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ABSTRACT

We calculate ab initio the gravitational potential energy per unit area for a gravitationally coupled multi-component galactic disk of
stars and gas, which is given as the integration over vertical density distribution, vertical gravitational force, and vertical distance.
This is based on the method proposed by Camm for a single-component disk, which we extend here for a multi-component disk by
deriving the expression of the energy explicitly at any galactocentric radius R. For a self-consistent distribution, the density and force
are obtained by jointly solving the equation of vertical hydrostatic equilibrium and the Poisson equation. Substituting the numerical
values for the density distribution and force obtained for the coupled system, we find in the derived expression of the energy that
the energy of each component remains unchanged compared to the energy for the corresponding single-component case. We explain
this surprising result by simplifying the above expression for the energy of a component analytically, which turns out to be equal to
the surface density times the squared vertical velocity dispersion of the component. However, the energy required to raise a unit test
mass to a certain height z from the mid-plane is higher in the coupled case. The system is therefore more tightly bound closer to the
mid-plane, and hence it is harder to disturb it due to an external tidal encounter.
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1. Introduction

The vertical structure of the stellar disk in a galaxy has been
studied as a self-gravitating, single-component, isothermal disk
in the literature, where its self-consistent vertical density dis-
tribution is given by a sech2 form (Spitzer 1942). However, a
real galactic disk is a multi-component system of gravitation-
ally coupled stars and interstellar gas (HI and H2) embedded
in the potential of the dark matter halo. The self-consistent
vertical distribution of stars in such a system is determined
by the joint gravitational potential of stars, gas, and the dark
matter halo (Narayan & Jog 2002; Sarkar & Jog 2018), instead
of its self-gravitational force alone. The joint potential of the
system is found to constrain the distribution of stars towards
the mid-plane, and thus increases the mid-plane density value
and decreases the vertical disk thickness (Sarkar & Jog 2018).
In the inner Galaxy, gas plays the dominant role in constrain-
ing the distribution of stars (Sarkar & Jog 2018). Although gas
contains 10–15% of the disk mass (Young & Scoville 1991;
Binney & Merrifield 1998), it forms a thin layer about the mid-
plane due to its low vertical velocity dispersion and therefore can
affect the vertical distribution of stars significantly in the inner
Galaxy. Through gravitational coupling, stars also constrain the
gas distribution in a similar way. Stars, being a much more
massive component, have a stronger effect on gas. Therefore
we expect the vertical distribution of stars and gas to be more
strongly bound in a coupled system than in single-component
cases, and thus it is more robust against perturbations or external
tidal interactions.

In this context, it is interesting to study the gravitational
potential energy of coupled stellar and gas distribution. The
higher the potential energy of the vertical distribution of stars
(gas), the more difficult it should be to distort the disk in exter-

nal tidal encounters. Motivated by the results of the constraining
effect of the joint potential, we expect the potential energy of
a component to be higher in the gravitationally coupled multi-
component system than in its single-component case. With this
aim, we study the potential energy per unit area of the verti-
cal distribution of stars, and gas in the single-component self-
gravitating cases as well as in the coupled, multi-component
system. We consider a gravitationally coupled stars-plus-gas
disk, a two-component system, in the inner Galaxy, and explic-
itly derive the expression for the potential energy per unit area
of the disk, following the method proposed by Camm (1967)
for the single-component case. We study how the energy cor-
responding to each component is affected by the gravitational
coupling between them. Surprisingly, we find that the energy of
each component remains unchanged, and the physical reason for
this is explained in the paper. However, despite this, we found
that stars and gas are more strongly bound to the mid-plane in
the coupled case, and thus are less susceptible to external tidal
distortions. For completeness, we have also studied the poten-
tial energy per unit area of the disk for a three-component case,
that is, for a gravitationally coupled disk of stars and two gas
components.

In the outer Galaxy, on the other hand, the dark matter halo
plays the dominant role in constraining the vertical distribution
of stars and gas significantly (Sarkar & Jog 2018). For simplic-
ity, we did not include the dark matter halo to study the multi-
component system here because the dark matter halo is shown to
have a less significant effect than gas (stars) on the vertical dis-
tribution of stars (gas) in the inner Galaxy (Narayan & Jog 2002;
Sarkar & Jog 2018).

We also note that we ignored the bulge in the inner Galaxy.
Our theoretical model is applied from a galactocentric radius
of 4 kpc onward. The bulge is not a dominant gravitating
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component in the region studied here (Ghosh et al. 2016; Blum
1995).

We show the formulation in Sect. 2, results in Sect. 3, and
give discussion and conclusions in Sects. 4 and 5, respectively.
The formulation of the potential energy, given in Sect. 2, is
general and applicable to any two (three)-component disk, for
instance, for an n-component stellar disk, even though we apply
it to the specific and observationally motivated case of a stars-
plus-gas disk. In other words, the formulation of the energy does
not in any way involve the specific physical nature and properties
of gas, such as dissipation or low dispersion.

2. Formulation of the problem

2.1. Gravitational potential energy of a single-component
isothermal galactic disk

First we discuss the formulation of the gravitational potential
energy of a single component self-gravitating galactic disk that
can be taken to be a stars-alone or a gas-alone disk. For a mass
distribution contained in a finite volume of space, the gravita-
tional force decreases as ∼1/r2 at a large distance and hence
the work done to bring a unit mass from infinity to a certain
finite distance is obtained to be a finite quantity. The gravita-
tional potential energy of the mass distribution in such a case
is defined as the energy released in assembling the finite sys-
tem from an infinitely dispersed state. For a galactic disk, how-
ever, the mass distribution is stratified in plane parallel layers
and is infinite on the x−y plane. The vertical gravitational force
for such a stratified mass distribution remains constant at a value
of −2πGΣ at large z at any galactocentric radius R, Σ being the
surface density of the disk at that R, beyond the vertical extent of
the mass distribution (and within the disk approximation limit).
This results in the energy released in bringing a unit mass from
infinity to a certain finite height to be infinite. Therefore, instead,
the state of complete collapse of the disk mass on the z = 0 plane
is defined here to be the state of the zero potential energy, and
the work required to build the disk from that state is considered
to be the potential energy stored in the disk. For a detailed dis-
cussion of this point and the derivation of Eq. (1) (see below) for
a single-component case, see Camm (1967).

We note that the mass contained in a column of unit cross
section perpendicular to the mid-plane is finite. Therefore the
potential energy of the disk is defined in terms of the energy
contained in a column of unit cross section, that is, as the poten-
tial energy per unit area of the disk. We use the galactocen-
tric cylindrical coordinates (R, φ, z) and consider the disk to be
axisymmetric.

The mathematical expression for the gravitational potential
energy per unit area of a stars-alone disk has been derived in
Camm (1967) as

W = −

∫ +∞

−∞

ρ(z)
dΦ

dz
z dz, (1)

where ρ(z) is the vertical mass density distribution of stars, Φ is
the gravitational potential of the disk, and dΦ/dz is taken to be
the force per unit mass (Kz) due to the self-gravity of the stel-
lar disk, acting along the negative z direction. This represents
the self-gravitational energy per unit area of the disk. A simi-
lar expression was used by Garrido Pestaña & Eckhardt (2010)
and Fridman et al. (1984) to calculate the gravitational potential
energy of a single-component disk, but the expression was not
derived.

The above expression in Camm (1967) was obtained by
using the Poisson equation in the form of d2Φ/dz2 = −4πGρ(z),
where the vertical force was defined as Kz = dΦ/dz, which is
a negative quantity. However, we adopted the standard notation
here that is routinely used in the literature, where the Poisson
equation is given by d2Φ/dz2 = 4πGρ(z) and the vertical force is
defined by Kz = −dΦ/dz,where dΦ/dz is positive. Following the
treatment in Camm (1967), we therefore derive the expression of
the energy as

W =

∫ +∞

−∞

ρ(z)
dΦ

dz
z dz

= −

∫ +∞

−∞

ρ(z)Kzz dz. (2)

A detailed derivation for a multi-component case is given in
Sect. 2.2. The negative sign in front of Eqs. (1) or (2) indicates
that the energy is positive.

We note a few important points here. While deriving Eq. (1),
Camm (1967) used only the z-term in the Poisson equation.
We show that this treatment is justified for a thin galactic
disk. We show that the z-term of the Poisson equation is much
greater than the R-term 1. Thus the density distribution, force,
and energy become only z-dependent quantities. We followed
the same approach while deriving the energy for the multi-
component case in Sect. 2.2. We also note that Camm (1967)
implicitly assumed the disk to have a constant radial surface den-
sity, whereas we considered realistic stellar and gas disks of radi-
ally varying surface density. This does not affect the derivation
of the energy or the application of the model because the calcu-
lation is local. We used the surface density value at any given
radius as a local constraint to obtain ρ(z) at a given R, which was
then used in the expression for the energy, as discussed below
and in Sect. 2.3. Thus the calculation is local, and the energy is
independent of the value of surface density at other radii.

We note that although Eq. (2) is derived in Camm (1967),
using explicitly only the Poisson equation, for a disk in ver-
tical hydrostatic equilibrium, ρ(z) and Kz are related to each
other and have to be obtained by solving the joint hydrostatic
balance-Poisson equation. These solutions are required to obtain
a numerical value for W. We show this set of equations below
for a single-component self-gravitating isothermal disk.

We assume the vertical velocity dispersion (σz) of the com-
ponent to be isothermal along z. The vertical hydrostatic balance
equation for a single-component isothermal self-gravitating disk
is given by

σ2
z

ρ

dρ
dz

= Kz. (3)

1 The R term = (1/R)(2Vc)dVc/dR = 2(B2 − A2) (see e.g.,
Mihalas & Routly 1968), where A and B are Oort’s constants, and Vc is
the rotational velocity. The z term is (4πGρ0 − R term), where ρ0 is the
mid-plane (z=0) density, obtained as ρ0 = Σ/(2zd). Here Σ is the surface
density of a radially exponential stellar disk, and zd is the scale height.
The values of A, B, and zd in the solar neighbourhood (R = 8.5 kpc)
on the mid-plane are taken from Binney & Tremaine (2008; Table 1.2),
and Σ is calculated as in Sect. 2.3.2 in the paper. The R-term and z-
term are found to be −130.56 km2 s−2 kpc−2 and 4204.6 km2 s−2 kpc−2,
respectively. Thus the R-term is 3.1% of the z term and hence is neg-
ligible. A similarly low ratio of R to z term holds true at other radii,
e.g., beyond R = 4 kpc and up to R = 10 kpc. We checked this using the
observed values of Vc, dVc/dR from Eilers et al. (2019), and ρ0 obtained
in the similar way assuming a constant zd with a value as at R = 8.5 kpc.
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The Poisson equation for a single-component galactic disk is
given as

d2Φ

dz2 = 4πGρ(z). (4)

We combine these two equations to obtain the joint hydrostatic
balance-Poisson equation

σ2
z

d
dz

[
1
ρ

dρ
dz

]
= −4πGρ. (5)

The analytical solution of this equation in form of sech2(z/z0)
was obtained by Spitzer (1942). The analytical expressions of
the density distribution and the force are given as

ρ(z) = ρ0 sech2(z/z0); |Kz| = 2
σ2

z

z0
tanh

(
z
z0

)
, (6)

respectively, where z0 =
(
σ2

z/2πGρ0

)1/2
. Using the analyti-

cal form of the solution ρ(z) versus z, we calculate ρ0 (mid-
plane density) and z0 (scale-height) by integrating ρ(z) vs. z,
using the constraint of the observed surface density, defined as
Σ =

∫ +∞

−∞
ρ dz, at a given galactocentric radius R. The extent of

z in the numerical integration is chosen such that the solution
obtained is saturated. The obtained value of z0 in turn is used to
calculate |Kz| up to the same limit of z. Thus using ρ(z) and Kz
we calculate W using Eq. (2), which gives us the saturated value
of the energy.

However, for a gravitationally coupled two-component sys-
tem, the joint hydrostatic balance-Poisson equation has to be
solved numerically to obtain ρ(z) vs. z and |Kz| vs. z. This is
discussed in Sect. 2.3.1.

2.2. Gravitational potential energy of a multi-component
gravitationally coupled isothermal galactic disk

In this section, we explicitly derive the expression of the grav-
itational potential energy per unit area for a realistic model of
galactic disk that is a multi-component system of gravitationally
coupled stars and gas, taken at a given galactocentric radius R.
We consider the disks of stars and gas to be coplanar with the
same mid-plane at z = 0. We consider the disk to be a thin disk
and therefore consider only the z-term in the corresponding Pois-
son equation for the multi-component system (see Sect. 2.1). We
show the detailed derivation for a two-component system, con-
sisting of stars and one gas component, and discuss the same
for a three-component system of stars and two gas components
in Sect. 3.4. The formulation in each case is done following the
same steps as in the treatment for the stars-alone case in Camm
(1967). In the following, the subscripts i = s, g in the quantities
ρ(z), Σ, Φ denote stars and gas, respectively.

We consider the galactic disk to be a gravitationally cou-
pled stars-plus-gas system where the vertical distribution of each
component is determined by the joint gravitational force from
the stars and gas. We take the vertical velocity dispersion of each
of the two components to be isothermal. We assume that initially,
all the mass of the stars-plus-gas system lies on the z = 0 plane,
and the potential energy W of this system is assumed to be zero
based on the same arguments as discussed in Sect. 2.1. Now the
work done per unit area to build a gravitationally coupled stars-
plus-gas disk together, at the same time, is stored as the gravita-
tional potential energy per unit area of the stars-plus-gas disk.

Below we present the detailed derivation of the energy per
unit area of this coupled stars-plus- gas disk following all the
steps used for the stars-alone case in Camm (1967). As stated
earlier in Sect. 2.1, we used d2Φ/dz2 = 4πGρ(z) and Kz =
−dΦ/dz in each step of the derivation, as shown below.

For a gravitationally coupled stars-plus-gas disk, the Poisson
equation is given as

d2Φs

dz2 +
d2Φg

dz2 = 4πG(ρs + ρg)

Or,
d2Φcoupled

dz2 = 4πG(ρs + ρg). (7)

In the first step, we integrate Eq. (7) and derive an expression
for the vertical force of the coupled system to be (after some
algebraic manipulations)

dΦcoupled

dz
= 2πG

∫ z

−∞

(ρs + ρg)dz − 2πG
∫ ∞

z
(ρs + ρg)dz (8)

Kz,coupled = −
dΦcoupled

dz

= 2πG
∫ ∞

z
(ρs + ρg)dz − 2πG

∫ z

−∞

(ρs + ρg)dz. (9)

Now while building up the gravitationally coupled stars-plus-gas
disk from z = 0, at any intermediate step, only a fraction of the
total mass of stars-plus-gas is distributed along z, denoted by the
density distribution of ε(ρs + ρg) in the region z > 0, where ε
lies between 0 and 1. The rest of the mass still lies on the z = 0
plane with the mass per unit area as (Σs + Σg) − ε

∫ ∞
0 (ρs + ρg)dz.

The value of ε at any intermediate step has no specific physical
meaning. It was used only to denote a fraction of the sum of
the final vertical distribution of stars-plus-gas (i.e., (ρs + ρg)), at
an intermediate step. We also note that ε has been taken to be
independent of z in Camm (1967).

At any intermediate step, the force against which the work
is being done is due to the joint stars-plus-gas system at that
step. For any height x(> 0) above the z = 0 plane, the force
(Kfraction,coupled), for such a system can be written as

Kfraction,coupled = 2πG
∫ ∞

x
ε(ρs + ρg)dz − 2πG

∫ x

0
ε(ρs + ρg)dz

− 2πG
(
(Σs + Σg) −

∫ ∞

0
ε(ρs + ρg)dz

)
.

Here the first two terms account for the force from the stars-plus-
gas distribution along z > 0, and the rest of the terms account for
the force due to the rest of the mass lying on the z = 0 plane.
Now, we can write

Kfraction,coupled = 2πG
∫ ∞

x
ε(ρs + ρg)dz − 2πG

∫ x

0
ε(ρs + ρg)dz

− 2πG
(
(Σs + Σg) −

∫ ∞

0
ε(ρs + ρg)dz

)
− 2πG

∫ 0

−∞

ε(ρs + ρg)dz + 2πG
∫ 0

−∞

ε(ρs + ρg)dz

= 2πG
∫ ∞

x
ε(ρs + ρg)dz − 2πG

∫ x

−∞

ε(ρs + ρg)dz

− 2πG(Σs + Σg) + 2πεG(Σs + Σg)

= 2πG
∫ ∞

x
ε(ρs + ρg)dz − 2πG

∫ x

−∞

ε(ρs + ρg)dz

− 2πG(Σs + Σg)(1 − ε).
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The above equation can be rewritten, using Eq. (8), as

Kfraction,coupled = −ε
dΦcoupled

dx
− 2πG(Σs + Σg)(1 − ε). (10)

Now the work done per unit area of the z-plane to raise the den-
sity of stars plus gas between z and z + δz from ε(ρs + ρg) to
(ε+δε)(ρs +ρg) is the work done in raising the mass (ρs +ρg)δεδz
from z = 0 to the chosen z plane, and is given by

−(ρs +ρg)δεδz
∫ z

x=0
−

{
ε

dΦcoupled

dx
+2πG(Σs +Σg)(1−ε)

}
dx. (11)

We now calculate the potential energy per unit area of the two-
component disk of ρs +ρg by integrating the above equation over
ε (from 0 to 1) and z (from −∞ to∞), following the steps shown
in Camm (1967) for the one-component case.

We obtain the expression for the energy as

Wcoupled =

∫ ∞

−∞

z
dΦcoupled

dz
(ρs + ρg) dz. (12)

This is the most important result of this paper. Now the above
equation can be further expressed as

Wcoupled =

∫ ∞

−∞

z
dΦcoupled

dz
ρs dz +

∫ ∞

−∞

z
dΦcoupled

dz
ρg dz

= −

∫ ∞

−∞

zKz,coupled ρs dz −
∫ ∞

−∞

zKz,coupled ρg dz.

Using the symmetry of ρ(z) vs. z about z = 0, this can be written
as

Wcoupled = −2
∫ ∞

0
zKz,coupled ρs dz − 2

∫ ∞

0
zKz,coupled ρg dz, (13)

where the first integration can be considered to represent the
potential energy per unit area of the stellar disk in the coupled
stars-plus-gas system, and the second integration to represent the
potential energy per unit area of the gas disk in the coupled stars-
plus-gas system. In the limit of ρg → 0 or ρs → 0, this goes over
to the one-component case (see Eqs. (2) and (9)). The separa-
tion of energy into the two components, as can be seen from the
above equation, may appear somewhat surprising, but we note
that all the expressions starting from Eq. (9) can be written in
separable form for stars and gas, except that the components are
being built against the same coupled force.

The above formulation can be used for any n-component sys-
tem (e.g., for n > 2). For illustration, we show this for a three-
component disk consisting of stars and two gas components in a
similar fashion as discussed in Sect. 3.4.

2.3. Theoretical model for the vertical distribution for a
multi-component disk and input parameters

2.3.1. Self-consistent vertical distribution in a
multi-component disk

For a gravitationally coupled two-component stars-plus-gas
disk, the hydrostatic balance of each of the components is deter-
mined by the joint gravitational force of stars and gas, and is
given by

σ2
z,i

ρi

dρi

dz
= Kz,s + Kz,g, (14)

where i represents stars (s) or gas (g) and the right-hand side
of the equation represents the vertical force from the coupled
stars-plus-gas case. For a gravitationally coupled stars-plus-gas
galactic disk, the Poisson equation is given as

d2Φs

dz2 +
d2Φg

dz2 = 4πG(ρs + ρg)

Or,
d2Φcoupled

dz2 = 4πG(ρs + ρg). (15)

We combine these two equations to write the joint hydrostatic
balance-Poisson equation as

d2ρi

dz2 =
ρi

σ2
z,i

[
−4πG

(
ρs + ρg

)]
+

1
ρi

(
dρi

dz

)2

. (16)

These coupled equations are solved numerically using the
fourth-order Runge-Kutta method to obtain ρi(z) vs. z, simul-
taneously for each ith component in an iterative fashion, as dis-
cussed in Narayan & Jog (2002) and Sarkar & Jog (2018), until
the fifth decimal convergence in the solutions. To solve the equa-
tions at a radius, we use the observed surface density of each
component as one boundary condition, and dρi/dz = 0 at z = 0
as the other boundary condition, where the latter is true for any
realistic distribution that is homogeneous very close to the mid-
plane. The vertical distributions for a three-component system
can be obtained following a similar method, as discussed in
Sect. 3.4.

2.3.2. Input parameters

The formulation presented so far is general. Here we apply it for
the Milky Way. We considered HI as the gas component here to
study the two-component system of the stars-plus-gas disk, and
chose the solar radius, taken to be at R = 8.5 kpc, to illustrate the
results. The stellar disk was taken to be exponential with the cen-
tral surface density Σ0 = 640.9 M� pc−2 and radial scale length
RD = 3.2 kpc (Mera et al. 1998). Thus the surface density value
of the stellar disk is 45.0 M� pc−2 at the solar radius.

The radial velocity dispersion values of stars on the
mid-plane were obtained observationally by Lewis & Freeman
(1989) up to R = 16 kpc. It falls off exponentially with radius
as σR,s = 105 exp(−R/8.7 kpc) km s−1. We calculated the cor-
responding vertical velocity dispersion value (σz,s) on the mid-
plane by assuming the vertical to radial dispersion ratio to be
0.45 (Dehnen & Binney 1998; Mignard 2000), as observed in the
solar neighbourhood. Thus σz,s at the solar radius is calculated
to be 17.8 km s−1. The dispersion was taken to be isothermal
along z.

The surface density value of the HI disk was taken to be
5.5 M� pc−2 (Scoville & Sanders 1987). The vertical velocity
dispersion of HI at the solar radius was taken to be 8 km s−1 and
isothermal, based on the values given by Spitzer (1978) for the
Galaxy, and Lewis (1984) for nearly 200 face-on galaxies. The
corresponding input parameters to study a three-component sys-
tem are discussed in Sect. 3.4.

3. Results

We first show the results for the two-component stars-plus-gas
(HI) disk in Sects. 3.1, 3.2, and 3.3 in detail. We then show the
results for a three-component disk for completeness, taking stars
and two gas components (HI and H2) in Sect. 3.4.
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Fig. 1. Stellar and gas (HI) vertical density distribution, ρ(z) vs. z at R = 8.5 kpc (panels a and b, respectively). In each plot, the solid curve
represents the vertical distribution in the one-component case. The dashed curve represents the distribution obtained in the gravitationally coupled
stars-plus-gas system. The coupled gravitational force of the star- plus-gas system constrains each distribution towards the mid-plane, i.e., increases
the mid-plane density value of the distribution, which causes the scale height to become smaller and the curve to become steeper.

Table 1. Results for mid-plane density values (up to the third deci-
mal place) and HWHM for stellar and gas distributions in their single-
component vs. coupled stars-plus-gas cases.

ρ0(M� pc−3)

Stars-alone Stars-coupled Gas-alone Gas-coupled
0.043 0.051 0.003 0.016
HWHM(pc)
Stars-alone Stars-coupled Gas-alone Gas-coupled
457.1 380.5 755.0 159.2

3.1. Calculation of the potential energy of the two-component
stars-plus-gas disk

We calculated the vertical distributions of stars and gas (HI)
at R = 8.5 kpc first, taking each as a single-component self-
gravitating system (as discussed in Sect. 2.1), and then for the
coupled two-component system of stars plus gas (as discussed in
Sect. 2.3). We compare the vertical density distributions of stars
in Fig. 1a and gas in Fig. 1b in these two cases. We note that the
vertical distribution of each of the components solved in the cou-
pled system is constrained towards the mid-plane. It has a higher
mid-plane density that falls off more sharply along z and there-
fore has a smaller disk thickness than those in the corresponding
one-component case. This is due to an additional gravitational
force from a second component in the coupled system. We show
the mid-plane density (up to third decimal place) and the half
width at half maximum (HWHM) values of the density distribu-
tion that define the disk thickness in Table 1. We note that due
to the higher mass content of the stellar distribution, stars affect
gas more strongly.

We also calculated the self-gravitational forces of the stars-
alone and gas-alone cases and compare them with the gravita-
tional force of the coupled stars-plus-gas system in Fig. 2. The
self-gravitational force for each single-component case was cal-
culated using Eq. (6), as discussed in Sect. 2.1. For the stars-
plus-gas system, the coupled gravitational force is given by the
right-hand side of Eq. (14). Each component is kept in hydro-
static equilibrium due to this coupled force. We calculated this
force numerically from the left-hand side of this equation, sub-
stituting ρi and dρi/dz for any component, both obtained numer-
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Fig. 2. Vertical force per unit mass, i.e., |Kz| vs. z at R = 8.5 kpc. The
solid and dashed curves represent the force due to the self-gravity of
stars and gas (HI), respectively. The dash-dotted curve represents the
force arising from the gravitationally coupled stars-plus-gas system,
which is higher than the forces due to the self-gravity of the individ-
ual components at each z.

ically by solving Eq. (16). Figure 2 shows that at each z distance
from the mid-plane, this coupled force that keeps stellar and gas
distributions in hydrostatic equilibrium in the coupled system is
higher than the one-component self-gravitational forces.

Motivated by these results, we now aim to compare the
potential energy values of the stellar and gas distribution in the
coupled case to the corresponding single-component cases. We
used Eq. (2) and the procedure outlined in Sect. 2.1 to calcu-
late the potential energy per unit area of a stars-alone disk at
the solar radius to be 14257.7 M� pc−2km2 s−2 (3×107 erg cm−2)
and of a gas-alone disk to be 351.4 M� pc−2 km2 s−2 (7.4 ×
105 erg cm−2). The sum of the energies is then given by
14609.1 M� pc−2 km2 s−2. The z ranges used in the integration
of ρ(z) vs. z and in calculation of Kz vs. z were chosen such that
the energy values are numerically saturated (see Sect. 2.1).

Now we calculate the potential energy per unit area of the
coupled stars-plus-gas disk using Eq. (13) (using Kz,coupled and
ρi(z) obtained numerically as described in Sect. 2.3.1) and find
it to be 14609.02 M� pc−2 km2 s−2. This matches the sum of the
energies for the stars-alone and the gas-alone cases within the
numerical accuracy. Thus very interestingly, despite being in
the gravitational force of the coupled system, the work done
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Fig. 3. Integrand −zρ(z)Kz vs. z (from Eqs. (2), (13)) of W (potential energy per unit area) for stars and gas (HI) at R = 8.5 kpc. Panel a: energy
integrand for stars in the stars-alone case (solid curve) and in the coupled stars-plus-gas case (dashed curve). Twice the area under the curves gives
the energy per unit area of the stellar disk in the two cases, which is obtained to be the same. Panel b: energy integrand for gas (HI) in the gas-alone
case (solid curve) and in the coupled stars-plus-gas case (dashed curve). Twice the area under the curves gives the energy per unit area of the gas
disk in the two cases, which are obtained to be the same.

required to build up a stars-plus-gas disk turns out to be the
same as the sum of the energies that would be required to
build separate single-component self-gravitating stellar and gas
disks. Importantly, the energy values for both stars and gas,
in this case, obtained from Eq. (13) is the same as in the
corresponding single-component self-gravitating cases within
the numerical accuracy, that is, 14257.02 M� pc−2 km2 s−2 and
352.0 M� pc−2 km2 s−2, respectively. We plot the energy inte-
grand, that is, −zρ(z)Kz vs. z in the single-component and in the
coupled case for stars in Fig. 3a and for gas in Fig. 3b. Twice the
area under these curves gives the corresponding energy values.
We note that the energy integrand is now redistributed along z,
conserving the area under the curve.

To investigate the physical reason that the same potential
energy value was obtained, we simplified the expression of the
energy further analytically. We discuss this in the following
section.

3.2. Analytical simplification of the expression of gravitational
potential energy per unit area of a multi-component disk

First we considered a single-component case, for instance the
stars-alone case. We substituted the expression of Kz by the left-
hand side of the hydrostatic balance equation (Eq. (3)) for a self-
consistent distribution for a stars-alone disk into Eq. (2) and cal-
culated it further as shown below,

Wstars-alone = −2
∫ ∞

0
zKz,sρs dz

= −2
∫ ∞

0
z
σ2

z,s

ρs

dρs

dz
ρs dz.

For an isothermal dispersion, we obtain this to be

Wstars-alone = −2σ2
z,s

∫ ∞

0
z

dρs

dz
dz.

Applying the method of integration by parts, we obtain

Wstars-alone = −2σ2
z,s

[(
zρs

)∞
0
−

∫ ∞

0
ρs dz

]
. (17)

Now at a very large z, theoretically, the density value is zero.
Here, because ρs falls off faster than 1/z (see Fig. 1), the value

of zρs at the upper limit will tend to zero. Using the numeri-
cally obtained solutions also, we can say that at the edge of the
distribution, that is, at large z by which the distribution is satu-
rated and the value of the density is negligible, the product zρs
becomes very small with respect to the other term. Thus the inte-
gration is

Wstars-alone ≈ −2σ2
z,s

[
−

∫ ∞

0
ρs dz

]
= −2σ2

z,s
(
−

Σs

2
)

= σ2
z,sΣs. (18)

Thus the energy per unit area of the stellar disk is dependent only
on the intrinsic parameters of the disk, namely its surface density
and the vertical velocity dispersion. This expression is also valid
for a gas-alone disk. Now we derive the corresponding analytical
expression for the coupled stars-plus-gas disk in a similar way
(using Eq. (13)), as given below,

Wcoupled = −2
∫ ∞

0
zKz,coupled ρs dz − 2

∫ ∞

0
zKz,coupled ρg dz.

Substituting Kz,coupled in terms of hydrostatic equilibrium of each
component (Eq. (14)), we obtain

Wcoupled = −2
∫ ∞

0

zσ2
z,s

ρs

dρs

dz
ρs dz

 − 2
∫ ∞

0

zσ2
z,g

ρg

dρg

dz
ρg dz

 .
Assuming isothermal dispersion, we obtain

Wcoupled = −2σ2
z,s

∫ ∞

0

[
z

dρs

dz
dz

]
− 2σ2

z,g

∫ ∞

0

[
z

dρg

dz
dz

]
. (19)

This is similar to what is obtained for the single-component case.
Applying integration by parts to each of the integrations and
applying the physical argument at the large z limit (as discussed
above for the single component case), we obtain Wcoupled to be

Wcoupled = σ2
z,sΣs + σ2

z,gΣg. (20)

This shows that the potential energy per unit area of each com-
ponent (stars or gas) only depends on its intrinsic parameters,
that is, the surface density and the vertical velocity dispersion,
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even within the coupled system. Consequently, the energy of
any component remains the same in the coupled case as in
the single-component case. After obtaining the general expres-
sion of energy of the multi-component system rigorously as in
Eq. (13), we could simplify it analytically in a straightforward
way, and thus could explain the constancy of the energy that was
obtained numerically in Sect. 3.1. In a similar way, the energy of
any component in the three-component coupled system of stars
and two gas components will also remain the same, as we show
in Sect. 3.4.

Based on these results, we can argue that physically, due
to the joint gravity of the stars-plus-gas disk, the vertical dis-
tribution of stars and gas are now constrained toward the mid-
plane. Thus due to the higher vertical force in the coupled case,
the self-consistent distribution of each component is now effec-
tively extended to a smaller vertical height, so as to conserve
the energy per unit area. We also note that the joint gravity here
works like an internal force within the system, and therefore it
can just redistribute the energy within each of the two compo-
nents without changing the total value of the energy.

However, instead of comparing the work done needed to
build up the complete vertical mass distribution of the disk, we
can compare the work done required to take only a unit, test
mass from the z = 0 plane to a certain finite height, discussed
in the following section. This could verify whether the disk is
more likely to resist distortion for the constrained distribution
resulting in a coupled case.

3.3. Work done to raise a unit test mass from the mid-plane
to a finite height

We derived the expression of the work done or the energy
required to raise a unit test mass from the mid-plane to a cer-
tain height h in a single-component (stars or gas) disk and in the
coupled two-component stars-plus-gas disk. The work has to be
done against the self-gravity of stars (gas) and the joint gravity
of stars plus gas disk, respectively. We note that this is precisely
the measure of the gravitational potential at any height (Bahcall
1984a,b) in these cases.

For a single-component disk (of stars or gas), this work done
is given as

Ez,i = −

∫ h

0
Kz,i dz, (21)

where Kz,i represents the self-gravity of the disk.
In the gravitationally coupled disk of stars plus gas, both stel-

lar and gas distribution are subject to the same coupled force.
Therefore, the work done on a unit mass of the stellar or the gas
distribution is

Ez,i,coupled = −

∫ h

0
Kz,coupled dz. (22)

We note that in each case the energy is positive. Due to a higher
vertical force at each z, as was shown in Fig. 2, the work done to
take the unit mass of the stellar (gas) disk to the same height in
the coupled case will be higher than in the corresponding single-
component case. We show the work done in these cases as a
function of vertical height in Fig. 4.

This shows that to raise a unit mass from the mid-plane to
a certain vertical distance, more work is required in the cou-
pled case than that for a single-component case. Thus stars are
more strongly bound to the mid-plane of the Galaxy in the cou-
pled case than in the single-component case, and thus the stel-
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Fig. 4. Work done (Ez) to raise a unit test mass from the mid-plane to
any vertical height as a function of z (shown upto z = 1 kpc here) at
R = 8.5 kpc (solar neighbourhood) for the stars-alone case against its
self-gravity (solid curve), for the gas-alone case against its self-gravity
(dashed curve), and for stars or gas in the stars-plus-gas coupled sys-
tem against their coupled gravity (dash-dotted curve). The work done
required to raise a unit mass at any vertical height in the last case is high-
est. This shows that stars or gas in the coupled system are more strongly
bound to the mid-plane than in the corresponding single-component
cases.

lar disk will be able to offer more resistance to a given exter-
nal tidal encounter. In this case, the stellar disk is therefore less
likely to be thickened (Walker et al. 1996). Moreover, due to
the constrained distribution, the stellar mass distribution is more
concentrated towards the mid-plane. This increases the effective
gravity of the stellar disk near the mid-plane and helps it to resist
external perturbations, which could have led to the generation
of warps (Pranav & Jog 2010). Thus the constraining effect of
gas on stars makes the stellar disk less likely to be disturbed.
A detailed N-body simulation will be able to show this clearly.
This is beyond the scope of this paper.

Similarly, a unit mass of the gas disk constrained by the stel-
lar gravity is more strongly bound in the coupled system than in
the gas-alone case, and hence significantly more work is required
to raise a unit mass of the gas disk to a certain height than in the
gas-alone case. Thus gas disk in the coupled system is less likely
to be disturbed than the gas-alone case. Furthermore, we note
that far more work is required to raise gas to a certain height
in the coupled case compared to gas-alone case than the cor-
responding work required for stars because stars are the more
massive component and have a stronger effect on gas.

3.4. Calculation of the potential energy of a three-component
disk

For the sake of completeness, we next studied the gravitational
potential energy per unit area of a gravitationally coupled three-
component galactic disk, consisting of stars and two gas com-
ponents. The three components were taken to be coplanar with
the same mid-plane at z = 0. For illustration, we added H2 as
the second gas component in addition to HI, as seen in the inner
Galaxy. We note that this three-component treatment is essential
in the inner Galaxy.

For the three-component system of stars, HI, and H2, the
gravitational potential energy per unit area of the disk is the work
done to build a column of gravitationally coupled stars, HI, H2,
of unit cross-section, together from z = 0. The Poisson equation
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for this system is given as

d2Φcoupled

dz2 = 4πG(ρs + ρHI + ρH2 ). (23)

Following the same procedure as in Sect. 2.2, we derived the
potential energy per unit area of the three-component disk as

Wcoupled =

∫ ∞

−∞

z
dΦcoupled

dz
(ρs + ρHI + ρH2 ) dz, (24)

which can be further expressed as

Wcoupled = −2
∫ ∞

0
zKz,coupled ρs dz − 2

∫ ∞

0
zKz,coupled ρHI dz

− 2
∫ ∞

0
zKz,coupled ρH2 dz. (25)

These three integrations can be considered to represent the
potential energy per unit area of the stellar disk, HI disk, and
H2 disk in the three-component coupled system.

Now for a three-component system, the hydrostatic balance
of each component is determined by the joint gravitational force
from stars, HI, and H2, and is given by

σ2
z,i

ρi

dρi

dz
= Kz,s + Kz,HI + Kz,H2 , (26)

where i represents stars (s) or HI or H2, and the right-hand side of
the equation represents the vertical force of the coupled system.
Combining this equation with Eq. (23), we write the joint hydro-
static balance-Poisson equation for the three-component system
as

d2ρi

dz2 =
ρi

σ2
z,i

[
−4πG

(
ρs + ρHI + ρH2

)]
+

1
ρi

(
dρi

dz

)2

. (27)

These coupled equations were solved to obtain ρi vs. z for
stars, HI, and H2 following the same method as discussed in
Sect. 2.3.1. Here, we discuss the results for the stellar distribu-
tion alone for simplicity because the results for the gas compo-
nents follow a similar trend as for stars, as seen for the two-
component case in Sects. 3.1 and 3.3. We chose R = 4.5 kpc
to illustrate the results here. The stellar surface density at R =
4.5 kpc was calculated to be 157.06 M� pc−2 (Mera et al. 1998).
The vertical velocity dispersion of stars was obtained to be
28.2 km s−1 (Lewis & Freeman 1989) and assuming the vertical-
to-radial dispersion ratio to be the same as in the solar neigh-
bourhood, see Sect. 2.3.2. We chose this radius to prominently
show the effect of the third component, namely H2, on stars.
The surface density of H2 is 19.7 M� pc−2 at this radius, which
is significantly higher than that of HI, which is 4.6 M� pc−2

(Scoville & Sanders 1987). The vertical velocity dispersion of
HI is 8 km s−1, as it was in the two-component case (Sect. 2.3.2),
and that of H2 is 5 km s−1 at this radius (Scoville & Sanders
1987).

We show the results for stellar distribution in Fig. 5 in the
three-component system, in the two-component system (stars
plus HI), and in the stars-alone case. Figure 5a shows that the
addition of a second gas component (H2 here) constrains the
stellar distribution towards the mid-plane by raising the mid-
plane density value and reducing the disk thickness value com-
pared to the values in the two-component case. We note that
due to a higher surface density of H2, the constraining effect
due to this component on stars is more prominent than that due

to HI. Figure 5b shows that the coupled gravitational force per
unit mass (calculated numerically using Eq. (26)) that keeps the
stellar distribution in the hydrostatic equilibrium in the three-
component system is higher than that of the two-component sys-
tem and the stars-alone case at all z.

Despite the higher constraining effect in the three-component
system, the potential energy per unit area of the stellar distri-
bution, calculated numerically from Eq. (25), is found to be
124 900.4 M� pc−2 km2 s−2 (2.6 × 108 erg cm−2) , which is the
same as that found for stars in the two-component system and
in the stars-alone system at R = 4.5 kpc. This result is expected
because we find the analytical expression of the total energy per
unit area of the three-component coupled disk to be Wcoupled =

σ2
z,sΣs +σ2

z,HIΣHI +σ2
z,H2

ΣH2 , derived following a similar method
as discussed for the two-component system in Sect. 3.2. Thus,
we note that the energy of each component remains unchanged.

However, when we calculate the work required to take a unit
test mass of stellar distribution from the mid-plane to a certain
height h in the above three cases following the method discussed
in Sect. 3.3, we find that the work done is highest in the three-
component case at any z. We show the work done as a function
of z corresponding to the three cases in Fig. 5c. This shows that
stars are more strongly bound to the mid-plane of the Galaxy
in the three-component case than in the two-component system,
and thus the stellar disk is able to offer more resistance to a given
external tidal encounter. Thus the constraining effect of the two
gas components will make the stellar disk less likely to be dis-
turbed due to external perturbations. Although we do not show
results for gas here for conciseness, the stellar component, being
more massive, has a higher effect on making the gas disk less
likely to be disturbed due to perturbations than the gas-alone case
(as was already seen for the two-component case in Sects. 3.1
and 3.3).

4. Discussion

We discuss a few general implications of the model developed in
this paper below. First, the main aim of this paper was to deter-
mine how the gravitational potential energy per unit area of the
disk components changes in view of the constraining effect in the
coupled case. The energy of the components turned out to be the
same as in their single-component self-gravitating cases, which
is in contrast to our initial expectation. Therefore, the question
is whether stars and gas are more strongly bound in the coupled
case. Our results have shown that it requires a higher amount of
energy to raise the unit mass of a component to a certain verti-
cal height in the multi-component case than in its single compo-
nent case, even though the component contains the same poten-
tial energy per unit area in both cases. Thus each component is
more strongly bound to the mid-plane in the multi-component
system.

Second, we note that the potential energy per unit area of
any disk component is dependent on its surface mass density
and its vertical velocity dispersion. This implies that the magni-
tude of the energy depends on the component chosen at a given
galactocentric radius and also on the galactocentric radius for
a given component, as the above parameters vary along radius.
We note that at the solar radius as well as at R = 4.5 kpc, the
surface density and the vertical velocity dispersion of stars are
so much higher than gas that the energy value per unit area for
the stellar disk is much higher than gas. The stellar disk is more
extended vertically than the gas disk, and hence we would expect
it to be more disturbed by a given external tidal encounter, for
instance from a passing satellite galaxy. However, the stellar disk
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Fig. 5. Results for stellar distribution in the three-component, gravitationally coupled stars plus HI plus H2 disk, two-component stars plus HI
disk, and stars-alone case at R = 4.5 kpc. Panel a: stellar vertical density distribution, ρ(z) vs. z is shown for stars-alone case (solid curve),
gravitationally coupled stars plus HI case (dashed curve), and stars plus HI plus H2 case (dash-dotted curve). The gas gravity constrains the
distribution of stars towards the mid-plane by raising its mid-plane density and reducing its scale height value. This constraining effect is highest
in the three-component case. At the same time, the relative contribution of H2 is higher than that of HI as the surface density of H2 is higher than
HI at R = 4.5 kpc. Panel b: vertical force per unit mass, i.e. |Kz| vs. z, acting on stars is shown due to the self-gravity of stars (solid curve), due
to the force from the gravitationally coupled stars plus HI disk (dashed curve), and due to the force from the coupled stars plus HI plus H2 disk
(dash-dotted curve). The force at any z is highest in the three-component case. Panel c: work done (Ez) to raise a unit test mass from the mid-plane
to any vertical height as a function of z (shown up to z = 1 kpc here) for stars against its self-gravity (solid curve), against the gravitational force
from the coupled stars plus HI disk (dashed curve), and against the gravitational force from the coupled stars plus HI plus H2 disk (dash-dotted
curve). The work done in the three-component case is highest. This shows that stellar distribution in a three-component system is more strongly
bound to the mid-plane than in a two-component system.

has a higher potential energy per unit area. Although it is more
extended, it is therefore less likely to show the effect of a given
tidal disturbance. This trend can be confirmed by numerical sim-
ulations of an encounter. This is beyond the scope of this paper.

We also note that we have considered only gravitational
interaction for both stellar and gas disks. We did not consider
any gas dynamical phenomenon.

Third, in the above cases, we have taken two (three) compo-
nents with different dispersions to identify them as stars and one
(two) gas components. It may be an interesting physical ques-
tion to ask what happens when the stellar disk is divided artifi-
cially into n number of components. Following a similar analy-
sis, we find again that the total energy of the components remain
unchanged, as is the case for the components with different dis-
persions. Interestingly, in this case, the net distribution is not
vertically more constrained, as expected physically. For exam-
ple, following the numerical analysis in Sect. 2.3.1, we checked
that if we were to divide the disk of Σ into two sub-components
of Σ1 and Σ2 with the same dispersions, the net distribution in
the coupled case would be identical to the one-component case
with Σ.

Fourth, the treatment given in the paper is general. Although
we have applied it to stars and gas case, it can be applied to n
number of stellar sub-components in the Galactic disk as well.
Such sub-components have been identified from recent observed
data, for example from Gaia (Bovy 2017; Hagen & Helmi 2018;
etc.). If the surface density, dispersions are known for these com-
ponents, then the potential energy per unit area of these compo-
nents can be determined quantitatively.

5. Conclusions

It has been shown earlier that in a multi-component gravita-
tionally coupled stars-plus-gas disk, the self-consistent verti-
cal distribution of stars is constrained closer to the mid-plane
(Sarkar & Jog 2018). In order to understand the implications
of this for the energetics of the disk, we obtained the potential
energy per unit area at a given galactocentric radius for a multi-
component galactic disk. This was obtained as an integration
over the vertical density (ρ(z)), the gravitational force, and verti-
cal distance z. To do this, we followed the method developed by
Camm (1967) for a single-component self-gravitating disk and
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explicitly derived the corresponding expression for the multi-
component case. For a self-consistent distribution we obtained
the density distribution and force as a function of z by numeri-
cally solving the joint hydrostatic balance and Poisson equation
for the coupled case.
1. We find that the net gravitational potential energy for the

stars and gas remain unchanged to that in the single-
component cases. This is a surprising result and can be
understood by simplifying analytically the general expres-
sion for the potential energy that we obtain for the multi-
component system. We noted that the potential energy per
unit area of each component depends only on its intrinsic
parameters, that is, the vertical velocity dispersion and the
surface density, in the single-component as well as in the
multi-component case.
Physically, the energy values remain unchanged because due
to the higher joint gravity in the coupled case, the distribu-
tion of each component is constrained closer to the mid-plane
and thus has a less effective vertical thickness to conserve
the energy per unit area. We note that the joint gravity works
here like an internal force within the system, and therefore
it can just redistribute the energy within each component
itself without changing the total value of energy for each
component.

2. However, due to the constrained distribution in the coupled
cases, the work required to raise a unit test mass to a given
height is higher than that in the single-component case. Thus,
while constraining in a coupled case does not correspond
to any additional gravitational energy in the system, it does
indicate that each component in a disk in the coupled case is
more strongly bound to the mid-plane. Furthermore, the stel-
lar disk has a higher potential energy per unit area than the
gas disk. For a given tidal encounter, the stellar disk is there-
fore less likely to be disturbed than a gas disk, even though
it is more vertically extended.
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