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Abstract—This paper addresses the problem of constructing
secure exact-repair regenerating codes at the MSR point for all
feasible values of the parameters. The setting involves a passive
eavesdropper who is allowed to observe the stored contents
of, and the downloads into, an l-subset of the n nodes of a
distributed storage system (DSS). The objective is to achieve
perfect secrecy between the eavesdropped symbols and the file
stored on the DSS. Previous secure code constructions (most
notably that by Rawat et al.) tackle the problem only for the
restricted case wherein the number, d, of helper nodes aiding in
the recovery of a failed node is equal to n−1. This paper builds
on Rawat’s work, by combining Gabidulin pre-coding and an
MSR construction by Ye and Barg to prove the achievability of
secrecy capacity at the MSR point for all allowed values of d.

I. INTRODUCTION

A distributed storage system (DSS) stores a file f of size M
(symbols over a finite field F) on n storage nodes. The system
possesses the “k-out-of-n” property, in that a data collector
(DC) can recover the file by connecting to any k-subset of
the nodes. The nodes, however, are prone to failure and the
objective is to design schemes that allow for failed-node
repair by contacting any d helper nodes, while preserving
the “k-out-of-n” property. The work by Dimakis et al. [1]
introduced the concept of regenerating codes, which address
the problem of simultaneous repair and reconstruction while
ensuring that each node stores no more than α independent
symbols and each helper node passes on no more than β
independent symbols to the failed node. Then from [1],

M ≤
k∑
i=1

min{α, (d− i+ 1)β}. (1)

The upper bound describes a tradeoff between the param-
eters α and β, for a fixed M . Two extremal points of this
trade-off curve are the minimum storage regeneration (MSR)
and the minimum bandwidth regneration (MBR) points. The
MSR point, which is of interest to us, is where α is minimized
for a given M . From [1] and the tradeoff curve (1), we have

(αMSR, βMSR) =

(
M

k
,

M

k(d− k + 1)

)
.

Since MSR codes are equivalent to standard MDS array
codes, the goal is to suitably augment MDS array code
constructions with repair schemes. MSR codes that meet the
capacity upper bound of (1) are described in [2], [6], [8] and
[11]. In particular, Ye and Barg’s constructions in [11] allow
for the parameter k to take on all feasible values (from 1 to
n), and similarly, d to take any value in its permissible range
of k + 1 to n− 1.

Now consider the passive eavesdropper setting, where an
eavesdropper, Eve, is allowed to observe, over a long time,
the stored contents of, and the downloads into, an l-subset
of the n nodes. We need to ensure that Eve obtains no
information about the file stored in the DSS.

Capacity upper bounds for perfect secrecy at the MSR and
MBR points are provided in [5]. For the MSR point, work
towards tightening the bound in [5] can be found in [3],
[4] and [8]. While secure codes meeting the capacity upper
bound at the MBR point in [5] have been constructed for all
values of n, k, d [9], the task of constructing secure codes
at the MSR point that achieve the improved capacity upper
bound in [3] has been tackled only for the restricted case of
d = n− 1.

In this work, we provide a secure code construction at the
MSR point that achieves the capacity upper bound in [3]
and [8] for all values of n, k, d, effectively closing the open
problem of achieving secrecy capacity at the MSR point.

In Section II, we provide a formal description of the system
model and discuss related literature. Section III describes the
MSR code construction, and provides a proof of secrecy.

II. BACKGROUND AND RELATED WORK

In this section, we formally describe the system model,
and provide details of Gabidulin-based pre-coding, and an
overview of the MSR construction by Ye and Barg [11]. In
what follows, the notation [a : b] denotes the set of integers
between a and b, both inclusive, i.e., [a : b] = {i ∈ Z : a ≤
i ≤ b}. We use [n] as shorthand for [1 : n].

A. System Model

An (n, k, d) DSS consists of n storage nodes, indexed
from 1 to n, that store in a distributed, coded fashion, the M978-1-5386-9286-8/19/$31.00 c© 2019 IEEE
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symbols (over a field F) of a file f . The symbols are drawn
independently and uniformly at random from the field.

The recovery of the stored file follows the k-out-of-n
property, i.e., it is sufficient to contact any subset of k nodes,
to recover f . Let ci, i ∈ [n], denote the coded symbols stored
in node i. Firstly, we require that each node stores no more
than α independent symbols.

We assume that node failures in the system occur in stages,
with no more than one failure at any stage. At stage t, we
say that a node j is active if it does not fail in that stage. We
operate in the exact-repair setting, wherein the downloads
from d active helper nodes (k + 1 ≤ d ≤ n− 1) can exactly
recover the contents of the failed node. In keeping with [1],
our second constraint is that the failed node downloads no
more than β independent symbols from any one helper node.

Now, suppose that node i has failed. Let Dj,i denote the
collection of random symbols sent by helper node j to i. If
H(X) represents the entropy of a random variable X , then

H(ci) ≤ α, (2)
H(Dj,i) ≤ β. (3)

From [10], we know that exact-repair codes that satisfy (1)
with equality must also satisfy (2) and (3) with equality.

Since at the MSR point, α is minimized for a given M ,
we have from (1) that α = M/k. The minimum value of β
then is β = α/(d− k + 1). Hence,

(α, β) =

(
M

k
,

M

k(d− k + 1)

)
.

Now consider the case where an eavesdropper, Eve, ob-
serves the downloaded symbols into an arbitrary l-subset
E of the nodes. We assume that each node in E may fail
multiple times, and in order to repair the same node over
and over again, information is possibly downloaded from
different sets of helper nodes. Thus, over time, Eve knows
the stored contents of the nodes in E, and has observed repair
information for nodes in E from all nodes not in E. Let the
random vector e denote the symbols observed by Eve. Thus,
e consists of ci, i ∈ E, as well as all the Dj,i, i ∈ E, j /∈ E. If
f (s) ((s) for “secure”) is the file that we desire to store on the
DSS, and M (s) is its size, the perfect secrecy condition then
is: I(f (s); e) = 0, where I(x;y) is the mutual information
between the random vectors x and y.

B. Related Work
The setting of the passive adversary was first discussed in

[5], and an upper bound on the secrecy capacity for functional
repair was derived to be

M (s) ≤
k∑

i=l+1

min{α, (d− i+ 1)β},

where l = |E|. Later work by Shah et al. [9] employed the
Product-Matrix (PM) code construction to design a secure
MSR coding scheme that achieved a maximum file size of
(k − l)(α − lβ). This was improved upon in [8] and [3],
wherein the secrecy capacity was shown to be bounded as

M (s) ≤ (k − l)(1− 1/(d− k + 1))lα. (4)

This upper bound was shown to be achievable in [8], for the
case n = d+ 1, using the concept of zigzag codes. Another
achievability scheme, due to Rawat [7], uses a construction in
Ye and Barg’s paper [11] to show the capacity upper bound
in (4) being met, again when n = d + 1. In this paper, we
build upon Rawat’s work to prove the achievability of the
capacity upper bound in (4) for all feasible values of d, using
an alternative construction from [11].

The tools we need are provided by the work of Huang
et al. [4]. Recall that in a DSS, a given helper node j
may in general belong to multiple repair groups (sets of
helper nodes) for a given failed node i. A distributed storage
code operating at the MSR point is said to be stable [4,
Definition 7] if for each pair of nodes i and j, the information
downloaded from node j to repair node i is the same across
all repair groups for i containing the node j. In Lemma 7
of [4], it is shown that for DSSs based on a stable MSR
code, the secrecy capacity of an (n = d + 1, k, d) DSS is
the same as that of an (n > d + 1, k, d) DSS, when all
other parameters are identical. This result, along with the
observations of Rawat [7], in fact suffices to establish that the
construction we describe in Section III achieves the secrecy
capacity upper bound in (4). We, however, give a more direct
proof, involving some ideas from hypergraph theory that may
be of independent interest.

C. Preliminaries

Given a DSS that can store M symbols when l = 0,
we augment our file of size M (s) with random symbols r,
where r is a random vector of length R =M −M (s). Each
random symbol in r is drawn i.i.d. and uniformly at random
from the field F. We shall now describe the ingredients
of our construction, namely the Gabidulin pre-coding
procedure and the d-optimal repair MSR construction (for
all parameters n, k, d), by Ye and Barg [11].

1) Gabidulin Pre-coding: Assume that we have an M -
length vector m = (m1, . . . ,mM ), where each mi, 1 ≤ i ≤
M , is drawn from a finite field F. Let B be some sub-field of
F. Further, let points y1, y2, . . . , yM , be elements of F that
are linearly independent over B (dimB(F) ≥M ).

The procedure for Gabidulin coding is:
• First, a linearized polynomial pm(x) is constructed:

pm(x) =

M−1∑
i=0

mi+1x
|B|i

• The polynomial is evaluated at the collection Y of points
y1, y2, . . . , yM , yielding

p(m,Y) := (pm(y1), pm(y2), . . . , pm(yM )).

2) Ye and Barg construction: Here, we provide a brief
description of the d-optimal repair construction.

Construction 1: First we shall introduce some notation:
let s = d − k + 1 and let α = sn. Let F be a finite field of
size |F| ≥ sn and let {ea : a ∈ [0 : α − 1]} be the standard
basis of Fα over F.
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For an integer a ∈ [0 : α− 1], let a = (an, an−1, . . . , a1)
denote its s−ary representation so that a =

∑n
i=1 ais

i−1.
Suppose that {λi,j} for i ∈ [n] and j ∈ [0 : s − 1] are sn
distinct elements in F. We define the matrices Ai, i ∈ [n],
to be α × α diagonal matrices with the (a, a)th entry being
λi,ai . In other words,

Ai =

α−1∑
a=0

λi,aieae
T
a . (5)

We shall construct an (n− k)α× nα parity check matrix
H for the MSR code C as:

H =


I . . . I I
A1 . . . An−1 An
A2

1 . . . A2
n−1 A2

n
...

. . .
...

...
An−k−11 . . . An−k−1n−1 An−k−1n

 (6)

where I is the α× α identity matrix.
In [11], the authors prove that the code C obeys the “k-out-

of-n” property, while storing exactly α independent symbols
in each node. In addition, it is proved that the exact-repair
requirement of the DSS is also met, ensuring that the contents
of any one failed node can be exactly recovered from β =

α
d−k+1 = sn

s = sn−1 symbols from each of d other active
nodes.

We shall now describe the repair scheme. Let c =
{c1, . . . , cn} be a codeword of C. Since α = sn, we shall
index the symbols in ci by n-tuples from [0 : s − 1]n. Let
S = [0 : s − 1] and Sn = [0 : s − 1]n. The symbols in ci
are indexed by the vectors a ∈ Sn, in lexicographic order,
starting with the vector 0 and ending with the vector z (the
s-ary representation of α − 1). In vectorized form, ci is the
α× 1 column vector given as

ci = (ci,0, . . . , ci,z)
T .

For a vector a ∈ Sn, let (an, an−1, . . . , a1) be its s-ary
representation. Now, let a(i, u) ∈ Sn be the vector obtained
by substituting the symbol ai in the s-ary representation of
a, with u, for i ∈ [n] and u ∈ [0 : s− 1]. Thus,

a(i, u) ≡ (an, an−1, . . . , ai+1, u, ai−1, . . . , a1).

Assume that node i has failed and hence, ci needs to
be recovered. Recall that each helper node j, j 6= i, sends
exactly β = sn−1 independent symbols to node i. For some
a ∈ Sn, we define the set Sna,i as

Sna,i := {a(i, u) : u ∈ S}.

Note that |Sna,i| = s, for any a ∈ Sn. Furthermore,⋃
a

Sna,i = Sn.

Thus, there exist β = sn−1 distinct sets Sna,i, the union of
which is the entire set of s-ary n-tuples. We shall use these
β distinct sets to index the symbols sent by node j to failed
node i.

Now, let Dj,i represent the symbols contributed by helper
node j towards the repair of node i (j 6= i). Thus, from [11],
Dj,i is the row vector of the β symbols

µ
(Sn

a,i)

j,i =

s−1∑
u=0

cj,a(i,u) (7)

for distinct sets Sna,i, a ∈ Sn. Observe that C is a stable MSR
code, in the sense of [4, Definition 7].

III. SECURE MSR CODES FOR ALL PARAMETERS

In this section, we describe our construction of secure
MSR codes for all feasible values of d, using arguments from
[7].

Construction 2: Consider a file f (s), that we intend storing
on the DSS, of size

M (s) = (k − l)(1− 1/(d− k + 1))lα (8)

symbols, over a field F. The file size in (8) meets the secrecy
capacity upper bound at the MSR point, derived in [3]. As
in the Ye and Barg construction in Section II-C2, we take
α = sn, where s = d − k + 1, for k + 1 ≤ d ≤ n − 1. We
now describe our coding scheme:

1) Gabidulin pre-coding: To the information set of size
M (s), we add R =M−M (s) random symbols (denoted
by the vector r), drawn i.i.d. and uniformly from the
field F, where M = kα. Let this overall message
m = (f (s), r) be Gabidulin pre-coded by the procedure
described in II-C1. Let

f := p(m,Y) = (pm(y1), pm(y2), . . . , pm(yM )).

2) Ye and Barg encoding: Let H be the parity check
matrix of the Ye and Barg code specified in Construction
1 of Section II-C2. The kα × nα generator matrix of
the code, G, satisfies

GHT = 0,

where 0 denotes the kα × (n − k)α zero matrix. The
code vector c = (c1, . . . , cn) to be stored in the nodes
of the DSS is obtained as

c = fG ∈ C,

where f is the pre-coded vector from Step 1. The ith

node of the DSS stores the vector ci of α symbols.
From the discussion in Section II-C2 and from [11], we know
that the coding scheme described above is MSR and satisfies
the exact-repair property for all values of d. The proof of
secrecy follows next.

A. Proof of secrecy for k + 1 ≤ d ≤ n− 1

We shall follow the line of argument presented in [7].
Let the set of nodes that Eve eavesdrops on be E =
{i1, i2, . . . , il}. In the worst case, all nodes in E have failed
at least once. Note that, as before, we require |E| = l < k.
Further, let Dj,E represent the symbols sent by the jth active
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node (j ∈ D ⊂ [n] \ E, such that |D| = d), for the repair of
the nodes in E. Hence,

Dj,E = [Dj,i1

∣∣Dj,i2

∣∣ . . . ∣∣Dj,il ],

where the solid vertical lines represent concatenation.
Without loss of generality, we assume that E = {n − l +

1, n− l+2, . . . , n}, for, if otherwise, we can always reorder
the nodes prior to the first node failure. To characterize
the symbols downloaded by the nodes in E, we make the
following definition.

Definition III.1. (Symbol Matrix): A symbol matrix P
corresponding to the repair scheme (7) is a 0-1 matrix of
dimension lβ × α such that DT

j,E = Pcj for all j ∈ [n] \ E.

In order to explicitly describe the entries of P , we require
some notation. Recall from Section II that Sn represents the
set of vectors in [0 : s− 1]n, and that Sna,i = {a(i, u) : u ∈
S}, for a ∈ Sn. Now, define

Sni←∗ := {(an, . . . , a1) : ai = ∗, aj ∈ S for j 6= i}.

Note that for any i, |Sni←∗| = sn−1.
For a vector a ∈ Sn (or Snj←∗ for some j), let a\i denote

the vector obtained by puncturing a in its ith coordinate:

a\i = (an, . . . , ai+1, ai−1, . . . , a1).

Now, from the definition of the symbol matrix P , we have

P =


Pn
Pn−1

...
Pn−l+1

 (9)

where each Pi, i ∈ [n−l+1 : n] is a 0-1 matrix of dimensions

β×α, such that Picj = DT
j,i =

(
µ
(Sn

0,i)

j,i , . . . , µ
(Sn

z,i)

j,i

)T
, with

µ
(Sn

a,i)

j,i as in (7).
We now seek to characterize Pi, i ∈ [n − l + 1 : n],

completely. Let the columns of Pi (i ∈ [n − l + 1 : n]) be
indexed by all the vectors in Sn, listed in lexicographic order
and let the rows of Pi be indexed by the vectors b ∈ Sni←∗,
in lexicographic order.

From (7), we see that the row in Pi indexed by
some b ∈ Sni←∗ contains exactly s 1’s — these
are in the columns indexed by the vectors b(i, u) =
(bn, . . . , bi+1, u, bi−1, . . . , b1), for u ∈ [0 : s − 1]. All other
entries of Pi are 0’s. Note that the column indices containing
a 1 entry differ in exactly their ith coordinate. Explicitly,

[Pi]r,t =

{
1, if t\i = r\i,
0, otherwise

(10)

for r ∈ Sni←∗ and t ∈ Sn.
Further, equation (9) coupled with equation (10) above,

implies that each column of P contains exactly l 1’s, one in
each Pi.

Equations (9) and (10) completely characterize P . We
add that H(Dj,E) = rank(P ), since the symbols in cj are
independent of one another.

As an example, consider the (n, k, d, l) = (4, 2, 3, 1) DSS
wherein Eve eavesdrops on the last (fourth) node. The symbol
matrix P in this case is:

P =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1


.

It is easy to verify that rank(P ) above is 8, which in turn is
equal to H(Dj,E).

We intend to obtain a handle on the rank of P , in general.
To this end, we claim that the following theorem holds true:

Theorem III.1. For s = d− k + 1 ≥ 2,

H(Dj,E) = sn−l(sl − (s− 1)l). (11)

In other words, the rank of the symbol matrix P is sn−l(sl−
(s− 1)l).

We shall defer the proof of Theorem III.1 until later,
and prove the following theorem, based on the validity of
Theorem III.1.

Theorem III.2. The coding scheme of Construction 2 is
secure, for k+1 ≤ d ≤ n−1, against a passive eavesdropper
that has access to a set E ⊂ [n] of nodes, with |E| = l.

Proof. The proof of the theorem is similar to the proof of
Proposition 1 in [7]. We intend showing that H(e) ≤ H(r)
and H(r|e, f (s)) = 0, thereby implying (from the perfect
secrecy lemma of [9]) that I(f (s); e) = 0. Let T represent a
group of k − l nodes such that T ∩ E = ∅. We know that

e = (ci : i ∈ E) ∪
(⋃
i∈E

⋃
j∈[n]\E

{Dj,i}
)
.

Now, using the notation cE := (ci : i ∈ E), we have

H(e) = lα+H

(⋃
i∈E

⋃
j∈[n]\E

{Dj,i}
∣∣∣∣ cE)

= lα+H

(⋃
i∈E

⋃
j∈T

{Dj,i}
∣∣∣∣ cE) (12)

≤ lα+H

(⋃
i∈E

⋃
j∈T

{Dj,i}
)

≤ lα+
∑
j∈T

H(Dj,E)

= lsn + (k − l)(1− (1− 1/s)l)sn

= ksn − (k − l)(1− 1/s)lsn

=M −M (s) = H(r).
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The equality in (12) follows from the fact that

H

(⋃
i∈E

⋃
j∈[n]\(T∪E)

{Dj,i}
∣∣∣∣ cE,⋃

i∈E

⋃
j∈T

{Dj,i}
)

≤
∑
i∈E

H

( ⋃
j∈[n]\(T∪E)

{Dj,i}
∣∣∣∣ cE, ⋃

j∈T

{Dj,i}
)

(13)

= 0,

the last equality holding since each summand in (13) equals
0 by the arguments used in the proof of Lemma 7 in [4].

Using the MDS array property of the Ye and Barg code
and from Remark 8 of [8], it is possible to show that
H(r|e, f (s)) = 0. We refer the reader to the proof of
Proposition 1 in [7], for more details.

Now, from the perfect secrecy lemma in [9], the two
conditions above imply that I(f (s); e) = 0, thereby proving
that perfect secrecy holds.

We shall now proceed to the proof of Theorem III.1,
beginning with the definitions of a few notions related to
hypergraphs.

Definition III.2. (Incidence matrix) The incidence matrix (or
vertex-edge incidence matrix) V of a hypergraph (X,E) is a
0-1 matrix of dimension |V |×|E|, with the rows representing
nodes and columns representing hyperedges, such that Vi,j =
1 if edge j is incident on vertex i, and 0 otherwise.

For a vector v, we define its support to be the set of
coordinates in which v takes on non-zero values.

Definition III.3. (Connected hypergraph) A hypergraph
(X,E) is said to be connected, if for every pair
of nodes (u,w) ∈ X × X , u 6= w, there ex-
ists an alternating sequence of nodes and hyperedges,
v0, h0, v1, h1, . . . , vm−1, hm−1, vm, (m ∈ Z+) with v0 = u
and vm = w, such that for i ∈ [0 : m − 1], hi is incident
on both vi and vi+1. We call the sequence of hyperedges
h0, h1, . . . , hm−1 as a path from u to w.

Now, we denote by Gs,n, the n-dimensional regular hyper-
graph (X,E) with |X| = sn and E ⊂ Xs, with incidence
matrix VGs,n

defined as follows: let the rows of VGs,n
be

indexed by all the vectors in Sn, listed in lexicographic order.
Further, let the columns of VGs,n be indexed by the vectors
b ∈ Sni←∗, (i ranging from n down to 1), where for any
i, the vectors b are listed in lexicographic fashion. Hence,
the first sn−1 columns of VGs,n

are indexed in lexicographic
order by vectors in Snn←∗, the next sn−1 columns are indexed
by vectors in Sn(n−1)←∗, and so on. Thus, there are nsn−1

columns overall. The entries of VGs,n
are

[VGs,n
]
r,t

=

{
1, if r\i = t\i and ti = ∗
0, otherwise

(14)

where r ∈ Sn and t ∈ Sni←∗, i ∈ [n].
The column in VGs,n indexed by the vector b ∈ Sni←∗ for

some i, has exactly s 1’s in precisely those rows t for which
ti = u, u ∈ [0 : s − 1] and tj = bj , for j 6= i. Moreover,
each row of VGs,n

has exactly n 1’s.

With the aid of the definitions above, we wish to prove
Theorem III.1. Two lemmas follow. The first (Lemma III.3)
establishes that the transpose of the symbol matrix P can be
thought of as the incidence matrix of a regular hypergraph
having exactly sn−l connected components. Our second
lemma (Lemma III.4) proves that the rank of the incidence
matrix corresponding to each of these connected components
is (sl − (s− 1)l). We conclude by showing that the rank of
P is precisely the sum of the ranks of the incidence matrices
of these connected components.

Lemma III.3. PT is the incidence matrix of a subgraph H

of Gs,n. Further, the number of connected components in H

is sn−l.

Proof. Recall that the symbol matrix P has a block matrix
form, given in equation (9). Taking the transpose of each Pi,
i ∈ [n− l + 1 : n] thus gives us:

[PTi ]r,t =

{
1, if t\i = r\i,
0, otherwise

(15)

where r ∈ Sn and t ∈ Sni←∗.
Since i ranges from n− l+1 to n only, by comparing the

equation above with (14), we get that PT is a submatrix of
VGs,n

, containing only the first lsn−1 columns of VGs,n
. We

denote by H, the subgraph induced by this submatrix; thus,
H is a sub-hypergraph of Gs,n.

Now, let t be the number of connected components in H

and let hi, 1 ≤ i ≤ t, be the number of hyperedges in each
component Hi. Then,

t∑
i=1

hi = lβ = lsn−1. (16)

Pick some node indexed by vector v so that v belongs to
connected component Hj . Consider the collection of nodes
W, where W = {w ∈ Sn : wi = vi, i ∈ [n − l] and wj ∈
[0 : s− 1], j ∈ [n− l+1 : n]}. Note that the set W includes
the node v. From equation (10), it is easy to verify that
the sub-hypergraph of H induced by the nodes in W forms
the connected component Hj . This can be seen by choosing
some node x 6∈W. Node x differs from any node in W in at
least one position j ∈ [n− l]. Hence, the row corresponding
to x in PT will have as support, those columns where none
of the nodes in W have a 1 entry, thereby implying that
there does not exist a path from x to any of the nodes in W.
Observe that the number of nodes in Hj is sl.

Since the coordinates of nodes w in Hj in positions i ∈
[n−l] are fixed, we puncture the vectors w at these positions,
to form the vectors w′. Thus, the sets Sni←∗, i ∈ [n− l+ 1 :
n] can be written as the sets Sli←∗, i ∈ [l], each set now
containing vectors w′.

The incidence matrix VHj has entries

[VHj
]
r,t

=

{
1, if t\i = r\i,
0, otherwise

(17)

where r ∈ Sl and t ∈ Sli←∗, i ∈ [l].
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Hj is precisely the hypergraph Gs,l, having hj = lsl−1

edges. Since this is true for any j ∈ [t], substituting in equa-
tion (16), we get that the number of connected components
in H equals sn−l.

We shall now introduce an (s−1)l-dimensional code C⊗l,
of block length sl, the parity check matrix of which will aid
us in obtaining a handle on the rank of VGs,l

.
Consider the single parity check code Cs of block length

s over the field F, having the (s − 1) × s generator matrix
Gs given by

Gs =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

 .
The parity check matrix, Hs, of Cs is simply the 1 × s

all-ones matrix. We then define the direct product code C⊗ls
(where Cs is the underlying code), as the code generated by

G⊗ls = Gs ⊗Gs ⊗ · · · ⊗Gs︸ ︷︷ ︸
l times

where ⊗ denotes the Kronecker product. A codeword in C⊗ls
is of length sl and can be described by an l-dimensional array.
Each entry of the array (which is a coordinate of the code-
word) is indexed by an s-ary l-tuple v = (v1, v2, . . . , vl) ∈
Sl.

The code C⊗ls has the property that each array element
v is involved in l parity check equations, one along each
coordinate i ∈ [l]. In other words, for every symbol v ∈ Sl,
there exists a parity check equation indexed by a vector b ∈
Sli←∗, i ∈ [l], such that b\i = v\i. Moreover, the parity check
equation along coordinate j is the sum of those codeword
symbols that differ from v in only their jth coordinate.

Formally, the code C⊗ls can be described by the lsl−1× sl
parity check matrix H having entries

Hr,t =

{
1, if t\i = r\i,
0, otherwise

(18)

where r ∈ Sli←∗, i ∈ [l] and t ∈ Sl. Thus, each row of H
corresponds to a parity check equation b, that finds the sum
of symbols v ∈ Sl, which differ only in that coordinate of
the l-tuple, i, in which bi = ∗.

Lemma III.4. The parity check matrix H of C⊗ls is equal to
V TGs,l

. Further, rank(V TGs,l
) = sl − (s− 1)l.

Proof. The first part of the lemma is obvious from equa-
tions (14) and (18). We observe that rank(G⊗ls ) =∏l
i=1 rank(Gs) = rank(Gs)l = (s − 1)l. Thus, the rank of

the parity check matrix H is equal to sl − (s− 1)l.

Using Lemmas III.3 and III.4, we shall now prove Theo-
rem III.1.

Proof. Recall from Lemma III.3 that for any node v ∈ Sn of
the hypergraph H, the connected component Hj containing

v consists of nodes in the set W = {w ∈ Sn : wi = vi, i ∈
[n− l] and wj ∈ [0 : s− 1], j ∈ [n− l + 1 : n]}.

It is now possible to permute the rows v of PT in
lexicographic order of v′ = (vn−l, . . . , v1) so that all the
rows v ∈ Sn corresponding to a fixed value of v′ occur
together. Thus, the first sl rows of PT are indexed by
vectors v such that v′ = (0, 0, . . . , 0), the next sl rows
are indexed by vectors v with v′ = (0, 0, . . . , 1) and so
on. Each collection of sl rows corresponding to a particular
value of v = (vn−l, . . . , v1) forms the incidence matrix of a
connected component.

From (17), we observe that the supports of the rows
corresponding to any two connected components Hi and Hj ,
i 6= j, are disjoint. Hence, the rank of PT is equal to the
sum of the ranks of the incidence matrices of the connected
components of hypergraph H, induced by PT . Since each
connected component is precisely the hypergraph Gs,l (from
the proof of Lemma III.3), we get that

rank(PT ) = sn−l(rank(VGs,l
)) = sn−l(sl − (s− 1)l),

where the first equality follows from Lemma III.3 and the
second from Lemma III.4.
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