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With tuberculosis, the emergence of fluoroquinolone resistance erodes the

ability of treatment to interrupt the progression of MDR-TB to XDR-TB. One

way to reduce the emergence of resistance is to identify heteroresistant

infections in which subpopulations of resistant mutants are likely to expand

andmake the infections fully resistant: treatment modification can be instituted

to suppress mutant enrichment. Rapid DNA-based detection methods exploit

the finding that fluoroquinolone-resistant substitutions occur largely in a few

codons of DNA gyrase. A second approach for restricting the emergence of

resistance involves understanding fluoroquinolone lethality through studies of

antimicrobial tolerance, a condition in which bacteria fail to be killed even

though their growth is blocked by lethal agents. Studies with Escherichia coli

guide work with Mycobacterium tuberculosis. Lethal action, which is

mechanistically distinct from blocking growth, is associated with a surge in

respiration and reactive oxygen species (ROS). Mutations in carbohydrate

metabolism that attenuate ROS accumulation create pan-tolerance to

antimicrobials, disinfectants, and environmental stressors. These observations

indicate the existence of a general death pathway with respect to stressors. M.

tuberculosis displays a variation on the death pathway idea, as stress-induced

ROS is generated by NADH-mediated reductive stress rather than by

respiration. A third approach, which emerges from lethality studies, uses a

small molecule, N-acetyl cysteine, to artificially increase respiration and

additional ROS accumulation. That enhances moxifloxacin lethality with M.

tuberculosis in culture, during infection of cultured macrophages, and with

infection of mice. Addition of ROS stimulators to fluoroquinolone treatment of

tuberculosis constitutes a new direction for suppressing the transition of MDR-

TB to XDR-TB.

KEYWORDS
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1 Introduction

1.1 Overview

Antimicrobial treatment of tuberculosis has led to

widespread emergence of resistance, particularly to the two

most effective first-line agents, rifampicin and isoniazid. The

resulting disease, called multidrug-resistant tuberculosis (MDR-

TB), increased in prevalence by over 20% annually between 2008

and 2016 (Lange et al., 2018). Treatment of MDR-TB requires

many months with second-line agents (a fluoroquinolone and

one of three injectable drugs such as kanamycin, amikacin, or

capreomycin). MDR-TB that acquires resistance to second-line

agents, including a fluoroquinolone, is termed extensively drug-

resistant tuberculosis (XDR-TB), a disease that is exceptionally

difficult to cure. Results from resistance surveys are concerning:

by 2018 XDR-TB accounted for about 6% of MDR-TB cases

(WHO, 2013; WHO, 2019), and the increase in XDR-TB cases

was almost 10-fold between 2011 and 2018 (WHO, 2013; WHO,

2019). Finding ways to halt the progression from MDR-TB to

XDR-TB is a major healthcare priority.

We are focusing on improving the effectiveness of

fluoroquinolones, the most potent of the second-line drugs

used against MDR-TB. Addition of a C-8 methoxy group to

ciprofloxacin-like agents, as found with moxifloxacin and

gatifloxacin, improves lethal action, especially against resistant

mutants (Dong et al., 1998; Zhao et al., 1999). However, this

structural change my be insufficient, since older, less potent

quinolone derivatives are still widely used. Moreover, the

fluoroquinolones are used extensively for many other

infections − inadvertent pre-treatment of TB may contribute

to the emergence of fluoroquinolone-resistant tuberculosis

(Bernardo and Yew, 2009), especially since the quinolones

generate resistant mutants (Malik et al., 2010; Malik et al.,

2012a). Even when treatment is brief, pretreatment with

fluoroquinolone is associated with the emergence of resistance

(Ginsburg et al., 2003). Thus, the emergence of fluoroquinolone-

resistantM. tuberculosis is likely to remain a problem until ways

are developed to suppress it.

In the present review we consider three fluoroquinolone

issues: heteroresistance, tolerance, and enhancement.

Heteroresistant cultures contain significant subpopulations of

resistant mutants but score as susceptible when tested

phenotypically. Maintaining selective pressure can lead to fully

resistant infections. Tolerant bacteria are not killed by

antimicrobials. Studies of tolerance lead to the formulation of

a stress-mediated death pathway that may be exploited. Finally,

unique features of M. tuberculosis have led to a way to enhance

mox ifloxac in -med i a t ed k i l l i ng . The s e s tud i e s o f

fluoroquinolones are likely to be of broad interest, because

some of the principles appear to apply to antimicrobials in

general. For example, heteroresistance is a general property of

bacteria, and the death pathway appears to be common to
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antibiotics, disinfectants, and environmental stress (Zeng et al.,

2022). We begin by discussing two key characteristics of bacteria,

resistance and tolerance.
1.2 Resistance and tolerance

Resistance occurs when an isolate has an MIC above an

empirically determined breakpoint. Mechanistically, resistance is

the inability of the drug to form an initial bacterial lesion and

thereby the inability to block bacterial growth. In general,

resistance can be caused by reduced drug uptake, drug

degradation, increased efflux, or the inability of the antimicrobial

to interact with its molecular target. For the quinolones, resistance

arises from the failure to form drug-gyrase-DNA complexes that

would otherwise rapidly block DNA replication (Drlica et al.,

2019). Resistance forces the patient to rely on the immune

system to clear infection. In the case of tuberculosis, immune-

based clearance can be ineffective (Pawlowski et al., 2012), which

makes resistance particularly problematic.

Antimicrobial tolerance is elevated bacterial survival during

treatment with a lethal antibiotic in the absence of a decrease in

bacteriostatic susceptibility (no increase in MIC) (Tuomanen

et al., 1986). Many lines of evidence support the idea that

resistance and tolerance are mechanistically distinct (reviewed

in (Drlica and Zhao, 2021)). For fluoroquinolones, and likely

most lethal stressors, killing arises in part from macromolecular

destruction by reactive oxygen species (ROS). Tolerance appears

to be specific interference with ROS-mediated effects. For

example, an iron chelator and a radical scavenger reduce

killing by fluoroquinolones with little or no effect on MIC

(reviewed in (Drlica and Zhao, 2021)). In principle, tolerance

is expected to make clearing infection difficult and contribute to

tuberculosis relapse. Tolerance also contributes to elevated

frequency of resistance (Levin-Reisman et al., 2017; Shee et al.,

2022), probably by allowing bacterial numbers to remain high

and by reducing the killing of resistant mutant subpopulations.

We note that quinolones also kill bacteria by chromosome

fragmentation − examples exist in which interference with

ROS accumulation fails to block killing completely (Malik

et al., 2007; Keren et al., 2013).
1.3 Mutant selection window

Detection of resistant mutants at various fluoroquinolone

concentrations reveals that mutants are most readily recovered

when concentration exceeds wild-type MIC, which exerts

selective pressure, but below the MIC of the least susceptible

mutant subpopulation, a value that suppresses the outgrowth of

resistant mutants. The latter value is termed the mutant

prevention concentration (MPC; see Figure 1); The

concentration range between MIC and MPC is called the
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mutant selection window, since mutant subpopulations are

selectively amplified in that range. Validation of the selection

window idea has focused on pathogens other than M.

tuberculosis (Cui et al., 2006; Drlica and Zhao, 2007; Zhu

et al., 2012; Ni et al., 2014; Zhang et al., 2014; Xiong et al.,

2016), but MPC has been measured withM. tuberculosis cultures

(Dong et al., 2000; Rodriguez et al., 2004) and in an animal

model of tuberculosis (Almeida et al., 2007).

In principle, amplification of mutant subpopulations can be

restricted by keeping relevant tissue concentrations above the

MPC. However, that is difficult in practice due to the high drug

concentrations required: they may have adverse effects on

patients. Consequently, doses designed to cure disease tend to

place drug concentrations inside the selection window, thereby

selectively enriching resistant subpopulations with every

treatment. Thus, designing dosing strategies to simply cure

disease (Wald-Dickler et al., 2018) has a fundamental flaw

with respect to the emergence of resistance.

When resistant subpopulations are detectable during

infection, the overall pathogen population is heterogeneous;

the infection is said to be heteroresistant. Below we discuss

heteroresistance, which we consider to be an early stage in

antimicrobial-mediated evolution to bacterial resistance.
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2 Heteroresistance

2.1 Overview

For many bacterial pathogens, heteroresistant infections

often respond favorably to antimicrobial treatment, largely

because the dominant, susceptible portion of the population is

controlled well enough for host defense systems to clear

infection. In such situations, heteroresistance is a problem

mainly for immunocompromised patients. However, a

heteroresistant infection can evolve to full resistance. An

example is seen with colistin resistance of Enterobacter

(reviewed in (Band and Weiss, 2019)). An isolate was

examined in which 1 to 10% of the population grew in the

presence of 1000-times the colistin concentration normally used

to block growth of susceptible cells. In the presence of the drug,

the resistant subpopulation rapidly expanded. In this case,

expansion was transient, probably reflecting induction of

colistin-resistance genes. When mice were infected with the

heteroresistant strain (1/105 bacterial cells tested resistant), the

bacteria failed to respond to a colistin treatment that protected

mice infected by a fully susceptible strain. Thus, massive

enrichment can occur during drug exposure.
FIGURE 1

Population analysis profile and mutant selection window. Data are generated by applying a bacterial culture to a series of agar plates containing
various concentrations of antimicrobial. After incubation to allow colony formation, colonies are counted, and the number is plotted for each
drug concentration as a fraction of the input. Resistant cultures are unaffected by the drug until concentrations are very high. A fully susceptible
culture (wild type) exhibits a sharp drop in colony recovery at MIC. A second sharp drop occurs at the MIC of the least susceptible mutant
subpopulation (MPC). Selective enrichment of resistant mutants occurs at concentrations between MIC and MPC, a range called the mutant
selection window (Zhao and Drlica, 2001). A population containing a mixture of susceptible and resistant subpopulations is called
heteroresistant. Data for wild-type M. tuberculosis can be found in reference (Zhou et al., 2000).
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Heteroresistance is observed with M. tuberculosis in both

HIV-positive and HIV-negative patients (Zetola et al., 2014).

Moreover, it is detected for many antimicrobials, including

ethambutol, isoniazid, rifampicin, fluoroquinolones,

s t reptomycin , pyraz inamide , and amikac in . Thus ,

heteroresistance is a general phenomenon with M. tuberculosis.

It is also a general problem, because the disease is usually treated

intensely for many months. During long incubations, resistant

bacterial subpopulations tend to be enriched. Indeed, a quarter

of MDR M. tuberculosis isolates can be heteroresistant to

fluoroquinolones (Zhang et al., 2012; Eilertson et al., 2014). If

phenotypic heteroresistance is greater than 1% by drug

susceptibility testing, the infection is considered resistant

(Canett i et al . , 1963). Thus, with M. tuberculosis ,

heteroresistance is taken as a strong warning of future

resistance. That makes rapid detection methods important.
2.2 Detection of heteroresistance:
General considerations

For rapidly growing bacteria, heteroresistance is easily

detected by observing colonies in the zone of inhibition

created by a spot of antimicrobial on agar where a lawn of

bacteria form (see example with E-test strips in (Pournaras et al.,

2005)). If colonies inside the inhibition zone are positive for

resistance using MIC-based tests, the overall population is

considered heteroresistant. When those colonies continue to

appear resistant after multiple rounds of growth using drug-free

medium, heteroresistance is considered stable. However, many

examples have been reported in which heteroresistance is lost

during subculturing in drug-free medium. Such situations are

termed unstable heteroresistance. The “colonies-within-the-

inhibition-zone” test can be used by diagnostic laboratories to

detect heteroresistance with samples that would otherwise be

considered susceptible. Unfortunately, slow pathogen growth

renders this method of little utility with M. tuberculosis.

The gold standard for demonstrating heteroresistance is

finding “resistant” subpopulations in a population analysis

profile (PAP (deLencastre et al., 1991); see Figure 1). A fully

susceptible isolate will show a sharp decrease in colony number

when drug concentration in agar reaches the MIC. Such is seen

with laboratory isolates ofM. tuberculosis: resistant colonies can

be recovered, but they are rare (Zhou et al., 2000). A

heteroresistant population is seen as a more gradual drop in

colony recovery (Figure 1). Integration of heteroresistance data

and normalization to a reference strain lacking detectible

heteroresistance generates a single number to compare

heteroresistance among pathogen samples.

Since performing a full population analysis is labor intensive,

a variation is applied to M. tuberculosis. An infection is deemed

resistant if the proportion of colonies that are resistant exceeds

1%. This phenotypic method can be very sensitive for mutant
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detection, but it has two drawbacks. First, incubation times are

long due to the slow growth of M. tuberculosis. For example,

detection of resistance to fluoroquinolones and second-line

injectables by conventional methods (a two-step process) takes

approximately 15–30 days. Second, subculturing from sputum

samples can alter the size of the mutant subpopulation due to

selective advantage or disadvantage (Metcalfe et al., 2017).

Moreover, long incubation times can make the induction of

resistance an important factor. For quinolones, colony number

increases dramatically on agar plates over the course of days with

rapidly growing bacteria (Malik et al., 2010) and over the course

of several weeks withM. tuberculosis (Malik et al., 2012a). DNA-

based detection methods have been developed to overcome these

problems. For example, the time required to detect resistance by

a commercial line-probe test (MTBDRsl) is 1–2 days (Ajbani

et al., 2012). The key for detecting DNA-based fluoroquinolone

resistance is knowing which nucleotide sequence changes

cause resistance.
2.3 Detecting heteroresistance:
Fluoroquinolone-resistance alleles

Most clinically relevant fluoroquinolone resistance derives

from amino acid substitutions in the target protein, DNA gyrase

(M. tuberculosis lacks the related enzyme, topoisomerase IV,

which would otherwise contribute to resistance). The resistance

alterations map in narrow regions of the two subunits of gyrase,

GyrA and GyrB (these short regions have been termed

quinolone-resistance-determining regions; QRDRs).

For GyrA, the QRDR, initially found with E. coli (Yoshida

et al., 1990), comprises codons 90, 91, and 94 in M. tuberculosis.

Changes at these positions probably interfere with the

interaction of the carboxy end of the quinolone with the

QRDR of GyrA (Aldred et al., 2014). Since the structure of

this end of quinolones is common to the class, the GyrA

substitutions are likely to confer resistance to all quinolones.

However, different substitutions at a given codon confer

different levels of protection, as indicated by different

proportions of mutant recovery at different fluoroquinolone

concentrations on agar plates (Zhou et al., 2000), from

infected mice (Bernard et al., 2016), and among clinical

isolates (Table 1).

Studies with E. coli reveal that an A67S substitution also

reduces susceptibility (Malik et al., 2006), although the main

effect of this allele is on lethal action. We speculated that this

substitution weakens the GyrA-GyrA interface, thereby

stimulating gyrase subunit dissociation and chromosome

fragmentation (Malik et al., 2006). Since the corresponding

allele (A74S in M. tuberculosis) can be detected with M.

smegmatis and M. tuberculosis in “low-level resistant” mutants,

the A to S substitution also likely affects bacteriostatic activity

(Zhou et al., 2000). Indeed, introduction of the allele into a
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laboratory strain ofM. tuberculosis increased MIC by 2- to 4-fold

(Malik et al., 2012b). Moreover, examination of purified,

recombinant A74S gyrase shows a decrease in sensitivity to

ofloxacin and moxifloxacin (about 8- and 14-fold reduction,

respectively (Lau et al., 2011)). Thus, including the A74S allele in

DNA-based tests for heteroresistance may be appropriate.

Studies with E. coli also associate GyrB substitutions with

resistance to some quinolones (Yoshida et al., 1990). With M.

tuberculosis, 15% of resistant isolates contain point mutations in

gyrB (85% map in gyrA). These gyrB alleles are likely responsible

for resistance, since they reduce fluoroquinolone sensitivity

when present in purified, recombinant gyrases (Aubry et al.,

2006; Kim et al., 2011). To define the GyrB QRDR, 19 gyrB

alleles were transduced into a laboratory strain ofM. tuberculosis

that was then examined for susceptibility to fluoroquinolones

using the phenotypic proportion method to define resistance

(Malik et al., 2012b). By this test, the QRDR is almost 90

codons long.

The protective activity of gyrase mutations observed in vitro

does not always carry over to clinical resistance. For example, the

E. coli GyrA G81C substitution is very protective (Mustaev et al.,

2014), and the equivalent substitution inM. tuberculosis (G88C)

is readily selected on drug-containing agar (Zhou et al., 2000).

But the G88C allele is rarely recovered among clinical isolates

(Chakravorty et al., 2011). Conversely, not every amino acid

change seen in resistant cells reduces susceptibility. Indeed, some

substitutions increase susceptibility (Aubry et al., 2006). Thus,

fitness is likely to play a role in determining which alleles are

relevant for DNA-based assays. Nevertheless, the correlation

between gyrase alleles and resistance has been good enough to

encourage the development of DNA-based assays that shorten

assay time for MDR-TB to XDR-TB conversion from weeks to a

day. These assays tend to focus on GyrA substitutions.
2.4 Assays for heteroresistance

2.4.1 Line probe assay
Knowledge of the GyrA QRDR allows specific amplification

methods to produce DNA fragments that are characteristic of

particular alleles. The fragments can then be separated by gel

electrophoresis; heteroresistance is observed by the presence of
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both wild-type and mutant fragments (Rinder et al., 2001).

Sensitivity is improved by reverse hybridization. Paper strips

are prepared in which regions of wild-type DNA and mutant

DNA are placed at specific spots. Regions of sample DNA are

amplified by PCR, labeled, and hybridized to DNA on the strip.

Resistance is scored by hybridization to mutant fragments and

by the absence of the equivalent wild-type allele; heteroresistance

produces a mixed result.

Commercial assay kits are available for performing line probe

assays. One called MTBDRsl is designed to detect resistance to

fluoroquinolones (GyrA alleles) and second-line injectable drugs

in samples from MDR-TB cases (Hillemann et al., 2009). For

fluoroquinolone resistance using gyrA alleles, the concordance

between the phenotypic test and the positive MTBDRsl assay is

90% (Hillemann et al., 2009; Ajbani et al., 2012). Thus, a rapid test

for fully resistant and fully susceptible cultures is in place even

without including GyrB-mediated resistance.

Occasionally discordance is observed between drug-

susceptibility and DNA-based tests: DNA assays indicate

resistance, but only susceptibility is seen following bacterial

outgrowth. This result is explained by heteroresistance, which

is clear when specimens display both mutant and wild-type

bands in line-probe assays (Hillemann et al., 2009). A fitness

advantage would allow susceptible bacteria to dominate during

the outgrowth needed for phenotypic drug susceptibility testing.

That would make DNA methods more efficient at detecting

resistant mutant subpopulations when applied to primary

specimens. This increased efficiency might then allow the

standard for resistance via drug susceptibility testing to be

relaxed from 1% heteroresistance to perhaps 19% with DNA-

based methods (Vargas et al., 2021).

Heteroresistance below the threshold, whether 1% or 19%,

may not assure the emergence of resistance, but it would serve as

an early warning and could affect treatment decisions. In this

scenario, the reliability of a particular assay at low levels of

heteroresistance is important. For example, PCR-based

diagnostic tests have a specificity problem when mutant

subpopulations are small, because templates from the

dominant bacterial population can create false-positive signals

due to mis-priming, mis-incorporation, and mis-hybridization

(DNA polymerase error frequency limits sensitivity to 0.1 to

0.2%). Another challenge for PCR-based methods arises from
TABLE 1 Examples of GyrA alleles associated with resistance in vivo.

G88C/A D89N/G A90V S91P D94H D94A/Y/N D94G Ref

24 6 11 42 (Ajbani et al., 2012)

9 12 41 (Hillemann et al., 2009)

3 40 16 3 6 30 (Chakravorty et al., 2011)

30 9 44 (Zhang et al., 2012)

13 5 5 7 11 15 (Bernard et al., 2016)a
aMurine infection.
Percent of single alleles recovered from infections.
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laboratory contamination by amplicons from previous assays.

Cross-contamination using open-tube assays is estimated to be

almost 4% (Warren et al., 2004; vanRie et al., 2005). Closed-tube

methods would reduce laboratory contamination (Huang et al.,

2011; Rice et al., 2012; Hu et al., 2014), but they require

improvement in sensitivity for heteroresistant infections. Thus,

interpretation of DNA-based test results is likely to depend on

the method employed.

2.4.2 DNA sequence determination
When DNA samples are amplified by PCR and nucleotide

sequences are determined for the regions of interest, results are

obtained rapidly. Many laboratories have access to the Sanger

sequencing method, making it a popular assay. However,

sensitivity is a problem, since in some cases the mutant

frequency needs to be above 50% for detection (Folkvardsen

et al., 2013). In one example, Sanger sequencing reported only 3

samples as resistant of 9 scoring resistant by the proportion drug

susceptibility method (Bernard et al., 2016).

Sensitivity is improved by performing the sequencing with

very large numbers (millions) of parallel determinations (deep or

next-generation sequencing). The general strategy uses

reversible-terminator sequencing-by-synthesis technology to

provide end-to-end sequencing and many short reads. In this

method, genomic DNA is extracted from bacterial cells,

enzymatically sheared into small fragments, and tagged with

Illumina-specific DNA identifiers. These unique identifiers allow

multiple DNA fragments to be sequenced at the same time. The

short, tagged fragments of DNA are purified, samples are

normalized to specific concentrations, pooled, and loaded into

the sequencer. The data are then computationally analyzed.

When the method is extended to the whole genome, sensitivity

is below 5% for resistant mutants, perhaps as low as 0.2%

(Nimmo et al., 2020). A disadvantage of deep sequencing is

that data handling is cumbersome: bioinformatic improvements

are needed for general utility (Operario et al., 2017).

2.4.3 Sloppy molecular beacons
Molecular beacons are oligonucleotides in which a probe

sequence is situated between ends that are complementary and

form base pairs. One end contains a fluorophore and the other a

quencher. Hybridization of the probe with its target sequence

destabilizes the base pairing of the ends, separating the quencher

from the fluorophore. The probe-target interaction is seen as

fluorescence. Sloppy molecular beacons have unusually long

probe sequences that allow hybridization to long target regions

that can have considerable mismatch. The mismatches lower the

melting temperature of the probe-target interaction as an

indicator of different gyrase alleles (Chakravorty et al., 2011).

In one iteration, the sloppy molecular beacon assay

amplified the M. tuberculosis gyrA QRDR using asymmetrical

PCR. Then probing was with two sloppy molecular beacons that
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spanned the entire QRDR. By testing DNA targets

corresponding to all known QRDR mutations, the Alland

laboratory (Chakravorty et al., 2011) found that one or both

sloppy beacons produced a melting temperature shift of at least

3.6°C for each mutation. That shift is readily detectable. The

assay also identifies mixtures of wild-type and mutant DNA,

with QRDR mutants identified in heteroresistant samples

containing as little as 10 to 20% mutant DNA. Since

fluorophores emitting different wave lengths are available, a

single assay tube can report the presence of specific mutations

associated with distinct changes in melting temperature for

each fluorophore.

2.4.4 Digital PCR
Studies in cancer biology are driving the development of

DNA-based assays for heteroresistance. With digital PCR

(Vogelstein and Kinsler, 1999), the sample is diluted into a set

of wells in a multi-well plate so a given well has only a single

molecule of DNA (only wild-type DNA is present in most wells).

Amplification of DNA in the wells reveals either the presence or

absence of mutant DNA. The fraction of wells scoring positive

for mutant estimates the percent of the sample containing

mutant DNA. The sensitivity of digital PCR is limited only by

the number of wells tested.

Digital PCR has been used with M. tuberculosis by

combining wild-type DNA with DNA carrying resistance

alleles in gyrA, katG, rpoB, and rrs. This assay can reveal

heteroresistance of 1 mutant to 1,000 wild-type cells (Pholwat

et al., 2013). For such sensitivity with sputum, the samples must

have more than 1,000 bacilli per ml (M. tuberculosis content,

which varies among sputum samples, can exceed one million

CFU (Yajko et al., 1995; Brindle et al., 2001; Diacon et al., 2007)).

2.4.5 SuperSelective primers
Another strategy, also from cancer diagnosis, employs

SuperSelective primers for real-time PCR assays (Vargas et al.,

2016). In this test, a DNA primer is synthesized in which one

region, the anchor, hybridizes strongly to a portion of the target

DNA being probed. The anchor is separated from a detector

region, called the “foot”, by a long stretch of nucleotides

expected to mispair with the target, thereby forming a loop.

The foot is designed to hybridize only with the mutant

nucleotide sequence in the target. The resulting hybrid is then

used to prime real-time PCR. The SuperSelective primer method

detects multiple mutations in the same reaction tube by using

fluorophores having different colors to discriminate among

amplification products.

2.4.6 CRISPR
This bacterial process recognizes and destroys foreign

nucleic acids. The recognition aspect is applied to mutant

detection by transcribing DNA samples from the pathogen
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and then incubating the transcripts with the Cas13a protein

system plus a quenched, fluorescently labeled reporter RNA.

When the target RNA is recognized by Cas13a, which is

designed to occur only if the resistance mutation is present,

collateral damage in the reporter RNA will occur, thereby

eliminating quenching and generating a fluorescent signal.

This method, called SHERLOCK (Gootenberg et al., 2017), has

single-molecule sensitivity, similar to droplet digital PCR and

quantitative PCR (qPCR). It also has point-of-care diagnostic

features. The CRISPR system functions with M. tuberculosis

(Rock et al., 2017).

2.4.7 iPLEX gold
In this method, single-nucleotide primer extension

incorporates a nucleotide having a distinctive mass

modification for identification by mass spectroscopy

(Bouakaze et al., 2011). The method can detect multiple

resistance alleles in the same reaction mixture. In one

application, a reconstruction experiment reported one

amikacin-resistant cell per 200 wild-type cells (Zhang

et al., 2013).

2.4.8 Conclusions
Detection methods vary significantly in their ability to detect

heteroresistance when the resistant allele is rare. They also differ

in the ease of use: commercial kits are available for the line probe

assays, while deep sequencing requires bioinformatics expertise.

Still unknown is the clinical significance of low-level

heteroresistance: not every mutant amplifies to full resistance

in patients. One of the results of DNA-based assays is the

realization that two general types of heteroresistance occur

in tuberculosis.
2.5 Two forms of heteroresistance

2.5.1 Mixed infections
Heterogeneity can arise from co-infection with multiple,

dissimilar infecting strains of M. tuberculosis. These mixed

infections may be common when the spread of disease leads to

super-infection. High levels of mixed infection indicate poor

infection control (failure to isolate patients, control of hospital

air flow, etc.). They tend to occur where tuberculosis and

resistant disease are common.

Mixed infections have been identified using methods that

reveal very different DNA fingerprints (IS6110 RFLP or VNTR

patterns) (Shamputa et al., 2004; Kargarpour Kamakoli et al.,

2017). In a report from Tashkent, Uzbekistan (Hofmann-Thiel

et al., 2009), sputum samples subjected to DNA analysis showed

that five of seven heteroresistant isolates were composed of

different strains. Three of these mixed infections were newly

diagnosed in untreated patients; consequently, continuous

antimicrobial pressure is not required to create mixed infections.
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2.5.2 Clonal heteroresistance
Heteroresistance can also evolve along clonal lines (within-

host heteroresistance). This phenomenon is common when

super-infection is rare and treatment of individual patients is

poor. In this scenario, intermittent drug exposure, due to

suboptimal dosing and/or factors that affect compliance, allows

cycles of bacterial population expansion followed by selective

reduction. Spontaneous heterogeneity is expected, because the

bacterial burden can be high: some tuberculosis patients harbor

on the order of 109 bacilli (Canetti, 1965; Mitchison, 1984).

Bacterial load is probably an important factor in the emergence

of resistance, since an abnormally high mutation rate does not

seem to be the cause (for culturedM. tuberculosis, mutation rate

is similar to that of other bacteria (McGrath et al., 2014)).

The complex dynamics of clonal heteroresistance are

illustrated by a South African study (Post et al., 2004). The

study subjects suffered from MDR-TB that persisted despite

treatment for more than a year. Since the community prevalence

of MDR-TB was low (0.3% in new patients, 1.7% in previously

treated patients), clonal heterogeneity was more likely than

mixed infection. Indeed, examination of sputum samples from

13 HIV-negative MDR-TB patients, taken at two-week intervals,

showed that all contained M. tuberculosis having a single IS6110

RFLP type and spoligotype pattern: superinfection was

not observed.

Nucleotide sequence analysis for several genes showed that

resistance patterns for infections changed during the course of

sampling. For example, one patient was tested for mutations in

gyrA, embB, and katG over 56 weeks of therapy. At the start of

sampling, the three genes were wild type, while at weeks 4 and 6,

the katGmarker was resistant. It later returned to wild type. The

embBmarker became resistant by week 6 and remained resistant

throughout the observation period. The gyrA gene showed a

mixture of alleles at week 6; in later samples, transient changes

occurred among several gyrA resistance forms, often mixed with

wild-type alleles. After 48 weeks, gyrA was a mixture of resistant

and wild-type alleles. By week 52, a different gyrA allele (D94G)

became dominant. Isolates from two other patients also

contained different alleles of drug-resistance genes. These

marker fluctuations illustrate the dynamic and varied nature of

clonal heteroresistance with M. tuberculosis.

The heteroresistance detected in sputum samples arises in

part from independent clonal evolution in distinct regions of the

lung. When surgical samples of lung were examined from 3

patients following long-term therapy, DNA IS6110 fingerprints

were identical forM. tuberculosis from different lung regions: the

isolates within individual patients appeared to be clonally related

(Kaplan et al., 2003). In one patient, a streptomycin-resistant

strain was found in an open lesion, but wild-type cells were seen

in a closed granuloma. Wild-type cells were also recovered from

sputum. A second patient carried bacteria with two different

gyrA resistance alleles when obtained from open lesions, while

wild-type gyrA was recovered from two closed lesions. A third
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patient harbored three types of M. tuberculosis: 1) bacteria from

apparently normal lung tissue had wild-type genes for embB,

katG, and rrs, 2) cells from sputum and four pathological sites

had embB and katG resistance markers but wild-type rrs, and 3)

bacteria from another pathological site exhibited resistance for

all three genes. These findings, plus similar observations in

another study (Vadwai et al., 2011) and in autopsies

(Lieberman et al., 2016), lead to the idea that resistance

evolut ion occurs independent ly in di fferent lung

compartments and that wild-type cells can survive treatment

(they may be tolerant; see discussion of tolerance below).

The results of sputum analyses probably reflect granulomas

from different regions opening and releasing bacteria at

different times.

The complex evolution of resistance alleles arising in

different lung compartments suggests that analysis of multiple

sputum samples may be necessary to accurately assess the

diversity of bacterial populations in an infection. Survival of

wild-type cells is particularly worrisome if those cells are

genetically tolerant. As indicated by E. coli studies, such cells

would not be killed by any antimicrobial.
3 Antimicrobial tolerance

Antimicrobial tolerance is the ability of a bacterium to

survive lethal treatment without exhibiting an increase in MIC,

a measure of susceptibility to antimicrobial-mediated growth

inhibition. Knowledge of how antimicrobials kill bacteria is

expected to lead to methods for measuring the prevalence of

tolerance (MIC-based assays are uninformative). That

knowledge should also lead to strategies for restricting the

selection of tolerant mutants. A key idea, based in part on

quinolone studies, is that lethal stress elicits a general stress

response in which ROS accumulates and damages

macromolecules (reviewed in (Drlica and Zhao, 2021)). Below

we outline studies with E. coli to provide a framework, and then

we address work with M. tuberculosis that expands

the framework.
3.1 The E. coli ROS paradigm

In 2007 the Collins laboratory reported that three diverse

antimicrobials stimulate the accumulation of ROS in E. coli

(Kohanski et al., 2007). ROS are thought to be byproducts of

respiration, and indeed lethal doses of fluoroquinolone do

stimulate a burst of respiration (Dwyer et al., 2014).

Subsequent work solidified the conclusion that severe stress

elicits a cellular response that is self-destructive: genes that are

protective at low stress levels can become destructive at high

ones (Wu et al., 2011; Dorsey-Oresto et al., 2013). We have

suggested that repair of topoisomerase-DNA lesions (e.g.
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double-stranded DNA breaks), which is a large energy-

consuming process when observed in eukaryotic cells

(Hoeijmakers, 2009), stimulates increased respiration (Dahan-

Grobgeld et al., 1998; Lobritz et al., 2015; Brace et al., 2016; Hong

et al., 2019; Drlica and Zhao, 2021). Elevated respiration

generates superoxide and subsequently hydrogen peroxide. In

the presence of iron, Fenton chemistry converts hydrogen

peroxide to hydroxyl radical, which damages many molecule

types and oxidizes deoxynucleotides that subsequently lead to

lethal, incomplete base-excision repair (Takahashi et al., 2017;

Gruber and Walker, 2018; Gruber et al., 2022). That ROS cause

death rather than being caused by death is indicated by the

observation that ROS-mediated death continues even after

removal of the primary stressor (Hong et al., 2019). Additional

support for causality comes from mutations in protective genes,

such as katG (catalase), increasing ROS-mediated death (Wang

and Zhao, 2009; Dwyer et al., 2014; Luan et al., 2018).

Many aspects of Collins’ early work were challenged (Keren

et al., 2013; Liu and Imlay, 2013; Imlay, 2015) as summarized in

(Drlica and Zhao, 2021), which led us to seek a clear

demonstration of a lethal stress response without using an

experimental approach that relies on perturbing levels of ROS.

We expected that the existence of a general lethal stress response

would be revealed by the enrichment and characterization of

anti-death mutants that were concurrently tolerant to many

stressor types. Since by definition tolerance has no effect on MIC

(Tuomanen et al., 1986), obtaining tolerant mutants required

that we challenge bacterial cultures with an agent for which

resistance (increased MIC) is selected rarely, if at all (recovery of

resistant mutants would obscure the presence of tolerant

mutants). After multiple rounds of screening with phenol,

tolerant mutants were recovered (Zeng et al., 2022). These

spontaneous, anti-death mutants of E. coli survived treatment

by bactericidal agents that included antibiotics, disinfectants,

and environmental stressors. As required, these mutants

retained their bacteriostatic susceptibility (unchanged MIC) to

the agents. The pan-tolerance (anti-death) phenotype

demonstrated the existence of a death pathway common to

many, if not all lethal stressors.

Characterization of the mutants revealed genes involved in

carbohydrate metabolism (Zeng et al., 2022). In particular,

mutations were found in ptsI (phosphotransferase) and cyaA

(cAMP), thereby defining a novel activity of these genes as

upstream regulators of the stress-mediated death pathway. The

anti-death effect was reversed by genetic complementation,

exogenous cAMP, or a Crp variant that bypasses cAMP

binding for activation. Moreover, mutations in the same genes

were obtained when screening was performed using multiple

challenges with antimicrobials rather than with phenol.

Downstream events that were blocked by the mutations

included a metabolic shift from the TCA cycle to glycolysis

and the pentose phosphate pathway, suppression of stress-

mediated ATP surges, and reduced accumulation of ROS.
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Thus, the tolerance genes showed that upstream signals from

diverse stress-mediated lesions stimulate shared, late-stage,

ROS-mediated events that damage macromolecules. Cultures

of these stable, pan-tolerant mutants grew normally and were

therefore distinct from tolerance derived from growth defects

(described below).

Phenol, alcohol, and chlorhexidine are commonly used

disinfectants. Thus, pan-tolerance leads to the idea that

massive, unrestricted disinfectant use could contribute to

antibiotic tolerance and eventually resistance. The recent surge

in disinfectant use due to the COVID-19 pandemic may provide

retrospective evidence that disinfectant consumption

contributes to tolerance and ultimately resistance. Particularly

insidious is the possibility that pan-tolerance weakens host

defenses − the lethal activity of three agents used by the

immune system (hypochlorite, hydrogen peroxide, and low

pH) is reduced by pan-tolerance. Since tolerance can arise as

single-gene mutations, it may be more common than we realize:

tolerance could threaten the widespread use of disinfectants.

A second type of tolerance derives from decreased

metabolism as described in (Brauner et al., 2016). For

example, it is well known that metabolic downshift, such as

entering stationary phase of culture growth, interferes with

quinolone lethality (Gutierrez et al., 2017). A variety of genes

whose products interfere with growth, such as toxin-antitoxin

pairs (HipBA, VapBC), tRNA synthetases (MetG), metabolic

enzymes (PrsA, GlpD), and many other gene products that

extend the lag before exponential growth following release from

stationary phase (Fridman et al., 2014), have been associated

with this type of tolerance. These genes are said to be part of a

tolerome (Brauner et al., 2016). This down-shift tolerance is

important, as it has been associated with serious clinical

consequences for treatment of blood infections involving S.

aureus (Liu et al., 2020). A unifying idea is that the basis of

growth-defect tolerance is suppression of ROS accumulation by

the associated metabolic downshift.
3.2 The M. tuberculosis ROS paradigm

As a first approximation, fluoroquinolones kill mycobacteria

much as seen with E. coli and other bacteria: killing is rapid, it is

partially blocked by the protein synthesis inhibitor

chloramphenicol, and it is affected by the C-7 fluoroquinolone

substituent (Dong et al., 1998; Malik and Drlica, 2006). As with

E. coli, we expect ROS to play a central role in fluoroquinolone

lethality with M. tuberculosis. Indeed, moxifloxacin increases

ROS with cultured M. tuberculosis, as detected by an oxidation-

sensitive fluorescent dye and by a redox-sensitive biosensor

(Shee et al., 2022). Involvement of hydrogen peroxide is

supported by a moxifloxacin-mediated increase in peroxide

and the suppression of lethality by adding catalase to the

growth medium (hydrogen peroxide diffuses between the cell
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interior and exterior, making it vulnerable to exogenous

catalase-mediated degradation). Moreover, agents that interfere

with ROS accumulation (bipyridyl and thiourea) lower ROS and

increase survival (Shee et al., 2022). Moxifloxacin also increases

the expression of genes involved in the oxidative stress response,

iron-sulfur cluster biogenesis, and DNA repair (Shee et al.,

2022). In addition, the idea that fluoroquinolones have two

ways to killM. tuberculosis is supported by ROS appearing to act

at low drug concentration but killing continuing at high

concentration independent of ROS (Shee et al., 2022), as

observed with E. coli (Keren et al., 2013). Thus, in many ways

fluoroquinolone action in M. tuberculosis is similar to that

reported for E. coli.

Surprisingly, and in contrast with E. coli work, moxifloxacin

suppresses oxygen consumption inM. tuberculosis and decreases

expression of M. tuberculosis genes involved in respiration and

carbon catabolism. Thus, the two bacterial species differ in the

source of ROS and therefore in the early steps of the

death pathway.

InM. tuberculosis, ROS accumulation derives from reductive

stress, a phenomenon in which diminished respiration leads to

the accumulation of NADH (Mavi et al., 2020). Dissipation of

the NADH overload by overexpression of Lactobacillus brevis

NADH oxidase reduces the ROS surge, diminishes free iron

accumulation, and protects M. tuberculosis from moxifloxacin-

mediated killing (Shee et al., 2022). These data fit with the

known ability of NADH to mobilize bound iron and maintain

iron in a reduced state (Jaeschke et al., 1992), both of which can

drive the generation of hydroxyl radical via Fenton chemistry

(Vilcheze et al., 2013). Thus, moxifloxacin-induced, ROS-

mediated killing of M. tuberculosis appears to depend on

elevated levels of NADH and iron rather than elevated

respiration (Figure 2). Nevertheless, if respiration could be

artificially increased during moxifloxacin treatment, that

increase might raise ROS levels even higher and increase

moxifloxacin lethality.
4 Lethality enhancement

Fluoroquinolones kill cells by two processes: stimulation of

ROS accumulation and chromosome fragmentation. The relative

contribution of the two processes to killing likely depends on

quinolone structure (Malik et al., 2007), DNA repair, and

quinolone concentration (Malik et al., 2007). Structural

considerations favor the use of moxifloxacin (Malik and

Drlica, 2006) and are not discussed further. Since ROS-

mediated killing is more pronounced at low fluoroquinolone

concentration, which is generally kept low to minimize adverse

effects, ROS-based strategies are important. Most of our

discussion of lethality enhancement with M. tuberculosis

focuses on increasing respiration when the normal response to

fluoroquinolone (moxifloxacin) exposure is to decrease it (Shee
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et al., 2022). Then we briefly mention suppression of repair as a

way to enhance killing of M. smegmatis and potentially

M. tuberculosis.
4.1 Cysteine reduces drug tolerance in
M. tuberculosis

A small-molecule enhancer emerged from studies of cysteine

(Vilchèze and Jacobs, 2021). When this amino acid is

administered to cultured E. coli, its oxidation to cystine by

transition metals, such as copper and iron, can mediate the

production of ROS (Park and Imlay, 2003). Cysteine is also

rapidly converted to cystine in M. tuberculosis (Vilchèze et al.,

2017). As expected, the combination of cysteine and isoniazid

plus rifampicin leads to cation-dependent oxidative stress and

DNA damage (Vilchèze et al., 2017). The result, using cysteine at
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4 mM, was a drop in M. tuberculosis culture density from 107

CFU/ml to 0-10 CFU/ml (Vilchèze et al., 2017). In the absence of

cysteine, isoniazid plus rifampicin lowered culture density by

only 3 logs, and resistant bacteria emerged 7 days after treatment

initiation. The effect of cysteine was not observed under

anaerobic conditions or upon treatment with the iron chelator

deferoxamine (Vilchèze et al., 2017), which together suggest an

ROS-based phenomenon. Although cysteine fails to perturb the

NADH/NAD+ balance expected from elevated H2O2

concentrations (Vilchèze et al., 2017), it does raise respiration,

apparently by transiently shifting the ratio of bacterial

menaquinol-9 (MKH2) to menaquinone-9 (MK) towards

MKH2 (Vilchèze et al., 2017). That shift would prevent the

entry of the bacillus into a stress-mediated, quasi dormant state

that would otherwise reduce the effects of lethal stressors.

In support of the MKH2:MK hypothesis, we recently found

that drug tolerance exhibited by intra-phagosomal M.
FIGURE 2

Scheme describing moxifloxacin-mediated killing of M. tuberculosis enhanced by NAC. (a) Moxifloxacin enters M. tuberculosis and traps gyrase
on DNA as bacteriostatic drug-enzyme-DNA complexes in which the DNA is broken. This step is reversible. (b) The bacterium responds by
down-regulating expression of genes involved in respiration. (c) The transcriptional changes result in reduced rate of respiration. (d) NADH
levels and the ratio of NADH to NAD+ increase; over-expression of LbNox, an NADH oxidase, interferes with downstream events. (e) NADH
increases the free Fe2+ pool by releasing Fe from ferritin-bound forms and keeps it in a reduced state. Bipyridyl, an Fe chelator, blocks
downstream events. (f) Elevated Fe2+ promotes the Fenton reaction and production of hydroxyl radical. Thiourea, a radical scavenger, blocks
downstream events. (g) ROS damage macromolecules and cause death in a self-amplifying process, as indicated by exogenous catalase
blocking the killing when added after removal of moxifloxacin. (h) Addition of N-acetyl cysteine to cells stimulates respiration and (i) provides
more ROS from moxifloxacin-mediated lesions. NAC alone does not induce ROS or trigger death. The additional ROS increase killing by
moxifloxacin. (j) Repair of moxifloxacin-mediated lesions, NADH dissipation, Fe sequestration, and ROS detoxification mechanisms contribute to
survival.
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tuberculosis depends partly on cysteine disposal mechanisms,

such as Fe-S cluster biogenesis, the trans-sulfuration pathway,

and mycothiol biosynthesis (Mishra et al., 2019; Mishra et al.,

2021). Disruption of these processes reduces survival by ~ 9-fold

upon treatment with a combination of isoniazid and rifampicin

at 3X MIC (Mishra et al., 2019; Mishra et al., 2021). Cysteine

alone only modestly reduces dissolved O2 in culture media

containing M. tuberculosis (from ~ 75% to 60% in 300

seconds) while its combination with isoniazid more

dramatically lowers dissolved O2 (from 80% to 40% in 300

seconds) (Vilchèze et al., 2017). Isoniazid alone does not affect

dissolved O2 concentration in culture media (Vilchèze et al.,

2017). These observations suggest that an endogenous increase

in cysteine, either from inefficient fluxing or from exogenous

supplementation, accelerates respiration and induces redox

imbalance, thereby increasing the lethality of anti-TB drugs

that act by elevating ROS. Unfortunately, cysteine, even at low,

micromolar concentrations, is cytotoxic for macrophages

(Vilchèze et al., 2017). However a related thiol, N-acetyl

cysteine (NAC), is well tolerated by macrophages (Vilchèze

et al., 2017) and patients (Nagrale et al., 2013).
4.2 N-acetyl cysteine during tuberculosis

Although the stimulation of lethal activity by NAC parallels

that observed with cysteine, the effect on respiration is

quantitatively distinct. Addition of NAC results in only a

small, 0.95- to 1.25-fold increase in oxygen consumption as

compared to a 4- to 5-fold increase with cysteine (Vilchèze and

Jacobs, 2021). Moreover, an in vivo labelling study with mice

indicates that NAC uptake and deacetylation may not be

adequate to maintain the cellular pool of cysteine and the

downstream production of glutathione, an antioxidant that

would protect from stress-mediated lethality. Instead of being

an active source of cysteine, NAC is readily desulfurated to

produce hydrogen sulfide (H2S) (Ezeriņa et al., 2018). H2S is a

signaling molecule known to increase oxygen consumption in

M. tuberculosis by activating the energy-inefficient cytochrome

BD oxidase mode of respiration (Kunota et al., 2021). It is

possible that differences in the way by which cysteine (increased

MKH2/MKH ratio) and NAC (cytochrome BD oxidase)

stimulate respiration have distinct effects on the kinetics of

oxygen consumption and thereby on the stimulation of killing

associated with antimicrobial treatment of M. tuberculosis.

NAC also exerts host anti-mycobacterial properties by 1)

increasing the production of the cytokines interleukin-2 (IL-2),

interleukin-12 (IL-12), and interferon-gamma (IFN-g), 2)

decreasing other interleukins (IL-10, IL-1, IL-6) and tumor

necrosis factor alpha (TNF-a), and 3) elevating host

glutathione and S-nitrosoglutathione levels (Venketaraman

et al., 2006; Guerra et al., 2011; Teskey et al., 2018; Cao et al.,
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2018). The net effect is improved immunological activities of

natural killer cells and macrophages (Morris et al., 2013;

Allen et al., 2015). Thus, it is not surprising that NAC

displays beneficial effects in animal models of experimental

tuberculosis (Palanisamy et al., 2011; Amaral et al., 2016),

although significant host-species differences are seen. For

example, with infected mice, NAC alone significantly reduces

the bacterial load in lungs after seven days of treatment (Amaral

et al., 2016), but in a guinea pig model, even 60 days of NAC

treatment fails to reduce the lung bacillary load despite a

decrease in lesion burden and extent of necrosis (Palanisamy

et al., 2011). However, NAC does reduce the bacterial load in

guinea pig spleens after 30 days of treatment (Palanisamy et al.,

2011). NAC appears to delay the dissemination of M.

tuberculosis to the spleen, perhaps due to a protective effect of

NAC on lung vasculature and reduction of lesion necrosis (both

lesion necrosis and loss of vascular integrity are important for

extra-pulmonary dissemination of M. tuberculosis) (Palanisamy

et al., 2011).

Clinical effects of NAC have been encouraging. For example,

in a double-blind, randomized trial with 67 therapy-naïve TB

patients, NAC, when combined with first-line anti-TB therapy

(ATT), increased smear conversion from 58% to almost 96%

after three weeks of treatment (Mahakalkar et al., 2017).

Radiological improvement of the infected lung was evident in

the NAC + ATT group (Mahakalkar et al., 2017). In another

example, NAC reduced hepatotoxicity, which occurs in ~25% of

patients with uncomplicated TB (hepatotoxicity can affect

therapy adherence (Possuelo et al., 2008; Baniasadi et al.,

2010)). Since HIV infection is one of the predisposing factors

for hepatotoxicity, NAC is being tested for safety when

combined with first-line ATT in patients coinfected with HIV

and M. tuberculosis. In one study, the safety profile of the

combination was similar to that of ATT alone (Safe et al.,

2020). These results have encouraged an ongoing cohort study

(TB-SEQUEL; ClinicalTrials.gov Identifier: NCT03702738)

using a higher dose of NAC (1200 mg rather than 600 mg) to

evaluate safety and smear conversion in patients with TB and

TB-HIV. Since NAC appears to be useful during treatment of

TB, we examined the effects of NAC on moxifloxacin-mediated

killing of M. tuberculosis.
4.3 NAC stimulates moxifloxacin-
mediated killing with cultured
M. tuberculosis

NAC alone induces a rapid increase in oxygen consumption

rate (Vilchèze and Jacobs, 2021; Shee et al., 2022) that completely

exhausts the reserve respiratory capacity ofM. tuberculosis (Shee

et al., 2022). Adding NAC to moxifloxacin treatment reverses the

respiratory slowdown seen for moxifloxacin alone, as indicated
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by increased oxygen consumption rate (Shee et al., 2022).

Moreover, NAC-stimulated respiration enhances ROS

accumulation more than seen with moxifloxacin alone. Indeed,

supplementation of moxifloxacin at 1X and 5X MIC with 1 mM

of NAC reduced bacterial survival by 21- and 11-fold,

respectively (Shee et al., 2022). These observations are

summarized schematically in Figure 2.

We emphasize that NAC concentrations that increase

lethality have no effect on moxifloxacin MIC (Shee et al.,

2022). Thus, the effect of NAC on moxifloxacin lethality is

largely due to accelerated respiration and the associated ROS

surge rather than a modification of the primary interaction

between quinolone and DNA gyrase (cleaved-complex

formation). This result strongly supports our contention that

blocking growth and killing cells are mechanistically distinct.

Nevertheless, NAC reduced MPC, a bacteriostatic parameter, by

two-fold. Apparently killing mutant subpopulations is important

in MPC determination (Cui et al., 2006).
4.4 NAC potentiates moxifloxacin
efficacy in infected macrophages
and mice

Since NAC augments host-cell glutathione biosynthesis and

reduces host-generated ROS, it was unclear how NAC would

affect killing of M. tuberculosis by moxifloxacin inside

macrophages. Using an M. tuberculosis H37Rv strain that

expresses the redox biosensor Mrx1-roGFP2 (strain Mtb-

roGFP2), we found that moxifloxacin treatment of THP-1

macrophages, infected with Mtb-roGFP2, oxidizes the

biosensor. Supplementation with non-toxic concentrations of

NAC (1 mM to 2 mM) increased biosensor oxidation more than

moxifloxacin alone, and a combination of moxifloxacin + NAC

increased the level of oxidative stress by 2-fold beyond that

observed for moxifloxacin alone (Shee et al., 2022). Most

important, the moxifloxacin + NAC combination decreased

the bacillary burden in macrophages 5-10 times more than

moxifloxacin alone.

When we performed experiments with infected mice using a

short moxifloxacin treatment (10 days), the moxifloxacin + NAC

combination reduced bacterial burden by 4- and 12-fold more

than moxifloxacin alone for lung and spleen, respectively. NAC

alone had no effect on lung and spleen bacillary load (Shee

et al., 2022).

Since fluoroquinolone-containing therapies are important

for halting the transition of MDR-TB to XDR, we also examined

the effect of NAC on the selection of moxifloxacin-resistant

mutants in mice (Shee et al., 2022). We discovered that

treatment with moxifloxacin alone increased the emergence of

resistant strains of M. tuberculosis, as expected for induction of

resistance by the quinolones (Malik et al., 2010; Malik et al.,

2012a). NAC supplementation reduced the recovery of
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moxifloxacin-resistant mutants by 8-fold (Shee et al., 2022).

Thus, NAC stimulates the lethal action of moxifloxacin and

reduces the emergence of resistance in vivo.
4.5 NAC-mediated potentiation of lethal
action with drug combinations

Several studies solidify the potential utility of NAC by

showing that the compound, when added to first-line and

several second-line anti-TB drug combinations, increases

killing (Vilchèze et al., 2017; Vilchèze and Jacobs, 2021). For

example, co-administration of NAC with inhibitors of the

electron transport chain, such as bedaquiline, clofazimine, and

Q203, kills cultured M. tuberculosis by 2 log10 more than

bedaquiline or clofazimine or Q203 alone (Lamprecht et al.,

2016). Since many antibiotics, such as isoniazid, rifampicin, and

clofazimine, induce ROS inM. tuberculosis as part of their lethal

action (Yano et al., 2011; Bhaskar et al., 2014; Piccaro et al., 2014;

Tyagi et al., 2015; Nair et al., 2019), NAC likely increases

respiration and the lethal action of drug combinations

(Vilchèze et al., 2017; Vilchèze and Jacobs, 2021). These

observations were counter-intuitive in the case of isoniazid, a

prodrug that is oxidatively activated by catalase (KatG) and

shows elevated activity when in combination with superoxide

generators (Tyagi et al., 2015). As an antioxidant, NAC is

expected to reduce the levels of free radicals such as

superoxide and H2O2; thus, the mycobactericidal activity of

isoniazid is anticipated to diminish when co-administered with

NAC. Here, the explanation is that NAC is a poor scavenger of

oxidants, such as H2O2 and superoxide, for which it has an

extremely low rate constant (0.16 M-1s-1 [H2O2] and 68 M-1s-1

[superoxide], at pH 7.4 and 37°C) (Ezeriņa et al., 2018).

Therefore, it is likely that enhancement of respiration and an

associated increase in ROS upon treatment with NAC potentiate

the antimycobacterial activity of anti-TB drugs.

NAC reduces treatment time: when combined with two first-

line (isoniazid + rifampicin) or three second-line anti-TB drugs

(ofloxacin + kanamycin + ethionamide or with moxifloxacin +

amikacin + clofazimine), NAC reduced the time necessary to

sterilize M. tuberculosis cultures treated with each of the

combinations from 5-10 days to only 3-7 days (Vilchèze and

Jacobs, 2021). Thus, NAC appears to be useful with combination

therapies, as required for control of tuberculosis. Whether the

contribution of the drugs in the combination therapies is

additive has not been reported.

We noticed that the influence of NAC on moxifloxacin

lethality differs from its effect on isoniazid and rifampicin

when cells are cultured in synthetic medium. For example,

with moxifloxacin the killing effect of NAC was evident at

days 1 to 2 post-treatment (Shee et al., 2022): with isoniazid

and rifampicin, lethality was seen only after 6 to 7 days post-

treatment (Vilchèze et al., 2017).
frontiersin.org

https://doi.org/10.3389/fcimb.2022.938032
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Singh et al. 10.3389/fcimb.2022.938032
4.6 ROS-mediated lethality as a
kinetic phenomenon

Several lines of evidence indicate that ROS-mediated effects

accelerate death without increasing the extent of killing. This

phenomenon was first noticed with S. aureus where interference

of ROS accumulation (treatment with bipyridyl plus thiourea)

delayed killing by moxifloxacin (15 x MIC) for about 60 min and

elevated survival by 20-fold after 120 min without an effect on

minimal bactericidal concentration (MBC), a measurement

involving a long incubation time (Liu et al., 2012). With E. coli

and M. tuberculosis, perturbations of ROS affect the rate of

killing after removal of the stressor but not the extent (Hong

et al., 2019; Shee et al., 2022). The kinetic effects of ROS also fit

with the increase in hydrogen peroxide being transient (Vilchèze

et al., 2017) and with NAC stimulating killing of M. tuberculosis

in mice at short incubation times (Shee et al., 2022) but not at a

longer one (Vilchèze and Jacobs, 2021).

Acceleration of killing without an increase in extent has

important implications for clinical application: the optimal

dosing interval must be determined. If it is very short, i.e.

frequent dosing is required, NAC might be of limited utility in

resource-poor environments where patients cannot be

repeatedly treated at short intervals.
4.7 Suppression of repair

A different form of enhancement is seen with the DNA

repair pathway termed homologous repair-recombination. This

system involves formation of Holliday junctions and the Ruv

resolvase (Singh, 2017). We found that the absence of the M.

smegatis Ruv resolvase increases the bacteriostatic and

bactericidal activities of moxifloxacin. Treatment of ruvAB-

deficient cells with thiourea and 2,2-bipyridyl lowers

moxifloxacin killing to wild-type levels. Thus, the absence of

ruvAB may stimulate a lethal pathway involving ROS. The

hexapeptide WRWCR, which traps the Holliday junction

substrate of RuvAB, potentiates moxifloxacin-mediated

lethality by ten-fold (Long et al., 2015). This observation has

yet to be exploited.
5 Concluding remarks

The fluoroquinolones are important agents for impeding the

conversion of MDR-TB to XDR-TB. Human clinical studies

indicate that the early bactericidal activity of moxifloxacin is

similar to that of first-line anti-TB-drugs, such as isoniazid and

rifampicin (Nuermberger et al., 2004; Pletz et al., 2004; Dorman

et al., 2021). Moreover, a recent human clinical trial suggests that

the efficacy of a four-month treatment with a combination of

rifapentine and moxifloxacin was comparable to the standard
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six-month regimen of isoniazid, rifampicin, ethambutol, and

pyramidazide (Dorman et al., 2021). However, the clinical

situation is likely complex: moxifloxacin shows poor

penetration into caseous regions of tubercular granulomas in a

rabbit model of experimental tuberculosis (Prideaux et al., 2015;

Sarathy et al., 2019). Low, local moxifloxacin concentrations may

promote the emergence of fluoroquinolone resistance (Forsman

et al., 2021).

General strategies have emerged for slowing the transition

from MDR-TB to XDR-TB. Implementing rapid, DNA-based

tests for fluoroquinolone heteroresistance will reveal the

emergence of fluoroquinolone resistance before full resistance

has been reached. That would enable introduction of treatment

options. The most straightforward action is to advise patients of

the danger, the importance of not missing doses. Another is to

discontinue use of fluoroquinolone types that are only

marginally effective anti-tuberculosis agents. A third is to alter

the treatment protocol so that other anti-tuberculosis agents,

such as rifapentine in combination with moxifloxacin,

are introduced.

A second, general approach is to increase fluoroquinolone

lethality to suppress the emergence of tolerance and the

probability of relapse. Addition of NAC to moxifloxacin

treatment is the most promising avenue, as it makes the drug

more lethal and less likely to select fluoroquinolone-resistant

mutants. The current problem with NAC is the kinetic nature of

ROS-mediated killing, because an appropriate dosing interval is

unknown. Whether that problem can be solved with derivatives of

NAC is also unknown. One approach led to testing of N-

acetylcysteine amide (NACA), a derivative of NAC having higher

bioavailability (Vilchèze and Jacobs, 2021). This agent failed to

improve the activity of drugs in M. tuberculosis-infected mice

beyond that observed with NAC, and a more severe lung

pathology was observed with isoniazid + rifampicin + NACA

treatment when compared with isoniazid + rifampicin or

isoniazid + rifampicin + NAC combinations (Vilchèze and

Jacobs, 2021). Nevertheless, assays are now in place to explore

other derivatives of NAC.

Many fluoroquinolone-related questions remain unanswered.

For example, what is the prevalence of tolerance and is it a major

cause of relapse? Measuring tolerance on a large scale is labor

intensive (MIC plus kill curves); thus, it is not readily implemented

by clinical laboratories. A bigger question that extends beyond

tuberculosis is whether our massive use of disinfectants is applying

sufficient selective pressure for widespread emergence of tolerance

and subsequently even more resistance.
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