes. It
as also derived in [119] using wavepackets where the scattering was limited to a small flat region of AdS.

. The epsilon expansion

.1. A brief review

The epsilon expansion was introduced in [12,13] as an approximate technique to compute critical exponents for the
d Ising and O(N) models. The idea is to start with the O(N) model

S =

N∑
i=1

∫
ddx

(
∂µφ

i∂µφi
− m2φiφi

+ λ(φiφi)2
)
, (7.1)

ith d = 4 − ϵ and compute various scaling dimensions in this model at the fixed point, where m and λ are tuned
ppropriately, pretending ϵ to be small using the Feynman diagram approach [13] to some loop order. Then at the end
f the calculation either ϵ is set equal to unity or some resummation technique is used [120] to obtain physical answers.

35 This follows from the mass relation m2R2
= ∆(∆− d) in the large R limit.
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or reasons not completely well understood, the results are remarkably close to both Monte Carlo simulations of the 3d
sing/O(N) models as well as experimental measurements.

In terms of τ =
T−Tc
Tc

, the specific heat C ∝ τ−α defines the critical exponent α. Similarly at the critical point T = Tc ,
the correlator is expected to behave like ⟨φ(r)φ(0)⟩ ∝ r−d+2+η , defining the exponent η. Let us focus for now on N = 1
which is relevant for the 3d Ising model. In terms of the scaling dimension ∆φ of φ and ∆φ2 of φ2, we have

α = 2 −
d

d −∆φ2
, η = 2∆φ − d + 2 . (7.2)

n a free theory ∆φ = 1 − ϵ/2,∆φ2 = 2∆φ = 2 − ϵ. The λ(φiφi)2 interaction induces a flow to the Wilson–Fisher fixed
oint where operators get anomalous dimensions. The results for ∆φ and ∆φ2 are [13]:

∆φ = 1 −
ϵ

2
+

ϵ2

108
+

109ϵ3

11664
+ O(ϵ4) , (7.3)

∆φ2 = 2 −
2ϵ
3

+
19ϵ2

162
+ O(ϵ3) . (7.4)

he results for double field higher gradient operators of the form Oℓ = φ∂µ1 · · · ∂µℓφ are also known and were worked out
to O(ϵ2) in [13]. Using the Feynman diagram approach, the O(ϵ4) anomalous dimensions of Oℓ [121], the O(ϵ7) anomalous
dimension of φ2 and O(ϵ8) anomalous dimension of φ [122,123] have been worked out. For a recent summary of the
critical O(N) epsilon expansion data, refer to [124].

If we take the Wilson–Fisher results in Eq. (7.3) and naively substitute ϵ = 1, we get ∆φ = 0.5186 which is in a
remarkable agreement with numerical results which give 0.5181 as the answer to 4 significant figures [11]. For φ2 we
find ∆φ2 = 1.45 while numerical results give 1.41 to 2 decimal places. However, despite these encouraging findings, it is
difficult to compute OPE coefficients using this approach. Also it is known that the ϵk term in the anomalous dimension
calculations grows as kk+4e−k( ϵ3 )

k [125] necessitating the use of resummation techniques. Furthermore, a more crucial
rawback is that this approach does not use the conformal symmetry of the critical point and is inherently perturbative.
n what follows, we will review how conformal field theory techniques can be used to extract OPE data including OPE
oefficients in the epsilon expansion.

.2. CFT derivation of leading order anomalous dimension

In this section, we will review the derivation of the leading order anomalous dimension of the operators φ4 using CFT
echniques using the elegant method of [126]. We will need this information in what follows. Following [126], we assume
hat

1. The WF fixed point is invariant under the full conformal symmetry.
2. Each local operator in the free theory at ϵ = 0 has a counterpart at the WF fixed point. In particular:

lim
ϵ→0

Vn = φn . (7.5)

This enables us to refer to φn in the WF theory unambiguously. The conformal dimension of Vn is denoted by ∆n.
We will further define

∆n = n(1 −
ϵ

2
) + γn . (7.6)

3. V3 is a descendant. Namely

∂2V1 = βV3 . (7.7)

Here β = β(ϵ) will be fixed later. This equation also means that ∆3 = ∆1 + 2.

e will choose the normalizations such that

⟨φ(x)φ(0)⟩ =
1

|x|2
, ⟨V1(x)V1(0)⟩ =

1
|x|2∆1

. (7.8)

his will enable us to fix β . To do this we compare ⟨∂2V1(x)∂2V1(0)⟩ and ⟨V3(x)V3(0)⟩. This leads to

β = 4
(γ1
3

)1/2
. (7.9)

onsider first the OPE in the free theory

φn(x) × φn+1(0) ⊃ (n + 1)!|x|−2n
(
φ(0) +

n
|x|2φ3(0)

)
. (7.10)
2
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Fig. 19. Polyakov’s 1974 [4] idea in its modern incarnation. The Mellin amplitude can be expanded in a basis of crossing symmetric AdS exchange
itten diagrams and contact diagrams. The crossing symmetric dispersion relation fixes this basis.

he RHS is obtained using Wick contractions. Next we need the WF OPE

Vn(x) × Vn+1(0) ⊃ f̃ |x|∆1−∆n−∆n+1
(
1 + q1xµ∂µ + q2xµxν∂µ∂ν + q3x2∂2 + · · ·

)
V1(0) . (7.11)

ere q1, q2, q3 are fixed in terms of∆1,∆n,∆n+1. By considering ⟨Vn(x)Vn+1(0)V1(z)⟩ and matching with ⟨φn(x)φn+1(0)φ(z)⟩
in the ϵ → 0 limit, we will find that f̃ = (n + 1)! + O(ϵ). Next using Eq. (7.11) we have

⟨Vn(x)Vn+1(0)V3(z)⟩ ≈ (n + 1)!|x|δ
(
1 + q1xµ∂µ + q2xµxν∂µ∂ν + q3x2∂2 + · · ·

)
⟨V1(0)V3(z)⟩ , (7.12)

here δ = ∆1 −∆n −∆n+1. We have to match this in the limit |x| ≪ |z| with

⟨φn(x)φn+1(0)φ3(z)⟩ ≈ (n + 1)!
n
2
|x|−2n+2

⟨φ3(0)φ3(z)⟩ , (7.13)

in the ϵ → 0 limit which follows from Eq. (7.10). We consider first n = 1 or n ≥ 4. The key step is to match the O(x2)
terms for which we need q3β → n/2. Since one can show [126] that q3 ≈ (γn+1 − γn + γ1)/(16γ1) and β ∼ O(ϵ), this
would need q3 to be singular in the ϵ → 0 limit. This leads to γ1 = O(ϵ2). Writing γ1 = δ

(2)
1 ϵ

2 and γn = δ
(1)
n ϵ we find

(δ(1)n+1 − δ(1)n )ϵ =
β

6
n . (7.14)

sing Eq. (7.9), we conclude that β = O(ϵ). One can further argue that this relation holds for n = 2, 3 as well and hence
for all integer n. Matching δ(1)1 = 0 and ∆3 −∆1 = 2 fixes

δ(1)n =
n(n − 1)

6
. (7.15)

hese agree with the Feynman diagram calculation of the anomalous dimensions of φn operators in the WF theory. In
articular we have ∆4 = 4 + O(ϵ2) which we will need in the next section. In order to go beyond leading order and also
ompute corrections to OPE coefficients, we will need to use bootstrap equations. Further applications of this technique
o evaluate leading order anomalous dimensions in the φ6 theory in 2 + ϵ dimensions can be found in [127], for the
ross–Neveu model in 2 + ϵ dimensions can be found in [128], while φ3 theory in 6 − ϵ dimensions was examined
n [129].

. Polyakov bootstrap from dispersion relation

In his seminal 1974 work [4], Polyakov postulated a crossing symmetric way to solve the dynamical content of the
onformal bootstrap program. In this paper, he looked at momentum space consistency conditions in the context of the
eading order epsilon expansion, as well as a non-perturbative version of these conditions. In order to frame the non-
erturbative conditions, Polyakov used a spectral function representation of the conformal correlator and argued that in
rder to have better convergence in the spectral variable, one needs to incorporate spurious double poles, corresponding to
perators that are absent from the spectrum. Since crossing symmetry is in-built in this formalism, consistency conditions
rise on demanding that the OPE does not include contributions from these spurious double poles. The modern incarnation
f the Polyakov bootstrap was discussed in [130–133]. Mellin space was found to be suitable in understanding Polyakov’s
eminal paper in the language of exchange Witten diagrams. Note that these provide a convenient kinematical basis and
e are not assuming any knowledge of the dual gravity theory (see Fig. 19).
We will focus on identical external scalars for which we have

G(xi) =
1

(x212x
2
34)

∆φ
G(U, V ) , (8.1)

ith

G(U, V ) =

∫ i∞ dsdt
2U

s
2 V

t
2 −∆φM(s, t)µ(s, t) , (8.2)
−i∞ (4π i)
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here the measure factor µ is given by

µ(s, t) = Γ 2(∆φ −
s
2
)Γ 2(∆φ −

t
2
)Γ 2(∆φ −

u
2
) , (8.3)

nd

s + t + u = 4∆φ . (8.4)

e will call M(s, t) as the Mellin amplitude. The double poles in the measure factor, if not canceled, would correspond to
perators in the spectrum with exact dimensions∆ = 2∆φ+2n+ℓ. Since in generic non-supersymmetric CFTs, we expect
perators to gain anomalous dimensions, such exact operators would be spurious. The original Polyakov conditions in [4]
re then the cancellation of such contributions in the Mellin amplitude. In [130–132], O(ϵ2) anomalous dimension for the
calar φ2 operator, O(ϵ3) anomalous dimensions for the higher spin operators φ∂a1 · · · ∂aℓφ as well as the corresponding
PE coefficients to one higher order in ϵ were calculated. The anomalous dimensions were in perfect agreement with
xisting Feynman diagram calculations, while the OPE coefficients were new. For the stress tensor OPE, alternative
rguments (see appendix B in [134]) give rise to the same answer, giving credence to such calculations. Nevertheless,
n spite of these successes, in [135], it was realized that there are contact term ambiguities in the kinematical basis being
sed.36 These ambiguities resulted in a mismatch at O(ϵ3) for the anomalous dimension of φ2 compared to the Feynman

diagram results. Thus the question becomes how to fix such ambiguities. This requires understanding the non-perturbative
existence of Mellin amplitudes.

The non-perturbative existence of Mellin amplitudes was discussed in detail in [136]. The main criteria are analyticity
in a sectorial domain (arg [U], arg [V ])∈ ΘCFT and polynomial boundedness for G(U, V ). By analyzing G(U, V ) in various
limits and employing crossing symmetry, it was concluded that the integrals over U, V leading to the definition of the
Mellin amplitude, which run from 0 to ∞, do not converge. It was shown that an improved convergence is possible on
performing subtractions. In general, it was found that subtracting off the crossing symmetric contributions of operators
with twists lying between the assumed twist-gap and the smallest twist accumulation point, would lead to convergence.
Our interest is in the epsilon expansion to the first few orders, where subtracting off the disconnected contribution arising
from the exchange of the identity operator is sufficient. After subtractions, one can write down fixed-t dispersion relations
for the Mellin amplitude, much like how one writes dispersion relations for flat space scattering amplitudes. The non-
perturbative origin of the Polyakov conditions is subtle and has been explained in [50,136]. In [50], these conditions
originate from demanding consistency between dispersion relations and the s-channel OPE. For the epsilon expansion,
the conclusion from such analyses is that we can continue to use the Polyakov conditions as discussed in [131,132,135].

In order to make connection with Polyakov’s original idea of a manifestly crossing symmetric approach, we need to
start with a crossing symmetric dispersion relation. This was done in [137]. We will now summarize the derivation. For
ease of notation, we will use

s = 2s1 +
4∆φ
3
, t = 2s2 +

4∆φ
3
, u = 2s3 +

4∆φ
3

, (8.5)

o that we have s1 + s2 + s3 = 0. Full crossing symmetry means invariance under the permutations of the si’s. In
rder to write a crossing symmetric dispersion relation, we use an old but forgotten idea given by Auberson and Khuri
n 1972 [138]. For QFT, this was resurrected in [139] and then developed for CFT in [137]. Rather than working with
andelstam variables, we will use a different parametrization, namely

sk = a
(
1 −

(zk − z)3

z3 − 1

)
, k = 1, 2, 3 , (8.6)

here zk = exp(2π i(k − 1)/3) are the cube-roots of unity. The parameter a works out to be

a =
s1s2s3

s1s2 + s1s3 + s2s3
=

y
x
, y = −s1s2s3 , x = −(s1s2 + s1s3 + s2s3) , (8.7)

o that in terms of the si’s, a is manifestly crossing symmetric. The idea now is to write a dispersion relation in the variable
keeping a fixed. Notice that since

s1 + s2 + s3 = 0 , (8.8)

he above equation for fixed a gives two roots for s2 in terms of s1, namely

s±2 = −
s1
2

[
1 ∓ (

s1 + 3a
s1 − a

)1/2
]
. (8.9)

n the fully crossing symmetric case of interest, both roots give the same result so we will work with s+2 . In terms of the
variable, the poles on the real s1 axis get mapped to the boundary of the disc |z| = 1. The region where |si|’s are small

s the neighborhood of z = 0 while the Regge limit, for example, s1 → ∞, keeping s2 fixed gets mapped to z → z2. In

36 The simpler case of 1d CFTs where there are no spins was discussed in [46,47]; for a Mellin space discussion see [116].
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rder to proceed, we have to make assumptions about the fall-off of M(s, t) as |z| → 1. We will first assume that two
ubtractions suffice, i.e., M(s, t) → o(s2) for fixed-t . The final form of this dispersion relation is given by [137]:

M(s1, s2) = M(0, 0) +
1
π

∫
∞

σ

ds′1
s′1

A(s′1; s
+

2 (s
′

1, a))H2(s′1; s1, s2, s3) , (8.10)

here

H2(s; s1, s2, s3) =

(
s1

s − s1
+

s2
s − s2

+
s3

s − s3

)
, (8.11)

s a manifestly crossing symmetric kernel. The lower limit of the integrand σ is where the chain of poles in the Mellin
ariable s1 starts. A(s1; s2) is the s-channel discontinuity. Since the Mellin amplitude is meromorphic, this will generally
e a sum of delta functions. Denoting these poles by

τk =
∆− ℓ

2
+ k −

2∆φ
3

, (8.12)

we can explicitly write

M(s1, s2) = M(0, 0) +

∞∑
∆,ℓ,k

c∆,ℓ
τk

Q(∆)
ℓ,k (a)H2(τk; s1, s2, s3) , (8.13)

here c∆,ℓ = N∆,ℓC∆,ℓ, with C∆,ℓ’s being the OPE coefficient square, given in appendix A.1 and

Q(∆)
ℓ,k (a) = R(k)

∆,ℓP∆,ℓ(τk, s
+

2 (τk, a)) , (8.14)

ith P∆,ℓ’s being the Mack polynomials and R(k)
∆,ℓ being some normalization factors, whose explicit expressions can be

ound in appendix A.1. We will refer to this as the Polyakov block expansion.
One can argue [137] that the conformal partial wave expansion converges in the neighborhood of a = 0 so that we

an consider Taylor expanding around a = 0. Now notice that in terms of x, y defined in Eq. (8.7), the kernel is

H2(s′1; x, a) =
x(2s′1 − 3a)

xa − xs′1 + (s′1)3
, (8.15)

o that if we Taylor expand around a = 0 followed by x = 0, we will only get positive powers of x and y. In other words,
he kernel is ‘‘local’’. On the other hand, A is a function of a and s′1 only so that Taylor expanding around a = 0 will
generically lead to arbitrary powers of a and hence would lead to inverse powers of x in the expansion. Specifically, the
form of the integrand is

A(s′1; s
+

2 (s
′

1, a)) × H2(s′1; x, a) =

⎛⎝ ∞∑
p=0

dpap

⎞⎠×

(
∞∑

m=0

m∑
n=0

anxmcnm

)
, (8.16)

where dp, cnm are functions of s′1. Assuming the Mellin amplitude to be meromorphic, dp would be proportional to
δ(s′1 − sk) where sk’s are the location of the s1 poles. After integration over s′1 we would get an expression with a
sum over these poles. As an example, let us consider x2. We see that every term in

(∑
∞

p=3 dpa
p
)
when multiplied by

c02x2 + c12ax2 + c22a2x2 would lead to negative powers of x after using a = y/x. Further for p ≤ 2 in the sum, we would
have d1c22a3x2 + d2c12a3x2 + d2c22a4x2 which would also give negative powers of x. In a local theory, one should expect
to see only positive powers of x when expanded around a = 0, x = 0. Thus we expect that the sum over the Mellin
poles would give a cancellation of such negative powers. Cancellation of negative powers of x leads to the ‘‘locality’’
constraints [137]. A non-trivial example worked out in [137] shows how this works for the 2d-Ising model. It was further
argued in [137] that these locality constraints are identical to the crossing symmetry conditions that one would impose
in the fixed-t dispersion relation.

In addition to these locality constraints, we impose the Polyakov conditions. For the purpose of epsilon expansion, we
will use the original Polyakov conditions as discussed in [135]. These read

M(s1 =
∆φ

3
+ p, s2) = 0 , (8.17)

and

∂s1M(s1 =
∆φ

3
+ p, s2) = 0 . (8.18)

he validity of these conditions in this context was established in [140]. These have to hold for any integer p ≥ 0 and for
ny s2 inside the region shown in the figure (see Fig. 20).
Notice that in Eq. (8.10), there is an unfixed constant M(0, 0). Thus, to make use of the constraints Eq. (8.17) we will

ork with subtracted equations in which this unfixed constant drops out. From a different perspective, this was also
iscussed in [135].
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overlaps with the blue region on the right). The derivative condition converges in the blue region. τgap is the minimum twist of the operator that
ppears in the φ × φ OPE.
ource: Figure adapted from [140].

.1. Witten diagram basis

To facilitate an analytical investigation, we will need a change of basis. Namely, we will use a basis where the locality
onstraints are already imposed, i.e., each block in the basis will be local. This will make a connection with the Witten
iagram basis expansion, originally envisaged in [131,132,135], with the contact term ambiguities discussed in [135] now
ully fixed. Following [137], we will now review the logic behind how this happens. Notice that each term in the Polyakov
lock expansion in Eq. (8.13) contains ‘‘non-local’’ terms, which cancel on summing over the spectrum. The resulting
ancellation conditions, which we dubbed as locality constraints, are analogous to the crossing symmetry constraints that
rise in fixed-t dispersion relation [136] or the so-called odd-spin constraints [50] as shown in [137]. We can get the
itten diagram basis by re-expanding in a basis where the locality constraints have already been imposed. The price we
ay for doing this is that, unlike the Polyakov blocks, the resulting ‘‘Witten’’ blocks will not be Regge bounded. Explicitly,
e will write the Witten block expansion as

M(s1, s2) = α0 +

∞∑
∆,ℓ,k

c∆,ℓ

[ ∑
i=s,t,u

M (i)
∆,ℓ,k(s1, s2) + M (c)

∆,ℓ,k(s1, s2)

]
, (8.19)

where

M (s)
∆,ℓ,k(s1, s2) = R(k)

∆,ℓ

P∆,ℓ(s1, s2)
τk − s1

, M (t)
∆,ℓ,k(s1, s2) = M (s)

∆,ℓ,k(s2, s3) ,

M (u)
∆,ℓ,k(s1, s2) = M (s)

∆,ℓ,k(s3, s1) , (8.20)

and M (c)
∆,ℓ,k(s1, s2) are crossing-symmetric contact terms which arise on demanding the equivalence between Eqs. (8.13)

and (8.19) after imposing the locality constraints. α0 is a constant that we cannot fix at this stage. A general expression
for arbitrary ℓ for M (c)

∆,ℓ,k(s1, s2) is difficult to find but explicit expressions can be worked out for a given spin. The simplest
case spin-0 leads to

M (c)
∆,0,k = −3R(k)

∆,0
P∆,0(0, 0)

τk
, (8.21)

ith P∆,0(0, 0) = 1, while for spin 2, we explicitly find with τk =
∆−2
2 + k −

2∆φ
3

M (c)
∆,2,k = −R(k)

∆,2

[
3
P∆,2(0, 0)

+
1
(

x
+

y
2

)]
. (8.22)
τk 4 τk τk
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or Eq. (8.21), the sum over k leads to 3F2, which needs analytic continuation to be applicable for the epsilon expansion.
q. (8.19) now is exactly the form used in [135] with the contact terms fixed. The k sum in the non-zero spin contact

terms is convergent and can be explicitly performed, but we will not do so here.

8.2. Polyakov conditions

We will use the technology developed in [135] to analyze the Polyakov conditions in Eqs. (8.17) and (8.18). In light
of the rigorous results in [136], there will be some important differences. For starters, in [135] and previous similar
discussions, the contribution of the identity operator was included in Eq. (8.18). The identity operator contributes to
the p = 0 condition and the analytic findings give OPE expansion coefficients that are consistent. However, according
to [136], the non-perturbative definition of the Mellin amplitude requires that this contribution be subtracted as the
Mellin amplitudes corresponding to U∆φ or (U/V )∆φ do not exist. Nevertheless, we will follow what was done in [135] and
the earlier papers. One can think of the resulting condition as ensuring that the spurious U∆φ and its crossing symmetric
counterparts are absent in the expansion of the position space correlator around U ∼ 0. Explicitly, in position space, when
one expands the correlator around U ∼ 0, V ∼ 1, one does not expect powers like U∆φ and U∆φ lnU . Let us examine the
conditions Eqs. ((8.17), (8.18)) a bit more. These conditions carry the label s2. We could choose some special value of s2
here and Taylor expand around this value. Alternatively, one could take a linear combination of the resulting conditions. A
priori it is not clear which route is a better one. However, the epsilon expansion suggests that expanding these conditions
in the basis of the so-called continuous Hahn polynomials, which are the Mellin space generalizations of the Gegenbauer
polynomials, is a better thing to do. What happens here is that in the s-channel, up to some order in epsilon, only a single
operator contributes. This is the route we will review. The conditions in Eqs. ((8.17), (8.18)), after decomposing in the
continuous Hahn polynomial basis, can be written as [135](∑

∆,ℓ

c∆,ℓ
(
q(s)
∆,ℓ′|ℓ

(s1) + 2q(t)
∆,ℓ′|ℓ

(s1)
)
+

∑
n,m

an,mq(c)n,m(s1)
)
|
s1=

∆φ
3 +r

= 0 , (8.23)(∑
∆,ℓ

c∆,ℓ∂s
(
q(s)
∆,ℓ′|ℓ

(s1) + 2q(t)
∆,ℓ′|ℓ

(s1)
)
+ 2∂sqdissℓ′ (s1) +

∑
n,m

an,m∂s1q
(c)
n,m(s1)

)
|
s1=

∆φ
3 +r

= 0 ,

where explicit expressions for q(s,t)
∆,ℓ′|ℓ

(s1) etc. can be found in appendix A.2. For obvious reasons, we will refer to the first
set of conditions as the non-derivative conditions and the second set as derivative conditions. qdiss is the contribution
from the identity operator and enters in only the r = 0 derivative condition. Here a0,0 will depend on α0 in Eq. (8.19).
Since α0 cannot be fixed at this stage, solving these equations will require us to work with subtracted equations where
the contribution of both α0 as well as the spin-0 contact term in Eq. (8.22) cancels out. In the next section, we will see
how the Wilson–Fisher ϵ-expansion results are produced using these equations.

9. Epsilon expansion from bootstrap

We begin by reproducing the anomalous dimension results in Wilson–Kogut [13] and summarize the new results for
the OPE coefficients.

9.1. Summary of steps

For the epsilon expansion, we will put d = 4−ϵ in Eqs. (8.23) and solve these equations order by order in epsilon. We
will focus on extracting the anomalous dimensions and OPE coefficients of the scalar and spin-2 operators. To have any
hope of extracting useful analytic information, at least to the first few orders, we should be in a lucky situation where
only a finite number of operators contribute to Eq. (8.23). In Eq. (8.19), c∆,ℓ = N∆,ℓC∆,ℓ, where the normalization N∆,ℓ

is defined in Appendix A.1 and C∆,ℓ are the OPE coefficients defined so that near U ∼ 0, V ∼ 1, the contribution of an
operator with conformal dimension ∆ and spin ℓ gives C∆,ℓU

∆−ℓ
2 (1 − V )ℓ. Now N∆,ℓ has double zeros at the location of

MFT operators with dimensions ∆ = 2∆φ + 2n + ℓ. This observation will be crucial in calculating the first few orders in
the epsilon expansion. To make progress, we will make the following assumptions:

1. We will assume the existence of a unique spin-2 stress tensor whose dimension is ∆2 = 4 − ϵ.
2. We will assume that there are unique double field operators of leading dimension ∆ℓ = 2∆φ + ℓ + O(ϵ) and
∆φ = 1 + O(ϵ). For convenience, we will denote the OPE coefficient squared of these operators by Cℓ.

3. The twist ≥ 4 operators have their OPE coefficient squared beginning at O(ϵ2).

Let us parameterize

∆φ = 1 +

∞∑
n=1

δ
(n)
φ ϵ

n , ∆0 = 2 +

∞∑
n=1

δ
(n)
0 ϵ , (9.1)

Cℓ =

∞∑
C (n)
ℓ ϵ

n , ℓ ≥ 0. (9.2)

n=0
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Fig. 21. Behavior of cT in fractional dimensions. The solid points are numerical bootstrap data [141]. The red dashed line is the O(ϵ2) result while
the green solid line is the O(ϵ3) result.
Source: Figure adapted from [132].

In addition to these operators, we will also need the unique twist-4 scalar primary φ4 to solve the equations consistently.
At the order we will be interested in, and with the equations we will use, the higher spin, twist-4 operators, and higher
than twist-4 operators do not contribute. We will parameterize the φ4 operator by

∆φ4 = 4 +

∞∑
n=1

δ
(n)
φ4
ϵn + O(ϵ3) , Cφ4 =

∞∑
n=0

C (n)
φ4
ϵ2+n . (9.3)

We will take ℓ′
= 0, 2 derivative conditions at r = 0, 1. To remove the α0 dependence in the non-derivative conditions,

we will subtract the ℓ′
= 0, r = 0 equation from every non-derivative equation. We will work with ℓ′

= 0, r = 1
ubtracted conditions and ℓ′

= 2, r = 0, 1 equations. The explicit expressions for contact terms lead to the conclusion
that they will contribute at a higher order in epsilon. Expanding these equations to O(ϵ3), in addition to the free theory
olution, we can solve order by order to find the following:

∆φ = 1 −
ϵ

2
+

ϵ2

108
+ (109 + 72δ(1)

φ4
)
ϵ3

11664
+ O(ϵ4) , (9.4)

∆0 = 2 −
2ϵ
3

+ (19 + 18δ(1)
φ4

)
ϵ2

162
+ O(ϵ3) , (9.5)

C0 = 2 −
2ϵ
3

− 2(17 + 9δ(1)
φ4

)
ϵ2

81
+

ϵ3

486
(−

95
6

+ 12δ(1)
φ4

− 972δ(3)0 + 63ζ (3)) , (9.6)

C2 =
1
3

−
11ϵ
36

+
37ϵ2

486
+

451ϵ3

52488
+ O(ϵ4) , (9.7)

Cφ4 =
1
54

+ O(ϵ) . (9.8)

hus we can solve consistently in terms of one unknown, which we have parametrized in terms of the φ4 anomalous
dimension. Curiously the stress tensor OPE coefficient squared, C2, has no dependence on the φ4 anomalous dimension
up to this order. The O(ϵ3) OPE coefficient for C2 was first computed in [131,132] and an independent, indirect consistency
check based on diagrammatic calculations was carried out in [134]. Using the CFT derivation of δ(1)

φ4
= 0 which follows

from Eq. (7.15), we find agreement with the Wilson–Fisher results, with new results for OPE coefficients. This gives a
rigorous derivation of the ϵ-expansion results of [131,132,135]. In these papers, the O(ϵ3) anomalous dimensions of the
double field operators of general even spins were derived and found to perfectly agree with the diagrammatic approach.
The O(ϵ3) OPE coefficients were also derived, which were new. Defining the central charge cT as

cT =
d2∆φ2

(d − 1)2C2
, (9.9)

e find [131,132]

cT
cfree

= 1 −
5ϵ2

324
−

233ϵ3

8748
+ O(ϵ4) . (9.10)

Including the O(ϵ3) result improves the agreement with the numerical bootstrap result of [141] as indicated in the figure
(see Fig. 21).
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Note that to compute the O(ϵ3) term in C0 we would need δ(3)0 . This has not been possible so far using bootstrap
echniques. It is also possible to show that the at O(ϵ), Cφ4 =

1
54 −

47
1458ϵ using the ℓ′

= 0, r = 1 derivative condition, where
no other operator information, apart from those listed above, is needed for this calculation. Using similar techniques, one
can further derive the anomalous dimension of the unique spin-2, twist-4 operator and its OPE coefficient [135] using
similar techniques.

9.2. Bootstrap results at O(ϵ4) and open questions

In this section, we will summarize what results have been possible at O(ϵ4). In [142], it was observed that if one
assumed ‘‘pure transcendentality’’ of the position space basis of the conformal correlator, then the known O(ϵ4) anomalous
imensions for the Oℓ operators were reproduced. Using this and assuming the O(ϵ3) anomalous dimension of φ2, the

O(ϵ4) contribution in Eq. (9.10) was shown to be

cT
cfree

⏐⏐⏐⏐
ϵ4

= −

(
100651
3779136

−
55

2916
ζ3

)
. (9.11)

t will be remarkable if the same assumptions can calculate higher-order anomalous dimensions and OPE coefficients.
n [140], the OPE coefficient result for φ2 at O(ϵ4) is worked out. This needs the δ(3)0 , δ

(4)
0 as well as certain information

bout twist-4 operators. One finds

C0 = 2 −
2ϵ
3

−
34
81
ϵ2 +

1863ζ (3) − 611
4374

ϵ3 + χ4ϵ
4
+ O(ϵ5) , (9.12)

here χ4 ≈ −0.656398 was determined numerically. It was found that putting ϵ = 1 made the agreement with the
d-Ising model worse. This is expected since the ϵ expansion is asymptotic, as we have pointed out earlier. In the same
aper, averaged OPE coefficients for twist-4 operators up to O(ϵ3) have also been derived numerically using sum rules
rising from the Polyakov conditions.

pen questions
1. As we have explained above, in addition to the Polyakov conditions, there are also the so-called locality constraints

(null or odd-spin constraints). No systematic study has been carried out about what role these constraints play
in the analytic bootstrap. This appears to be an immediate problem to address. In [137], these locality constraints
played an important role in establishing the equivalence between the sum rules in [50,136]. Preliminary analysis
at O(ϵ2) carried out in [137] showed that these results are consistent with the locality constraints. However, it is
unclear if these constraints can be used to yield additional analytic information.

2. An important open question is to derive the ‘‘pure transcendentality’’ ansatz used in [142] and understand this in
Mellin space. This may point the way forward to connect with higher-order results without resorting to studying
mixed correlators.37 The position space dispersion relation considered in [52,144] may be a good starting point to
examine this ansatz.

3. The crossing symmetric dispersion relation also connects with a fascinating area of mathematics called Geometric
Function Theory [145,146]. One of the primary outcomes of the S-matrix bootstrap is concerned is a derivation
of two-sided bounds on the Taylor expansion coefficients of the flat space scattering amplitudes at low energies.
These bounds arise from the so-called Bieberbach–Rogosinski type inequalities for typically real univalent functions.
It will be fascinating to study these in the context of CFTs.

4. A systematic study of higher-order O(1/N) results in the context of O(N) models should be possible using the
same framework. Attempts using the Polyakov bootstrap were made in [134]. Further progress using large spin
perturbation theory was made in [147]. Some preliminary attempts using the crossing symmetric dispersion was
made in [148]. Unlike the epsilon expansion, going to the second subleading order in 1/N is challenging since one
needs to resum the contribution of an infinite number of operators. A recent review on critical O(N) CFTs is [124].
O(M) × O(N) critical CFTs have been reviewed in [149] while CFTs with MN global symmetry has been reviewed
in [150].

5. On a conceptual level, these initial successes in analytically producing the first few orders in perturbation theory
(and the related success of producing the OPE coefficients, which are otherwise hard in the diagrammatic approach)
still leave a lot to be explored. The immediate criticism is that the Feynman diagram approach, at least in principle,
gives an algorithm to compute up to very high orders in perturbation theory. While this may be difficult in practice,
the algorithm is well understood and is implementable. The same level of understanding has not been reached
with the analytic bootstrap methods so far. At a technical level, if the orthogonality of the Mack polynomials was
understood, it may facilitate progress in this direction.

37 The dispersion relation technology for mixed correlators is not well developed. See the recent work [143] for the fixed-t dispersive sum rules.
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0. Bootstrapping tree-level correlators: Position space

Correlation functions in superconformal CFTs are mapped to scattering amplitudes in AdS by the AdS/CFT correspon-
ence. They are the most basic observables in the theory, from which we can extract various data. However, the standard
iagrammatic expansion method for computing amplitudes is accompanied by enormous technical difficulties, making
t extremely cumbersome to use in practice.38 A better strategy is to use symmetries and consistency conditions to fix
the correlators, i.e., to bootstrap them. Such a bootstrap strategy does not rely on the explicit details of the effective
agrangians, which are usually very complicated, and works directly with the ‘‘on-shell’’ observables. This makes the
ootstrap methods extremely efficient, and has produced many impressive results which are impossible to obtain by
sing the traditional strategy. Moreover, the bootstrap methods also help to manifest remarkable hidden simplicity of
olographic correlators which is obscured by the diagrammatic expansion. We will review some of these bootstrap
ethods and their results in Sections 10–12.
Our main focus in this review is maximally superconformal theories, i.e., theories with sixteen Poincaré supercharges.

on-maximally superconformal theories will be briefly discussed in Section 11.4. For d > 2, there are only three such
aximally superconformal theories

• 4d N = 4 super Yang–Mills (SYM) theory, dual to IIB string theory in AdS5 × S5, with a superconformal symmetry
group PSU(2, 2|4).

• 3d N = 8 Aharony–Bergman–Jafferis–Maldacena (ABJM) theory [156], dual to M-theory in AdS4 × S7, with a
superconformal symmetry group OSp(8|4).

• 6d N = (2, 0) theory, dual to M-theory in AdS7 × S4, with a superconformal symmetry group OSp(8∗
|4).

e will focus on the supergravity limit, where the central charge of the theory is taken to be large. In the case of string
heory, the string length needs to be further set to zero. In this limit, all the single-particle states in AdS are supergravity
ields, and belong to the so-called 1

2 -BPS multiplets of the superconformal group which are annihilated by half of the
supercharges.39 We will focus on the correlators of the superconformal primaries of these 1

2 -BPS multiplets, which are
he super gravitons. The method which we will present in this section applies to both the 4d and 6d theories, and serves as
proof of principle for the bootstrap strategy. The method relies on special properties of the spectrum as we will explain
t the end of Section 10.2. A more powerful method which applies to all three theories will be reviewed in Section 11.
heories with non-maximal superconformal symmetry will be discussed in Section 11.4, where we will focus on the
orrelators of AdS super gluons.
This section is organized as follows. In Section 10.1 we set the stage by discussing the superconformal kinematics of

four-point correlators. This discussion will also be used in later sections on holographic correlators. In Section 10.2 we
review a bootstrap method for computing four-point functions in position space. In Section 10.3 we review how a similar
strategy can be used to compute five-point functions.

10.1. Superconformal kinematics

The R-symmetry groups of the three maximally superconformal theories all have the form of SO(d), as listed below

d = 3 : d = 8, SO(8),
d = 4 : d = 6, SO(6) ≃ SU(4), (10.1)
d = 6 : d = 5, SO(5) ≃ Sp(4).

e focus on the 1
2 -BPS operators which are the superconformal primaries of the 1

2 -BPS multiplets. They are labeled by an
nteger k = 2, 3, . . ., and transform in the rank-k symmetric traceless representation of the SO(d) R-symmetry group. The
= 2 multiplet is special because the multiplet contains the stress tensor operator as a superconformal descendant, and
he multiplet is known as the stress tensor multiplet. Thanks to superconformal symmetry, the conformal dimensions of
he 1

2 -BPS operators are determined by their R-symmetry representations

∆k = ϵk (10.2)

here40

ϵ =
d − 2
2

. (10.3)

38 See, e.g., [151–155] for early progress using this approach.
39 There are other types of multiplets in the theory, but they appear as ‘‘bound states’’ in the supergravity limit. For classifications of superconformal
multiplets, see, e.g., [157–159].
40 The ϵ we defined here should not be confused with the ϵ used in the epsilon expansion sections.
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e will denote these operators as OI1...Ik (x) where Ii = 1, . . . d are vector indices of SO(d). However, it is more convenient
o keep track of the R-symmetry indices by contracting them with auxiliary null vectors t Ii

Ok(x, t) = OI1...Ik (x)tI1 . . . tIk . (10.4)

ere null means that the vectors t Ii satisfy

ti · ti = 0, (10.5)

nd this property ensures that the R-symmetry indices are projected to the symmetric traceless representation. The
our-point functions

Gk1k2k3k4 (xi, ti) = ⟨Ok1 (x1, t1)Ok2 (x2, t2)Ok3 (x3, t3)Ok4 (x4, t4)⟩ (10.6)

re then functions not only of the spacetime coordinates xi but also of the internal coordinates ti. It is also clear that
k1k2k3k4 can only depend on ti as a polynomial of the SO(d) invariants tij = ti · tj, and satisfies the following relation

Gk1k2k3k4 (xi, ξiti) =

∏
i

ζ
ki
i Gk1k2k3k4 (xi, ti), (10.7)

nder independent rescaling of each null polarization vector.
Superconformal symmetry imposes strong constraints on the form of the correlators. Let us first consider the

onsequence of covariance under the bosonic subgroups, namely, the conformal group SO(d + 1, 1) and the R-symmetry
roup SO(d). The bosonic symmetries allow us to write the four-point functions as functions of two pairs of cross ratios. To
ake this statement more precise, we can consider without loss of generality, the following ordering of external weights

1 ≤ k2 ≤ k3 ≤ k4. We further need to distinguish two cases

k1 + k4 ≥ k2 + k3 (case I), k1 + k4 < k2 + k3 (case II). (10.8)

e can extract a kinematic factor as follows

Gk1k2k3k4 (xi, ti) =

∏
i<j

(
tij
x2ϵij

)γ 0
ij ( t12t34

x2ϵ12x
2ϵ
34

)E

Gk1k2k3k4 (U, V ; σ , τ ). (10.9)

This factor takes care of the covariant transformation properties. Then the correlator becomes a function of the invariant
cross ratios

U =
x212x

2
34

x213x
2
24
, V =

x214x
2
23

x213x
2
24
, σ =

t13t24
t12t34

, τ =
t14t23
t12t34

. (10.10)

ere xij = xi − xj, and E is defined to be the extremality

E =
k1 + k2 + k3 − k4

2
(case I), E = k1 (case II), (10.11)

hich measures the complexity of the correlator. The exponents in the factor of (10.9) are given by

γ 0
12 = γ 0

13 = 0, γ 0
34 =

κs

2
, γ 0

24 =
κu

2
, (10.12)

γ 0
14 =

κt

2
, γ 0

23 = 0 (I), γ 0
14 = 0 , γ 0

23 =
κt

2
(II),

where

κs ≡ |k3 + k4 − k1 − k2|, κt ≡ |k1 + k4 − k2 − k3|, κu ≡ |k2 + k4 − k1 − k3|. (10.13)

ecall that the null vectors appear in Gk1k2k3k4 as a polynomial of tij. The kinematic factor extracted in (10.9) then ensures
hat Gk1k2k3k4 is a degree-E polynomial in σ and τ .

This is as far as we can go by exploiting only the bosonic subgroups. However, the fermionic generators of the
uperconformal group impose additional constraints and relate the dependence on the conformal and R-symmetry cross
atios. These constraints are known as the superconformal Ward identities, and take the same form in different spacetime
imensions [160]

(z∂z − ϵα∂α)G(z, z̄;α, ᾱ)
⏐⏐
α=1/z = 0. (10.14)

Here we have made a convenient change of variables

U = zz̄, V = (1 − z)(1 − z̄), σ = αᾱ, τ = (1 − α)(1 − ᾱ). (10.15)

Moreover, it is understood that in (10.14) we need to first act on G(z, z̄;α, ᾱ) with the differential operator before setting
α = 1/z. We also note that G(z, z̄;α, ᾱ) is invariant separately under z ↔ z̄ and α ↔ ᾱ. Therefore we can make these
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eplacements in (10.14) and obtain in total a set of four identities. While the superconformal Ward identities (10.14) take
universal form for all spacetime dimensions, their solutions can look drastically different. It was shown in [160] that

he solutions generally involve differential operators which are determined by superconformal symmetry. The solutions
re simpler for even d, while for odd d the differential operators are non-local. The case of d = 4 is particularly simple
here the differential operator becomes an algebraic factor.
Let us notice that the superconformal Ward identities (10.14) have amusing implications. For d = 4, it is clear that

10.14) implies that the correlator with the special R-symmetry configuration ᾱ = 1/z̄ is independent of z̄

∂z̄G(4d)(z, z̄;α, 1/z̄) = 0. (10.16)

Further setting α = 1/z implies that the correlator G(4d)(z, z̄; 1/z, 1/z̄) is topological

∂zG(4d)(z, z̄; 1/z, 1/z̄) = ∂z̄G(4d)(z, z̄; 1/z, 1/z̄) = 0. (10.17)

Similarly, setting α = ᾱ = 1/z̄ for d = 6 leads to

∂z̄G(6d)(z, z̄; 1/z̄, 1/z̄) = 0, (10.18)

and shows that G(6d)(z, z̄; 1/z̄, 1/z̄) also becomes holomorphic. For d = 3, we need to set instead z = z̄ = 1/α and this
gives

∂zG(3d)(z, z;α, 1/z) = 0. (10.19)

This equation tells us the correlator G(3d)(z, z;α, 1/z) is topological on the z = z̄ slice which corresponds to the configu-
ration of all four operators on a line. These interesting holomorphic and topological properties can be understood more
generally from the chiral algebra construction [161,162] and the topological twisting [163–165]. In these constructions,
certain protected operators are restricted to a two dimensional complex plane or a one dimensional line (except for
one twisting introduced in [163]). Moreover, the operators are required to have special position-dependent R-symmetry
polarizations known as twists, which corresponds to setting ᾱ = 1/z̄, etc. in the four-point correlator. Such configurations
of twisted operators preserve a certain amount of supersymmetry, which renders the correlation functions holomorphic
or topological. Note that in general these conditions are weaker than the superconformal Ward identities (10.14) and
follow from them as corollaries. However, they generalize easily to arbitrary n-point correlators with n ≥ 5, where the
superconformal Ward identities have not been obtained in the literature.41 We will see in a five-point function example
in Section 10.3 that the conditions following from these constructions still impose sufficiently nontrivial constraints.

10.2. The position space method

Traditionally, holographic correlators are computed by using the standard method of Feynman diagrams (which are
known as the Witten diagrams in AdS). This procedure requires us to first expand the AdS supergravity effective action
to a certain order to obtain the needed vertices (cubic and quartic in the case of tree-level four-point functions). Using
these vertices and AdS propagators one constructs all possible Witten diagrams from these vertices, and computes the
correlator as the sum of these diagrams. Unfortunately, this seemingly straightforward algorithm is very cumbersome to
use. In particular, expanding the effective action to derive vertices is an enormously complicated task. The only case where
the general quartic vertices have been worked out is IIB supergravity on AdS5×S5, and the results occupied 15 pages [167].
Moreover, the diagrams involved proliferate as we consider correlators with higher external weights, which soon exceeds
our practical computational power. Meanwhile, we should notice that this brute force algorithm makes no use of the
large amount of symmetry in the theories. In particular, the superconformal Ward identities (10.14) were never exploited
in this procedure. These identities appear to be highly nontrivial from the diagrammatic expansion perspective because
they are not satisfied by each individual diagram. Therefore, a natural question is whether one can use superconformal
symmetry to facilitate the computation of holographic correlators so that we do not have to go through all the steps.

Concretely, to implement this idea we can proceed as follows. We start with an ansatz which is the linear combination
of all possible exchange and contact diagrams. However, instead of using the correct coefficient for each diagram, which
would be calculable with the precise vertices, we will leave the coefficients as unfixed parameters. We then impose the
superconformal Ward identities, and see if all coefficients get fixed. This always turns out to be possible (up to an overall
coefficient which we can fix by using protected CFT data), and gives a unique answer for the holographic correlator.
The use of superconformal symmetry greatly improves the traditional algorithm, as it bypasses the most difficult step
of expanding the complicated supergravity effective action. This strategy was first proposed in [168,169], where it was
dubbed the position space method.

Let us demonstrate this method by computing the stress tensor multiplet (ki = 2) four-point function in AdS5 × S5 IIB
supergravity. The ansatz

Gansatz(U, V ; σ , τ ) = As + At + Au + Acon (10.20)

41 In the simpler setup of 1d SCFTs, an interesting conjecture of their multi-point generalizations based on perturbative calculations was given
in [166].
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s separated into exchange contributions and a contact contribution. In each channel, there are only three fields that can
e exchanged: the super graviton s itself with ∆ = 2 and in the 20′ representation of SO(6), a spin-1 graviphoton field Vµ
ith∆ = 3 and in 15 of the R-symmetry group, and a spin-2 graviton field ϕµν with∆ = 4 and singlet under R-symmetry.
his comes as a result of the selection rules and the fact that all the supergravity fields reside in 1

2 -BPS multiplets, as we
ill explain in more detail towards the end of this subsection. In particular, these three exchanged fields all live in the
ame stress tensor multiplet (see Appendix B for details). Therefore, the s-channel exchange is given by the following
inear combination

As = λsY20′ (σ , τ )W2,0(U, V ) + λvY15(σ , τ )W3,1(U, V ) + λgY1(σ , τ )W4,2(U, V ) (10.21)

where λs, λv , λg are parameters to be fixed. Here YR(σ , τ ) are the R-symmetry polynomials characterizing the exchanged
R-symmetry representation

Y1(σ , τ ) = 1, Y15(σ , τ ) = σ − τ , Y20′ (σ , τ ) = σ + τ −
1
3
. (10.22)

hey can be obtained from solving the R-symmetry two-particle quadratic Casimir equation, and are the analogue of
onformal blocks. Moreover, W∆,ℓ are the exchange Witten diagrams. In general, these exchange diagrams are difficult
to evaluate in position space in terms of simple functions. However, it is pointed out in [118] that when the conformal
twist, i.e., ∆− ℓ, of the exchanged field satisfies

∆1 +∆2 − (∆− ℓ) = 2Z+, or ∆3 +∆4 − (∆− ℓ) = 2Z+, (10.23)

he exchange Witten diagrams can be expressed as a finite sum of the D-functions (or D̄-functions when written as
unctions of cross ratios, see (C.3) for the definition). A D-function D∆1∆2∆3∆4 represents a contact diagram where the
xternal operators have dimensions ∆i. Using the formulae in [118] (which will also be reviewed in Appendix C), we
ave

W2,0 =
π2

8
UD̄1122,

W3,1 =
π2

8
U(D̄1223 − D̄2123 + D̄2132 − VD̄1232), (10.24)

W4,2 =
2π2

3
U(3(D̄2123 + D̄2132 − D̄3133) − 2D̄1122).

The other two channels are related to the s-channel by crossing symmetry

At (U, V ; σ , τ ) =
(Uτ
V

)2
As(V ,U; σ/τ , 1/τ ),

Au(U, V ; σ , τ ) =(Uσ )2As(1/U, V/U; 1/σ , τ/σ )
(10.25)

where D̄-functions are mapped to themselves under crossing with explicit relations given in (C.7). Finally, the contact part
Acon contains at most two contracted derivatives and all possible R-symmetry structures. The two-derivative requirement
is to match the two-derivative structure of the supergravity action.42 It is convenient to also write it as the sum of three
channels

Acon = Acon,s + Acon,t + Acon,u (10.26)

with

Acon,s =
( ∑
0≤a+b≤2

cabσ aτ b
)
2π2U2(2D̄2222 − D̄2233 − UD̄3322)  

2-derivative

+
( ∑
0≤a+b≤2

c̃abσ aτ b
)
π2U2D̄2222  

0-derivative

. (10.27)

The other two terms Acon,t,u are related to Acon,s in the same way as (10.25). Here cab and c̃ab are symmetric because
the s-channel contribution is invariant under 1 ↔ 2. In fact, the parametrization in (10.26) is redundant. One can use
D̄-function identities to show that the zero-derivative contribution in the crossing symmetric Acon can be absorbed into
the two-derivative one (see Appendix B of [169] for details). Therefore we can set c̃ab = 0 without loss of generality.

This gives us the most general ansatz for the stress tensor four-point function. To impose the superconformal Ward
identities, we need to decompose the ansatz into a convenient basis of functions. This is done by exploiting two important
properties of D-functions. First, the D-functions obey the ‘‘weight-shifting’’ relations43

D∆1...∆i+1...∆j+1...∆n =
d −

∑n
a=1∆a

2∆i∆j

∂

∂x2ij
D∆1...∆n , (10.28)

42 While this expectation is clear in flat space, it is less obvious in AdS. Superficially, the effective action contains four-derivatives terms as
well [167]. However, these terms cancel and there are no intrinsic four-derivative interactions [170].
43 Equivalent formulae written in terms of D̄-functions are collected in Appendix C.
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hich allows us to reach every D̄-function in the ansatz from D̄1111 with the action of differential operators. Second, the
‘‘fundamental’’ D̄1111 function is also known as the one-loop box integral, and is evaluated to be [171]

D̄1111 ≡ Φ(z, z̄) =
1

z − z̄

(
2Li2(z) − 2Li2(z̄) + log(zz̄) log

(1 − z
1 − z̄

))
. (10.29)

rom this expression, it is easy to verify the following differential recursion relations

∂zΦ(z, z̄) = −
Φ(z, z̄)
z − z̄

+
logU

(z − 1)(z − z̄)
−

log V
z(z − z̄)

,

∂z̄Φ(z, z̄) =
Φ(z, z̄)
z − z̄

−
logU

(z̄ − 1)(z − z̄)
+

log V
z̄(z − z̄)

.

(10.30)

hese two properties of D̄-functions tell us that the ansatz (10.20) can be expanded in the basis formed by Φ , logU , log V
nd 1

Gansatz = RΦ Φ + RU logU + RV log V + R1, (10.31)

here the coefficients RΦ,U,V ,1 are rational functions of z and z̄. It is then straightforward to impose the superconformal
ard identity (10.14), which can be cast in the same form as (10.31) upon using (10.30) again. Requiring the rational

oefficient functions to vanish gives rise to a system of linear equations for the parameters in the ansatz, of which the
olution reads

λs = ξ, λv = −
1
2
ξ, λg =

1
16
ξ,

c00 =
1
32
ξ, c01 = −

1
8
ξ, c02 =

1
32
ξ, c11 = −

1
16
ξ .

(10.32)

Note that there is a remaining unfixed coefficient ξ , because the superconformal Ward identities (10.14) are linear and
homogeneous. However, it can be determined in terms of the central charge as the exchanged multiplet is the stress
tensor multiplet. More conveniently, we can look at the holomorphic twisted correlator (10.16), which is independent of
the ’t Hooft coupling [161]. Substituting the solution (10.32) into the ansatz (10.20), we find that the twisted correlator
is indeed a holomorphic function44

Gansatz(z, z̄;α, 1/z̄) = −
π2ξ (α2z2 − 2αz2 + 2αz − z)

8N2(z − 1)
. (10.33)

By matching with the twisted correlator in the free theory (where correlators are computed by simple Wick contractions),
we find

ξ =
32

N2π2 . (10.34)

This strategy straightforwardly generalizes to four-point functions of operators with higher Kaluza–Klein levels. In each
xchange channel, there are only finitely many supergravity fields that can appear. The finite number of exchanged fields
s dictated by two selection rules: the selection rule following from R-symmetry,45 and the requirement that the conformal
wists of the exchanged fields satisfy inequalities (e.g., in the s-channel) ∆1 + ∆2 < ∆ − ℓ and ∆3 + ∆4 < ∆ − ℓ. The
-symmetry selection rule already ensures∆1+∆2 ≤ ∆−ℓ and∆3+∆4 ≤ ∆−ℓ because the spectrum of the supergravity
tates is determined by their R-symmetry charges. The latter requirement merely forbids the possibility where the bound
s saturated (also known as being extremal in the literature). That such couplings are forbidden comes from the fact that
xtremal three-point Witten diagram integrals are divergent, and would otherwise lead to an inconsistent infinite effective
ction.
Note that the position space method relies crucially on the fact that the ansatz can be decomposed in a basis spanned

y Φ , logU , log V , 1, with rational coefficient functions, as in (10.31). This requires the exchange diagrams to be written
s a finite sum of D̄-functions, which only happens in theories with special spectra guaranteeing the conditions (10.23).
IB supergravity on AdS5 × S5 and eleven dimensional supergravity on AdS7 × S4 are two examples where such conditions
re satisfied. By contrast, eleven dimensional supergravity on AdS4 × S7 does not share this property, and therefore the
osition space method does not apply to this case.
Finally, we note that while the position space method bypasses the formidable computations to extract the vertices, it

lso becomes cumbersome when we apply it to more general correlators. The number of D̄-functions in the ansatz quickly
ncreases, making the coefficient functions in (10.31) increasingly complicated. Nevertheless, the position space method
aught us an important lesson, namely, holographic correlators can be completely fixed by symmetries. In Section 11 we

44 See [172] for a systematic discussion of chiral algebra correlators in the holographic context.
45 It is just the requirement that the R-symmetry irreducible representation carried by the exchanged field should be contained in the tensor
product of representations both of Ok1 , Ok2 and of Ok3 , Ok4 (say in the s-channel). The R-symmetry representations of component fields in a 1

2 -BPS
ultiplet are listed in Appendix B.
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Fig. 22. Independent R-symmetry structures of the ki = 2 five-point function.

pply this lesson in Mellin space, where the correlators have much simpler analytic structure, and show how all tree-level
orrelators can be obtained in a closed form. However, before we do that let us first look at an application of this lesson
o higher-point functions.

0.3. Higher-point correlators

The above position space method can also be extended to bootstrap higher-point correlation functions. In [173], the
ive-point function of ki = 2 super gravitons in AdS5 × S5 was computed. In this subsection, we briefly review this result
and outline its strategy.

The five-point function of the ki = 2 operator

G5(xi, ti) = ⟨O2(x1, t1)O2(x2, t2)O2(x3, t3)O2(x4, t4)O2(x5, t5)⟩ (10.35)

as more complicated structures compared to the four-point function. It has 22 independent R-symmetry structures which
orrespond to the Wick contractions in Fig. 22. The pentagon type contraction gives tijtjktkltlmtmi, while the type with a
riangle gives tijtjmtmit2kl. Exploiting conformal symmetry and R-symmetry, we can write G5 as a function of cross ratios.
here are five conformal cross ratios

V1 =
x212x

2
34

x213x
2
24
, V2 =

x214x
2
23

x213x
2
24
, V3 =

x214x
2
35

x213x
2
45
, V4 =

x215x
2
34

x213x
2
45
, V5 =

x212x
2
35

x213x
2
25
, (10.36)

and similarly five cross ratios for R-symmetry. On the other hand, a comprehensive study of the superconformal
properties of higher-point correlators has not been performed in the literature. Therefore, superconformal Ward identities,
which played a central role in bootstrapping four-point functions, have not been written down for five-point functions.
Nevertheless, two highly nontrivial superconformal constraints are known in the literature from supersymmetric twisting.

• Chiral algebra twist. The first constraint comes from the chiral algebra twist [161]. To perform this twist, we restrict
all the operators on a two-dimensional plane parametrized by the complex coordinates (z, z̄). Furthermore, we
restrict the SO(6) R-symmetry group to SO(4) by setting the last two components of the six dimensional auxiliary
vector t I to zero. The resulting four-dimensional vector tµ can be written as a pair of two-component spinors va
and v̄ȧ as tµ = σ

µ

aȧv
av̄ȧ where σµaȧ are the Pauli matrices. Using the scaling degree of freedom of the null vector,

we can normalize the spinors as v = (1, y), v̄ = (1, ȳ). The chiral algebra twist corresponds to setting ȳi = z̄i for
each operator. One can then show that there exists a nilpotent supercharge preserved by this configuration, and the
twisted operators are in its cohomology class. Moreover, the twisted translations, i.e., transformations changing z̄i
while maintaining ȳi = z̄i, are exact with respect to this supercharge. It then follows from a standard argument that
the correlator after twisting is independent of the anti-holomorphic coordinates z̄i. Furthermore, it can be shown
that the twisted correlator is independent of the coupling [161] and thus takes the same value as in the free theory.
Therefore, the chiral algebra yields the following condition

G5(zi, z̄i; vi, v̄i = z̄i) = G5,free(zi, z̄i; vi, v̄i = z̄i). (10.37)

Note that before twisting the correlator G5 is a complicated function. Even when restricted on the plane, it contains
both holomorphic and anti-holomorphic dependence. On the other hand, the RHS of the above identity is a simple
rational function of zi and vi, which can be computed by performing Wick contractions in the free theory. Therefore,
(10.37) imposes highly nontrivial constraints on the five-point function.

• Drukker–Plefka twist. The other important constraint is given by the topological twist introduced in [163]. In this
case, the operators are allowed to be inserted at generic locations xi ∈ R4. However, their SO(6) polarizations are
fixed by their positions

t =
(
2ix1, 2ix2, 2ix3, 2ix4, i(1 − x · x), 1 + x · x

)
. (10.38)
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Fig. 23. Double-exchange Witten diagrams.

Fig. 24. Single-exchange Witten diagrams.

It was shown in [163] that this configuration preserves two supercharges. Moreover, twisted translations and the
exactly marginal deformation are exact with respect to the supercharges. As a result, the twisted correlator is a
coupling-independent constant which can be computed in the free theory

G5(xi, tij = x2ij) =
20

√
2

N
+

48
√
2

N3 . (10.39)

Here the two terms on the RHS correspond to the disconnected and connected contributions respectively. The
connected term is relevant for the supergravity computation in this subsection.

To bootstrap this correlator, we start by making an ansatz which includes all the possible exchange diagrams and
contact diagrams. There are two types of exchange diagrams, double-exchange diagrams and single-exchange diagrams,
depicted in Fig. 23 and Fig. 24 correspondingly. There are three fields that can appear in the exchanges: the ki = 2 scalar
ield s, the graviphoton field Vµ and the graviton field ϕµν . Like in the four-point function case, each bosonic Witten
diagram is multiplied with an R-symmetry polynomial. For the double-exchange diagrams, these R-symmetry polynomials
are linear combinations of the 22 monomial R-symmetry structures such that they are the simultaneous eigenfunctions
of the R-symmetry quadratic Casimir in the two exchange channels (the 12 channel and 34 channel for the diagrams in
Fig. 23). All possible double-exchange diagrams have been listed in Fig. 23, and we note that they exclude certain diagrams
because of R-symmetry selection rules. For example, we cannot have a double-exchange diagram where both internal lines
are gravitons. The cubic vertex including the external leg 5 would violate R-symmetry because gravitons are uncharged.
For single-exchange diagrams, the R-symmetry polynomials are only eigenfunction of one Casimir equation, and therefore
are not unique. We should include in the ansatz all allowed solutions to the R-symmetry Casimir equation. Finally, we
also include a quintic contact contribution in the ansatz. This contact term contains all 22 R-symmetry structures and
contact Witten diagrams with zero and two derivatives (see Fig. 25).

To implement the superconformal twists, we need to evaluate the ansatz and express it in a useful form. The contact
diagrams are the simplest. For example, the zero-derivative contact diagram is just

D22222, (10.40)

nd the two-derivative contact diagram (with derivatives on legs 1 and 2) is

4(D22222 − 2x212D33222). (10.41)

o evaluate the exchange diagrams, we need to extend the result of [118] for four-point exchange diagrams which
xpresses them in terms of a truncated sum of D-functions. It turns out that the truncation only relies on half of the
iagram, namely, the integral involving two bulk-to-boundary propagators and a bulk-to-bulk propagator. We can express
his integrated cubic vertex as a sum of contact vertices with just two bulk-to-boundary propagators. We collect such
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Fig. 25. Quintic contact Witten diagrams.

integrated vertex identities in C.2, and they are sufficient for computing all five-point exchange Witten diagrams. For
example, a special case of the identity which involves the scalar bulk-to-bulk propagator is∫

d5z
z50

G2
B∂ (z, x1)G

2
B∂ (z, x2)G

2
BB(z, w) =

1
4
x−2
12 G

1
B∂ (z, x1)G

1
B∂ (z, x2), (10.42)

here G∆B∂ (z, x) and G∆BB(z, x) are bulk-to-boundary and bulk-to-bulk propagators respectively. Using this identity on the
ertex joining 1, 2 and the vertex joining 3, 4 in the first diagram in Fig. 23, we find that the scalar double-exchange
iagram evaluates to

1
16

x−2
12 x

−2
34 D11112. (10.43)

Similarly, the scalar single-exchange diagram in 24 is
1
4
x−2
12 D11222, (10.44)

hen the quartic vertex in the diagram contains no derivatives. All the diagrams encountered in the five-point function
omputation can be evaluated in this way, and the results are expressed as linear combinations of D-functions. An
mportant feature of these results is that all the D-functions can be generated from D11112 (and its permutations) by using
he differential weight-shifting relations (10.28). This is clear, for example, for the contact and exchange Witten diagrams
e computed above. Furthermore, the function D11112 is known in the amplitude literature as the pentagon integral and

has been well studied [174,175]. It can be expressed as the linear combination of five one-loop box diagrams D1111 with
rational coefficients of the coordinates, where each box function involves four of the five points (see (C.10) for the explicit
expression). From the differential recursion relations (10.30), we then know that the ansatz can be expressed in terms of
polylogarithmic functions with transcendental degrees 2 and lower. Although computationally it still requires quite some
heavy lifting to implement the two superconformal twisting constraints, conceptually it is very straightforward and is
similar to the four-point function case.

Another important constraint on the five-point function is its consistency with lower-point correlation functions. We
can group the exchange Witten diagrams in the ansatz into several sets. In each set we have the bulk-to-bulk propagator
of a certain field which connects two external legs on one side and three remaining legs on the other side. This is
illustrated in Figs. 26–28 for the scalar, graviphoton, and the graviton fields respectively. When we cut open the internal
propagator and place the ends on the boundary of AdS, we obtain a three-point function ⟨O2O2Oint⟩ and a four-point
function ⟨OintO2O2O2⟩ where Oint denotes the operator dual to the internal field. This is the idea of factorization in
flat space, and it has a concrete realization in Mellin space for holographic correlators [112]. When we look at the pole
of the Mellin amplitude associated with the internal propagator, the residue can be expressed in terms of the Mellin
amplitudes of the three-point function and the four-point function. Moreover, since the graviphoton and graviton fields are
superconformal descendants of the k = 2 scalar field, correlators involving these spinning fields are related to the scalar
four-point function by differential relations determined by superconformal symmetry [176]. These spinning correlators
were explicitly computed in [173].

These conditions, two superconformal constraints from supersymmetric twisting and factorization in Mellin space,
form a system of complementary constraints. For example, the factorization condition is agnostic of the five-point contact
interaction diagrams which do not have any poles. On the other hand, the supersymmetric twisting constraints can only

be satisfied when the contact terms are included. Together they impose strong constraints on the super graviton five-point
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Fig. 26. Factorization on a scalar propagator. Here perm denotes similar diagrams obtained by permuting the external legs 3, 4, 5.

Fig. 27. Factorization on a graviphoton propagator.

Fig. 28. Factorization on a graviton propagator.

function, and was shown to uniquely fix the correlator in [173]. Although the expression of the five-point function is a bit
complicated in position space, its Mellin amplitude turns out to be quite simple and resembles a flat-space amplitude of
massive particles. We refer the reader to [173] for details of how the constraints fix the correlator and explicit expressions
of the amplitude. Finally, let us point out that the method we reviewed in this section can also be used to bootstrap the
super gluon five-point function in AdS5 [177].

11. Bootstrapping tree-level correlators: Mellin space

In Section 10 we showed how to bootstrap holographic correlators in position space. While the algorithm works in the
same way for correlators of higher weights, the implementation becomes more and more cumbersome as the external
conformal dimensions are increased. Therefore using this method to find a closed form formula for general correlators
does not seem very feasible. In this section, we introduce alternative methods in Mellin space which allow us to obtain
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eneral correlators with arbitrary Kaluza–Klein weights. Crucially, these methods exploit the simple analytic structure
f holographic correlators in Mellin space, which allows us to extend our intuition of flat-space scattering amplitudes.
e first look at the case of IIB supergravity in AdS5 × S5 in Section 11.1, and review the method of [168,169]. In this

approach the task of computing correlators can be translated into solving an algebraic bootstrap problem in Mellin space
which is formulated by imposing symmetry constraints and consistency conditions. This algebraic problem can be solved
in general. The solution is elegantly simple and gives all tree-level four-point amplitudes of super gravitons with arbitrary
Kaluza–Klein levels. Unfortunately, this method implicitly relies on special features of the AdS5 × S5 theory, and is not
s effective for AdS7 × S4. Moreover, it does not apply to AdS4 × S7. Nevertheless, in the latter two cases superconformal
ymmetry is still constraining enough to uniquely fix super graviton correlators. This suggests the existence of a universal
ethod which exploits superconformal symmetry in a dimension-independent way and treats all three backgrounds
n an equal footing. Such a method was developed in [178,179], building on earlier work [180], as we will review in
ections 11.2 and 11.3. In Section 11.2 we first explain how the position space superconformal Ward identities can be
xploited in Mellin space and translated into a system of difference equations. Then in Section 11.2 we examine a special
inematic limit where the Mellin amplitudes drastically simplify and can be easily computed. Having solved the correlators
n this limit, we can then obtain amplitudes in generic kinematic configurations by using symmetries. This method was
irst developed in [178,179] for computing super graviton amplitudes in maximally superconformal theories. However,
ith small modifications it can also be used to compute tree-level super gluon amplitudes in a variety of non-maximally
uperconformal theories in different spacetime dimensions, as we will briefly discuss in Section 11.4.

1.1. A Mellin bootstrap problem for AdS5 × S5 IIB supergravity

In Section 10.2 we have seen that the superconformal Ward identities (10.14) play a central role in bootstrapping
ree-level four-point functions. One might wonder if it is possible to directly solve these differential constraints, which
ill then automatically take the consequence of superconformal symmetry into account. While for generic spacetime
imensions the solutions to (10.14) are quite complicated [160], in d = 4 the answer is rather simple. One can show that
he four-point functions split into two parts [181,182]

Gk1k2k3k4 = Gfree,k1k2k3k4 + RHk1k2k3k4 , (11.1)

here Gfree,k1k2k3k4 is the four-point correlator in the free N = 4 SYM theory and Hk1k2k3k4 is the reduced correlator
ontaining all the dynamical information. The factor R is determined by superconformal symmetry to be

R = t212t
2
34x

4
13x

4
24(1 − zα)(1 − z̄α)(1 − zᾱ)(1 − z̄ᾱ). (11.2)

ince R carries nontrivial weights under conformal and R-symmetry transformations, the conformal dimensions and
-symmetry charges of the reduced correlator Hk1k2k3k4 are shifted

conformal dimensions: ki → ki + 2, R-symmetry charges: ki → ki − 2. (11.3)

ompared to the full correlator Gk1k2k3k4 , the reduced correlator Hk1k2k3k4 is generally much simpler. For example, G2222
ontains six independent R-symmetry structures corresponding to the Wick contractions

t212t
2
34, t213t

2
24, t214t

2
23, t12t23t34t14, t13t23t24t14, t12t24t34t13. (11.4)

By contrast, H2222 is independent of ti and therefore has only one R-symmetry structure.
We now translate the solution (11.1) into Mellin space. From the full correlator Gk1k2k3k4 , we define the Mellin

amplitude Mk1k2k3k4 in the standard way

Gk1k2k3k4 =

∫ i∞

−i∞

dsdt
(4π i)2

K(x2ij; s, t)Mk1k2k3k4 (s, t; tij)Γ{ki}(s, t). (11.5)

ere to manifest Bose symmetry, we wrote the correlator without extracting the kinematic factor in contrast to what we
id in (10.9). The factor K(x2ij; s, t) is defined by

K(x2ij; s, t) = (x212)
s−k1−k2

2 (x234)
s−k3−k4

2 (x214)
t−k1−k4

2 (x223)
t−k2−k3

2 (x213)
u−k1−k3

2 (x224)
u−k2−k4

2 , (11.6)

ith s + t + u = k1 + k2 + k3 + k4, and

Γ{ki}(s, t) = Γ [
k1+k2−s

2 ]Γ [
k3+k4−s

2 ]Γ [
k1+k4−t

2 ]Γ [
k2+k3−t

2 ]Γ [
k1+k3−u

2 ]Γ [
k2+k4−u

2 ]. (11.7)

imilarly, we define the reduced Mellin amplitude M̃k1k2k3k4 from the reduced correlators Hk1k2k3k4

Hk1k2k3k4 =

∫ i∞

−i∞

dsdt
(4π i)2

K̃(x2ij; s, t)M̃k1k2k3k4 (s, t; tij)Γ̃{ki}(s, t), (11.8)

where

K̃(x2; s, t) = (x2 )
s−k1−k2

2 (x2 )
s−k3−k4

2 (x2 )
t−k1−k4

2 (x2 )
t−k2−k3

2 (x2 )
ũ−k1−k3

2 (x2 )
ũ−k2−k4

2 , (11.9)
ij 12 34 14 23 13 24
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Γ̃{ki}(s, t) = Γ [
k1+k2−s

2 ]Γ [
k3+k4−s

2 ]Γ [
k1+k4−t

2 ]Γ [
k2+k3−t

2 ]Γ [
k1+k3−ũ

2 ]Γ [
k2+k4−ũ

2 ], (11.10)

and s + t + ũ = k1 + k2 + k3 + k4 − 4. Note that the shift ũ = u − 4 is needed because Hk1k2k3k4 has shifted conformal
imensions relative to Gk1k2k3k4 . Moreover, we should note that Bose symmetry, which permutes s, t , u in (11.5), now
ermutes s, t , ũ in (11.8).
Once including the factor R, the combination RHk1k2k3k4 has the same weights as Gk1k2k3k4 and therefore should have

he same Mellin representation (11.5). This leads us to interpret R as a difference operator in Mellin space. We note that
is a polynomial in x2ij, and multiplicative x2ij monomials outside of the inverse Mellin transformation can be absorbed

nto the K̃(x2ij; s, t) factor by shifting s and t . More precisely, let us write

R
x413x

4
24

= t212t
2
34

(
τ + (1 − σ − τ )V + (τ 2 − τ − στ )U + (σ 2

− σ − στ )UV + σV 2
+ στU2

)
. (11.11)

omparing (11.5) and (11.8), we find that each monomial UmV n in the RHS becomes a difference operator ÛmV n which
cts as

ÛmV n ◦ M̃k1k2k3k4 (s, t; tij) =
Γ̃{ki}(s − 2 m, t − 2n)

Γ{ki}(s, t)
M̃k1k2k3k4 (s − 2 m, t − 2n; tij). (11.12)

his substitution defines an operator R acting on the reduced Mellin amplitude

R ◦ M̃k1k2k3k4 . (11.13)

inally, it can be argued that the free correlator Gfree,k1k2k3k4 does not contribute to the Mellin amplitudes [168,169]. When
e multiply with the factor R, the contours in the inverse Mellin transformations are also shifted. In bringing the contours
o the correct ones, we encounter situations where the contours are pinched at poles with a vanishing Mellin amplitude.
he ‘‘zero times infinity’’ contribution coming from contour pinching gives rise to rational terms which together become
recisely the free correlator Gfree,k1k2k3k4 . We will not keep track of the contours in this review. Therefore, as far as the
ellin amplitudes are concerned we can ignore the free correlators. To see how the free correlator is explicitly reproduced

n an example with ki = 2, see [169]. All in all, the solution to the superconformal Ward identity (11.1) implies the
ollowing difference relation

Mk1k2k3k4 = R ◦ M̃k1k2k3k4 , (11.14)

hich compactly packages the full Mellin amplitudes in terms of the reduced Mellin amplitudes.
Note that (11.14) has only exploited superconformal symmetry. The Mellin amplitudes Mk1k2k3k4 further need to satisfy
number of other consistency conditions in order to be physical. First of all, the Mellin amplitude should have Bose

ymmetry. This requirement means that the Mellin amplitude is invariant under exchanging external particle labels,
hich also permutes the Mandelstam variables. Secondly, the Mellin amplitude is local. It has simple poles at locations
orresponding to the twist of exchanged single-trace particles, and the residues at these poles are polynomial in the other
ndependent Mandelstam variable. Finally, the high energy limit of the Mellin amplitude with s, t, u → ∞ at the same rate
s proportional to the flat-space scattering amplitude of IIB super gravity. The latter grows linearly in energy. Therefore
he high-energy growth of the Mellin amplitude must also have the same linear behavior.

These three conditions together with (11.14) formulate a highly constraining bootstrap problem. For example, it is not
ifficult to convince oneself that for ki = 2 the reduced Mellin amplitude can only be proportional to

1
(s − 2)(t − 2)(ũ − 2)

, (11.15)

in order to be compatible with all the above conditions. On the other hand, this reformulation of the problem places
correlators with any choice of ki on the same footing, which makes it possible to find a general solution in one go. After
studying a few explicit examples, [168,169] found the following ansatz for the reduced Mellin amplitudes

M̃k1k2k3k4 =

∏
i<j

t
γ 0
ij

ij (t12t34)E
∑

i + j + k = E − 2,

0 ≤ i, j, k ≤ E − 2

aijkσ iτ j

(s − sM + 2k)(t − tM + 2j)(ũ − uM + 2i)
, (11.16)

here aijk are unknown parameters, and

sM = min{k1 + k2, k3 + k4} − 2,
tM = min{k1 + k4, k2 + k3} − 2,
uM = min{k1 + k3, k2 + k4} − 2.

(11.17)

mposing the bootstrap conditions, we find that aijk are uniquely fixed up to an overall constant

aijk =
Nk1k2k3k4
κu κt κs

, (11.18)

i!j!k!(i + 2 )!(j + 2 )!(k + 2 )!
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here κs,t,u were defined in (10.13). The remaining constant is fixed to be [183]

Nk1k2k3k4 =
2
N2

√
k1k2k3k4. (11.19)

here are many ways to compute this normalization factor. In [183] it was obtained by requiring the correlator to vanish in
light-like limit. Alternatively, one can use (11.14) to convert the reduced Mellin amplitudes into full Mellin amplitudes,
rom which one can extract three-point function coefficients of 1

2 -BPS operators and match with the known result [184].
The reduced Mellin amplitudes (11.16) reproduced all explicit examples computed in the literature [152,154,155,185–
187], and also confirmed a conjecture for the ki = p correlators [188]. The result was further checked in many examples
in [189,190] where the traditional method was simplified to increase computational power.

The remarkably simple reduced Mellin amplitudes (11.16) have further interesting hidden structures. In [191], it was
pointed out that they can be unified into a single object in terms of a hidden conformal symmetry in higher dimensions.
Taking the simplest reduced correlator H2222(x2ij), which is a function of spacetime coordinates x2ij only, one can construct
a generating function H = H2222(x2ij − tij) by replacing its arguments x2ij with the ten dimensional distances x2ij − tij. Then all
the other reduced correlators Hk1k2k3k4 can be obtained by Taylor expanding H in tij and collecting the allowed R-symmetry
structures. Similar hidden structures have also been found in other theories defined on conformally flat backgrounds such
as IIB supergravity on AdS3 × S3 × K3 [192,193], certain 4d N = 2 SCFTs containing super gluons on AdS5 × S3 [194],
and hypermultiplets on AdS2 × S2 [195]. However, these properties are not shared by eleven dimensional supergravity on
AdS7×S4 and AdS4×S7. Moreover, the approach reviewed in this subsection is also not suitable for these two backgrounds.
For AdS7 × S4 one can set up a similar algebraic bootstrap problem [196], and case by case one can show that the solution
is unique. However, the analytic structure of the reduced Mellin amplitudes turns out to be much more obscure, which
makes it difficult to find the general solution. For AdS4 × S7, the situation is even worse. The position space solution
to the superconformal Ward identities involves non-local differential operators which are unclear how to interpret in
Mellin space. Therefore, one needs to have a different strategy to deal with these cases, as we will explain in the next
two subsections.

11.2. Superconformal Ward identities for Mellin amplitudes

As was pointed out in the previous subsection, the Mellin space method of [168,169] is specific to the AdS5 × S5
background. While the superconformal Ward identities (10.14) have the same form in any spacetime dimension d, the
form of the solutions are rather sensitive to the value of d. In order to have a bootstrap method in Mellin space which
can be applied to any spacetime dimensions, we must return to the superconformal Ward identities themselves. In this
subsection, we explain how we can translate the superconformal Ward identities into Mellin space, following [179,180].

We start by recalling that Mellin amplitudes are defined from Gk1k2k3k4 (U, V ; σ , τ ) as

Gk1k2k3k4 (U, V ; σ , τ ) =

∫ i∞

−i∞

dsdt
(4π i)2

U
s
2 −asV

t
2 −atMk1k2k3k4 (s, t; σ , τ )Γ{ki}, (11.20)

here as =
ϵ
2 (k1 + k2) − ϵE , at =

ϵ
2 min{k1 + k4, k2 + k3}. The Gamma function factor Γ{ki} also depends on ϵ

Γ{ki}(s, t) = Γ [
ϵ(k1+k2)−s

2 ]Γ [
ϵ(k3+k4)−s

2 ]Γ [
ϵ(k1+k4)−t

2 ]Γ [
ϵ(k2+k3)−t

2 ]Γ [
ϵ(k1+k3)−u

2 ]Γ [
ϵ(k2+k4)−u

2 ], (11.21)

and s + t + u = ϵ
∑4

i=1 ki ≡ ϵΣ . The major obstacle of implementing the superconformal Ward identities (10.14) in
Mellin space is that the variables z and z̄ appear asymmetrically. By contrast, in the Mellin representation (11.20)z and z̄
appear only in the combination U = zz̄, V = (1− z)(1− z̄), and therefore z ↔ z̄ is a symmetry. If one were to express z,
z̄ in terms of U and V in (10.14), one would encounter square roots which are difficult to make sense of in Mellin space.
However, this issue can be resolved if we take the linear combination of (10.14) and the equation with the replacement
z ↔ z̄, as we now explain.

To begin, we write z∂z in the superconformal Ward identity

(z∂z − ϵα∂α)Gk1k2k3k4 (z, z̄;α, ᾱ)
⏐⏐
α=1/z = 0 (11.22)

as

z∂z = U∂U −
z

1 − z
V∂V . (11.23)

n Mellin space, U∂U and V∂V have simple multiplicative actions

U∂U →

( s
2

− as
)

×, V∂V →

(
t
2

− at

)
× . (11.24)

On the other hand, z is difficult to interpret due to the aforementioned square root. To proceed, we expand the Mellin
amplitude Mk1k2k3k4 in powers of α

Mk1k2k3k4 (s, t;α, ᾱ) =

E∑
αqM(q)

k1k2k3k4
(s, t; ᾱ). (11.25)
q=0
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n terms of the component amplitudes M(q)
k1k2k3k4

(s, t; ᾱ), (11.22) becomes

E∑
q=0

(
(1 − z)zE−q

( s
2

− as − q
)

− zE−q+1
(
t
2

− at

))
M(q)

k1k2k3k4
(s, t; ᾱ) = 0. (11.26)

e can obtain an inequivalent identity by replacing z → z̄ and get
E∑

q=0

(
(1 − z̄)z̄E−q

( s
2

− as − q
)

− z̄E−q+1
(
t
2

− at

))
M(q)

k1k2k3k4
(s, t; ᾱ) = 0. (11.27)

aking the sum and difference of these two relations we arrive at
E∑

q=0

(
(ζ E−q

± − ζ
E−q+1
± )

( s
2

− as − q
)

− ζ
E−q+1
±

(
t
2

− at

))
M(q)

k1k2k3k4
(s, t; ᾱ) = 0, (11.28)

here

ζ
(n)
+ = zn + z̄n, ζ

(n)
− =

zn − z̄n

z − z̄
. (11.29)

mportantly, each ζ (n)± is a polynomial of U and V

ζ
(n)
+ =21−n

⌊n/2⌋∑
k=0

(
n
2k

) (
(1 + U − V )2 − 4U

)k
(1 + U − V )n−2k,

ζ
(n)
− =21−n

⌊n/2⌋∑
k=0

(
n

2k + 1

) (
(1 + U − V )2 − 4U

)k
(1 + U − V )n−2k−1.

(11.30)

Every monomial UmV n can be easily interpreted in Mellin space as a difference operator Omn which acts as

Omn ◦ M(q)
k1k2k3k4

(s, t; ᾱ) =
Γ{ki}(s − 2 m, t − 2n)

Γ{ki}(s, t)
M(q)

k1k2k3k4
(s − 2 m, t − 2n; ᾱ). (11.31)

Then (11.28) becomes difference constraints for the Mellin amplitudes which constitute the Mellin space version of the
superconformal Ward identities.

Let us now apply the Mellin space superconformal Ward identities in a concrete example. We compute the ki = 2
four-point amplitude of eleven dimensional super gravity on AdS4 × S7, which is beyond the reach of the position space
method and the Mellin space method of [168,169]. Similar to the position space method, we start with an ansatz in
Mellin space which is the linear combination of all possible exchange and contact diagrams. In this example, we have
three exchanged fields in each channel: a scalar field dual to O2 with ∆ = 1 and SO(8) Dynkin label [2, 0, 0, 0], a vector
field with ∆ = 2 and representation [0, 1, 0, 0], and the graviton field which has ∆ = 3 and is neutral under SO(8)
R-symmetry. They are determined by the same selection rules as in the AdS5 ×S5 case. Therefore, the s-channel exchange
part of the ansatz is

Ms = λsY[2,0,0,0]M1,0 + λvY[0,1,0,0]M2,1 + λgY[0,0,0,0]M3,2, (11.32)

where

Y[2,0,0,0] = σ + τ −
1
4
, Y[0,1,0,0] = σ − τ , Y[0,0,0,0] = 1, (11.33)

and the Mellin amplitudes of the bosonic Witten diagrams M∆,ℓ are

M1,0 =

∞∑
m=0

−
2Γ

(
m +

1
2

)
π7/2Γ (m + 1)(s − 1 − 2 m)

=
Γ
( 1
2 −

s
2

)
π5/2Γ

(
1 −

s
2

) ,
M2,1 =

∞∑
m=0

16Γ
(
m +

1
2

)
(u − t)

π7/2(2m + 1)Γ (m + 1)(s − 1 − 2 m)
=

8(t − u)
s

(
M1,0 −

1
π2

)
, (11.34)

M3,2 =

∞∑
m=0

−
64Γ

(
m +

1
2

)2 (
t2 − 6t(u − 1) + u(u + 6) − 8

)
3π7/2Γ (m + 1)Γ

(
m +

5
2

)
(s − 1 − 2 m)

=
128

(
t2 − 6tu + 6t + u2

+ 6u − 8
) (

M1,0 −
s + 4

2

)
.

3s(s + 2) 4π
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he expressions of these bosonic exchange Mellin amplitudes can be found in, e.g., Appendix B of [179]. The exchange
ontributions Mt , Mu in the t- and u-channel are obtained from Ms by crossing

Mt (s, t; σ , τ ) = τ 2Ms(t, s; στ ,
1
τ
), Mu(s, t; σ , τ ) = σ 2Ms(u, t; 1

σ
, τ
σ
). (11.35)

inally, we also include a contact term Mcon which is a polynomial linear in s, t and of degree 2 in σ , τ with unknown
coefficients. The Mellin ansatz is

M2222 = Ms + Mt + Mu + Mcon. (11.36)

It is now straightforward to impose the Mellin space superconformal Ward identities as described above. It turns out
that the identities with the + sign are already sufficient to fix all the unknowns up to an overall constant, and the - sign
identities impose no further constraints. We find that

λv = −
1
8
λs, λg =

3
512

λs, (11.37)

nd the contact term is fixed to be

Mcon =
λs

16π2 (−sσ 2
− 16τ (−σ s + s + 4σ + t) + s − σ 2t + 8σ (σ + 2t − 8) + (t + 4)τ 2 + 4). (11.38)

he remaining parameter λs can be fixed by using the known three-point function of O2 to be

λs = −
3π

√
2N

3
2
, (11.39)

where N is the number of M2 branes.
This bootstrap method in Mellin space is quite powerful. Although we demonstrated the method here in the AdS4 × S7

ase, it applies in the exact same way to AdS5 × S5 and AdS7 × S4 backgrounds. Moreover, we can analogously consider
our-point amplitudes of operators with higher Kaluza–Klein levels. Imposing the Mellin space superconformal Ward
dentities also fixes all exchange coefficients and contact terms up to an overall constant factor. However, as the external
eights are increased there are more and more unknowns and the complexity of the calculation also increases. Therefore,
ithout a better understanding of the structure of the Mellin amplitudes it is a bit difficult to obtain all the amplitudes
sing this method. We will study the properties of these Mellin amplitudes in detail in the next subsection, and point out
everal remarkable simplifying features which are dictated by symmetries. With this improved understanding, we explain
ow to derive all tree-level super graviton four-point amplitudes in all maximally superconformal theories.

1.3. The MRV method and super graviton amplitudes in all maximal SCFTs

In this subsection, we review the method of [178,179] which applies to all theories with maximal superconformal
ymmetry. We will use the AdS4 × S7 four-point amplitude computed in the previous subsection as a concrete example
to show various properties, and we will demonstrate the new method by re-deriving the result.

Although this ki = 2 example is the simplest correlator in the AdS4 × S7 theory, its Mellin amplitude is already quite
omplicated. However, as we will see below, there are special limits where the Mellin amplitude drastically simplifies.
n [178,179], a notion called maximally R-symmetry violating (MRV) was introduced. In the MRV limit, we restrict ourselves
o the special kinematic configuration where the R-symmetry polarization vectors of operator 1 and 3 are parallel, i.e.,
1 = t3.46 In terms of the R-symmetry cross ratios, this amounts to setting σ = 0 and τ = 1. This slice of the Mellin
mplitude (11.36), defined to be the MRV amplitude, now has a particularly simple structure

MRV2222(s, t) = M2222(s, t; 0, 1)

=
3(u − 2)(u − 4)

√
2πN

3
2

∞∑
m=0

1

m!Γ
( 1
2 − m

)2
Γ
(
m +

5
2

)( 1
s − 1 − 2m

+
1

t − 1 − 2m

)
.

(11.40)

here are two important features in this expression worth noticing. First, the MRV amplitude does not have any poles in
he u-channel. Only the poles in the s- and t-channels are present. Second, the MRV amplitude contains a factor of zeros
n u, and the locations of the zeros correspond to the double-trace long operators with low-lying twists.

Physically, these two features can be understood as follows. Setting t1 = t3 = tu implies that the only R-symmetry
epresentation which can propagate through the u-channel is the rank-4 symmetric traceless representation. This is easy
o see from the fact that the Wick contraction of t1 with t3 is zero and it leads to

t{I11 t I2}1 t{I33 t I4}3 = t{I1u t I2u t I3u t I4}u . (11.41)

On the other hand, we do not have any exchanged single-trace particles in the ki = 2 four-point amplitude which
transform in the rank-4 symmetric traceless representation. Recall we mentioned in Section 10.2 that couplings of single-
trace fields with weights satisfying ka + kb = kc are known as extremal. Three-point Witten diagrams associated with

46 More precisely, this limit is the u-channel MRV limit. One can also define MRV limits in the other two channels.
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uch a coupling diverge. In order to keep the effective action finite extremal couplings must vanish and all the exchanges
re sub-extremal. This explains why we do not see any poles in the u-channel associated with single-trace particle
xchanges. Relatedly, the fact that only the rank-4 symmetric traceless representation is exchanged in the u-channel
lso implies that certain long operators are decoupled in the MRV limit. This has to do with the structure of the long
uperconformal multiplets, in which the superconformal descendants have varying R-symmetry representations. In order
or all R-symmetry representations of the entire multiplet to fit inside the ki = 2 four-point correlator, the superconformal
rimaries of the long multiplets must be R-symmetry singlets. Therefore, in the MRV limit we do not see the exchange
f such super primaries. The visible super descendants, which are in the rank-4 symmetric traceless representation, have
onformal twists larger than their super primaries by 4. Since all long operators in the supergravity limit are double-trace,
he minimal conformal twists of the super primaries is 2. Long operators with twist 2 and 4 are missing in the MRV limit.
he decoupling of such operators is manifested in the Mellin amplitudes as zeros.
The presence of the zeros turns out to be a very useful fact. In fact, this property is satisfied by the exchange amplitude

f each single-trace super multiplet in each channel. It turns out that we can use the zeros to fix the relative coefficients of
he component fields, i.e., the ratios of λs, λv and λg , without using the superconformal Ward identities. However, before
e are able to do this, we need to take a small detour to explain an obstruction. Let us first notice that the s-channel part
f the MRV amplitude has a better Regge behavior than the bosonic exchange amplitudes (11.34). Here the relevant Regge
imit is the u-channel Regge limit, in which we take s → ∞ keeping u fixed. The s-channel part of the MRV amplitude
cales as

MRV(s)
=

3(u − 2)(u − 4)
√
2πN

3
2

∞∑
m=0

1

m!Γ
( 1
2 − m

)2
Γ
(
m +

5
2

) 1
s − 1 − 2m

∼
1
s
. (11.42)

uch a Regge behavior is expected because the numerator at each pole has degree 2 and is saturated by the two zero
actors in u. By contrast, the s-channel spin-ℓ exchange amplitude scales as

M∆,ℓ ∼
1

s1−ℓ
. (11.43)

aively, this would seem to be a contradiction as the MRV amplitude is a collection of bosonic Mellin amplitudes. However,
e note that we can improve the bosonic Mellin amplitudes by adding contact terms. We do this by simply replacing t

n the summands in (11.34) by 3 − u − 2m, which follows from solving

s + t + u = 4, s = 1 + 2m. (11.44)

ote that we are allowed to use the pole value of s as in the second condition when focusing on the residues of the Mellin
mplitude. Apparently, the new bosonic amplitudes

Mimp
1,0 = M1,0

Mimp
2,1 =

∞∑
m=0

16Γ
(
m +

1
2

)
(2u − 3 + 2 m)

π7/2(2m + 1)Γ (m + 1)(s − 1 − 2 m)
, (11.45)

Mimp
3,2 =

∞∑
m=0

−
64Γ

(
m +

1
2

)2 (
4m2

+ 8 m(2u − 3) + 8u2
− 24u + 19

)
3π7/2Γ (m + 1)Γ

(
m +

5
2

)
(s − 1 − 2 m)

,

ave the improved s−1 Regge behavior as MRV(s). The differences between the original and Regge-improved exchange
mplitudes are contact terms as promised

M2,1 − Mimp
2,1 =

8
π2 , M3,2 − Mimp

3,2 =
32(7s + 8t − 20)

3π2 . (11.46)

e now take the following modified combination of s-channel exchange amplitudes

M′

s = λsY[2,0,0,0]M
imp
1,0 + λvY[0,1,0,0]M

imp
2,1 + λgY[0,0,0,0]M

imp
3,2 (11.47)

and require that it has zeros at u = 2 and u = 4 when σ = 0, τ = 1. It is most straightforward to impose the zeros at
every pole, and we find this condition fixes the exchange coefficients to be (11.37). However, using the Regge-improved
Witten diagrams also comes with a problem: it breaks the s-channel Bose symmetry, i.e., M′

s is not invariant under the
1 ↔ 2 exchange

M′

s(s, t; σ , τ ) ̸= M′

s(s, u; τ , σ ). (11.48)

To understand this issue better, let us write M′
s as a sum over simple poles

M′

s = λs

∞∑ Γ
(
m +

1
2

)2
π7/2Γ (m + 1)Γ

(
m +

5 ) ×
Lm(u; σ , τ )
s − 1 − 2m

, (11.49)

m=0 2
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Lm(u; σ , τ ) = (2m + 3)τ (u − 2) − (2m + u − 1)((2m + 3)σ + u − 2). (11.50)

learly, the absence of the t variable, which is mapped to u under 1 ↔ 2 crossing, is responsible for the breaking of Bose
ymmetry. A simple fix is to reverse (11.44), and set m =

1
2 (3 − t − u) in Lm. This leads to a new s-channel multiplet

xchange amplitude

Ms = λs

∞∑
m=0

Γ
(
m +

1
2

)2
π7/2Γ (m + 1)Γ

(
m +

5
2

) ×
N(t, u; σ , τ )
s − 1 − 2m

, (11.51)

with symmetric numerators

N(t, u; σ , τ ) = −(t − 2)(σ (t + u − 6) − u + 2) − τ (u − 2)(t + u − 6), (11.52)

hich differs from M′
s and Ms by contact terms. Importantly, we note that this prescription leading to Lm → N preserves

he desired behavior at the MRV limit

Ms(s, t; 0, 1) = MRV(s)(s, t). (11.53)

So far, we have only focused on the exchange part of the correlator which involves poles. There are in principle also
contact terms which are regular. However, there is an interesting surprise in choosing Ms to be the s-channel exchange
amplitude. Using crossing symmetry, we obtain Mt and Mu as

Mt (s, t; σ , τ ) = τ 2Ms(t, s; στ ,
1
τ
), Mu(s, t; σ , τ ) = σ 2Ms(u, t; 1

σ
, τ
σ
). (11.54)

Remarkably, we find that the full ki = 2 Mellin amplitude can be written in terms of just the exchange amplitudes

M2222 = Ms + Mt + Mu, (11.55)

without any additional contact terms! Physically, this result implies that the contact interactions are not intrinsic.47
Compared to (11.36), our new prescription of constructing multiplet exchange amplitudes has the clear advantage that it
automatically absorbs the contact terms.

The above appealing features of the ki = 2 correlator in fact generalize to correlators with arbitrary Kaluza–Klein
weights, and also to correlators in the AdS5 × S5 and AdS7 × S4 backgrounds. Exploiting these features, we get a universal
new method which can be used to efficiently compute all tree-level four-point correlators in all maximally superconformal
theories. We will only outline the procedures here, and refer the reader to the original papers [178,179] for details and
explicit expressions of general correlators. The method works as follows.

1. We start with an ansatz similar to (11.32) for the s-channel exchange amplitude of each multiplet. For a generic
multiplet with Kaluza–Klein level p ≥ 4, there are six component fields with Lorentz spins up to 2 (see Appendix B).

2. We improve the u-channel Regge behavior in each bosonic exchange Mellin amplitude M∆,ℓ by eliminating the t
variable in the numerators in favor of u and m, which is possible because of the condition s + t + u = ϵΣ and the
fact that poles are located at s = ϵp + 2m.

3. We impose the condition that in the MRV limit, the multiplet exchange amplitude should have two zeros at
u = ϵmax{k1 + k3, k2 + k4} and u = ϵmax{k1 + k3, k2 + k4} + 2. This fixes the exchange coefficients of each
component field in the multiplet up to an overall factor which can be chosen to be the exchange coefficient of the
super primary. Using the known three-point function coefficients of the 1

2 -BPS operators, this overall factor can be
computed.

4. We now restore the s-channel Bose symmetry which has been lost when using the Regge-improved exchange
Witten diagrams. It turns out that every numerator at each simple pole contains the same kinematic factor which
includes all the Mandelstam variable dependence and is a degree-2 polynomial in u. We reverse the substitution
performed in step 2, and replace m in this factor by 1

2 (ϵ(Σ − p) − t − u) to obtain a new kinematic factor.
5. Finally, we add up all the multiplet exchange amplitudes in three channels which are compatible with the selection

rules. These include the R-symmetry selection rule and the requirement that cubic couplings are non-extremal. A
priori, we should also include the most general contact terms in the ansatz which have all possible R-symmetry
structures and are linear in the Mandelstam variables. However, by solving the Mellin space superconformal Ward
identities we find all such additional contact terms vanish. The four-point amplitudes are therefore purely made of
the multiplet exchange amplitudes.

We conclude this subsection with a few comments. In Step 3 we fixed the overall coefficient of each multiplet by using
he known three-point functions. This is convenient but not necessary. We could leave these coefficients undetermined
nd then use the superconformal Ward identities to fix them up to an overall constant. The remaining overall constants

47 Such a property would be important for the existence of Britto–Cachazo–Feng–Witten type relations [197] which recursively construct
higher-point amplitudes from lower-point ones.
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or different correlators are not independent because they can be interpreted as the product of two three-point function
oefficients. The same three-point function coefficients can appear in different correlators. By considering a system of
ixed correlators (e.g., correlators of the form ⟨ppqq⟩) we can reduce all remaining constants to the overall factor which
ppears in the ki = 2 factor. The latter is determined by the central charge of the theory.
The other comment is related to the factorized structure mentioned in Step 4. Each multiplet exchange amplitude

ontains a degree-2 polynomial of t and u which is independent of m (e.g., it is the factor N(s, t; σ , τ ) in (11.51) for ki = 2
n AdS4 × S7). This factor can be brought outside of the Mellin transformation as a differential operator. The remaining
ependence on the Mandelstam variables is a sum over simple poles with constant numerators, and resembles a scalar
xchange Mellin amplitude. More precisely, one can show that it can be written as the linear combination of three AdSd+1
calar exchange amplitudes with internal dimensions ϵp, ϵp + 2 and ϵp + 4. For example, (11.51) can be written as

Ms = λsN(s, t; σ , τ )
(

−
2
3
MAdS4

1,0 +
1
30

MAdS4
3,0 −

3
11200

MAdS4
5,0

)
. (11.56)

Remarkably, we can also write the sum over simple poles as a single scalar exchange diagram with internal dimension
ϵp but in a lower dimensional AdSd−3 space! For example, the reader can check that (11.51) can also be expressed as48

Ms = −
3
2
λsN(s, t; σ , τ )MAdS0

1,0 . (11.57)

In fact, this emergent dimensional reduction structure was observed in [172] for all four-point correlators in all maximally
supersymmetry CFTs, and appears to be related to the Parisi–Sourlas supersymmetry [198]. As was shown in [199], Parisi–
Sourlas supersymmetry gives rise to dimensional reduction relations for conformal blocks as a kinematic consequence.
These identities can further be lifted into AdS space as reduction formulae for exchange Witten diagrams [200] (see
Appendix C.4 for details), which underlie the dimensional reduction structure mentioned above. However, at this moment
there is still no understanding of the physical meaning of the observed structure.

11.4. Super gluon four-point amplitudes

The MRV method reviewed in the previous subsection can also be used to efficiently compute super gluon scattering
amplitudes in AdS. In many holographic CFTs with non-maximal superconformal symmetry, the theories contain a sector
of states which decouple from the rest of the theories in the large central charge limit. The single-trace states in this
sector have at most Lorentz spin 1. Therefore, the sector is not gravitational, and we have a supersymmetric gauge theory
of gluons and their super partners.

More precisely, these superconformal CFTs usually preserve eight Poincaré supercharges. In the holographic dual
descriptions of these SCFTd there are singular loci of the form AdSd+1 × S3 ⊂ AdSd+1 ×(w) X ,49 where X is the full internal
space of dimension 9 − d or 10 − d depending on whether it is a string or M theory. On these loci, there are localized
degrees of freedom which are organized by supersymmetry into a vector multiplet. The vector multiplet transforms in
the adjoint representation of some global symmetry group GF which depends on the theory and is interpreted as a gauge
group from the bulk perspective. Performing a Kaluza–Klein reduction on S3, we get an infinite tower of states with
spins up to 1 and they are organized into 1

2 -BPS multiplets of the non-maximal superconformal algebra. We refer to the
scalar super primaries as the super gluons. By contrast, gravity lives in the total space AdSd+1 ×(w) X and the Kaluza–Klein
eduction on the internal space X gives rise to gravitons and their super partners with varying masses. Importantly, the
elf-couplings of the super gluons are much stronger than the couplings of super gluons with super gravitons by powers
f the central charge, in the limit where the central charge is large. Therefore, in the large central charge limit we can
ecouple gravity when considering the leading contribution to the super gluon correlators.
The SO(4) isometry group of S3 can be written as SU(2)R×SU(2)L. The first SU(2)R factor is an R-symmetry group, while

he second SU(2)L group is a global symmetry. The super gluons have SU(2) spins jR =
k
2 , jL =

k−2
2 , with k = 2, 3, . . .,

and their conformal dimensions are determined by their Kaluza–Klein levels k to be ∆ = ϵk. The tree-level four-point
amplitudes of super gluons are similar to the super graviton amplitudes at the level of the diagrammatic structure.
They contain exchange contributions of super gluon multiplets (the relevant bosonic component fields are tabulated in
Appendix B), and possibly also contact contributions. In [194], all super gluon four-point functions with arbitrary Kaluza–
Klein levels ki were systematically computed in a variety of theories with d = 3, 4, 5, 6. Here we will only demonstrate
the computational method in the so-called E-string theory [201,202] which has d = 6, and point out various interesting
features. In this theory, the flavor group GF is fixed to be E8. Furthermore, we will only consider the simplest ki = 2
correlator [203], and refer the reader to [194] for a comprehensive treatment.

Compared to the super graviton case, the main difference here is that super gluons carry flavor (or color, from the bulk
perspective) indices and the correlator

GA1A2A3A4 (xi; vi) = ⟨OA1
2 (x1; v1)O

A2
2 (x2; v2)O

A3
2 (x3; v3)O

A4
2 (x4; v4)⟩ (11.58)

48 Note that the spacetime dimension d is treated here as a formal parameter.
49 Here w denotes the possibility of a warped product.
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as several independent flavor structures. Here A = 1, . . . , dimGF , and we have contracted the super gluon operators
ith two-component auxiliary spinors va, a = 1, 2, to keep track of the R-symmetry polarizations

OA
2(x; v) = OA;a1a2 (x)vb1vb2ϵa1b1ϵa2b2 . (11.59)

he number of independent flavor structures corresponds to the number of representations that appear in the tensor
roduct of two adjoint representations of GF . We can concretely discuss these flavor structures by decomposing the
orrelator into different flavor channels using projectors

GA1A2A3A4 =

∑
a∈adj⊗adj

PA1A2|A3A4
a Ga. (11.60)

Here PA1A2|A3A4
a are s-channel projectors, and represent the exchange of irreducible flavor representations a in this channel.

For example, the projectors associated with exchanging the identity representation and the adjoint representations are

PA1A2|A3A4
1 =

1
dim(GF )

δA1A2δA3A4 , PA1A2|A3A4
adj =

1
ψ2h∨

f A1A2A5 f A5A3A4 , (11.61)

here h∨ is the dual Coxeter number, ψ2 is the length squared of the longest root, and f ABC are the structure constants
f the flavor group. These projectors satisfy

PA1A2|A3A4
a = (−1)RaPA2A1|A3A4

a , PA1A2|A3A4
a = PA3A4|A1A2

a , (11.62)

where Ra is 0 for symmetric representations and 1 for antisymmetric representations. Moreover, they are idempotent

PA1A2|A3A4
a PA4A3|A5A6

b = δabP
A1A2|A5A6
a , (11.63)

and contracting external indices gives a delta function for the exchanged representations

PA1A2|A3A4
a PA1A2|A3A4

b = δab dim(Ra). (11.64)

We will also encounter the situation where we cross a t- or u-channel representation into the s-channel. This is
accomplished by the flavor crossing matrices which are the overlaps of projectors in two channels

(Ft )aa
′

≡
1

dim(Ra)
PA3A2|A1A4
a PA1A2|A3A4

a′ , (Fu)aa
′

≡
1

dim(Ra)
PA4A2|A3A1
a PA1A2|A3A4

a′ . (11.65)

or E8, these crossing matrices explicitly read [204]

Ft =

⎛⎜⎜⎜⎜⎝
1

248
125
8

3375
31 1 245

2
1

248 −
3
8

27
31

1
5 −

7
10

1
248

1
8

23
62 −

1
30 −

7
15

1
248

25
8 −

225
62

1
2 0

1
248 −

5
56 −

90
217 0 1

2

⎞⎟⎟⎟⎟⎠ , Fu =

⎛⎜⎜⎜⎜⎝
1

248
125
8

3375
31 −1 −

245
2

1
248 −

3
8

27
31 −

1
5

7
10

1
248

1
8

23
62

1
30

7
15

−
1

248 −
25
8

225
62

1
2 0

−
1

248
5
56

90
217 0 1

2

⎞⎟⎟⎟⎟⎠ (11.66)

where the representations in each column are a = 1, 3875, 27000, 248 (adj), 30380 from top to bottom. The first three
representations are symmetric, while the last two are anti-symmetric.

We are now ready to bootstrap super gluon four-point amplitude. We similarly start with an ansatz which consists of
exchange contributions in three channels and possible contact terms

MA1A2A3A4 (s, t;α) = MA1A2A3A4
s + MA1A2A3A4

t + MA1A2A3A4
u + MA1A2A3A4

con . (11.67)

We have extracted an overall factor (v1 · v2)2(v3 · v4)2, where (vi · vj) ≡ vai v
b
j ϵab, from the correlator so that we can write

it as a degree-2 polynomial in the SU(2)R R-symmetry cross ratio

α =
(v1 · v3)(v2 · v4)
(v1 · v2)(v3 · v4)

. (11.68)

n each channel, we have two exchanged fields: the super gluon itself with ∆ = 4 and SU(2)R spin 1, and a vector field
ith ∆ = 5 and neutral under SU(2)R. Since the super gluon multiplet is in the adjoint representation, the exchange
mplitudes in each channel contain a single flavor structure, namely

MA1A2A3A4
s = csMs, MA1A2A3A4

t = ctMt , MA1A2A3A4
u = cuMu (11.69)

where

cs = f A1A2Bf BA3A4 , ct = f A1A4Bf BA2A3 , cu = f A1A3Bf BA4A2 (11.70)

are proportional to the projectors PA1A2|A3A4
adj , PA3A2|A1A4

adj , PA4A2|A3A1
adj . Crossing symmetry relates Ms,t,u as

Mt = (α − 1)2
(
Ms
⏐⏐{s,t,u}→{t,u,s}

1

)
, Mu = (−α)2

(
Ms
⏐⏐{s,t,u}→{u,s,t}

α−1

)
. (11.71)
α→ 1−α α→ α
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n the other hand, the contact term ansatz MA1A2A3A4
con should include all flavor structures. Therefore, in each flavor channel

we should write down a regular amplitude which is degree 2 in α and independent of Mandelstam variables. The latter
s because we expect that the quartic vertices do not include any derivatives.

At this point, we have two choices. We could proceed by simply writing Ms as the linear combination of the scalar
and vector exchange Mellin amplitudes as in (11.32), and then imposing the superconformal Ward identities. The SU(2)R
polynomials associated with spin jR are given by YjR =

(jR!)2

(2jR)!
PjR (2α − 1). The superconformal Ward identities are almost

dentical to the maximally superconformal case (10.14), except that now we do not have the cross ratio ᾱ and there is an
ndependent identity for each flavor channel. Therefore, we decompose the Mellin amplitude ansatz in the s-channel flavor
hannels, and impose the Mellin space superconformal Ward identities (11.28) in each channel with ᾱ set to zero. That is
ow the computation was performed in [203], and one finds that solving the superconformal Ward identities leads to a
nique answer, modulo an overall constant. However, written in this way the structure of the amplitude is quite obscure.
he contact terms in different flavor channels are not vanishing. Note that one can also repeat this exercise in other
heories where one has multiple choices of the flavor group (such as in the 5d Seiberg exceptional theories [205]). The
xpressions of the contact terms depend on the gauge group chosen. Therefore it is not obvious if the whole amplitudes
epend sensitively on GF . The other choice is to extend the MRV method to super gluon amplitudes. Remarkably, as we
ill show below, using the MRV method leads to a very nice form of the answer which does not have explicit contact
erms, and is furthermore agnostic about GF . This allows us to have a much clearer understanding of the structure of
uper gluon correlators.
In analogy with the super graviton case, we can define the (u-channel) MRV limit by requiring the polarization spinors

f particle 1 and 3 to be identical v1 = v3. Translated in terms of the cross ratio, the MRV limit corresponds to the slice
ith α = 0. In the MRV limit, only the jR = 2 representation can propagate in the u-channel. As a result of superconformal
ymmetry, we find the MRV amplitude should have the following two features similar to the maximally superconformal
ase:

• There are no poles in the u-channel.
• The MRV amplitude contains a factor of zero in u at the minimal double-trace twist location u = 8.

ote that compared to the super graviton case, here we have only one zero in the MRV limit instead of two. This is
ecause we have less supersymmetry and long multiplets are smaller in size. We can now follow the same procedure
o determine the multiplet exchange amplitude. We use the Regge-improved bosonic Mellin amplitudes (11.45) in the
xchange ansatz. Imposing the zero at every pole fixes the ratio of exchange coefficients. Finally, we restore the s-channel
ose symmetry using the prescription given in Section 11.3 and we find

Ms =
(α(t + u − 16) − u + 8)

4N2

(
1

s − 4
+

1
3(s − 6)

)
. (11.72)

Here we have also fixed the overall coefficient using the flavor current central charge and N is the number of M5 branes
in the brane construction of this theory. Using these multiplet exchange amplitudes, one can check that superconformal
Ward identities force the additional contact terms to be zero. The ki = 2 four-point amplitude is therefore simply

MA1A2A3A4 (s, t;α) = csMs + ctMt + cuMu. (11.73)

The MRV method applies similarly to massive correlators with ki > 2, as well as to other super gauge theories in other
spacetime dimensions. In all these theories, we find that the amplitudes always have the form of (11.73) and contain only
exchange contributions.

Let us end this section with a few comments. The Parisi–Sourlas-like dimensional reduction structure we showed in
the previous subsection can also be found in the super gluon amplitudes. For example, the multiplet amplitude (11.72)
can be written as

Ms =
(α(t + u − 16) − u + 8)

4N2

(
−

1
12

MAdS7
4,0 +

1
90

MAdS7
6,0

)
. (11.74)

owever, we can also express the sum of the two AdS7 scalar exchange diagrams as a single AdS5 scalar exchange diagram

Ms =
(α(t + u − 16) − u + 8)

4N2

(
−

1
12

MAdS5
4,0

)
. (11.75)

More generally, the exchange amplitude of a multiplet with weight k can be written as a degree-1 polynomial in the
Mandelstam variables times the linear combination of two AdSd+1 scalar exchange amplitudes with internal dimensions
ϵk and ϵk+ 2. By using the dimensional reduction formulae of Witten diagrams, the two scalar exchange amplitudes can
be rewritten as a single scalar exchange amplitude of dimension ϵk in AdSd−1. Recall that in the maximally superconformal
case, correlators in AdSd+1 can be expressed in terms of scalar exchange diagrams in AdSd−3. Therefore, the number of
reduced spacetime dimensions is correlated with the amount of supersymmetry. Just as in the super graviton case, this
Parisi–Sourlas dimensional reduction structure is found in all super gluon amplitudes in all AdS × S3 backgrounds.
d+1

65



A. Bissi, A. Sinha and X. Zhou Physics Reports 991 (2022) 1–89

w

Another interesting feature of the amplitude can be seen by writing (11.73) as

MA1A2A3A4 = csnsM
AdS5,(s)
4,0 + ctntM

AdS5,(t)
4,0 + cunuM

AdS5,(u)
4,0 , (11.76)

here MAdS5,(s)
4,0 = MAdS5

4,0 , and MAdS5,(t,u)
4,0 are the scalar exchange amplitudes in the t- and u-channel. This form of the

amplitude resembles the flat-space tree-level gluon scattering amplitude, and we can think of MAdS5,(s)
4,0 as the flat-space

scalar propagator 1/s. By the Jacobi identity, the color structures satisfy

cs + ct + cu = 0. (11.77)

Interestingly, we can check by straightforward calculation that the kinematic numerators also satisfy a similar relation

ns + nt + nu = 0. (11.78)

This gives an AdS extension of the flat-space color-kinematic duality [206]. The same structure is also found for the
massless ki = 2 super gluon amplitudes in other spacetime dimensions [194]. On the other hand, replacing the color
factors with the kinematic factors does not give the super graviton amplitudes, unlike what happens in the flat-space
double copy relation [207]. Nevertheless, the flat-space prescription of double copy does work at the level of reduced
Mellin amplitudes for a set of AdS5 theories [208]. It was shown that there is a different realization of the color-kinematic
duality for SYM on AdS5 × S3 in terms of the reduced Mellin amplitudes. In this realization, all four-point amplitudes for
IIB supergravity on AdS5 × S5 and bi-adjoint scalars on AdS5 × S1, both massless and massive, can be obtained from the
super gluon amplitudes in the same way as in the flat-space case. Searching for AdS extensions of flat-space amplitude
properties is an interesting line of research, although such a program is still in its infancy. For recent developments,
see [177,194,208–219].

12. Bootstrapping loop-level holographic correlators

In this section we discuss how to compute one-loop level correlators in full-fledged holographic models by incorporat-
ing the techniques discussed in Section 4. A major complexity that arises in these supersymmetric theories is the so-called
operator mixing, and this complexity requires us to modify the techniques of Section 4. While conceptually not difficult to
digest, a full discussion of the details of unmixing would require a great deal of additional technical knowledge and goes
beyond the scope of this section. Therefore, we will keep this part of the discussion as schematic as possible, with the goal
being only to explain the problem and to outline its solution. The main focus of this section is the explicit computation
of the one-loop amplitude after taking the solution of the mixing problem as an input. The procedures of this calculation
will be explained in detail. We will discuss the case of 4d N = 4 SYM which is dual to IIB supergravity on AdS5 × S5. To
keep the discussion pedagogical, we will only consider the simplest correlator ⟨O2O2O2O2⟩.

12.1. The mixing problem

As discussed in Section 4, in order to construct the one-loop answer, it is sufficient to know the tree-level anomalous
dimension γ (1)

n,ℓ and the OPE coefficient of leading order a(0)n,ℓ. Generically, to extract this piece of information it is enough
to consider the correlator with the same external operators at order N0 and N−2 and decompose it in conformal blocks.
However, this algorithm rests on the assumption that the intermediate operators are unique, meaning that there is a
single operator with the same quantum numbers.

For N = 4 SYM at strong coupling, this is not the case and the above algorithm needs modifications. In particular,
the unprotected superconformal primaries that appear in ⟨O2O2O2O2⟩ as intermediate operators are singlets under the
SU(4) R-symmetry. Schematically, these operators are linear combinations of double-trace operators of the form [O2O2]n,ℓ,
[O3O3]n−1,ℓ, . . . [O2+nO2+n]0,ℓ. Each operator is neutral under R-symmetry, and has the same spin ℓ and bare conformal
twist 2n + 4. Therefore, in general there is mixing among all such double-trace operator. This adds an extra layer of
complication to the loop-level computation. However, we can still use the method of Section 4 once we solve the mixing
problem. More specifically, we need to diagonalize the dilatation operator and apply the squaring of anomalous dimension
on each eigenstate. To unmix operators with conformal twist 2n + 4, one needs to consider the family of four-point
functions ⟨O2O2OpOp⟩ for p = 2, . . . , 2 + n. At order N0 and N−2 respectively, we extract from each correlator the
averages

⟨a(0)⟩ =

1+n∑
I=1

c22,Icpp,I . (12.1)

and

⟨a(0)γ (1)
⟩ =

1+n∑
c22,Icpp,Iγ

(1)
I (12.2)
I=1
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here c are the three-point function. Notice that for simplicity, we removed the spin and conformal dimension labels.
ere we have also chosen a normalization in which these eigenstatesΣ I are orthonormal, i.e., ⟨Σ IΣ J

⟩ = δIJ . This gives the
mixing matrices which are diagonalized in [220,221]. The explicit results which are relevant for our purposes are recorded
in the next subsection. Let us also mention that to compute one-loop correlators with higher Kaluza–Klein weights, we
need to consider more general tree-level correlators. Diagonalizing these more complicated mixing matrices is discussed
in [183,220,222] and in general the spectrum still has remaining degeneracy.50

12.2. Super graviton one-loop amplitude in AdS5 × S5

In the previous subsection, we explained how to solve the mixing problem. With the data from its solution we can
proceed to compute the leading logarithmic singularity. Knowing it allows us to fix the full correlator. However, for
AdS5 × S5 correlators we can also define the reduced correlators. At tree level, we have also seen in Section 11.1 that
using them leads to a lot of simplifications, as they automatically take into account superconformal symmetry. For this
reason, we will continue to work with the reduced correlator at one-loop level. Note that in Section 4 we explained the
principle of the calculation in position space. However, the computation of loop-level amplitudes is particularly simple in
Mellin space and we find a very compact answer in this representation. Therefore, for pedagogical purpose, we will only
give below a review of the Mellin method of [223,224]. There are other complementary approaches such as the position
space method [220,225,226] and a method based on the Lorentzian inversion formula [191,227]. We will briefly comment
on these approaches in Section 13, but will refer the reader to these references for details.

The one-loop leading logarithmic singularity H(2)
|log2 U (U, V ) is singular in the small V limit, and has the form

H(2)
|log2 U (U, V ) = f2(U, V ) log2 V + f1(U, V ) log V + f0(U, V ), (12.3)

here the coefficient functions fi(U, V ) are regular in U, V → 0. This structure is expected from crossing symmetry as
log2 U, logU, 1} are mapped to {log2 V , log V , 1} under U ↔ V . Closed form expressions of these functions can be found
n [191,220], but it is not necessary for our purpose. Instead we will only need them order by order in the power expansion
ith respect to U

fi(U, V ) = U2(f (0)i (V ) + Uf (1)i (V ) + · · · ). (12.4)

et us explain how to compute them from the conformal block decomposition of the leading logarithmic singularity51

H(2)
|log2 U (U, V ) =

1
2

∑
n

∑
ℓ even

⟨a(0)n,ℓ(γ
(1)
n,ℓ )

2
⟩U−2G8+2n+ℓ,ℓ(z, z̄). (12.5)

ere Gτ ,ℓ(z, z̄) are the conformal blocks with the extra power of U
τ
2

Gτ+ℓ,ℓ(z, z̄) = (zz̄)
τ
2 gτ ,ℓ(z, z̄), (12.6)

ompared to the one used in Section 3. For reader’s convenience, we have reproduced the average ⟨a(0)n,ℓ(γ
(1)
n,ℓ )

2
⟩ from [220]

⟨a(0)t−2,ℓ(γ
(1)
t−2,ℓ)

2
⟩ =

t−1∑
i=1

C (0)
t,ℓRt,ℓ,iat,i, (12.7)

where

C (0)
t,ℓ =

2((t + ℓ+ 1)!)2(t!)2(ℓ+ 1)(2t + ℓ+ 2)
(2t)!(2t + 2ℓ+ 2)!

,

Rt,ℓ,i =
21−t (2ℓ+ 3 + 4i)(ℓ+ i + 1)t−i−1(t + ℓ+ 4)i−1

( 52 + ℓ+ i)t−1
, (12.8)

at,i =
21−t (2 + 2i)!(t − 2)!(2t − 2i + 2)!

3(i − 1)!(i + 1)!(t + 2)!(t − i − 1)!(t − i + 1)!
.

otice that conformal blocks can be power-expanded in U and (1−V ). In particular, the leading U power of G8+2n+ℓ,ℓ(z, z̄)
is U4+n. As a result, for a fixed power of U in the leading logarithmic singularity, there are only finitely values of n that
can contribute. On the other hand, the expansion of the conformal blocks in (1 − V ) consists of finitely many terms of
the form

(1 − V )a+ℓ2F1(A, B; C; 1 − V ), (12.9)

50 For the singlet sector the degeneracy is lifted completely to order 1/N2 , see [183].
51 Note there is a shift of 4 in the dimension of the conformal block. This is because we are looking at the reduced correlator. See [182] for details.
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ith the minimal power of (1−V ) controlled by the spin of the exchanged operator. Therefore, we can truncate the sum
ver ℓ in (12.5) when obtaining the coefficients B(n)

i of (1− V )i with small i since they are not affected by the large spins.
ith the help of Mathematica we can easily find the general formula for the coefficients B(n)

i as a function of i from a
ew low-lying values. Performing the infinite sum over i gives f (n)i (V )

∞∑
i=0

B(n)
i (1 − V )i = f (n)2 (V ) log2 V + f (n)1 (V ) log V + f (n)0 (V ). (12.10)

or example, we have52

f (0)2 (V ) =
96(V 2

+ 4V + 1)
(V − 1)6

, f (0)1 (V ) = −
288(V + 1)
(V − 1)5

, f (0)0 (V ) = 0,

f (1)2 (V ) =
48(5V 3

+ 37V 2
+ 37V + 5)

(V − 1)8
, f (1)1 (V ) = −

144(7V 2
+ 22V + 7)

(V − 1)7
,

f (1)0 (V ) =
576(V + 1)
(V − 1)6

, (12.11)

f (2)2 (V ) =
48(59V 4

+ 706V 3
+ 1494V 2

+ 706V + 59)
7(V − 1)10

,

f (2)1 (V ) = −
144(101V 3

+ 627V 2
+ 627V + 101)

7(V − 1)9
, f (2)0 (V ) =

384(5V 2
+ 14V + 5)

(V − 1)8
.

Now let us focus on f (n)2 (V ) which multiplies U2+2n log2 U log2 V . To produce such terms from the Mellin representation
e must have simultaneous cubic poles at s = 4+2n and t = 4+2m. Note that the Gamma function factor in the definition

H =

∫
dsdt
(4π i)2

U
s
2 V

t
2 −2M̃(s, t)Γ 2

[
4 − s
2

]Γ 2
[
4 − t
2

]Γ 2
[
4 − ũ
2

], s + t + ũ = 4, (12.12)

already provides double poles at these locations. Therefore, the reduced Mellin amplitude must contain a pair of
simultaneous pole. Our minimal assumption is

M̃(s, t) ⊃

∞∑
n,m=0

cmn

(s − 4 − 2n)(t − 4 − 2 m)
, (12.13)

with constant cmn coefficients which are independent of the Mandelstam variables. These coefficients are picked up by
taking residues in the Mellin representation at s = 4 + 2n, t = 4 + 2m and can be determined by comparing with the
Taylor expansion coefficients of f (n)2 (V ). In practice, we can proceed by first finding an expression for the coefficients for
fixed n and then obtain a list of these functions as we increase n. It is not difficult to find from these data points that the
eneral expression is given by a symmetric function

cmn =
p(6)(m, n)

5(m + n − 1)5
, (12.14)

here p(6)(m, n) is a degree 6 polynomial

p(6)(m, n) = 32
(
15m4n2

+ 25m4n + 12m4
+ 30m3n3

+ 120m3n2
+ 114m3n + 36m3

+ 15m2n4
+ 120m2n3

+ 216m2n2
+ 77m2n − 8m2

+ 25 mn4
+ 114 mn3

+ 77 mn2
− 76 mn − 40m + 12n4

+ 36n3
− 8n2

− 40n
)
.

(12.15)

Let us now go back to check the assumption that cmn are constants. By crossing symmetry, the Mellin amplitude
hould also contain simultaneous poles in s, ũ and t , ũ. Therefore, our minimal assumption corresponds to the following
xpression

M̃(s, t) =

∞∑
n,m=0

cmn

(
1

(s − 4 − 2n)(t − 4 − 2 m)
+

1
(s − 4 − 2n)(ũ − 4 − 2 m)

+
1

(t − 4 − 2n)(ũ − 4 − 2 m)

)
.

(12.16)

o check it, we again take the residue at s = 4 + 2n and select the term proportional to log2 U corresponding to the
eading logarithmic singularity. Notice that it receives contributions only from the first two pairs of simultaneous poles

52 We do not keep track of the overall normalization of the correlator in this subsection.
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n (12.16). We then perform the sum over m and compute the residue of t at t = 4+2Z≥0. We find that f2(U, V ) in (12.3)
s matched by construction. However, very nontrivially, both f1(U, V ) and f0(U, V ) are also fully reproduced. This tells us
hat there cannot be single poles of the form 1/(s − 4 − 2n) in (12.16). They do not modify the log2 U log2 V coefficients
ut can change the log2 U logp V coefficient functions for p = 0, 1. By crossing symmetry we also rule out the existence
f single poles in the other Mandelstam variables. Therefore, the only ambiguities are regular terms which correspond to
ontact interactions. These contact terms can be fixed by looking at the flat-space limit of the reduced Mellin amplitude
see [223,224] for details). Therefore, we conclude that (12.16) is the full one-loop amplitude.

The same computational strategy also applies to one-loop correlators with higher Kaluza–Klein weights and a closed
orm expression for all correlators of the form ⟨22pp⟩ was obtained in [224]. It also can be used to compute one-loop
uper gluon amplitudes on AdS5 × S3 [228] where the amplitudes have the same structure of simultaneous poles (see
lso [229] for related work on super gluon one-loop correlators in the so called S-fold theories).

3. Holographic correlators: Other aspects and open problems

3.1. Other developments

Our review of holographic correlators in top-down models is unfortunately incomplete in many regards, and we had
o omit many other interesting topics. Here we list a few of these research directions which we did not have the chance
o discuss and we will refer the interested reader to the original references for details.

Other approaches to loop correlators.
In addition to the Mellin space method reviewed here, there are other approaches to loop correlators. The computations

f one-loop correlators can also be performed in position space, as they were first obtained [220,225,226]. Schematically,
his is achieved by formulating an ansatz in terms of certain basis functions which are ladder integrals with maximal
ranscendental degree 4. One then fixes this ansatz by matching with the double-discontinuity and by imposing a few
hysical conditions. Recently, it was shown in [230] that the position space method can be extended to two loops with the
elp of an educated ansatz based on the hidden conformal symmetry for AdS5 ×S5. In the simpler 1d case of half-BPS line
efects, the application of a variation of the position method has also led to results at three loops [231]. In addition to the
osition space approach, another complementary method for AdS5 × S5 loop correlators is to use the Lorentzian inversion
ormula [86]. This approach also gives a nice rederivation of the results of [168,169] at tree level. Note that the double-
iscontinuity vanishes for crossed-channel double-trace operators. This is particularly convenient for tree-level correlators
s there are only finitely many single-trace operators which contribute. For details of this method, see [191,227].
Higher derivative corrections.
In this review, we have mostly focused on the two-derivative supergravity limit. However, one can also consider string

heory and M-theory corrections in the low-energy limit which are manifested at tree level as higher-derivative contact
erms. In general, superconformal symmetry and the flat-space limit are not constraining enough to completely fix these
ontact terms [232]. However, by using additional independent input, such as constraints from the chiral algebra and the
upersymmetric localization, one can fix the remaining parameters in some types of correlators up to a certain order in
he expansion [233–238]. Moreover, in AdS5 × S5 by exploiting the hidden conformal symmetry and making ansatz based
on patterns observed in double-trace anomalous dimensions, one is able to make further progress and deal with more
general correlators [239–242]. String and M-theory corrections can also be considered at the level of loop amplitudes.
Works in this direction include [243–247]. Another interesting limit in AdS5 × S5 corresponds to taking N to infinity with
YM fixed in the dual 4d N = 4 SYM. Note that this is not the usual ’t Hooft limit, which has fixed g2

YMN , but it is still
menable to the supersymmetric localization aforementioned. By studying correlators in this limit, one can access SL(2,Z)

properties of superstring amplitudes and perform non-perturbative precision tests of AdS/CFT. For works in this direction,
see [236,248–253].

Tree-level correlators from the heavy–heavy–light–light limit.
Another independent approach to compute holographic correlators in AdS3 was developed in [193,254,255] based on

earlier works [256,257], which obtains correlators of four light operators from a heavy–heavy–light–light limit. In the
latter case, heavy operators can be described by a classical supergravity solution and the light operators correspond to
fluctuations on this background. It was shown that it is possible to take a formal ‘‘light’’ limit to obtain all-light correlators.
The limit is smooth at the level of correlators even though the end point is outside the regime of validity.

Correlators of multi-particle states.
In the standard AdS/CFT duality, we consider fluctuations of the supergravity fields which correspond to single-particle

states. The amplitudes we obtain are thus all for such single-particle states. However, it is also interesting to consider AdS
scattering amplitudes involving ‘‘bound states’’. From the CFT perspective, these are multi-trace operators. In principle,
one can obtain such correlators by taking OPE limits of correlators of single-trace operators. However, it would also be
beneficial to avoid taking this detour and obtain these correlators more directly. Some progress has been made in this
direction. In [258] a systematic analysis was carried out for the superconformal kinematics of 4d N = 4 SYM four-
point functions containing 1

4 -BPS double-trace operators. This paves the way for a future bootstrap strategy. On the other
and, in AdS3 it was shown in [259] that the approach of [256,257] can be extended to compute tree-level four-point
unctions with two single-trace operators and two multi-trace operators. A particularly interesting feature pointed out
n [259] is that the tree-level multi-trace correlators necessarily involve building block functions in position space which
re generalizations of the D-functions.
69



A. Bissi, A. Sinha and X. Zhou Physics Reports 991 (2022) 1–89

1

o

3.2. Open problems

Clearly, there are many open problems in this modern program of holographic correlators. Here we will outline some
f the major research avenues.53

• Constructive methods and higher multiplicities: Most of the methods reviewed here are bootstrap in nature.
However, it would also be useful to explore alternative methods which are more constructive. For example, is
there an AdS analogue of the flat-space Britto–Cachazo–Feng–Witten recursion relation [197] which would allow us
to recursively build higher-point correlators from lower-point ones?54 Such constructive methods would not only
provide crosschecks for the bootstrap results, but could also greatly facilitate the study of correlators with higher
multiplicities.

• Spinning correlators: The majority of past work in the literature has focused on correlators of scalar operators. This
is partly because they preserve more supersymmetry (when they are superconformal primaries), and also due to the
fact that the kinematics is simpler. However, it is also important to look into holographic correlators of operators
with spins as they provide more direct analogies with gluon and graviton amplitudes in flat space. Much work is
still needed to make progress in this direction. On the one hand, it is necessary to find convenient formalisms to
simplify the kinematics.55 On the other, one also needs to develop efficient computational techniques which do not
rely on supersymmetry.

• Color-kinematic duality and double copy: While there has been much evidence for color-kinematic duality and
double copy in AdS space at tree level, a systematic understanding is still currently lacking. In particular, it would be
very interesting to find a concrete realization for n-point tree-level correlators of bosonic Yang–Mills and Einstein–
Hilbert gravity in AdS. On the other hand, the existence of a double copy relation at loop levels is currently a
completely open question. In flat space, the double copy relation can be manifested in the Cachazo–He–Yuan (CHY)
formalism [270,271]. The investigation in AdS may be similarly facilitated by exploiting such a representation. The
study of CHY-like representations for holographic correlators has been initiated in [211,212].

• Higher loops: Higher-loop correlators are another research area which has not been sufficiently explored. The
leading logarithmic term has been constructed in [272,273] for the stress tensor multiplet four-point function in
AdS5 × S5 IIB supergravity at any loop order. But with these results only a particular part of the dual AdS amplitude
can be reconstructed. A major challenge in fully computing higher-loop correlators is to determine the higher-trace
operator contributions, which can be extracted from higher-point tree-level correlators. This problem is particularly
severe in full-fledged holographic models where there is an internal manifold, as in the AdS5 × S5 example. One has
to glue together infinitely many tree-level correlators to obtain loop-level correlators even in the simplest case.

• Stringy correlators: Current technologies only allow us to compute the correlators in expansions of α′. As discussed
in the previous subsection, one can fix the corrections order by order by using additional input from the SCFT.
However, it would be great to go beyond that. An extremely interesting open problem is to devise a strategy to
obtain all-order results and find the analogue of Virasoro–Shapiro amplitude in AdS.

• Quantum gravity: It has often been advocated that via AdS/CFT one can gain insight into quantum gravity from the
dual CFT. Holographic correlators provide a concrete way to exploit this duality, and computing loops in AdS allows
us to access the quantum regime of gravity. However, it is not fully clear what precise lessons we can learn from
studying holographic correlators. It would be very interesting to have a sharp answer to this question.

14. Further reading

In order to keep the discussion manageable, and also as a result of our limited competence in this vast and rapidly
evolving subject, we have focused on only a few selected topics in this review and left out many exciting research
directions. In this concluding section, we give a brief discussion on further reading material on related topics.

• Modular bootstrap: Despite the early success of the classification program of rational CFTs, progress in learning about
the general landscape of 2d conformal field theories is extremely hard to make. However, nontrivial constraints can
be extracted from the modular invariance of the torus partition function. The invariance condition allows one to
derive rigorous bounds on the CFT spectrum, much like the bootstrap equation for four-point functions. This is the
‘‘modular bootstrap’’ program pioneered [274] by Hellerman and pursued by many others [275–294]. The application
of this program goes beyond delineating the allowed region of consistent 2d CFTs. Via the AdS/CFT correspondence,
modular bootstrap bounds allow us to address the fundamental question whether ‘‘pure’’ AdS gravity exists as a
consistent quantum theory. Moreover, there also exists a precise connection between the modular bootstrap and
the sphere packing problem in Euclidean geometry [295].

53 See also [260] for a complementary discussion on related topics.
54 See [261,262] for early progress in this direction.
55 For example, it would be useful to generalize the spinning Mellin formalism [112] to include arbitrarily many spinning operators. Other promising
options include the AdS spinor-helicity formalism [263–267] and weight-shifting operators [266,268,269].
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• Axiomatic CFT : While it is commonly accepted that in Euclidean signature, CFT correlators satisfy well-defined rules,
the status of their Lorentzian counterpart is less clear. This question has been explored in great detail recently
in [296]. The main finding is that QFT axioms like the Osterwalder–Schrader and Wightman axioms follow from
the Euclidean CFT axioms which rely on unitarity, reality constraints and convergence of the OPE. In particular,
an independent derivation of the Wightman axioms for CFTs from the Euclidean axioms was provided. While the
results we have included in this review, which rely on lightcone bootstrap are correct as they find support using
numerical bootstrap, it will be worthwhile to establish these results in a mathematically rigorous manner building
on the theorems of [296,297].

• S-matrix bootstrap: The success of the numerical methods exploring the conformal bootstrap has spurred a new
research direction in the numerical studies of the S-matrix bootstrap [298–303]. The directions that have been
explored include trying to constrain the space of pion S-matrices using unitarity and crossing symmetry. It is not
clear so far, what selection rules need to be imposed to zoom in on the QCD answer. Analytic progress in this regard
is still in its infancy. It will be fascinating to see if the analytic methods in the conformal bootstrap have a role
to play in the S-matrix bootstrap endeavor as well. In fact, we expect cross-fertilization between ideas in the two
programs. As an example, certain positivity properties of Gegenbauer polynomials are very well studied and play
a crucial role in the S-matrix bootstrap program. The analogous properties for the Mack polynomials are hard to
establish analytically but can be checked numerically and appear to hold. We expect such interplay to be fruitful for
both programs.

• Bounds on EFTs: In the context of low energy effective field theories, fascinating progress has happened in providing
two-sided bounds on Wilson coefficients [304–306] over the last year or so. The main technical tools used here are
positivity of the partial wave amplitude and crossing symmetry using the fixed-t dispersion relation. Alternatively, as
in [139], one uses a crossing symmetric dispersion relation and demands locality in addition to positivity. Since Mellin
space dispersion relations exist for CFT correlators, in principle, the same study can be carried out for such correlators
and one could try to see for instance, how big the space of allowed theories in the Wilson coefficient space is and
where interesting CFTs like the 3d Ising model sit. Some preliminary studies keeping the AdS/CFT correspondence in
mind have been carried out recently in [307,308]. It will be worthwhile developing these ideas further. For instance,
large spin perturbation theory techniques focus on a universal sector of CFTs. What role does this universal sector
play in the space of Wilson coefficients?

• Cosmological correlators: In this review we mostly discussed applications to AdS physics, in particular in the context
of the AdS/CFT correspondence. However, there is a very interesting line of research to study correlators in dS spaces,
where one can study late time correlators. A promising approach is to use techniques motivated by the bootstrap
philosophy. Here the aim is to explore cosmological correlators from the consistency conditions of the CFT, using
weight shifting operators, the structure of singularities and the Mellin space approach [309–317].

• Large charge expansion: Another arena for analytic studies is the regime of large charge Q in presence of a global
symmetry, where Q is a generic quantum number. This sector is usually not attainable to bootstrap techniques
(for an exception, see [318]). In particular, it is possible to use the power of symmetries (conformal symmetry, and
possibly supersymmetry) to write a large charge expansion systematically [319–325]. This approach complements
the conformal bootstrap techniques, but in spirit it is driven by the same guiding principles. For a review on this
topic, see [326].

• CFT-like theories: The philosophy and techniques of the analytic conformal bootstrap can also be extended to theories
which are CFT-like. An important class of such theories is the theory of logarithmic CFTs. Unlike in the usual CFTs
where two-point functions obey power laws, the two-point functions in logarithmic CFTs contain logarithms which
are caused by reducible but indecomposable representations. These logarithmic CFTs have a vast range of applications
from critical percolations to systems with quenched disorder. For works in this direction, see [327–331]. One can also
consider theories with modified conformal symmetries. Examples include nonrelativistic theories with Schrödinger,
Carrollian and Galilean symmetries [332–342].

• Supersymmetric theories: When we discussed supersymmetric CFTs in this review, we have mostly focused on the
limit where the holographic duals are weakly coupled local theories. For instance, in the canonical example of 4d
N = 4 SYM, such a limit corresponds to large ranks and strong ’t Hooft coupling. However, it is also interesting to go
away from this limit. This can be achieved by combining both analytic and numerical bootstrap techniques, as was
initiated in the seminal works [164,343–345]. The chiral algebra or the topological quantum mechanics structure in
these SCFTs imposes a baby version of the bootstrap which can be solved analytically. The solution is then used as
an input in the full-fledged bootstrap problem to obtain bounds on the operator spectrum and OPE coefficients via
numerics. For research along this direction, see [63,204,345–361].

• Integrability methods for conformal blocks: Conformal blocks are one of the key ingredients when discussing the
conformal bootstrap. In even integer spacetime dimensions and for four external scalar operators they have
been found in a closed form in [88]. In particular, conformal blocks are eigenfunctions of the quadratic Casimir
of the conformal group. More recently, in [362] another interesting way of studying them has been discussed.
The key observation is that the conformal Casimir equation can be mapped into an eigenvalue problem for a
Calogero–Sutherland Hamiltonian, which is integrable. This has been shown to be valid in any number of spacetime
dimensions. This program has been further carried out for spinning external operators [363–365], for blocks in defect

CFTs [64,366], for superconformal blocks [367,368] and for conformal blocks of multi-point correlators [369–372].
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• Conformal colliders bound: In [373] Hofman and Maldacena found universal bounds on scale anomaly coefficients,
which can be read off from correlators of the stress tensors, as a consequence of causality. Similarly, three-point
functions of gravitons have been studied in [374], and the anomaly coefficients have been related to the dimension
of the lightest operator appearing in the OPE. Due to the intrinsic Lorentzian nature of these bounds, an approach
to find and study them is through lightcone approaches applied to four-point correlators and imposing analyticity.
These ideas have been introduced in [375], and other developments in [376–381].

• Other explorations: Let us conclude by listing out a few other interesting areas that we did not cover in this review.
An area that we did not touch upon in detail is the analysis of correlators which involve two heavy and two light
scalar primary operators in d > 2 [382–387] using the so-called ‘‘Conformal Regge Bootstrap’’. In the context of the
AdS/CFT correspondence, one can think of the heavy field as a black hole and the light field as a particle scattering
off the black hole. By analyzing the crossed channel, one can make predictions for the anomalous dimension of a
double-trace operator arising from the combination of a heavy and a light field. This OPE data then can be checked
against the AdS/CFT calculation involving phase shifts in a black hole background. Impressive agreements have been
reported in [382,385]. Another interesting direction is the research related to celestial amplitudes [388–390]. Here,
scattering of massless particles in four dimensions is mapped to the celestial sphere and the information of four
dimensional scattering is encoded in a potentially interesting two dimensional CFT living on the celestial sphere. It
would be interesting to see if analytic bootstrap techniques, such as large spin perturbation theory and dispersion
relations, can play a role in clarifying properties of this 2d CFT.
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ppendix A. Epsilon expansion: Some details

.1. Conventions

In Section 9, we use

N∆,ℓ =
2ℓ(∆+ ℓ− 1)Γ 2(∆+ ℓ− 1)Γ (∆− h + 1)

Γ (∆− 1)Γ 4
(
∆+ℓ
2

)
Γ 2
(
∆φ −

∆−ℓ
2

)
Γ 2
(
∆φ −

2h−∆−ℓ
2

) ,
R(k)
∆,ℓ =

Γ 2
(
∆+ℓ
2 +∆φ − h

) (
1 +

∆−ℓ
2 −∆φ

)2
k

k!Γ (∆− h + 1 + k)
.

(A.1)

otice that N∆,ℓ has zeros when ∆ = 2∆φ + 2n + ℓ, i.e., the GFF values. Finding a general form for conformal blocks in
Mellin space is a formidable challenge, see e.g. [83,391]. A suitable form for the Mack polynomial that we will use can be
found in [135,137]

P∆,ℓ(s1, s2) =

ℓ∑
m=0

ℓ−m∑
n=0

µ(∆,ℓ)
n,m

(
∆− ℓ

2
− s1 −

2∆φ
3

)
m

(
∆φ

3
− s2

)
n
, (A.2)

here

µ(∆,ℓ)
n,m =

2−ℓℓ!(−1)m+n(h + ℓ− 1)−m
(
τ̄
2 − m

)
m (τ̄ − 1)n−ℓ

(
τ
2 + n

)
ℓ−n

(
τ
2 + m + n
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ℓ−m−n

m!n!(ℓ− m − n)!

× 4F3

(
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τ
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− m,

τ
+ n,−2h + τ + 2; 1

)
.

(A.3)
2 2 2 2
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ere τ = ∆−ℓ, τ̄ = ∆+ℓ and (a)b ≡ Γ (a+b)/Γ (a) is the Pochhammer symbol. We will further use the following ‘‘very
ell poised’’ 7F6 hypergeometric function which shows up in our calculations.

W (a; b, c, d, e, f ) ≡

7F6

(
a, 1 +

1
2a, b, c, d, e, f

1
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=
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2π i
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−i∞
dσ
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.

ere we have aℓ = 1 −∆φ + (∆− ℓ)/2 and

a = ℓ′
+ 2(aℓ + m + s1 +

2∆φ
3

− 1) , b = e = aℓ + m,

c = d = aℓ + m + s1 +
2∆φ
3

− 1 , f = 2(s1 −
∆φ

3
) + h + m + ℓ′

− ℓ . (A.4)

For the above expression to be finite, we need 4a − 2(b + c + d + e + f − 2) > 0. When this is not satisfied, we need
to analytically continue the expression (for instance in the epsilon expansion for non-zero spins in the t-channel, this
condition is not respected for m = ℓ).

A.2. Lengthy formulas
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]
, (A.5)

s the contribution from the identity operator which we have added by hand. Here, we have
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he crossed-channel expression is given by:
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2 −∆φ . Remarkably, this admits a closed form expression in terms of 7F6 hypergeometric functions.
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he parameters a, b, c etc. are given in Eq. (A.4) and the W̃ is the regularized version of a special (‘‘very well poised") 7F6
hypergeometric function as defined in Eq. (A.4). For ℓ > ℓ′ there are a finite set of terms that need to be added to the
above expression [116]. We will use Eq. (A.8) for performing calculations.

Appendix B. Bosonic components of 1
2 -BPS multiplets

In this appendix, we give more details of the 1
2 -BPS multiplets which correspond to supergravity and supersymmetric

auge theory fields in AdS. We only keep the relevant bosonic fields which can appear in four-point functions. But the
ultiplets themselves contain more components. For a comprehensive discussion on superconformal multiplets in various
pacetime dimensions and the complete set of superconformal descendants, see [159]. The tables below for the bosonic
omponents are reproduced from [172,179], and we now explain these tables.
The cases with sixteen Poincaré supercharges (maximally superconformal)

Component field sp Ap,µ ϕp,µν Cp,µ tp rp
Lorentz spin ℓ 0 1 2 1 0 0
Conformal dimension ∆ ϵp ϵp + 1 ϵp + 2 ϵp + 3 ϵp + 4 ϵp + 2
d1 p p − 2 p − 2 p − 4 p − 4 p − 4
d2 0 2 0 2 0 4

For supergravity theories with maximal superconformal symmetry, the supergravity fields are all organized into such
1
2 -BPS multiplets. The parameter ϵ =

d−2
2 takes value 1

2 , 1, 2, corresponding to the three maximal superconformal cases.
The multiplets are labeled by an integer p which corresponds to the Kaluza–Klein level with p = 2, 3, . . .. The lowest
value p = 2 corresponds to the stress tensor multiplet, and the massless graviton field ϕ2,µν is dual to the stress tensor.
In the table, the quantum numbers d1, d2 are associated with the R-symmetry representation of the component fields.
They parameterize the Dynkin labels of the R-symmetry groups as follows

SO(5) : [d1, d2], SU(4) : [
d2
2 , d1,

d2
2 ], SO(8) : [d1,

d2
2 , 0, 0]. (B.1)

Note that for p < 4, some of the d1 values in the table are negative. In this case the corresponding components are absent
from the multiplet. Therefore, a generic multiplet with p ≥ 4 contains six bosonic fields which can be exchanged in the
four-point function. For p = 2, 3 the multiplets are extra-short and contain only three such fields.

The cases with eight Poincaré supercharges

Component field sIp AI
p,µ r Ip

Lorentz spin ℓ 0 1 0
Conformal dimension ∆ ϵp ϵp + 1 ϵp + 2
SU(2)R spin jR p

2
p
2 − 1 p

2 − 2
SU(2)L spin jL p−2

2
p−2
2

p−2
2

The cases with eight Poincaré supercharges are relevant for our discussion of super gluons on AdSd+1 × S3, and all
super gluon fields as well as their superconformal descendants reside in the 1

2 -BPS multiplets. Multiplets with different
aluza–Klein levels are labeled by the integer p = 2, 3, . . .. The lowest value p = 2 corresponds to the flavor current

multiplet. As in the maximally superconformal cases, fields with negative SU(2) quantum numbers are absent.

Appendix C. Properties of witten diagrams

In this appendix we review several properties of tree-level Witten diagrams which are useful in applications to
holographic correlators and in various analytic conformal bootstrap methods. In Appendix C.1, we focus on the contact
Witten diagrams, i.e., the D-functions. In Appendix C.2, we review vertex identities obtained from integrating out an
internal bulk-to-bulk propagator. These identities express integrated cubic vertices with a bulk-to-bulk propagator to
contact vertices with only bulk-to-boundary propagators, and are useful for computing higher-point exchange diagrams.
In Appendix C.3, we review how the boundary two-particle Casimir equation translates to the equation of motion identity
in the bulk, which relates exchange Witten diagrams and contact Witten diagrams. We also discuss several applications of
this identity. In Appendix C.2 we discuss recursion relations satisfied by Witten diagrams, and demonstrate some general
properties in a few explicit examples.
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.1. D-functions

The D-functions are a class of special functions defined as

D∆1...∆n (xi) =

∫
ddz⃗dz0
zd+1
0

n∏
i=1

G∆i
B∂ (z, xi), G∆i

B∂ (z, xi) =

(
z0

z20 + (z⃗ − x⃗i)2

)∆i

, (C.1)

which are n-point contact Witten diagrams in AdSd+1 with no derivatives. Contact diagrams with derivatives can also be
expressed as D-functions with shifted weights by using the identity

∇
µG∆1

B∂ ∇µG
∆2
B∂ = ∆1∆2(G

∆1
B∂ G

∆2
B∂ − 2x212G

∆1+1
B∂ G∆2+1

B∂ ). (C.2)

It is convenient to write the D-functions as functions of cross ratios by extracting a kinematic factor. For n = 4, one
defines the D̄-functions as∏4

i=1 Γ (∆i)
Γ ( 12Σ∆ −

1
2d)

2

π
d
2
D∆1∆2∆3∆4 (xi) =

(x214)
1
2Σ∆−∆1−∆4 (x234)

1
2Σ∆−∆3−∆4

(x213)
1
2Σ∆−∆4 (x224)∆2

D̄∆1∆2∆3∆4 (U, V ) , (C.3)

where Σ∆ =
∑n

i=1∆i.
We can also represent the D-functions using the Feynman parameter representation

D∆1...∆n (xi) =
π

d
2Γ ( 12Σ∆ −

1
2d)Γ ( 12Σ∆)

2
∏

i Γ (∆i)

∫ ∏
j

dα
αj
α
∆j
j

δ(
∑

j αj − 1)

(
∑

k<l αkαlx2kl)
1
2Σ∆

. (C.4)

From this representation, it is clear that we have the following derivative relations relating D-functions with different
weights

D∆1...∆i+1...∆j+1...∆n (xi) =
d −Σ∆

2∆i∆j

∂

∂x2ij
D∆1...∆n (xi). (C.5)

For n = 4, we can further rewrite the relations in terms of D̄-functions and derivatives of U and V

D̄∆1+1,∆2+1,∆3,∆4 = − ∂U D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2,∆3+1,∆4+1 = (∆3 +∆4 −
1
2Σ∆ − U∂U )D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2+1,∆3+1,∆4 = − ∂V D̄∆1,∆2,∆3,∆4 ,

D̄∆1+1,∆2,∆3,∆4+1 = (∆1 +∆4 −
1
2Σ∆ − V∂V )D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2+1,∆3,∆4+1 = (∆2 + U∂U + V∂V )D̄∆1,∆2,∆3,∆4 ,

D̄∆1+1,∆2,∆3+1,∆4 = ( 12Σ∆ −∆4 + U∂U + V∂V )D̄∆1,∆2,∆3,∆4 .

(C.6)

nother set of useful identities arise from the invariance of (C.1) under permutations of operators. This gives the identities

D̄∆1∆2∆3∆4 (U, V ) =V−∆2 D̄∆1∆2∆4∆3 (U/V , 1/V )

=V∆4−
1
2Σ∆ D̄∆2∆1∆3∆4 (U/V , 1/V )

=D̄∆3∆2∆1∆4 (V ,U)

=V∆1+∆4−
1
2Σ∆ D̄∆2∆1∆4∆3 (U, V )

=U∆3+∆4−
1
2Σ∆ D̄∆4∆3∆2∆1 (U, V ).

(C.7)

There are other identities of D̄-functions which are not used in this review, but can be found in, e.g., Appendix D of [154].
Let us now focus on two special D-functions which played important roles in the position space computation of

holographic correlators. The first case is n = 4 and ∆i = 1. The D̄-function is the well known scalar one-loop box integral
in four dimensions, and evaluates to [171]

D̄1111 ≡ Φ(z, z̄) =
1

z − z̄

(
2Li2(z) − 2Li2(z̄) + log(zz̄) log

(1 − z
1 − z̄

))
. (C.8)

rom this expression, we find the following differential recursion relations

∂zΦ(z, z̄) = −
Φ(z, z̄)
z − z̄

+
logU

(z − 1)(z − z̄)
−

log V
z(z − z̄)

,

∂z̄Φ(z, z̄) =
Φ(z, z̄)

−
logU

+
log V

.

(C.9)
z − z̄ (z̄ − 1)(z − z̄) z̄(z − z̄)
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Fig. 29. Integrated vertex identities. On the LHS we have a cubic vertex connecting two scalar bulk-to-boundary propagators and one bulk-to-bulk
ropagator of dimension ∆ and spin ℓ. The bulk point z is integrated over. When ∆1 + ∆2 − ∆+ ℓ ∈ 2Z+ , the integral can be written as a finite
um of contact vertices as on the RHS.

hese relations imply that any D̄-function obtained from D̄1111 by using the ‘‘weight-shifting’’ operators in (C.6) can be
written as a linear combination of the basis functions Φ(z, z̄), logU , log V and 1, with rational coefficients in z and z̄. This
property was critical for the position space method reviewed in Section 10.2.

Another important case is n = 5 with ∆1 = ∆2 = ∆3 = ∆4 = 1 and ∆5 = 2, which is relevant for the
computation of five-point functions in AdS5 × S5. This D-function can also be evaluated in terms of the scalar one-loop
box integral [174,175]

D11112 =
4π2

x214x
2
35x

2
25

5∑
i=1

ηi5Φ
(i)

N5
. (C.10)

Here N5 and ηi5 are defined via a matrix ρ

ρ = N5η
−1, N5 = 24 det ρ, (C.11)

where

ρ =

⎛⎜⎜⎜⎝
0 V4 1 1 V3
V4 0 V5 1 1
1 V5 0 V1 1
1 1 V1 0 V2
V3 1 1 V2 0

⎞⎟⎟⎟⎠ , (C.12)

with

V1 =
x225x

2
34

x224x
2
35
, V2 =

x231x
2
45

x235x
2
14
, V3 =

x224x
2
15

x214x
2
25
, V4 =

x212x
2
35

x225x
2
13
, V5 =

x214x
2
23

x213x
2
24
. (C.13)

The function Φ(i) is the scalar one-loop box diagram where the point i is omitted from the set of five. For example, we
have

Φ (5)
= Φ(z, z̄)

⏐⏐(1−z)(1−z̄)=V5
zz̄=V1V4

. (C.14)

Starting from (C.10) one can then use the relation (C.5) and the differential recursion relations of the box function (C.9)
to compute more complicated five-point D-functions.

C.2. Integrated vertex identities

It was shown in [118] that when the external and internal quantum numbers satisfy certain relations, the internal
bulk-to-bulk propagator can be integrated out and the four-point exchange Witten diagram can be written as a finite
sum of D-functions. However, this truncation into finitely many D-functions relies only on half of the diagram, i.e., the
integral on the LHS of Fig. 29. We can extract from the results of [118] identities for the integrated cubic vertex which
express them as a sum of contact vertices as illustrated in Fig. 29. These integrated vertex identities are very useful for
computing higher-point exchange Witten diagrams. For illustration, we will explain in detail how truncation happens for
the scalar case and extract the corresponding vertex identity. The cases with spinning internal propagators are similar,
and we will only record the results.

In the scalar case, we consider the integral

A(x1, x2, w) =

∫
dd+1z

d+1 G∆1
B∂ (z, x1)G

∆2
B∂ (z, x2)G

∆
BB(z, w). (C.15)
z0
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he scalar bulk-to-bulk propagator is explicitly given by

G∆BB = C̃∆(2u−1)∆2F1
(
∆,∆−

d
2

+
1
2
; 2∆− d + 1; −2u−1), (C.16)

where

C̃∆ =
Γ (∆)Γ (∆−

d
2 +

1
2 )

(4π )
d+1
2 Γ (2∆− d + 1)

, (C.17)

and

u =
(z − w)2

2z0w0
. (C.18)

It satisfies the equation of motion identity

(−□ + m2)G∆BB(u) = δ(z, w), (C.19)

where m2
= ∆(∆− d). To evaluate the integral (C.15), it is convenient to first simplify it by performing a translation

x1 → 0, x2 → x21 = x2 − x1, (C.20)

and then a conformal inversion

x′

21 =
x21

|x21|2
, z ′

=
z
z2
, w′

=
w

w2 . (C.21)

he integral becomes

A(x1, x2, w) = (x12)−2∆2 I(w′
− x′

12), (C.22)

where

I(w) =

∫
dd+1z
zd+1
0

G∆BB(u)z
∆1
0

( z0
z2

)∆2
. (C.23)

The scaling behavior of I(w) under w → λw and Poincaré invariance dictate that I(w) must take the form

I(w) = w
∆1−∆2
0 f (t), (C.24)

with t defined by

t =
w2

0

w2 . (C.25)

On the other hand, we can act on I(w) with the operator (−□+m2) and use the equation of motion (C.19). This operator
collapses the bulk-to-bulk propagator to a delta function, and leads to the following differential equation for f (t)

4t2(t − 1)f ′′
+ 4t((∆12 + 1)t −∆12 +

d
2

− 1)f ′
+ (∆12(d −∆12) + m2)f = t∆2 , (C.26)

where ∆12 = ∆1 −∆2. This differential equation is further accompanied by two boundary conditions

1. The function f (t) is smooth as t → 1. This can be seen from the fact that I(w) is regular at w⃗ = 0.
2. The function f (t) ∼ t

∆−∆12
2 as t → 0. We can see this from the w0 → 0 limit of I(w) where it behaves as I(w) ∼ w∆0 .

Remarkably, the differential equation has a polynomial solution when a certain relation is obeyed by ∆1, ∆2 and ∆.
ssuming that f (t) has the representation

f (t) =

∑
k

aktk, (C.27)

e find the following recursion relation for ak from the differential equation

ak−1 =
(k −

∆
2 +

∆12
2 )(k −

d
2 +

∆
2 +

∆12
2 )

(k − 1)(k − 1 +∆12)
ak. (C.28)

We can consistently set ak = 0 when k ≥ ∆2 so that the maximal value of k is kmax = ∆2 − 1 and its coefficient is

a∆2−1 =
1

4(∆1 − 1)(∆2 − 1)
. (C.29)

Note that when ∆1 +∆2 −∆ is a positive even integer, the series f (t) truncates at a minimal value kmin =
1
2 (∆−∆12).

t is easy to check that the polynomial solution satisfies both boundary conditions. We can now undo the inversion and
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ranslation and write the solution for A(x1, x2, w) as

A(x1, x2, w) =

kmax∑
k=kmin

ak (x212)
k−∆2 Gk+∆1−∆2

B∂ (w, x1)Gk
B∂ (w, x2). (C.30)

This is the integrated vertex identity for an internal scalar bulk-to-bulk propagator.
With some extra work, one can similarly obtain the integrated vertex identities for vector fields and gravitons. We give

the answer below, which is taken from [173]. For simplicity, we will consider the case where the two external weights
are equal ∆1 = ∆2 = ∆ext.

We first look at the case of exchanging a vector field with dimension ∆. When ∆ = d−1, the vector field is a massless
auge field. But we will not restrict ∆ to this special value. We consider the coupling of the vector field to a conserved
urrent

Aµ(x1, x2, w) ≡

∫
dd+1z
zd+1
0

(
G∆ext
B∂ (z, x1)

↔

∇νG
∆ext
B∂ (z, x2)

)
G∆,1,µνBB (z, w), (C.31)

where G∆,1,µνBB (z, y) is the vector bulk-to-bulk propagator. This integral can be evaluated as a sum of contact vertices

Aµ(x1, x2, w) = −

kmax∑
k=kmin

ak
2k

(x212)
−∆ext+kgµν(w)

(
Gk
B∂ (w, x1)

↔

∇νGk
B∂ (w, x2)

)
, (C.32)

here

kmin =
d − 2
4

+
1
4

√
(d − 2)2 + 4(∆− 1)(∆− d + 1),

kmax = ∆ext − 1,

ak−1 =
2k(2k + 2 − d) − (∆− 1)(∆− d + 1)

4(k − 1)k
ak,

a∆ext−1 =
1

2(∆ext − 1)
.

(C.33)

Truncation requires that kmax − kmin is a non-negative integer.
Now we consider the case of gravitons which have dimension d. The cubic integral is given by

Aµν(x1, x2, w) =

∫
dd+1z
zd+1
0

G∆=d,ℓ=2, µν;ρσ
BB (z, w)×

(
∇ρG

∆ext
B∂ (z, x1)∇σG

∆ext
B∂ (z, x2)

−
1
2
gρσ (z)(∇κG∆ext

B∂ (z, x1)∇κG
∆ext
B∂ (z, x2) + m2G∆ext

B∂ (z, x1)G
∆ext
B∂ (z, x2))

)
.

(C.34)

Using the result of [118], we find that this integral reduces to the following sum of contact vertices

Aµν(x1, x2, w) =

kmax∑
k=kmin

ak(x212)
−∆ext+k

(
gµν(y)
d − 1

Gk
B∂ (w, x1)G

k
B∂ (w, x2)

+
1

k(k + 1)

(
∇
µ
∇
νGk

B∂ (w, x1) + kgµν(w)Gk
B∂ (w, x1)

)
Gk
B∂ (w, x2)

)
,

(C.35)

where

kmin =
d
2

− 1,

kmax = ∆ext − 1,

ak−1 =
k + 1 −

d
2

k − 1
ak,

a∆ext−1 = −
∆ext

2(∆ext − 1)
.

(C.36)

Note that in deriving the integrated cubic vertex Aµν , we have assumed that the rest part of the exchange diagram (or a
sum of diagrams) is a conserved current.
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.3. Equation of motion identities

Let us start by considering the scalar exchange Witten diagram defined by the integral

W∆,0 =

∫
dd+1z
zd+1
0

dd+1w

wd+1
0

G∆1
B∂ (z, x1)G

∆2
B∂ (z, x2)G

∆
BB(z, w)G∆3

B∂ (w, x3)G
∆4
B∂ (w, x4), (C.37)

which can be written as

W∆,0 =

∫
dd+1w

wd+1
0

A(x1, x2, w)G∆3
B∂ (w, x3)G

∆4
B∂ (w, x4), (C.38)

using A(x1, x2, w) defined in (C.15). Note that A(x1, x2, w) is conformally invariant. Therefore, we have

(LAB1 + LAB2 + LAB
w )A(x1, x2, w) = 0, (C.39)

where LAB1,2 = −LBA1,2, A, B = 0, 1, . . . , d + 1 are the conformal generators acting on x1 and x2, and LAB
w is the isometry

generator of AdSd+1. From this identity we get

Cas ◦ A(x1, x2, w) = −
1
2
LAB
w Lw,ABA(x1, x2, w) = □wA(x1, x2, w), (C.40)

where Cas = −
1
2 (L

AB
1 + LAB2 )(L1,AB + L2,AB) is the two-particle quadratic conformal Casimir with respect to points 1 and 2.

sing the equation of motion of the bulk-to-bulk propagator (C.19), we find(
Cas −∆(∆− d)

)
A(x1, x2, w) = G∆1

B∂ (w, x1)G
∆2
B∂ (w, x2). (C.41)

Inserting it into (C.37), we arrive at(
Cas −∆(∆− d)

)
W∆,0 = D∆1∆2∆3∆4 , (C.42)

which shows the action of the Casimir operator turns an exchange Witten diagram into a contact Witten diagram. The
above derivation can be extended to spinning particle exchange diagrams. In general, for an exchange Witten diagram
exchanging a particle of dimension ∆ and spin ℓ we have(

Cas − C∆,ℓ
)
W∆,ℓ = Wcon, (C.43)

where C∆,ℓ is the Casimir eigenvalue

C∆,ℓ = ∆(∆− d) + ℓ(ℓ+ d − 2), (C.44)

and Wcon is a finite collection of contact diagrams containing no more than 2ℓ− 2 derivatives and depends on the cubic
vertices.

The equation of motion identity (C.43) of exchange Witten diagrams has many uses. For example, one can use it to
obtain the Mellin amplitudes of exchange Witten diagrams [106]. Extracting a kinematic factor, we can write W∆,ℓ in
terms of cross ratios

W∆,ℓ =
1

(x212)
∆1+∆2

2 (x234)
∆3+∆4

2

(
x214
x224

)a (x214
x213

)b

W∆,ℓ(U, V ), (C.45)

ith a =
1
2 (∆2 −∆1), b =

1
2 (∆3 −∆4). The Casimir operator acts on W∆,ℓ(U, V ) as

Cas =2(V−1
− UV−1

− 1)V
∂

∂V

(
V
∂

∂V
+ a + b

)
+ U

∂

∂U

(
2U

∂

∂U
− d

)
− 2(1 + U − V )

(
U
∂

∂U
+ V

∂

∂V
+ a

)(
U
∂

∂U
+ V

∂

∂V
+ b

)
,

(C.46)

hich is easy to interpret as a difference equation in the Mellin representation

W∆,ℓ =

∫ i∞

−i∞

dsdt
(4π i)2

U
s
2 V

t
2 −

∆2+∆3
2 M∆,ℓ(s, t)Γ (∆1+∆2−s

2 )Γ (∆3+∆4−s
2 )

× Γ (∆1+∆4−t
2 )Γ (∆2+∆3−t

2 )Γ (∆1+∆3−u
2 )Γ (∆2+∆4−u

2 ),
(C.47)

by using the following replacement

U
∂

∂U
→

s
2
×, V

∂

∂V
→

(
t
2

−
∆2 +∆3

2

)
×,

UmV n
→ Dmn,

Dmn ◦ f (s, t) = f (s − 2 m, t − 2n)
(
∆1+∆2−s

2

)
m

(
∆3+∆4−s

2

)
m

(
∆1+∆4−t

2

)
n(

∆2+∆3−t ) ( s+t−∆1+∆3
) ( s+t−∆2+∆4

)
(C.48)
× 2 n 2 −m−n 2 −m−n .
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ecall that the Mellin amplitude of an exchange diagram has the form56

M∆,ℓ(s, t) =

∞∑
m=0

Qℓ,m(u)
s − (∆− ℓ) − 2m

, (C.49)

here Qℓ,m(u) is a degree-ℓ polynomial of u. We can fix Qℓ,0(u) by first taking the residue for s at s = ∆ − ℓ and
then requiring the t integral to produce the collinear conformal block with dimension ∆ and spin ℓ. Then the difference
equation following from (C.43) allows us to recursively obtain all Qℓ,m(u) with m > 0 from Qℓ,0(u).

As another application, let us prove that the difference of two exchange Witten diagrams with opposite quantizations
i.e., with conformal dimension ∆ versus d −∆) is proportional to the conformal partial wave

W∆,ℓ − Wd−∆,ℓ ∝ Ψ∆,ℓ. (C.50)

he conformal partial wave Ψ∆,ℓ is defined to be the linear combination of a conformal block and its shadow such that it
is single-valued in Euclidean space (i.e., when z̄ = z∗).57 To prove this relation, we act on the combination W∆,ℓ−Wd−∆,ℓ
with the operator (Cas − C∆,ℓ). The contact term on the RHS of (C.43) does not distinguish the two quantizations, and
therefore(

Cas − C∆,ℓ
)
(W∆,ℓ − Wd−∆,ℓ) = 0. (C.51)

This equation tells us that the double-trace conformal blocks in each exchange Witten diagram have been precisely
canceled, and the difference is a linear combination of the single-trace conformal blocks with dimensions ∆ and d−∆. On
the other hand, single-valuedness is obvious. It follows from the fact that each exchange Witten diagram is single-valued.

Finally, let us mention that the equation of motion identity also implies efficient recursion relations that can be used
to obtain the crossed channel conformal block decomposition coefficients of exchange Witten diagrams or conformal
partial waves. The latter is related to the crossing kernel (also known as the 6j symbol) of the conformal group. The idea
is that the equation of motion turns an exchange Witten diagram into contact Witten diagrams (or a conformal partial
wave into zero) which can be easily decomposed into conformal blocks in the crossed channel. On the other hand, the
conformal Casimir operator acts nicely on crossed channel conformal blocks, and its action can be expressed as a linear
combination of finitely many conformal blocks with shifted dimensions and spins. This gives rise to relations among the
crossed channel conformal block decomposition coefficients which can be recursively solved. We refer the reader to [392]
for details of this recursive approach. For other approaches to this problem, see [113,393–395].

C.4. Recursion relations

It is well known that conformal blocks satisfy various intricate recursion relations (see, e.g., [83,89]). These recursion
relations are very useful for studying the properties of conformal blocks and for performing conformal block decomposi-
tion for conformal correlators. Exchange Witten diagrams are intuitively very similar to conformal blocks. They contain
a single-trace conformal block which is associated with the exchange of a particle in AdS. But at the same time they
also contain infinitely many double-trace conformal blocks which are two-particle states. Because of the infinitely many
conformal blocks involved, at first sight it seems rather unlikely that similar recursion relations can exist for Witten
diagrams. However, it was pointed out in [200] that their existence is always guaranteed. There is an intimate connection
between the recursion relations of conformal blocks and Witten diagrams, and one can easily generate Witten diagram
recursion relations from known recursion relations of conformal blocks.

Let us demonstrate this correspondence in the simplest situation where the conformal block recursion relations have
the form of a linear combination of conformal blocks with constant coefficients. The prime examples in this category
are the dimensional reduction formulae. It was found in [396] that a d-dimensional conformal block can be expressed in
terms of infinitely many (d − 1)-dimensional ones

g (d)
∆,ℓ =

∞∑
n=0

∑
j

An,j g
(d−1)
∆+2n,j, j = ℓ, ℓ− 2, . . . , ℓ mod 2. (C.52)

On the other hand, for conformal blocks in d and d − 2 dimensions it is possible to find a relation with finitely many
terms [199]

g (d−2)
∆,ℓ = g (d)

∆,ℓ + c2,0g
(d)
∆+2,ℓ + c1,−1g

(d)
∆+1,ℓ−1 + c0,−2g

(d)
∆,ℓ−2 + c2,−2g

(d)
∆+2,ℓ−2. (C.53)

Here An,j and ci,j are numerical constants whose explicit expressions are not important for our discussion and can be
found in [199,396]. To obtain recursion relations for Witten diagrams from these identities, a simple prescription was
pointed out in [200]. One just needs to replace the conformal blocks g (D)

∆,ℓ by the corresponding AdSD+1 exchange Witten

56 Here we focus on the polar part of the amplitude and have chosen a specific regular term. Note also that such Mellin amplitudes have improved
u-channel Regge behavior 1/s.
57 Note that each conformal block is not single-valued.
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c
i
c

iagrams W AdSD+1
∆,ℓ which contain g (D)

∆,ℓ as the single-trace conformal block.58 Note that for spin ℓ ≥ 1, one has multiple
hoices for the contact terms in the exchange diagrams. Therefore, one further needs to choose appropriate contact terms
n order for the identities to hold. But such choices turn out to always exist as we shall see. Let us first write down the
orresponding Witten diagram relations following from the above prescription

W AdSd+1
∆,ℓ =

∞∑
n=0

∑
j

An,j W
AdSd
∆+2n,j, j = ℓ, ℓ− 2, . . . , ℓ mod 2, (C.54)

W AdSd−1
∆,ℓ = W AdSd+1

∆,ℓ + c2,0W
AdSd+1
∆+2,ℓ + c1,−1W

AdSd+1
∆+1,ℓ−1 + c0,−2W

AdSd+1
∆,ℓ−2 + c2,−2W

AdSd+1
∆+2,ℓ−2, (C.55)

where we have left the choice of the contact terms implicit. Note that identities of the second kind are responsible for
the Parisi–Sourlas dimensional reduction structure found in the super graviton and super gluon correlators (with ℓ = 0),
as we mentioned in Sections 11.3 and 11.4. To understand why this simple prescription works and also to see how to
choose the contact terms, it is most convenient to go to the Mellin space. We recall that the Mellin amplitude of an
exchange Witten diagram is a sum over simple poles plus a polynomial regular term. On the other hand, under conformal
block decomposition, an exchange Witten diagram contains a single-trace conformal block and infinitely many double-
trace conformal blocks. The single-trace conformal block is determined by the singular terms, and is produced when
we take the residues at these simple poles. By contrast, the double-trace conformal blocks in the Witten diagram are
produced when we take residues at the poles of the Gamma function factor. Note that crucially there is no freedom left
to change the double-trace conformal blocks once the Mellin amplitude is determined. With this observation, it is easy
to see why this prescription gives the correct answer. The original conformal block recursion relation, which yields the
equality of the single-trace conformal blocks, guarantees that the singular part of the Mellin amplitudes are the same on
both sides. The remaining task is to match the polynomial terms, which are the sums of the contact terms in the exchange
Witten diagrams. Since each spin-ℓ exchange Witten diagram can accommodate a contact term which is a degree-(ℓ− 1)
polynomial, clearly this is always possible.

In Mellin space the existence of these Witten diagram relations is almost obvious following the above reasoning.
However, from the position space perspective such identities are rather remarkable, as they require intricate cancellations
of infinitely many double-trace conformal blocks. One can also take these Witten diagram identities and decompose them
in the crossed channel. These identities then give rise to highly nontrivial relations which constrain the crossed channel
conformal block decomposition coefficients of exchange Witten diagrams.

In the above, we have only discussed the simplest scenario. More generally, conformal block relations may have cross
ratio dependence in their linear combination coefficients. Such relations also induce Witten diagram relations although
sometimes additional correction terms are needed. The simplest example in this class is the Casimir equation for conformal
blocks(

Cas − C∆,ℓ
)
g∆,ℓ = 0. (C.56)

It is mapped to the equation of motion identity for exchange Witten diagrams encountered in the previous subsection(
Cas − C∆,ℓ

)
W∆,ℓ = Wcon. (C.57)

That we can generate Witten diagram relations from conformal block relations in the more general case is essentially
guaranteed by the same fact as before, namely, the double-trace conformal blocks are fully determined by the Mellin
amplitudes. However, an important difference to note is the extra term on the RHS. This contact term cannot be absorbed
by redefining the contact part in the exchange diagram.59 This represents a general feature when the coefficients of the
conformal blocks are no longer just constants. These cross ratio dependent coefficients translate into difference operators
in Mellin space. Such operators generically shift the simple poles of the Mellin amplitude. But at the same time they
can also generate new poles or multiply the Mellin amplitudes by polynomials. As a result, whenever this happens we
need to add a finite number of extra exchange Witten diagrams or contact Witten diagrams in order to match the Mellin
amplitudes. Many examples of such relations were given in [200] and were verified by explicit computations. However,
they are a bit too technical to be included here and we will not discuss this further. The interested reader can read [200]
for more details.
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