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ABSTRACT
The construction of fully (anti-)symmetric states with many particles, when the single particle state carries multiple quantum
numbers, is a problem that seems to have not been systematically addressed in the literature. A quintessential example is the
construction of ground state baryon wave functions where the color singlet condition reduces the problem to just two (flavor
and spin) quantum numbers. In this paper, we address the general problem by noting that it can be re-interpreted as an eigenvalue
equation and provide a formalism that applies to the generic number of particles and the generic number of quantum numbers.
As an immediate result, we find a complete solution to the two quantum number case, from which the baryon wave function
problem with an arbitrary number of flavors follows. As a more elaborate illustration that reveals complications not visible in the
two quantum number case, we present the complete class of states possible for a system of five fermionic particles with three
quantum numbers each. Our formalism makes systematic use of properties of the symmetric group and Young tableaux. Even
though our motivations to consider this question have their roots in Sachdev-Ye-Kitaev-like tensor models and holography, the
problem and its solution should have broader applications.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5038076

I. THE PROBLEM
The goal of this paper is to provide a systematic procedure for constructing all possible states made of a fixed number of

fermionic13 tensors of the form ψi . . . j. The various indices on these tensors can be thought of as proxies for various quantum
numbers that these fermions carry, and the number of tensors can be viewed as the number of particles. Due to the fermionic
nature of ψ’s, only the representations that are antisymmetric under the exchange of any two fermions will arise. In other words,
the problem we wish to solve is closely related to the question of finding the fully anti-symmetric multi-particle representations
of the group Gi × · · · × Gj, where each index (i) of the tensor transforms in the fundamental of the corresponding group (Gi). We
will think of the groups Gi as U(N) with possibly distinct N’s in each slot, but our strategy should be adaptable to arbitrary groups
with minor modifications.

We will explicitly find multi-particle states for fermions carrying two and three quantum numbers as an illustration of our
approach. The two quantum number case has some extra simplifications. As a more elaborate illustration of our technology, we
will also present explicit results for the cases with four and five particles, each carrying three quantum numbers. It is concep-
tually straightforward, but possibly computationally challenging,1,14 to extend it to a higher number of particles and quantum
numbers per particle. But we will formulate the problem as an eigenvalue problem, so we emphasize that, in principle, it is
tractable in full generality. However, our aim in Secs. II–IV will be to find nice results at low levels and a small number of quantum
numbers.

Throughout this paper, we will mostly deal with fermionic systems for concreteness,15 but we will present one bosonic
case. This will be the bosonic case with two quantum numbers, and it is closely related to the problem of the construction of
ground state wave functions for baryons: ground state means that we take the two independent orbital angular momenta in the
3-quark system to be vanishing (` = `′ = 0). This is a problem well-known from introductory particle physics courses, but let us
quickly review it here for completeness. The relevant quantum numbers in the ` = `′ = 0 state are color, flavor, and spin, and
because we expect baryons to be color singlets, the problem effectively reduces to a two quantum number problem. Since an
SU(3) color singlet made from three fundamentals is fully anti-symmetric, the problem reduces to the construction of states with
two quantum numbers (flavor and spin) that are symmetric under the interchange of any two particles. Therefore the bosonic
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two quantum number case that we will write down using our approach subsumes the solution to the baryon wave function
problem.16

Our motivation for considering this problem arose from investigations of certain classes of quantum mechanical tensor
models where the symmetry group above arises as a global or gauged symmetry.3,4 It was noticed in Refs. 5–8 that for low values
of the rank of the group, these models can potentially be solved at least on a computer. Our discussions in this paper are directly
relevant to solving the ungauged models following the approach of Ref. 7, but we will not further discuss this application in this
paper and merely restrict our attention to the mathematical problem. See also some discussions in the gauged theory, which use
loosely similar group theory techniques.9,10

Let us consider the 3-index fermions of the form ψijk. The indices {i, j, k} can be taken to belong to the group SU(n1)i ×SU(n2)j
× SU(n3)k and therefore take values from 1 to n1,2,3. More precisely, ψijk transform under the vector representation of each of
SU(ni), i.e.,

ψijk → Mii′
1 Mjj′

2 Mkk′
3 ψi′j′k′ , (1)

where M1, M2, M3 belong to the three SU(ni)’s, respectively. A general state involving n fermions is of the form

ψi1j1k1ψi2j2k2 , . . . ,ψinjnkn . (2)

This state is antisymmetric under exchange of any two fermions, i.e.,

ψi1j1k1 , . . . ,ψiajaka , . . . ,ψinjnkn = −ψiajaka , . . . ,ψi1j1k1 , . . . ,ψinjnkn . (3)

The states can be organized in terms of irreducible representations of SU(n1)i×SU(n2)j×SU(n3)k. Because of the fermionic nature,
some of the representations become trivially zero. Our goal is to find a systematic way to find all the non-trivial representations
that the fermionic states fall into.

This question is most easily answered in terms of Young tableaux. In the language of Young tableaux, a general state at level
n can be written as

The number of quantum numbers becomes the number of slots, and the number of particles (which we will sometimes call the
level) becomes the number of boxes in each slot. The representation content of each slot can be figured out by decomposing
the tensor products into various irreducible representations via Littlewood-Richardson rules. The question we want to answer
is what are the irreducible representations that survive in the full object after we impose anti-symmetry under exchange of
particles.

We will answer this question by working with permutation groups S(i)
n × S

(j)
n × S

(k)
n (where Sn stands for the permutation group

with n elements) instead of Gi × Gj × Gk. If we wish to work with a specific group, we can impose further constraints on the
allowed representations (also known as Young tableaux) that show up. Let us illustrate this with a simple example: let us consider
as case where we are working with U(3) groups but looking at levels ≥4. In this case, because there are not enough indices to soak
up all the slots in the tableaux, for example, some of the representations will be zero. So the general problem we solve together
with the specific restrictions on Young tableaux that arise for the specific group will be the complete solution of our problem for
that group. In Sec. IV, we will use an argument based on the group SU(n), as a useful sanity check of our results. We have collected
some useful facts about the symmetric group and its representations in Appendixes.

Let Ri, Rj, and Rk denote the irreducible representations (as can be captured by Young patterns) of the corresponding permu-

tation groups. Then their tensor product Ri × Rj × Rk are irreducible representations under S(i)
n ×S

(j)
n ×S

(k)
n . We need the irreducible

representations of S(i)
n × S(j)

n × S(k)
n such that they are antisymmetric under exchange of any two objects. More operationally, the

required irreducible representations need to satisfy the following equation:17

D(g)Ri ⊗ D(g)Rj ⊗ D(g)Rk



∑
i,j,k

α
(Ri ,Rj ,Rk)
ijk |i〉Ri

⊗ |j〉Rj
⊗ |k〉Rk


= ±

∑
i,j,k

α
(Ri ,Rj ,Rk)
ijk |i〉Ri

⊗ |j〉Rj
⊗ |k〉Rk

. (4)

This is our main equation, and by writing this equation, we have translated our problem into an eigen-problem. Here g is one of
the transpositions18 (2-cycles) of the form (i, i + 1) for i = 1, . . ., (n − 1). D(g)Ri , D(g)Rj , and D(g)Rk are the matrix forms of g in the
representations Ri, Rj, and Rk, respectively. |i〉Ri

, |j〉Rj
, and |k〉Rk

denote the standard Young tableaux of the representations Ri, Rj,
and Rk, respectively, and the summation is taken over all the standard Young tableaux. We have written the equation for the three
slot/index case, but it should be clear that this equation straightforwardly generalizes to more indices.
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The claim is that solving the above equation for α’s will accomplish the solution to the problem that we stated in the beginning
of this section. Note that once formulated in this manner in the language of symmetric groups and its representations, we have
reduced the problem to a fully tractable question with an algorithmic solution. With this, in principle, now the problem can be
placed on a computer. In the rest of the paper, we move on to some comments about solving Eq. (4) using two different methods.
For fermions and bosons carrying only two indices, we are able to find a simple solution to the problem. For a higher number
of indices, we did not find such a simple approach, but nonetheless we list the classes of states in the antisymmetric case up to
level n = 5 for the three index case. By direct counting, we have verified that the states add up to the expected result for the total
number of anti-symmetric states.

Before discussing our formalism and results further, let us briefly compare our methods with the ones previously studied
in the literature (see Chap. 7 of Ref. 12, for example. Also see the first two references in Ref. 11). To describe their approach, let
us first label iajaka ≡ Ia. Then, we see that any fermionic state of the form ψi1j1k1 , . . . ,ψinjnkn ≡ ψI1 , . . . ,ψIn is in the completely
antisymmetric representation [1n] of Sn1n2n3 . Then the antisymmetric states of S(i)

n × S(j)
n × S(k)

n can be obtained by finding the
irreducible representations a, b, c, respectively, of S(i)

n ,S(j)
n ,S(k)

n such that the inner product of the irreducible representations a, b,
c contains the completely antisymmetric representation. This method involves two steps:

• The Young patterns along with their multiplicities should be identified by using the characters of the irreducible represen-
tations under consideration. This step is straightforward though becomes tedious with increasing order of the permutation
group.

• After that, we need to determine the Clebsch-Gordon coefficients for the inner/Kronecker product of irreducible repre-
sentations of the permutation group. Even though there exists some recursion formulas to find these CG coefficients (see
the first reference in Ref. 11, for an example), it is not clear to us whether such a general formula is known. In any event,
even if it exists, finding these CG coefficients explicitly is, in general, tedious.

The method we discuss in this paper reformulates the question as an eignevalue problem and aims to get the complete result in a
single shot. Hence, as a byproduct of our formalism to find antisymmetric states, we can read off the CG coefficients of the inner
product of some of the irreducible representations of Sn. But it should be mentioned that for higher levels, our approach also will
choke in practice due to the large Young tableaux involved; this seems to be an insurmountable problem because of the factorials
involved.

II. TWO SLOTS
Let us start by treating Eq. (4) as a set of linear equations and we solve them sequentially starting from g1 = (12) until gn−1

= (n − 1, n). The number of linear equations are dRidRjdRc , where dRi ,dRj , and dRk are the dimensions of Ri, Rj, and Rk irreducible
representations respectively. We work with Young-Yamanouchi orthonormal basis19 in the rest of the section.

Before going to the general case, we will attack a simpler problem of finding antisymmetric states of Sn ⊗ Sn. This corresponds
to the case with two quantum numbers. As we show below, we can find a simple solution for this two-index case. But the strategy
we employ here takes advantage of specific features limited to this particular case.

A. Fermions
The equation that gives us the antisymmetric states of Sn × Sn is

D(g)a ⊗ D(g)b



∑
i,j

α
(a,b)
ij |i〉a ⊗ |j〉b


= −

∑
i,j

α
(a,b)
ij |i〉a ⊗ |j〉b, (5)

where a and b label the representations of the first and second Sn ’s, respectively. gi is one of the transpositions (2-cycles)
of the form (i, i + 1) for i = 1, . . ., (n − 1). D(g)a and D(g)b are the matrix forms of g in the representations a and b of Sn,
respectively.

Now, we take an inner product with some specific basis state of the form |i′〉a ⊗ |j′〉b to obtain the following:∑
i,j

α
(a,b)
ij a〈i′ |D(g)a |i〉a b〈j

′ |D(g)b |j〉b = −α
(a,b)
i′j′ . (6)

The action of D(g) on the states |i′〉 and |j′〉 is as follows:

D(g)a |i′〉a = −pi
′

a (g) |i′〉a +
√

1 − (pi′a (g))2 |i′′〉a,

D(g)a |i′′〉a = +
√

1 − (pi′a (g))2 |i′〉a + pi
′

a (g) |i′′〉a, (7)

J. Math. Phys. 60, 021701 (2019); doi: 10.1063/1.5038076 60, 021701-3

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where |i′′〉a is another standard Young tableau that is obtained by exchanging i and (i + 1) in |i′〉a when we are working with g = (i,
i + 1). Here pi

′

a (g) is the axial distance20 between i and (i + 1) when g = (i, i + 1). The basic point about the above equations is that for
a given 2-cycle g they mix only two of the states |i′〉a and |i′′〉a. Similarly, we have

D(g)b |j′〉a = −p
j′

b (g) |j′〉b +
√

1 − (pj
′

b (g))2 |j′′〉b,

D(g)b |j′′〉a = +
√

1 − (pj
′

b (g))2 |j′〉b + pj
′

b (g) |j′′〉b. (8)

Substituting these expressions in (6) and noting that |i〉’s form an orthonormal basis, we get

pi
′

a (g)pj
′

b (g) α(a,b)
i′j′ −

√
1 − (pi′a (g))2pj

′

b (g) α(a,b)
i′′j′ − p

i′
a (g)

√
1 − (pj

′

b (g))2 α(a,b)
i′j′′

+
√

1 − (pi′a (g))2
√

1 − (pj
′

b (g))2 α(a,b)
i′′j′′ = −α

(a,b)
i′j′ . (9)

Taking an inner product with |i′′〉a ⊗ |j′〉b, we get

−

√
1 − (pi′a (g))2pj

′

b (g) α(a,b)
i′j′ − p

i′
a (g)pj

′

b (g) α(a,b)
i′′j′

+
√

1 − (pi′a (g))2
√

1 − (pj
′

b (g))2 α(a,b)
i′j′′ + pi

′

a (g)
√

1 − (pj
′

b (g))2 α(a,b)
i′′j′′ = −α

(a,b)
i′′j′ . (10)

Taking an inner product with |i′〉a ⊗ |j
′′

〉b, we get

−pi
′

a (g)
√

1 − (pj
′

b (g))2 α(a,b)
i′j′ +

√
1 − (pi′a (g))2

√
1 − (pj

′

b (g))2 α(a,b)
i′′j′

−pi
′

a (g)pj
′

b (g) α(a,b)
i′j′′ +

√
1 − (pi′a (g))2pj

′

b (g) α(a,b)
i′′j′′ = −α

(a,b)
i′j′′ . (11)

Taking an inner product with |i
′′

〉a ⊗ |j
′′

〉b, we get√
1 − (pi′a (g))2

√
1 − (pj

′

b (g))2 α(a,b)
i′j′ + pi

′

a (g)
√

1 − (pj
′

b (g))2 α(a,b)
i′′j′

+
√

1 − (pi′a (g))2pj
′

b (g) α(a,b)
i′j′′ + pi

′

a (g)pj
′

b (g) α(a,b)
i′′j′′ = −α

(a,b)
i′′j′′ . (12)

Our goal is to find constraints between pi
′

a (g) and pj
′

b (g) so that the above four equations have a non-trivial solution for α’s. Before
proceeding further, we recall that the α’s are independent of the 2-cycle g.

By solving (6), we obtain α’s in terms of pa and pb. But our aim is to constrain pa and pb themselves using Eq. (6). We can
possibly obtain such constraints by demanding the existence of non-trivial solutions to Eqs. (9)–(12). If we write Eqs. (9)–(12) as Ax
= 0 schematically, then this is the same as demanding that the determinant of A is zero. But it can be checked that the determinant
of A is trivially zero if all the α’s are nonzero. So it seems that we cannot constrain pa and pb.

But, we now argue that we can indeed constrain p(g)
a and p(g)

b . For any given gi, we claim that only two of the four α’s that
occur in Eqs. (9)–(12) are non-zero because of the constraints imposed by g1, . . ., gi−1. Before giving evidence to support the claim,
we discuss its implications. Once we accept the claim, by demanding that the α’s have a non-trivial solution, we get21 p(g)

a = ±p
(g)
b .

This condition translates to the statement that the distance between i and (i + 1) in the Young tableaux in the first slot is equal
to positive/negative22 of the distance between i and (i + 1) in the second Young tableaux. Equivalently, we start by filling 1 and 2
and then pick a spot for 3 in the first tableaux and then the position of 3 in the second tableaux is fixed by the above condition of
distances. We continue this process to obtain the entire tableaux in the second slot corresponding to a tableau in the first slot,
and this solves the problem.

But this argument depends on the uniqueness of the second tableaux for a given tableau in the first slot. We will not prove
this statement, but we have checked that it is true for the first six levels, and we present some of the details below. We believe
this is true generally.

Suppose that we have filled the Young tableaux in both the slots from 1 to i such that it is a part of the antisymmetric state.
We now want to fill the (i + 1) in both the tableaux so that it forms a part of antisymmetric state. If we fix the position of (i + 1) in
the first tableaux, then we have (at most) four states that are obtained by permuting the i and (i + 1) indices. We have represented
these four states in Sec. II as

|i′〉 ⊗ |j′〉; |i′′〉 ⊗ |j′〉; |i′〉 ⊗ |j′′〉; |i′′〉 ⊗ |j′′〉 (13)
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Note that while permuting i and (i + 1), we do change the distance between (i − 1) and i. As a result, for some fixed positions of (i −
1) and i in the first Young tableaux, we have two different sets of positions of (i − 1) and i in the second Young tableaux. But below,
we will see that only one of them in fact appears at low levels.

Let us start with g1 = (12). In this case, there are only two antisymmetric states at level 2 and they are given by

Now we move on to the Young tableaux involving three boxes. It is easy to check that pa = ±1; pb = ±1 satisfy Eqs. (9)–(12). That is,
following are antisymmetric states:

Consider the following states corresponding to the mixed symmetry Young tableau:

We can choose i′ and j′ to be mixed symmetric tableaux with 1 and 2 in the same row. Then from g1 = (12), we see that αi′′ j′′ = 0
= αi′j′ . So only two α’s survive as expected. The antisymmetric state under (12) and (23) is

We can see that the Young tableaux in the second slot are unique with respect to the Young tableaux in the first slot.
As a level 4 example, consider the following set of states:

We choose i′ and j′ to be the Young tableaux such that 1, 2, and 3 are in the same row in i′ and in the same column in j′. From
g2 = (23), we can see that only αi′j′′ and αi′′ j′ are non-zero. The antisymmetric state under (34) is

J. Math. Phys. 60, 021701 (2019); doi: 10.1063/1.5038076 60, 021701-5
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For it to be a antisymmetric state, we need to add one more term following the level-3 antisymmetric states and it is given by

Here again, the Young tableaux in the second slot are unique with respect to the Young tableaux in the first slot. We have checked
this uniqueness explicitly for Young tableaux with up to six boxes (i.e., level 6), and we expect it to be true in general. Also, the
solution obtained here passes the counting check we have described in Sec. IV.

B. Bosons
As a simple corollary of our approach, we can construct baryonic wave functions. As explained in the introduction, this

requires us to consider the bosonic case. In this subsection, we make a digression to do so. The results are quite parallel to
the two-slot fermionic case. We present a solution to a generalized version of this problem, i.e., we find the fully symmet-
ric representations of the group Gi × Gj, where we take Gi ,j to be U(ni ,j) for concreteness. More operationally, we solve our
main Eq. (4) for the two index case with a + sign on the RHS. In the rest of the section, we work with the Young-Yamanouchi
representation.

The equation that gives us the symmetric states of Sn × Sn is given by

D(g)a ⊗ D(g)b



∑
i,j

α
(a,b)
ij |i〉a ⊗ |j〉b


= +

∑
i,j

α
(a,b)
ij |i〉a ⊗ |j〉b, (14)

where a and b are certain representations of the first and second Sn ’s, respectively. g is one of the transpositions (2-cycles)
of the form (i, i + 1) for i = 1, . . ., (n − 1). D(g)a and D(g)b are the matrix forms of g in the representations a and b of Sn,
respectively.

We now take an inner product on both sides of Eq. (14) with a specific basis state |i′〉a ⊗ |j′〉b to obtain the following:

pi
′

a (g)pj
′

b (g) α(a,b)
i′j′ −

√
1 − (pi′a (g))2pj

′

b (g) α(a,b)
i′′j′ − p

i′
a (g)

√
1 − (pj

′

b (g))2 α(a,b)
i′j′′

+
√

1 − (pi′a (g))2
√

1 − (pj
′

b (g))2 α(a,b)
i′′j′′ = +α(a,b)

i′j′ , (15)

where |i′′〉a is another standard Young tableau that is obtained by exchanging i and (i + 1) in |i′〉a when we are working with
g = (i, i + 1). pi

′

a (g) is the axial distance between i and (i + 1).
Taking inner products with |i′′〉a ⊗ |j′〉b, |i′〉a ⊗ |j′′〉b, and |i′′〉a ⊗ |j′′〉b gives the following equations:

−

√
1 − (pi′a (g))2pj

′

b (g) α(a,b)
i′j′ − p

i′
a (g)pj

′

b (g) α(a,b)
i′′j′

+
√

1 − (pi′a (g))2
√

1 − (pj
′

b (g))2 α(a,b)
i′j′′ + pi

′

a (g)
√

1 − (pj
′

b (g))2 α(a,b)
i′′j′′ = +α(a,b)

i′′j′ , (16)

−pi
′

a (g)
√

1 − (pj
′

b (g))2 α(a,b)
i′j′ +

√
1 − (pi′a (g))2

√
1 − (pj

′

b (g))2 α(a,b)
i′′j′

−pi
′

a (g)pj
′

b (g) α(a,b)
i′j′′ +

√
1 − (pi′a (g))2pj

′

b (g) α(a,b)
i′′j′′ = +α(a,b)

i′j′′ , (17)√
1 − (pi′a (g))2

√
1 − (pj

′

b (g))2 α(a,b)
i′j′ + pi

′

a (g)
√

1 − (pj
′

b (g))2 α(a,b)
i′′j′

+
√

1 − (pi′a (g))2pj
′

b (g) α(a,b)
i′j′′ + pi

′

a (g)pj
′

b (g) α(a,b)
i′′j′′ = +α(a,b)

i′′j′′ . (18)

As in the case of anti-symmetrizing states, we claim that the Young tableaux in the second slot are unique for a given Young
tableaux in the first slot. This claim about uniqueness implies that we need23 pi

′

a (g) = ±pj
′

b (g) so that Eqs. (15)–(18) have a non-trivial
solution.
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Now, we give examples to support the above claim. At level 2, we have only two symmetric representations and are given
by

Moving on to level 3, we have the following symmetric representations:

The discussion is parallel to the anti-symmetric case, so we will not belabor it. We have checked this uniqueness up to level-6,
and we expect it to work at an arbitrary level. Also, the symmetric representations we obtain here pass the counting check that
we describe in Sec. IV.

The results we find here, when interpreted as flavor and spin quantum numbers, provide the solution to the baryon
wave function problem. The solution to this problem for the case of three (u, d, s) flavors can be found in Ref. 2, for
example.

III. THREE SLOTS
In the case with three kinds of quantum numbers, we will stick to the fermionic case. The bosonic case is analogous, but

since there is no immediate physical application that we have in mind (unlike the baryon wave functions in the two slot case), we
will not spell it out explicitly.

The equation that we intend to solve to obtain the antisymmetric states in 3-index case is given by

D(g)a ⊗ D(g)b ⊗ D(g)c



∑
i,j,k

α
(a,b,c)
ijk |i〉a ⊗ |j〉b ⊗ |k〉c


= −

∑
i,j,k

α
(a,b,c)
ijk |i〉a ⊗ |j〉b ⊗ |k〉c. (19)

Taking an inner product with a certain basis state |i′〉a ⊗ |j′〉b ⊗ |k′〉c, we get

∑
i,j,k

α
(a,b,c)
ijk 〈i′ |D(g)a |i〉a 〈j′ |D(g)b |j〉b 〈k′ |D(g)c |k〉c = −α

(a,b,c)
i′j′k′ , (20)

As in Sec. II, we take

D(g)a |i′〉a = −pi
′

a (g) |i′〉a +
√

1 − (pi′a (g))2 |i′′〉a,

D(g)a |i′′〉a = +
√

1 − (pi′a (g))2 |i′〉a + pi
′

a (g) |i′′〉a, (21)

D(g)b |j′〉b = −p
j′

b (g) |j′〉b +
√

1 − (pj
′

b (g))2 |j′′〉b,

D(g)b |j′′〉b = +
√

1 − (pj
′

b (g))2 |j′〉b + pj
′

b (g) |j′′〉b, (22)

D(g)c |k′〉c = −pk
′

c (g) |k′〉c +
√

1 − (pk′c (g))2 |k′′〉c,

D(g)c |k′′〉c = +
√

1 − (pk′c (g))2 |k′〉c + pk
′

c (g) |k′′〉c, (23)
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where |i′′〉a, |j′′〉b, and |k′′〉c are the basis states of the a, b, and c irreducible representations respectively. Putting these expressions
back into (20), we get

−αi′j′k′ = − pa
[
αi′j′k′ pbpc − αi′j′′k′

√
1 − p2

b pc

−αi′j′k′′ pb
√

1 − p2
c + αi′j′′k′′

√
1 − p2

b

√
1 − p2

c

]

+
√

1 − p2
a

[
αi′′j′k′ pbpc − αi′′j′′k′

√
1 − p2

b pc

−αi′′j′k′′ pb
√

1 − p2
c + αi′′j′′k′′

√
1 − p2

b

√
1 − p2

c

]
, (24)

where we have dropped various subscripts and superscripts to avoid clutter of notation. In a similar way, we get seven more
equations by taking an inner product with various states and those equations can be listed as follows:

−αi′′j′k′ =

√
1 − p2

a

[
αi′j′k′ pbpc − αi′j′′k′

√
1 − p2

b pc

−αi′j′k′′ pb
√

1 − p2
c + αi′j′′k′′

√
(1 − p2

b)(1 − p2
c )

]

+ pa
[
αi′′j′k′ pbpc − αi′′j′′k′

√
1 − p2

b pc

−αi′′j′k′′ pb
√

1 − p2
c + αi′′j′′k′′

√
1 − p2

b

√
1 − p2

c

]
, (25)

−αi′j′′k′ = − pa
[
−αi′j′k′

√
1 − p2

b pc − αi′j′′k′ pb pc

+αi′j′k′′
√

1 − p2
b

√
1 − p2

c + αi′j′′k′′ pb
√

1 − p2
c

]

+
√

1 − p2
a

[
−αi′′j′k′

√
1 − p2

b pc − αi′′j′′k′ pb pc

+αi′′j′k′′
√

1 − p2
b

√
1 − p2

c + αi′′j′′k′′ pb
√

1 − p2
c

]
, (26)

−αi′′j′′k′ =

√
1 − p2

a

[
−αi′j′k′

√
1 − p2

b pc − αi′j′′k′ pb pc

+αi′j′k′′
√

1 − p2
b

√
1 − p2

c + αi′j′′k′′ pb
√

1 − p2
c

]

+ pa
[
−αi′′j′k′

√
1 − p2

b pc − αi′′j′′k′ pb pc

+αi′′j′k′′
√

1 − p2
b

√
1 − p2

c + αi′′j′′k′′ pb
√

1 − p2
c

]
, (27)

−αi′j′k′′ = − pa

[
−αi′j′k′ pb

√
1 − p2

c + αi′j′′k′
√

1 − p2
b

√
1 − p2

c

−αi′j′k′′ pb pc + αi′j′′k′′
√

1 − p2
b pc

]

+
√

1 − p2
a

[
−αi′′j′k′ pb

√
1 − p2

c + αi′′j′′k′
√

1 − p2
b

√
1 − p2

c

−αi′′j′k′′ pb pc + αi′′j′′k′′
√

1 − p2
b pc

]
, (28)
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−αi′′j′k′′ =

√
1 − p2

a

[
−αi′j′k′ pb

√
1 − p2

c + αi′j′′k′
√

1 − p2
b

√
1 − p2

c

−αi′j′k′′ pb pc + αi′j′′k′′
√

1 − p2
b pc

]

+ pa

[
−αi′′j′k′ pb

√
1 − p2

c + αi′′j′′k′
√

1 − p2
b

√
1 − p2

c

−αi′′j′k′′ pb pc + αi′′j′′k′′
√

1 − p2
b pc

]
, (29)

−αi′j′′k′′ = − pa

[
αi′j′k′

√
1 − p2

b

√
1 − p2

c + αi′j′′k′ pb
√

1 − p2
c

+αi′j′k′′
√

1 − p2
b pc + αi′j′′k′′ pbpc

]

+
√

1 − p2
a

[
αi′′j′k′

√
1 − p2

b

√
1 − p2

c + αi′′j′′k′ pb
√

1 − p2
c

+αi′′j′k′′
√

1 − p2
b pc + αi′′j′′k′′ pbpc

]
, (30)

−αi′′j′′k′′ =

√
1 − p2

a

[
αi′j′k′

√
1 − p2

b

√
1 − p2

c + αi′j′′k′ pb
√

1 − p2
c

+αi′j′k′′
√

1 − p2
b pc + αi′j′′k′′ pbpc

]

+ pa

[
αi′′j′k′

√
1 − p2

b

√
1 − p2

c + αi′′j′′k′ pb
√

1 − p2
c

+αi′′j′k′′
√

1 − p2
b pc + αi′′j′′k′′ pbpc

]
. (31)

Just as in the two slot case, one can check that if all the α’s are assumed to be non-vanishing, demanding nontrivial solutions
to these equations via a determinant condition does not constrain pa, pb, and pc. But unlike in the two slot case, we have not
found a simple approach to setting certain α’s to zero that leads to a useful way to enumerate the solutions. At a practical
level, this is because for given tableaux in the first two slots, the tableau in the third slot need not be unique. Of course, one
can solve these equations by explicit calculations, and in Appendixes, we give (examples of) antisymmetric states at levels 2, 3,
and 4.

But we can proceed further by approaching the problem from a different angle, and that is what we turn to next. This
alternate approach gives a fairly simple way to find the form of the Young patterns that show up in the anti-symmetric states.24
Note that all the specific statements we are making in this section and Sec. II are specific simplifications, we do not claim absolute
generality with these methods (beyond the fact that the original equations themselves yield an eigenvalue problem which is
obviously tractable with infinite computing power).

A. Auxiliary eigenvalue problems
In this section, we treat Eq. (4) as a set of (n − 1) eigenvalue equations. Our goal is to find eigenvector(s) (corresponding to

eigenvalue of −1) that is common to all the (n − 1) matrices of the form Da(gi) ⊗ Db(gi) ⊗ Dc(gi). Here gi is a group element of Sn
and denotes a 2-cycle of the form (i, i + 1), where i runs from 1 to (n − 1). The superscripts a, b, c denote the particular irreducible
representations of Sn that we are dealing with.

As in Sec. III, we work with Young-Yamanouchi orthonormal representation and each of the standard Young tableaux is given
by column matrices of the form



1
0
...
0



;



0
1
...
0



; . . .



0
0
...
1



.
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In this representation, the matrices D(gi) corresponding to the transpositions gi are given by a simple form as explained in
Appendixes. As each D(gi) squares to 1, the eigenvalues are ±1. Thanks to the structure of these matrices, the eigenvectors of each
D(gi) are also easy to write down explicitly. Note that the general structure of these matrices is given by



1

. . .

−1

. . .

− cos θ1 sin θ1

sin θ1 cos θ1

. . .

− cos θ2 sin θ2

sin θ2 cos θ2

. . . ,



(32)

where cos θ i ≡ ρi is the inverse distance that appeared in Secs. I and II. See Appendix B for more details on how to construct the
Young-Yamanouchi representation. The eigenvectors are straightforward to obtain. For instance, the eigenvectors corresponding
to the eigenvalue −1 can be written as



0
...
1
...
1

− tan
(
θ1
2

)
...
...



;



0
...
1
...
...
1

− tan
(
θ2
2

)
...



; . . . . (33)

Now that we know how to write down the eigenvectors of each D(gi) in an arbitrary irrep, we use them to construct the
eigenvectors of Da(gi) ⊗ Db(gi) ⊗ Dc(gi). If we denote ai, bi, and ci as eigenvectors of Da(gi), Db(gi), and Dc(gi) with eigenvalues a, b,
and c, respectively, then it is easy to show that ai ⊗ bi ⊗ ci is an eigenvector of Da(gi) ⊗ Db(gi) ⊗ Dc(gi) with eigenvalue “abc.” Note
that any eigenvector of Da(gi) ⊗ Db(gi) ⊗ Dc(gi) can be written as a tensor product of eigenvectors of the individual components.
The corresponding eigenvalue would be the product of the corresponding individual eigenvalues.

Our goal is to find eigenvectors of Da(gi) ⊗ Db(gi) ⊗ Dc(gi) that have an eigenvalue of −1 and are common to all the gi ’s.
In general, for each of Da(gi) ⊗ Db(gi) ⊗ Dc(gi), the eigenvalue −1 is degenerate and thus the common eigenvector(s) can be a
linear combination of eigenvectors corresponding to each gi. That is, if α(i)

pi denote25 the eigenvectors of Da(gi) ⊗ Db(gi) ⊗ Dc(gi)
corresponding to the eigenvalue −1, then the common eigenvector(s) can be found by solving the following set of linear equations
for the numerical coefficients β(i)

pi : ∑
p1

β
(1)
p1
α

(1)
p1
=

∑
p2

β
(2)
p2
α

(2)
p2
= · · · =

∑
pn−1

β
(n−1)
pn−1

α
(n−1)
pn−1

, (34)

pi counts the number of eigenvectors of Da(gi) ⊗ Db(gi) ⊗ Dc(gi) that correspond to the eigenvalue −1. Note that the common
eigenvector exists only if there exists a non-trivial solution for β(i)

pi .

We emphasize once again that the eigenvectors α(i)
pi can be written down fairly easily (without the need of a computer

for low n, for example). So, we need to solve a set of linear equations that are less in number as compared to that of
Sec. III.

An alternate (and probably efficient in some cases) way of finding the common eigenvector for the set of matrices Ai ≡ Da(gi)
⊗ Db(gi) ⊗ Dc(gi) is as follows: We will use a variation of this approach to fix the Young patterns that appear at level 5. Suppose x
be the common eigenvector corresponding to the −1 eigenvalue to all the matrices Ai. This gives us

A1x = A2x = A3x = · · · = An−1x = −x. (35)
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Adding all these equations gives us
Ax ≡ (A1 + A2 + A3 + · · · + An−1)x = −(n − 1)x. (36)

This means that (some of) the eigenvectors of this eigenvalue equation are the common eigenvectors x. Note that we need to
solve only a single eigenvalue equation in this case.

One advantage of this method is that we have a simple way to get a bound on the number of common eigenvectors of the
matrices Ai. We can do this as follows: Starting from (36), we note that a non-zero eigenvector can exist only if

det(A + (n − 1)I) = 0. (37)

If this determinant is not zero, then x has to be zero and thus there is no common eigenvector to the matrices Ai corresponding
to the eigenvalue −1. Also, the number of common eigenvectors to all Ai is less than or equal to the number of zero eigenvalues of
the matrix (A + (n − 1)I). In terms of rank of the matrix, the last statement implies the following:

# of common eigenvectors ≤ Order(A + (n − 1)I) − Rank(A + (n − 1)I) (38)

This is a useful relation when checking for common eigenvectors using Mathematica.
Are there any other diagnostics (i.e., the ones that do not involve calculating determinants or eigenvalues) to find whether

the matrices Ai have common eigenvectors? There is another way which is the most efficient while using a computer. We start by
observing that Sn is generated by only two elements: (12) and (12, . . ., n). Our goal now is to find a common eigenvector between
Da(12) ⊗ Db(12) ⊗ Dc(12) and Da(12, . . ., n) ⊗ Db(12, . . ., n) ⊗ Dc(12, . . ., n) corresponding to eigenvalues −1 and (−1)n−1, respectively.
The technology developed above, of counting the rank and order, can be applied here as well. But instead of dealing with (n − 1)
matrices as in the previous case, we deal here with only two26 matrices for any Sn. More precisely, the bound on the common
eigenvectors is as follows:

# ofcommon eigenvectors ≤

Order
(
Da(12) ⊗ Db(12) ⊗ Dc(12) + (−1)nDa(12, . . . ,n) ⊗ Db(12, . . . ,n) ⊗ Dc(12, . . . ,n) + 2Idadbdc

)
−Rank

(
Da(12) ⊗ Db(12) ⊗ Dc(12) + (−1)nDa(12, . . . ,n) ⊗ Db(12, . . . ,n) ⊗ Dc(12, . . . ,n) + 2Idadbdc

)
, (39)

where da ,b ,c are dimensions of the irreducible representations a, b, c. Even though this method is strictly only an upper bound
on the number of common eigenvectors, we found that at level 5 (which is the maximum level up to which we have done explicit
calculations), the bounds are saturated. The allowed Young patterns27 for levels 4 and 5 are presented in Appendixes. The results
are quite non-trivial, especially for the level 5 case, and we do not believe they can be obtained without the formalism arising
from our main Eq. (4) in Sec. I.

We conclude this section by giving a couple of examples on bounding the number of common eigenvectors at level 5. At level
5, we need to find common eigenvector(s) between Da(12) ⊗ Db(12) ⊗ Dc(12) and Da(12 345) ⊗ Db(12 345) ⊗ Dc(12 345) corresponding
to eigenvalues −1 and 1, respectively. Note that the matrices Dr(12) (and more generally the matrices Dr(i, i + 1)) can be constructed
easily for any representation r ∈ S5 following Appendix B and the matrices Dr(12 345) can be obtained as follows:

Dr(12 345) = Dr(12).Dr(23).Dr(34).Dr(45). (40)

Let us start by choosing all of a, b, c to be the sign representation of S5, i.e.,

Sign representation is a one dimensional representation, and in this representation, we have Da(12) = Db(12) = Dc(12) = −1 and
Da(12 345) = Db(12 345) = Dc(12 345) = 1. Hence, there may be a common eigenvector in this case and we find that all of a, b, c being
the sign representation is an antisymmetric state with multiplicity 1.28

Next, we move on to a slightly complicated example. Let us take
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“a” is a 5 dimensional representation and “b, c” are 4 dimensional representations. Following Appendix B, we can write the
following representation matrices:

Da(12) = diag(1, 1, 1,−1,−1), Db,c(12) = diag(−1,−1,−1, 1)

Da(12 345) =

*...............
,

− 1
3 −

√
2

3

√
2
3 0 0

−
√

2
3

1
12 − 1√

48
−
√

3
4

3
4

0 −
√

3
4 − 1

4 − 3
4 −

√
3

4

−

√
2
3

1√
48

− 1
4

1
4 −

√
3

4

0 − 3
4 −

√
3

4

√
3

4
1
4

+///////////////
-

, Db,c(12 345) =

*............
,

− 1
4 −

√
15
4 0 0√

5
48 − 1

12 − 2
√

2
3 0

−

√
5

24
1√
72

− 1
6 −

√
3

2√
5
8 − 1√

24
1√
12

− 1
2

+////////////
-

. (41)

By explicit computation, we see that

Order
(
Da(12) ⊗ Db(12) ⊗ Dc(12) − Da(12 345) ⊗ Db(12 345) ⊗ Dc(12 345) + 2I80

)
= Rank

(
Da(12) ⊗ Db(12) ⊗ Dc(12) − Da(12 345) ⊗ Db(12 345) ⊗ Dc(12 345) + 2I80

)
, (42)

and hence there are no common eigenvectors between Da(12) ⊗ Db(12) ⊗ Dc(12) and Da(12 345) ⊗ Db(12 345) ⊗ Dc(12 345) corre-
sponding to eigenvalues −1 and 1. Hence, this choice of a, b, c does not lead to an antisymmetric state. In a similar way, we can
check for all the possible choices of a, b, c to find the possible Young patterns that can be antisymmetric states. The complete set
of Young patterns that are antisymmetric at levels 4 and 5 is listed in the Appendixes.

A sanity check of our results is to compare the sum of the number states in all these representations together, with the total
number of fully anti-symmetric states at that level, where we treat the quantum numbers as belonging to specific groups. We
explain this in Sec. IV.

IV. COUNTING STATES AS A SANITY CHECK
In this section, we present a way to verify the antisymmetric states that we found are correct by counting the dimensions

of the irreducible representations of the groups to which the quantum numbers belong. Consider the fermions of the form ψijk

carrying three quantum numbers corresponding to SU(n1)i × SU(n2)j × SU(n3)k. Denoting the indices ijk ≡ I, we can see that any
state with multiple fermions is in completely antisymmetric representation of SU(n1n2n3), i.e., a state at level n is given by the
following representation of SU(n1n2n3):

The number of rows here is equal to the level that we are considering, namely, n. The dimension of this representation for
SU(n1n2n3) is trivial to calculate using the hook rule (say). This dimension should be exactly equal to the sums of dimensions of
various antisymmetric representations (also known as Young patterns) of SU(n1)i × SU(n2)j × SU(n3)k that we find by solving our
main Eq. (4): in particular, this should apply for the level 4 and level 5 cases we have listed in the Appendixes. This provides a
non-trivial check, and all the representations we find for two and three-index cases do pass this check.

As an illustration, we present here how the counting works for the level 4 in the 3-slot case. For simplicity, we choose
n1 = n2 = n3 = n. That is, we explicitly show that the dimensions of the completely antisymmetric representation of SU(n3) at level
4 is equal to the SU(n)i × SU(n)j × SU(n)k representations listed in Appendix E. Using the hook rule, the dimension of completely

antisymmetric representation of SU(n3) at level-4 is given by (n
3

4 ). The sum of dimensions of the representations in the same order
as in Appendix E are given as follows:

6 × da2da1da4 + 6 × da2da3da4 + 3 × da2da2da5 + 3 × da4da4da5 + 3 × da1da1da5 + 3 × da3da3da5 + 3 × da3da3da1

+3 × da3da2da2 + 3 × da3da4da4 + 3 × da2da2da4 + 3 × da4da4da2 + da2da2da2 + da4da4da4 + da3da3da3 + da5da5da5 , (43)
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where da1 , . . . , da5 are, respectively, the dimensions of the irreducible representations of SU(n) at level-4

From the hook rule, the dimensions of these tableaux can be computed to be

da1 =
n(n + 1)(n + 2)(n + 3)

24
; da2 =

n(n + 1)(n + 2)(n − 1)
8

; da3 =
n2(n + 1)(n − 1)

12

da4 =
n(n − 1)(n − 2)(n + 1)

8
; da5 =

n(n − 1)(n − 2)(n − 3)
24

. (44)

Substituting these values, we get the above sum in (43) to be (n
3

4 ) which matches with the antisymmetric representation of SU(n3)
at level 4 as expected. Note that the counting works even for different n1, n2, n3.

Furthermore, we have verified that the counting works for the 3-slot case up to level 5 for antisymmetric representations
and for the 2-slot case up to level 6 for both symmetric and antisymmetric representations.
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APPENDIX A: SYMMETRIC GROUPS AND YOUNG TABLEAUX: MINI REVIEW
The symmetric group Sn represents all the permutations that can be performed on a finite set of n symbols.11 It is composed

of cycles, of length l ≤ n, which preserve (n − l) elements in the set invariant. Two different cycles of the same length are conjugate
to each other. Hence, the length of the cycles defines the conjugacy classes of the symmetric group. We can take a set of integers
λi such that

∑
iλi = n, which is the partition of n, which defines the conjugacy class of that particular set of cycles.

The symmetric group, as mentioned above, is characterized by the cycles. Thus, the cycles can be understood as the gener-
ating set of the group. The group Sn can be generated by different set of cycles. For n ≥ 3, any cycle of length greater than two
can be generated by an appropriate product 2-cycles (also called transpositions). The 2-cycles are represented as (ijij+1), and we
have

(i1i2, . . . , ik) = (i1i2)(i2i3), . . . , (ik−1ik). (A1)

We can generate all cycles using this method, which in turn means that we can generate the entire group Sn. In this method, the
generating set is made up of nC2 = n(n − 1)/2 transpositions.

We could also generate all the cycles using n − 1 transpositions chosen in two different ways, for n ≥ 3,

(12), (13), . . . , (1n) (A2)

(12), (23), . . . , (n − 1n). (A3)

The generating set can also be constructed out of just two elements in the following way, again for n ≥ 3:

(12), (123, . . . ,n) (A4)

(12), (23, . . . ,n). (A5)

As mentioned above, the symmetric group is characterized entirely by the cycles, which in turn are unique only upto their
conjugacy class. The conjugacy classes are defined only by the lengths of the cycles that it contains, and all such classes are given
by the partition of n. This is where the Young tableau enters the picture. The Young tableau is a nice graphic way of representing
partitions. Two crucial facts are as follows:

• The irreducible representations of the group Sn are labelled by the Young patterns of n.
• The basis elements of a given irrep (also known as Young pattern) are labelled by the standard Young tableaux

corresponding to that pattern.

We define and discuss the words in the above paragraph now, in some detail. From the partitions of n, the first thing one can
define is a Young pattern [λ] in the following way:
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[λ] = [λ1,λ2, . . . ,λm], such that
m∑
k=1

λk = n, (A6)

λ1 ≥ λ2 ≥, . . . ,λm ≥ 0. (A7)

The Young pattern [λ] can be graphically represented by a set of left justified boxes, where the i-th row contains λi boxes. The
last line in the above relation will then enforce the condition that the number of boxes in any row is at least as many as the
number of boxes in the row just below it and that the number of boxes in any column is at least as many as the number of boxes
in the column just to the right of it. For example, the Young pattern [λ] = [4, 2, 2, 1] is graphically represented as

It is not allowed to have a Young pattern in the form [λ] = [4, 2, 1, 2], although it is a partition of 9, as it will not satisfy the
rules.

A Young pattern with the each of the boxes being assigned a number 1, 2, . . ., n is called a Young tableau. It is evident that
there will be n! Young tableaux for any given Young pattern. If the numbers assigned to the boxes obey the rule, the values
increase as we go left to right along every row and top to bottom along every column, then it is called a standard Young tableau.
Consider the following Young tableaux, for example:

Although both are valid Young tableaux, only the first one qualifies to be a standard Young tableau. The number of standard
Young tableaux for a given Young pattern can be easily determined by the hook length formula. The hook length hij of a box at
i-th row j-th column is given by the sum of the number of boxes to its right in that column and the number of boxes below it in
that column added to 1. The number of standard tableaux in the Young pattern is then given by

d[λ](Sn) = n!
∏
ij

1
hij

. (A8)

For example, the hook lengths and the corresponding number of standard tableaux for the Young pattern [λ] = [3, 2, 2, 1]
are

Consider two permutation groups on a finite set of n + m elements, the first one Sn acting on the first n objects and the second one
Sm acting on the last m objects. The two permutations act on two different subsets, which means they commute. This particular
permutation action can be understood as the Sn ⊗ Sm subgroup of the group Sn+m. We can represent the subgroup as a sum of
the irreducible representations of the group Sn+m, using the Littlewood-Richardson Rule. That is, a Young pattern [λ] of Sn and [ξ]
of Sm can be combined into a sum over representations [µ] of Sn+m as

[λ] ⊗ [ξ] =
⊕
[µ]

C[µ]
[λ][ξ ] [µ], (A9)

where C[µ]
[λ][ξ ] is the multiplicity with which [µ] occurs.

For combining representations, start by labelling the i-th row of [ξ] with the digit i. Then attach these boxes of ξ row by
row, ordered top to bottom, to the Young pattern [λ] following the rules:

• Each time a row of [ξ] is attached to [λ], the resultant pattern is a valid Young pattern.
• None of the columns in the resultant pattern has a repeated digit.
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• After all the boxes in [ξ] have been attached to [λ], the number of boxes with a smaller digit is never less than the number
of boxes with a larger digit when read right to left, in each row.

As an example, consider combining the Young patterns [2, 1] ⊗ [2, 1]. First we label the rows in the second Young pattern

The first row is attached to the Young pattern [λ] to get

Then attach the second row, which by the rules, gives the allowed patterns:

For clarity, the rules do not allow for a box with digit 2 attached to the first row and hence such Young patterns are discarded
here. The multiplicities are given by

C[µ]
[λ][ξ ] =

{
2, for [µ] = [3, 2, 1]
1, otherwise. (A10)

APPENDIX B: YOUNG-YAMANOUCHI BASIS
Young tableaux are a useful way to describe various irreducible representations of the symmetry group and also of unitary

and orthogonal groups. We define standard Young tableaux as a tableau where the numbers in a row increase from left to right
and the numbers in a column increase from top to bottom. Also, we use a convention that a state corresponding to a standard
Young tableau is obtained by first symmetrizing along the rows and then antisymmetrizing along the columns. For example,

Furthermore, it can be shown that the standard Young tableaux form a basis and hence any state can be expanded in terms of
standard tableaux. This fact is important to write down Eq. (4).

In the Young-Yamanouchi basis, we represent all the standard Young tableaux of a particular representation by column
matrices, where only one of the quantities is 1 and the others are zero. Now, the matrix elements of the form 〈a′|D(g)|a〉 are
constructed where D(g) is the matrix corresponding to the 2-cycle g in the specific representation that we are dealing with. Note
that we need to only find the matrices corresponding to 2-cycles of the form (i, i + 1) as all the entire permutation group can be
generated by these transpositions.

The matrix elements corresponding to D(i, i + 1) are quite simple and are given as follows: If the standard Young tableaux |a〉
and |a′〉 are such that they can be obtained by exchanging i and (i + 1), then we have

D(i, i + 1) |a〉 = −ρ(i,i+1) |a〉 +
√

1 − ρ2
(i,i+1) |a

′〉, (B1)

D(i, i + 1) |a′〉 = +
√

1 − ρ2
(i,i+1) |a〉 + ρ(i,i+1) |a′〉, (B2)

where ρ(i ,i+1) is the inverse of the distance between i and (i + 1), i.e., the number of steps taken from i to reach (i + 1). When the
steps are counted left or down, we take them to be positive distance. Right or upward steps contribute to negative distance. If |a〉
and |a′〉 are two standard tableaux such that they are not obtained by the exchange of i and (i + 1), then 〈a′|D(i, i + 1)|a〉 = 0.
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If i and (i + 1) are in the same row and adjacent to each other in a certain standard tableau then ρ(i ,i+1) = −1 and we put 1 in
the corresponding position and the rest of the entries in that column and row are zeroes. Similarly, for i and (i + 1) in the same
column, we put −1 in the corresponding position and the rest of the entries are zeroes.

As an example, consider the following standard tableaux at level 4:

We assign the following column matrices to the above tableaux as follows:

Following the above rules, we get the matrices corresponding to (12), (23), and (34) as

D(12) =
*...
,

1 0 0

0 1 0

0 0 −1

+///
-

; D(23) =
*....
,

1 0 0

0 − 1
2

√
3

2

0
√

3
2

1
2

+////
-

; D(34) =
*....
,

− 1
3

√
8

3 0
√

8
3

1
3 0

0 0 1

+////
-

(B3)

APPENDIX C: TWO SLOTS: SYMMETRIC AND ANTI-SYMMETRIC STATES
The Young patterns of the symmetric and anti-symmetric states with two slots have a simple structure. Instead of explaining

the structure with a thousand words, we will present the pictures of the corresponding patterns at levels 4 and 5, which have
enough structure to illustrate the idea. It is easy to check that this structure holds at all levels and that the total dimension-
alities of each of these representations add up to the total number of symmetric and anti-symmetric states expected at each
level.

1. Level 4
Symmetric states

Anti-Symmetric states
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2. Level 5
Symmetric states

Anti-Symmetric states
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APPENDIX D: THREE SLOTS UP TO FOUR LEVELS
In this Appendix, we list the fully anti-symmetric states for the case with three quantum numbers up to level 4. In level 4, we

only show a sample state for brevity.
At level 2, we have four different antisymmetric states:

At level 3, we have the following antisymmetric states:
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At level 4, the antisymmetric states are complicated and we will settle for showing just one of the states:

This state is an example where (pa, pb, pc) corresponding to g3 = (34) are not constrained.

APPENDIX E: COMPLETE LIST OF ANTI-SYMMETRIC YOUNG PATTERNS AT LEVEL 4
The multiplicities in front of the representations below are a short hand way of capturing the permutations of the

Young pattern among the three slots. In particular, they are not meant to suggest actual multiplicities of the same
representation.
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APPENDIX F: COMPLETE LIST OF ANTI-SYMMETRIC YOUNG PATTERNS AT LEVEL 5
As in level 4, (most of) the multiplicities in front of the representations below are a short hand way of capturing the permu-

tations of the Young pattern among the three slots. In particular, (mostly) they are not meant to suggest actual multiplicities of
the same representation.

But there are two exceptions to this. These are the two representations with bold face 6’s: the number of permu-
tations between the slots in each of those cases is 3. The extra factor of 2 actually denotes a multiplicity. This cor-
responds to the fact that there are two common eigenvectors that fall into those representations, in the language of
Sec. III.
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′
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21The ± sign depends on our choices of Young tableaux.
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25The subscript pi is supposed to index the degeneracy in the eigenvectors of Da(gi) ⊗ Db(gi) ⊗ Dc(gi). The superscript (i) is for emphasis and is not strictly
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26There is a simple way to check whether two matrices share a common eigenvector. If two matrices B and C share a common eigenvector, then we need to
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27Remember that the Young patterns capture the representation and the standard Young tableaux list the basis elements.
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