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Given a hyperbolic surface, the set of all closed geodesics whose length is minimal forms
a graph on the surface, in fact a so-called fat graph, which we call the systolic graph. We
study which fat graphs are systolic graphs for some surface (we call these admissible).

There is a natural necessary condition on such graphs, which we call combinatorial
admissibility. Our first main result is that this condition is also sufficient.

It follows that a sub-graph of an admissible graph is admissible. Our second major
result is that there are infinitely many minimal non-admissible fat graphs (in contrast,
for instance, to the classical result that there are only two minimal non-planar graphs).
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1. Introduction

Given a hyperbolic surface F , each homotopy class of closed curve has a unique

geodesic representative [10]. The lengths of the closed geodesics form the so-called

length spectrum, and the minimum of these lengths is the systole which is denoted

by Sys(F ).

We shall call the union of all closed geodesics whose length is the systole the

systolic graph associated to a surface. This is in fact a so-called fat graph, with all

nodes having valence even and at least 4. Henceforth when we refer to fat graphs

we always assume that this valence condition is satisfied.

The central question of this paper is the following.

Question. Which fat graphs are systolic graphs of hyperbolic surfaces?

Besides its relation to the study of systolic geometry and length spectra, we are

motivated to study this question as we get a natural decomposition of the moduli

space of hyperbolic surfaces by associating to a surface its systolic graph.
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We call a fat graph admissible if it is the systolic graph of a hyperbolic surface,

so that no complementary region is a disc (i.e. the graph is essential). Thus, our

central goal is to understand which fat graphs are admissible.

We only consider systolic graphs that are essential, in the sense that no com-

plementary region is homeomorphic to a disc. We remark that at critical points of

the systole, all the complementary regions are homeomorphic to discs.

Combinatorial formulation. An essential systolic graph Γ of a hyperbolic surface

F can be viewed as a metric graph, with distance obtained by measuring along

paths in the graph using the metric from the surface. The minimal geodesics are

cycles in this graph, all of which have the same length, namely the systole Sys(F ).

Furthermore, any other cycle λ in Γ which gives an essential closed curve in the

surface F , which is hence homotopic to a geodesic of length greater than Sys(F ).

It follows that the length of λ is greater than that of the systole.

Note that cycles of Γ which correspond to minimal geodesics of F can be deter-

mined from the fat graph Γ (which we assume satisfies the valence conditions) —

we call these the standard cycles of Γ. Thus, we can formulate a necessary condition

for Γ to be admissible in terms of metric graph structures on Γ. Namely, if Γ is

admissible then we can associate lengths to the edges of Γ so that

(1) All standard cycles have the same length, say σ.

(2) All other cycles have length greater than σ.

We say that a graph is combinatorially admissible if we can associate lengths to

edges satisfying the above condition. Our first main result says that this condition

in fact characterizes admissibility.

Theorem 1.1. A fat graph Γ is admissible if and only if it is combinatorially

admissible.

The proof of this result is based on negative curvature of hyperbolic space. The

crucial ingredient is that if the systolic length is very large, then the lengths of

cycles in a systolic graph in the metric on the graph are very close to the lengths

of the corresponding geodesics on a hyperbolic surface.

Minimal obstructions. Given a fat graph Γ, we can associate to it subgraphs

that are unions of some of the standard cycles of Γ. It is easy to see that if Γ is

admissible, each such subgraph is combinatorially admissible, hence is admissible.

Thus, it suffices to understand which fat graphs are minimally non-admissible, i.e.

which are non-admissible but with all proper subgraphs admissible.

This is a common situation in graph theory — for instance planarity is similarly

characterized by describing the minimally non-planar graphs, namely K3,3 and K5.

However, in contrast to the simple answer in that case, we see the complexity of

the question we are studying in the following result.

Theorem 1.2. There are infinitely many minimally non-admissible fat graphs.
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The configurations of systolic curves on hyperbolic surfaces has been studied

extensively in [2, 3, 6, 8, 13, 14]. In [6], Buser has shown that for all l and g ≥ e
l2

4

there exists a hyperbolic surface Fg of genus g such that Sys(Fg) = l which solves

the large systole problem. Buser and Sarnak [8] were the first to show that there

exist families Fgk of closed hyperbolic surfaces of genus gk with gk → ∞ as k → ∞
whose systole length grows like Sys(Fgk) ≥ 4

3 log gk. The notion of topological Morse

function was introduced by Morse himself. Paul Schmutz Schaller [13] initiated the

study of critical points of the topological Morse function Sys. In [1], Akrout showed

that the systole function is a topological Morse function.

2. Decorated Fat Graph

In this section, we define decorated fat graph and its standard cycle. We start by

recalling a definition of graph.

Definition 2.1. A graph is a quadruple G = (V,H, s, i) where

(1) V is a non-empty set, called the set of vertices or nodes.

(2) H is a set (possibly empty), called the set of half edges.

(3) s : H → V is a function, thought of as sending each half edge to the node which

it contains.

(4) i : H → H is a fixed point free involution map, thought of as sending each half

edge to its other half.

A cycle in a graph is a simple closed path.

Definition 2.2. The girth T (G) of a graph G is the length of a shortest nontrivial

cycle. If a graph does not contain any cycle (i.e. it is a tree), its girth is defined to

be infinity.

Definition 2.3. A fat graph is a graph (V,E, s, i) with a bijection σ : H −→ H

whose cycles correspond to the sets s−1(v), v ∈ V.

Definition 2.4. A decorated fat graph is a fat graph together with the union of

disjoint circles (possibly empty) such that the degree of each node is even and at

least 4.

In particular, a disjoint union of topological circles is considered as a decorated

fat graph. In this paper by a fat graph we always mean a decorated fat graph.

Definition 2.5. A simple cycle is called a standard cycle if every two consecutive

edges are opposite to each other in the cyclic ordering on the set of edges incident

at their common node. If a cycle is not standard, we call the cycle as non-standard.

Let G be a fat graph. We define the intersection graph Γ(G) as follows: there

is a vertex corresponding to each standard cycle and there is an edge between two

nodes if the corresponding standard cycles intersect.
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In this paper, by a subgraph of a fat graph Γ we mean the unions of some of

the standard cycles of Γ.

3. Minimal Non-Admissible Fat Graph

In this section, we study non-admissible fat graph. We give a constructive proof

of Theorem 1.2. Recall that, for a given fat graph G and a positive real number l

if there exists a metric on G such that the length of each standard cycle is equal

to l and the length of each non-standard cycle is strictly greater than l, we say

that the graph is combinatorially admissible. A fat graph is non-admissible if it is

not admissible. Also, a non-admissible fat graph is called minimal non-admissible

if every subgraph of G is admissible. We prove the following.

Theorem 3.1. There are infinitely many minimal non-admissible fat graphs.

Suppose G is a given 4-regular fat graph such that the intersection graph Γ(G)

is a planar graph. Consider a standard cycle C = e1 ∗ · · · ∗ en and let v1, . . . , vn be

the nodes of C enumerated in a fixed orientation. Let Ci denote the standard cycle

meeting C at vi. If the orientation induced from the plane gives the cyclic ordering

C1 < C2 < · · · < Cn (clockwise or anti-clockwise) to the set of nodes adjacent to the

node C in Γ(G) then we say that the node C in Γ(G) respects an orientation of

the fat graph. If each of the nodes of Γ(G) respects an orientation of the fat graph

then we say that the intersection graph respects an orientation of the fat graph.

Suppose G is a fat graph such that the intersection graph Γ(G) is planar and

respects an orientation of G. We assume that G is 4-regular and two standard cycles

can intersect at most once. Let the number of faces in Γ(G) be f and the number

of nodes be v.

Lemma 3.2. Suppose v ≤ f, then G is non-admissible.

Proof. Each node of Γ(G) corresponds to a standard cycle of G. Also, there is a

natural association of a non-standard cycle to each face of Γ(G) so that the non-

standard cycles associated to distinct faces have no edges in common. Note that,

this correspondence is not uniquely defined when a standard cycle is intersected by

exactly two other standard cycles. But this non-uniqueness is not a problem.

Assume that we are given a metric on the graph G (i.e. lengths associated to

each edge) so that all standard cycles have the same length λ. Then as each edge is

in a unique standard cycle, the total length of the edges is vλ. On the other hand,

each edge is in the non-standard cycle corresponding to a unique face of Γ(G).

Hence if µ is the average length of the non-standard cycles corresponding to the

faces, then fµ = vλ.

Thus, if v ≤ f and µ ≤ λ then some non-standard cycle has length at most λ.

Thus the metric is not admissible.

Proof of Theorem 3.1. We first sketch the idea of the proof.
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v0,1

v0,2

v0,3

v0,n

C0

vn,0
vn,1

vn,2

Cn

C2

v2,0

v2,1

v2,2

C3

v3,0

v3,1

v3,2

C1v1,0

v1,2

v1,1

Fig. 1. The schematics for building the graph Gn.

To prove the theorem, for each integer n ≥ 3 we construct a fat graph Gn with

n+1 standard cycles and show that the graph Gn is minimal non-admissible. This

is done in three steps. In the first step, for each n ≥ 3 we construct the fat graph

Gn. In the next step, we show that the graph is non-admissible. Finally, we prove

the minimality.

Construction of Gn: The standard cycles Ci, i = 0, 1, . . . , n, are described below

(see Fig. 1): C0 = (v0,1, v0,2, v0,3, . . . , v0,n) and Ci = (vi,0, vi,1, vi,2), i = 1, . . . , n.

We identify the nodes on the cycles by following v0,i = vi,0 and v1,2 = v2,2, v2,1 =

v3,1, . . . , vn,1 = v1,1.

Non-admissibility of Gn: The intersection graph is Γ(Gn) = (V,E) where V =

{vi|i = 0, 1, 2, . . . , n}, vi corresponds to the standard cycle Ci and E = {ei, fi|i =
1, 2, . . . , n} where ei is the simple edge between vi and vi+1 for 1 ≤ i ≤ n − 1, en
is the edge between vn and v1, fi is the edge between v0 and vi. The graph Γ(Gn)

is a prism over an n-sided polygon and respects an orientation of G. In a planar

representation of Γ(Gn) the number of nodes is the same as the number of faces.

Hence by Lemma 3.2 the fat graph G is non-admissible.

Minimality of Gn: Now, we show that, if we delete any cycle Ci from Gn then the

resulting graph becomes admissible. Let us denote the fat graph obtain by removing

the cycle Ci from Gn by Gi
n. Note that Gi

n and Gj
n are isomorphic for all i, j ≥ 1.

Therefore, it is enough to show that G0
n and G1

n are admissible.

In G0
n every standard cycle consists of two edges and every non-standard cycle

consists of at least three edges. Hence, we define the metric l : E −→ R+ by l(e) = 1
2
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v0,2

v0,3

v0,n−1

v0,n

C0

Cn

C2

C3

v3,0

v3,1

v3,2

v2,0

v2,1

vn,0

vn,1
vn−1,0

vn−1,1vn−1,2

Fig. 2. The fat graph G1
n.

for each edge e in E follows that the length of each standard cycle is 1 and the

length of each non-standard cycle is at least 3
2 .

The standard cycles of G1
n are given by, C0 = (v0,2, v0,3, . . . , v0,n−1), C2 =

(v2,0, v2,1), Ci = (vi,0, vi,1, vi,2) where 2 < i < n and Cn = (vn,0, vn,1). The nodes

are identified by the following relations: v0,i = vi,0, for i = 2, . . . , n; v2,1 = v3,1,

v3,2 = v4,2, and v4,2 = v5,2, . . . , vn−1,1 = vn,1. We define d : E(G1
n) −→ R+ as

follows:

d(v0,i, v0,i+1) :=
1

n− 1
; 2 ≤ i ≤ n− 1,

d(v0,n, v0,2) :=
1

n− 1
,

d(vj,1, vj,2) :=
1

n− 1
− ε

d(vj,0, vj,1) = d(vj,0, vj,2) :=
1

2
+

ε

2
− 1

2(n− 1)
; 3 ≤ j ≤ n− 1 and

d(v2,0, v2,1) = d(vn,0, vn,1) :=
1

2
.

We choose ε ∈ R+ so that d is a positive function and an admissible metric, namely

one can choose a positive ε strictly less than 1
n−1 . This gives a metric with every

standard cycle having length 1. Note that the length of the outer non-standard

cycle is 2 − (n − 2)ε which is strictly greater than one. If C is any non-standard

cycle other than the outer cycle, then it must consist of at least three edges where
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at least two of them have length at least 1
2 + ε

2 − 1
2(n−1) and at least one edge of

length 1
n−1 . Thus we have,

length(C) ≥ 2

(
1

2
+

ε

2
− 1

2(n− 1)

)
+

1

n− 1
= 1 + ε > 1.

3.1. More minimal non-admissible graphs

In this situation we have the following natural question.

Question. Does {Gn|n ∈ N, n ≥ 3} exhaust the set of all minimal non-admissible

fat graphs?

We see that this is not the case. Consider the following example.

Consider the fat graph

G = {v1 : [v2, v4, v3, v8], v2 : [v1, v4, v3, v6], v3 : [v1, v7, v2, v6],

v4 : [v1, v2, v8, v5], v5 : [v4, v8, v6, v7], v6 : [v2, v3, v5, v7],

v7 : [v3, v5, v6, v8], v8 : [v1, v7, v4, v5]}, (1)

where, vi, i = 1, 2, . . . , 8 are the nodes of G and vi : [u1, . . . , umi ] means ui, i =

1, 2, . . . ,mi are nodes adjacent to vi with the order (vi, u1) < (vi, u2) < · · · <

(vi, umi) on the set of edges incident at vi. Here (u, v) denotes a simple edge between

the nodes u and v. The intersection graph of G is planar and respects an orientation

of G. In a planar representation of the intersection graph the number of nodes is

5 which is equal to the number of faces. It follows by Lemma 3.2 that G is non-

admissible. Now, we claim that G is minimal.

We show that if we delete any standard cycle c from G, then the resulting graph

G− c is admissible. First, see that G− c2 where, c2 = (v2, v4) ∗ (v4, v5) ∗ (v5, v6) ∗
(v6, v2) is admissible. The intersection graph of G − c2 is a rectangle. Hence, each

standard cycle consists of exactly two edges. On the other hand, each non-standard

cycle consists of at least four edges. So we assign length 1
2 to each edge which makes

G− c2 admissible.

Now we define a metric on G − c3 where, c3 = (v3, v6) ∗ (v6, v7) ∗ (v7, v3). To

find a metric on the fat graph we need to solve the following system of equations

and inequations:

• ∑e∈c l(e) = 1 for each standard cycle c,

• ∑e∈d l(e) > 1 for each non-standard cycle d, and

• l(e) > 0 for each edge e in the graph G.

We use the Z3 SMT solver to solve the system. After renaming the nodes, the

graph G− c3 is given by,

G− c3 = {v1 : [v2, v4, v2, v5], v2 : [v1, v3, v1, v4], v3 : [v2, v5, v4, v5],

v4 : [v1, v3, v5, v2], v5 : [v1, v3, v4, v3]}. (2)
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We define, l(v1, v4) = x0, l(v3, v4) = x1, l(v4, v5) = x2, l(v2, v4) = x3, l(v1, v5) =

x4, l(v3, v5) = x5, l(v1, v2) = x6 and l(v2, v3) = x7. Each solution of the system will

provide an admissible metric on the fat graph. Using the Z3 SMT solver, we have

that the above system is satisfiable. i.e. the graph is admissible and a solution is

given by x0 = 1
2 , x1 = 1

2 , x2 = 1
8 , x3 = 1

8 , x4 = 3
8 , x5 = 1

2 , x6 = 1
2 and x7 = 3

8 . By

symmetry, we have G− c1 = G− c3 where c1 = (v1, v2) ∗ (v2, v3) ∗ (v3, v1) and thus

is admissible.

Also, G− c4 = G− c5, where c4 = (v1, v8) ∗ (v8, v4) ∗ (v4, v1) and c5 = (v5, v8) ∗
(v8, v7)∗(v7, v5). Hence, it suffices to show that G− c4 is admissible. After renaming

the nodes, the graph G− c4 is given by,

G− c4 = {v1 : [v2, v5, v4, v5], v2 : [v1, v3, v4, v3], v3 : [v2, v5, v2, v4],

v4 : [v1, v5, v2, v3], v5 : [v1, v4, v1, v3]}. (3)

As before we define, l(v1, v4) = x0, l(v4, v5) = x1, l(v2, v4) = x2, l(v3, v4) = x3,

l(v1, v5) = x4, l(v3, v5) = x5, l(v1, v2) = x6 and l(v2, v3) = x7. Using the Z3 SMT

solver we see that the fat graph is admissible and a solution is given by x0 = 3
4 ,

x1 = 3
8 , x2 = 1

8 , x3 = 1
2 , x4 = 1

2 , x5 = 1
8 , x6 = 1

8 and x7 = 1
2 .

4. Uni-Trivalent Graph of Large Girth

A graph is called trivalent if the degree of each node of the graph is 3. The length

of a shortest cycle of a graph G is called the girth of the graph and is denoted by

T (G). Let f(n) be the smallest number for which there exists a trivalent graph of

girth at least n with f(n) nodes. It follows from the result in [12](1963) that f(n)

satisfies

3 · 2[(n−3)/2]+1 − 2 ≤ f(n) ≤ 2n+1 − 1.

In [6], it has been shown that, for all n ∈ N and g ≥ gn there exists a trivalent

graph G with |G| = 2g − 2 nodes and girth T (G) ≥ n, where

gn =



2 if n = 1, 2,

n+ 1 if n = 3, 4, 5,

2n if n ≥ 6.

In [5], the author gave a constructive proof to show that f(n) ≤ 2n. Recall that, a

graph G = (V,E) is called a uni-trivalent graph if there is a node v0 ∈ V of degree

one and all other nodes have degree three. In this section, we prove the following

lemma.

Lemma 4.1. Given any n ∈ N, there exists a uni-trivalent graph G with f(n) + 2

nodes and girth T (G) ≥ n.

Proof. First we consider a trivalent graph of girth ≥ n with f(n) nodes where the

existence follows from [5, 6, 12]. Next, we delete one edge and then introduce two

more nodes and three edges to obtain a uni-trivalent graph.
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Consider the trivalent graph G′ = (V ′, E′) of girth at least n with f(n) nodes.

Then fix an edge e = (x, y) in G′. Now, the uni-trivalent graph of girth ≥ n is given

by G = (V,E) where V = V ′ ∪ {u, v}, E = (E′\{e}) ∪ {(u, x), (u, y), (u, v)}.

5. Hyperbolic Pair of Pants

In this section, we prove three lemmas on hyperbolic pair of pants which will be

needed for subsequent sections. By a hyperbolic pair of pants we mean a pair of

pants equipped with a hyperbolic structure. Unless otherwise noted, we assume

that pairs of pants are hyperbolic. It is a fact, in hyperbolic geometry that on a

pair of pants the lengths of its boundary components determine a unique hyperbolic

structure up to isometry where the boundary curves are geodesic [10]. For any triple

(l1, l2, l3) of positive real numbers, P (l1, l2, l3) denotes the hyperbolic pair of pants

with geodesic boundaries γ1, γ2 and γ3 of lengths l1, l2 and l3 respectively.

Definition 5.1. Let P be a hyperbolic pair of pants with boundary components

γ1, γ2 and γ3. The length of the simple geodesic arc δi with both end points at γi
meeting perpendicularly is called the height of the hyperbolic pair of pants P with

respect to the waist γi.

Lemma 5.2. Given any positive number l, there exists a pair of pants P =

P (l, kl, kl) for some k such that length(δ1) ≥ l.

Proof. Let us fix a k ∈ R>0 and consider the hyperbolic pair of pants P =

P (l, kl, kl). We consider the height δ1 which has its endpoints on the boundary

curve γ1 of length l. For symmetry reasons, the endpoints of δ1 divide γ1 into

two equal segments of length l
2 . The union of δ1 with one of these segments

forms a piecewise geodesic curve of length l
2 + l(δ1). But this curve is freely

homotopic to one of the boundary components of length kl. Therefore, we have
l
2 + l(δ1) > kl ⇒ l(δ1) > kl − l

2 and hence we conclude that the lemma is true for

all k ≥ 3
2 .

Lemma 5.3. The height δ of the hyperbolic pair of pants P (l, l, l) satisfies

length(δ) >
l

2
.

Proof. The proof of this lemma is a special case of the proof of Lemma 5.2, inpar-

ticular when k = 1.

Lemma 5.4. The distance between any two distinct boundary components of

P (l, l, l) is given by

dist(γi, γj) = arcsinh

(
1

2 sinh l
4

)
for i 	= j.

Lemma 5.4 follows from simple hyperbolic trigonometry (see Chap. 7 in [4]).
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6. Polygonal Quasi-Geodesic

In this section, we develop three lemmas (Lemmas 6.3, 6.6 and 6.7) which are used

in the next section to prove the first main theorem. The first lemma says that a

piecewise geodesic path with interior angles at the vertices bounded below and the

lengths of the edges large enough (in terms of the lower bounds on the angles) is a

quasi-geodesic. The second lemma says that if the length of a corridor is sufficiently

large, the ratio of the length of a geodesic segment in the corridor with end points

in the geodesic sides to the length of the corridor is close to 1.

It is a fact in hyperbolic geometry that there exists a unique simple closed

geodesic of minimal length in the free homotopy class of a simple closed curve in

a hyperbolic surface. The third lemma relates the length of a piecewise geodesic

simple closed curve to the length of the simple closed geodesic in its free homotopy

class.

6.1. Quasi-geodesic

Let (X, d) be a metric space. Let I ⊂ R be a (possibly unbounded) interval. For

λ ≥ 1 and ε ≥ 0, a (λ, ε)-quasi-isometric embedding is a map f : I −→ X satisfying

1

λ
|a− b| − ε ≤ d(f(a), f(b)) ≤ λ|a− b|+ ε,

for all a, b ∈ I. If the restriction of f to any subsegment [x, y] ⊂ I of length at most L

is a (λ, ε)-quasi-isometric embedding, then we call f a (L, λ, ε)-local quasi-isometric

embedding. Note that, a quasi-isometric embedding need not be continuous. Now,

we recall the definition of quasi-geodesic.

Definition 6.1. A curve γ : I −→ X in a geodesic metric space (X, d) is called a

(λ, ε)-quasi-geodesic for some λ ≥ 1 and ε ≥ 0, if the following inequality

1

λ
l(γ|[t1,t2])− ε ≤ d(γ(t1), γ(t2)) (4)

holds for all t1, t2 ∈ I.

Remark 6.2. In Definition 6.1, if ε = 0 then γ is simply called a λ-quasi-geodesic.

If the restriction of γ to any subsegment [a, b] ⊂ I of length at most L is a

(λ, ε)-quasi-geodesic then we call γ is a (L, λ, ε)-local quasi-geodesic.

6.2. Technical lemmas

Lemma 6.3. Let γ : R → H be a piecewise geodesic curve such that the interior

angles are bounded below by some θ0 ∈ R+. If the length of a smallest geodesic

piece in γ is sufficiently large, then there exist k ≥ 1 and ε ≥ 0 such that γ is a

(k, ε)-quasi-geodesic.
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Proof. We first prove a result concerning the union of two geodesic segments and

conclude that γ is a locally quasi-geodesic. We then conclude that it is a quasi-

geodesic.

Lemma 6.4. Suppose βi : [0, li] → H, i = 1, 2 are geodesic segments parametrized

by arclength with β1(l1) = β2(0) and the interior angle at the connecting point is

α. Then the piecewise geodesic arc β = β1 ∗ β2 : [0, l1 + l2] → H defined by

β(t) =

{
β1(t) if t ∈ [0, l1]

β1(t− l1) if t ∈ [l1, l1 + l2]

is a k(α)-quasi-geodesic for some constant k(α) ≥ 1.

Proof. Consider ∆(ABC) is a triangle in the Euclidean plane with vertices at A,B

and C. Suppose d(A,C) = t1, d(A,B) = t2 and the interior angle at A is α.

Claim. There exists a real number k(α) ≥ 1 which depends only on α, such that

1

k(α)
(t1 + t2) ≤ d(B,C). (5)

Suppose the claim is true. We prove that β is a k(α)-quasi-geodesic. Let P =

β(t1), Q = β(t2), t1 ≤ t2 be two points on β. If t1, t2 satisfy 0 ≤ t1, t2 ≤ l1 or

l1 ≤ t1, t2 ≤ l1 + l2 then we have lH(β|[t1,t2]) = dH(P,Q). Hence, for any k(α) ≥ 1

we have

1

k(α)
lH(β|[t1,t2]) ≤ dH(P,Q).

Now let 0 ≤ t1 ≤ l1 and l1 ≤ t2 ≤ l1 + l2. Consider the Euclidean triangle

∆(ABC) such that d(A,C) = t1, d(A,B) = t2 and the interior angle at A is α.

Then we have 1
k(α) (t1 + t2) ≤ d(B,C) which follows from the claim. Also, by

Toponogov’s comparison theorem (see [11]), we have d(B,C) ≤ dH(P,Q). Hence,

we have 1
k(α) (t1 + t2) ≤ dH(P,Q) which is the same as the following inequality

1

k(α)
lH(β|[t1,t2]) ≤ dH(P,Q).

Hence, β is a k(α)-quasi-geodesic. Thus it suffices to prove the claim.

Proof of the Claim. Let d(B,C) = t3. From the triangle ABC we have

t23 = t21 + t22 − 2t1t2 cosα

⇒
(

t3
t1 + t2

)2

= 1− 2t1t2
(t1 + t2)2

(1 + cosα).
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γ′

γ

a

b

δ

a′

b′

Fig. 3. Corridor.

Now using the inequality of arithmatic and geometric means we have

t1 + t2
2

≥ √
t1t2

⇒ 1− 2t1t2
(t1 + t2)2

(1 + cosα) ≥ 1− cosα

2

⇒
(

t3
t1 + t2

)2

≥ 1− cosα

2

⇒ t3
t1 + t2

≥ sin
(α
2

)
.

Therefore we have 1
k(α) (t1 + t2) ≤ t3 where k(α) = 1

sin(α
2 ) .

Thus, Lemma 6.4 follows.

It follows by Lemma 6.4 that γ is a L0-local k(θ0)-quasi-geodesic where L0 is

the length of a smallest geodesic piece in γ.

Thus, by Theorem 4 in [9], it follows that for sufficiently large L0 there exist

k ≥ 1 and ε > 0 such that γ is a (k, ε)-quasi-geodesic. This concludes the proof of

Lemma 6.3.

Definition 6.5. Let L be a hyperbolic line and I ⊂ L. For a positive real number

W ∈ R+, the W -corridor about I along L is the set

W (I, L) = {z ∈ H |dH(z, L) ≤ W,ρL(z) ∈ I}, (6)

where ρL is the orthogonal projection of H onto L.

Let γ be a finite geodesic segment of the complete geodesic γ′ and δ be any

geodesic segment in the corridor (see [9]) W (γ, γ′) with end points on the geodesic

sides of W (γ, γ′) and δ lies on the closure of one of the components W (γ, γ′)\γ.
The length lH(γ) of γ we call the length of the corridor W (γ, γ′).

Lemma 6.6. In the above setting, for a fixed W > 0, if the length of the corridor

is sufficiently large then the ratio lH(δ)
lH(γ)

is arbitrarily close to 1.
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Proof. The fact ργ′(δ) = γ where ργ′ : H → γ′ is orthogonal projection, implies

that 1 ≤ lH(δ)
lH(γ)

. Using triangle inequality, we have lH(δ)
lH(γ)

≤ 2W
lH(γ)

+1. Combining these

two inequalities we have

1 ≤ lH(δ)

lH(γ)
≤ 2W

lH(γ)
+ 1.

Hence lH(δ)
lH(γ)

tends to 1 as the length of the corridor tends to infinity.

Lemma 6.7. Let γ be a piecewise geodesic, essential, simple closed curve of a

hyperbolic surface S with smallest interior angle θ0 > 0. Suppose γ̃ is a lift of γ in

the universal cover. If the length of the smallest geodesic piece of γ is sufficiently

large then:

(1) There exist k ≥ 1 and ε ≥ 0 such that γ̃ is a (k, ε)-quasi-geodesic.

(2) If γ′ is the simple closed geodesic in the free homotopy class of γ then the ratio
lH(γ)
lH(γ′) tends to 1 as the length of the smallest geodesic piece of γ tends to ∞.

Proof. Let θ1, θ2, . . . , θn be the interior angles at the corners of γ. We write γ =

γ1 ∗ γ2 ∗ · · · ∗ γn where γi’s are geodesic segments in γ. We define

l0 = min{lH(γi) : i = 1, 2, . . . , n} and

θ0 = min{θi : i = 1, 2, . . . , n}.
Now consider a lift γ̃ of γ in the universal cover of S. It follows from Lemma 6.3

that γ̃ is a l0-locally k(θ0)-quasi geodesic. Moreover, if l0 is sufficiently large then

there exist k ≥ 1 and ε > 0 such that γ̃ is a globally (k, ε)-quasi geodesic.

Let A,B be the end points of γ̃ on the boundary at infinity. Let γ̃′ be the

geodesic joining A and B. Observe that γ̃′ projects onto γ′. It follows from Theorem

2 in [9] that there exists W > 0 such that γ̃ is contained in Nbd(γ̃′,W ), the W

neighborhood of γ̃′.
Let P = γ̃1 ∗ γ̃2 ∗ · · ·∗ γ̃n be a continuous sub-segment of γ̃ such that γ̃i’s project

onto γi, i = 1, 2, . . . , n and we have lH(γ) =
∑n

i=1 lH(γ̃i). Suppose P0, P1, . . . , Pn

are the points on the path P such that γ̃i are the geodesic segments joining Pi−1

and Pi, i = 1, 2, . . . , n. Denote the orthogonal projection of the point Pi is by P ′
i ,

i = 1, 2, . . . , n and the geodesic segment joining P ′
i−1 and P ′

i by γ̃i
′. Then we have

lH(γ
′) =

∑n
i=1 lH(γ̃i

′). The geodesic segment γ̃i lies in the W -corridor of γ̃′
i along

[A,B]H such that the end points are on the geodesic sides of the corridor. Then it

follows from Lemma 6.6 that the ratio lH(γ̃i)
lH(γ̃′

i)
tends to 1 if l0 is sufficiently large,

i = 1, 2, . . . , n. Hence,

lH(γ)

lH(γ′)
=

∑n
i=1 lH(γ̃i)∑n
i=1 lH(γ̃

′
i)

tends to 1 when l0 is sufficiently large. This completes the proof.
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γ̃
A B

γ̃′ γ̃′
i

γ̃i

Fig. 4. A lift of γ.

7. Realization Using Hyperbolic Surfaces with Boundary

In this section, we prove that any combinatorially admissible fat graph is realized

as the systolic graph of some hyperbolic surface with totally geodesic boundary.

Namely, we construct hyperbolic cylinder corresponding to each standard cycle.

Next, we plumb the hyperbolic cylinders together according to the intersections

of the standard cycles to obtain a hyperbolic surface with boundary. We obtain a

hyperbolic surface with totally geodesic boundary by cutting the surface along the

geodesics in the free homotopy classes of the boundary components. We show that

the systolic graph of the surface is isomorphic to the fat graph.

Let G be a given decorated fat graph which is combinatorially admissible. The

graph G is the union of standard cycles with disjoint edges. As combinatorial admis-

sibility is scale invariant, for each l > 0 there is a metric dl on G so that each

standard cycle has length l and each non-standard cycle has length greater than l.

We can assume that the metrics dl coincide up to scaling.

Note that as each non-standard cycle has length bounded below by the length of

a simple non-standard cycle and there are only finitely many simple non-standard

cycles, there is a constant r > 1 so that the length of any non-standard cycle in the

metric dl is at least rl.

7.1. Plumbing

Suppose Ci, i = 1, . . . , k are all the standard cycles of G. First, we construct hyper-

bolic cylinders Ci(l, ε) which are the copies of C(l, ε) corresponding to the standard

cycles Ci, where l, ε are positive real numbers. Note that, C(l, ε) denotes the hyper-

bolic cylinder (see [7]) of width 2ε and the central geodesic of length l.

Next, we plumb the cylinders according to the intersection of the standard cycles

in the fat graph G in such a way that the central geodesics intersect transversally

(in particular at an angle π
2 for a node of valence 4) and the path metric restricted

to the union of the central geodesics is dl. We fix the angles between the central

geodesics depending on the valence. The obtained hyperbolic surface is denoted by

Σl(G).
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We remark that the boundary components of Σl(G) are not geodesics, and not

even piecewise geodesics. It is easy to see that the union of the central geodesics is

a spine of Σl(G) which is isomorphic to G and each boundary component is freely

homotopic to a non-standard cycle in the spine.

7.2. Constructing surface with geodesic boundary

Let γ′ be a boundary component of Σ(G) which is freely homotopic to the simple

closed curve γ′′ in the spine.

Lemma 7.1. For a suitable choice of the width ε and the length l of the central

geodesic of the cylinder C(l, ε), the following hold:

(1) The unique geodesic γ in the free homotopy class of γ′ lies in the (topological)

cylinder with boundaries γ′′ and γ′.
(2) The length of γ is strictly greater than l.

Proof. Let the interior angles of γ′′ be θ1, θ2, . . . , θk and θ = min{θi|i =

1, 2, . . . , k}. Then θ(> 0) is a lower bound in the interior angles of the lift γ̃′′ of γ′′

in the universal cover of Σl(G). It follows from Lemma 6.3 that γ̃′′ is a (k, ζ)-quasi

geodesic for some k ≥ 1 and ζ ≥ 0. Let us denote the axis of the quasi-geodesic γ̃′′

by γ̃ which is the geodesic line in the hyperbolic plane joining the end points of γ̃′′.
By Theorem 2 in [9] there is a positive number W ∈ R such that γ̃′′ ⊂ Nbd(γ̃,W ).

Also, each interior angle is strictly less than π, hence γ̃′ and the geodesic γ̃ lie on

the same side of γ̃′′. Therefore, if we choose the positive number ε larger that W ,

then the geodesic γ̃ lies in the region bounded by γ̃′ and γ̃′′.

By Lemma 6.7, it follows that if l is sufficiently large then
lengthdl

(γ′′)
lengthdl

(γ) < r. As

γ′′ is a non-standard cycle, lengthdl
(γ′′) > rl. Hence lengthdl

(γ) > l as claimed.

We remark that the proof above shows that the length of any geodesic is at

least l, as each geodesic is homotopic to a cycle in the spine and to a non-standard

cycle unless it is a central geodesic. In the former case the above argument applies

and in the latter case the length is l.

Thus, by choosing l sufficiently large, we obtain a surface Σ(G) = Σl(G) satis-

fying the following.

Lemma 7.2. There exists a positive real number l such that Σ(G) satisfies the

following:

(1) For each boundary component γ′ of Σ(G), the simple closed geodesic γ in the

free homotopy class of γ′ lies in the (topological) cylinder bounded by γ′ and
γ′′ where the piecewise geodesic simple closed curve in the spine of Σ(G) freely

homotopic to γ′.
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(2) The length of each closed geodesic in Σ(G) which is not a central geodesic (in

particular of the curves γ) is strictly greater than the length l of the central

geodesics.

Hence, cutting off the surface Σ(G) along these geodesics in the free homotopy

classes of boundary components we get the hyperbolic surface denoted by Σ1(G)

with totally geodesic boundary such that the systolic graph of Σ1(G) is G.

8. Capping

In this section, we cap the hyperbolic surface Σ1(G) to obtain a closed hyperbolic

surface which satisfies our desired conditions. The idea is the following. Suppose Σ

is a hyperbolic surface with boundary. We embed the surface Σ isometrically into a

closed hyperbolic surface S such that they have the same systole and all geodesics

realizing the systole are contained in Σ. Thus, the systolic graphs of the closed

hyperbolic surface S and Σ are isomorphic.

Theorem 8.1. Let Σ be a hyperbolic surface with totally geodesic boundary whose

systoles are contained in the interior of Σ. There exists a closed hyperbolic surface

S and an isometric embedding i : Σ → S such that the following hold:

(1) Sys(S) = Sys(Σ).

(2) The systolic graph of S is isomorphic to the systolic graph of Σ.

The surface S is constructed using a uni-trivalent graph. Recall that, if G is a

trivalent graph and l > 0, then we can associate to G a hyperbolic surface by taking

a pair of pants for each node with all three boundary components of length l and

identifying boundary components corresponding to edges of the graph. Namely, as

each vertex v is trivalent, we can identify the half-edges adjoining v with the bound-

ary components of the associated pair of pants. We identify boundary components

corresponding to the two halfs of an edge. We call the image of a boundary compo-

nent a rim. Note that in general the gluing depends on twist parameters (the length

and the twist are the Fenchel–Nielsen coordinates) but for our purposes these can

be chosen arbitrarily.

We shall associate a surface with boundary to a uni-trivalent graphG in a similar

way, except that we take pair of pants so that the length of the boundary component

associated to the terminal edge (i.e. the edge containing the terminal vertex) is l

and all other boundary components have length 2l. This gives a surface Σl(G) with

a single boundary component of length l. Note that all the rims have length 2l.

We shall show that for an appropriate choice of graph G, the surfaces Σl(G)

have properties that allow them to be used to cap Σ to obtain the desired closed

surface S. Define the continuous function a(l), l ∈ R+ by

a(l) = min

{
2 arcsinh

(
1

2 sinh l
2

)
, arccosh

(
1 +

1 + cosh l
2

sinh2 l

)}
. (7)
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Also, define the natural number t = t(l), l ∈ R+ by

t(l) =

⌊
l

a(l)

⌋
+ 1. (8)

Lemma 8.2. For given positive constant l ∈ R, there exists a uni-trivalent graph

G of girth at least t(l) such that

(1) The length of any closed geodesic in Σl(G) is greater than or equal to l.

(2) If δ is an essential geodesic arc with endpoints on the geodesic boundary, then

the length of δ is greater than or equal to l.

Proof. For given positive constant l, let G be the uni-trivalent graph of girth

≥ t(l) where the existence is assured by Lemma 4.1. Now, consider the surface

Σl(G) with boundary. Observe that the rims of Σl(G) are of length 2l and the

boundary geodesic has length l. So, it is sufficient to show that no other geodesic

σ in Σl(G) has length less than l. Without loss of generality we assume that σ

is a simple closed geodesic. Then σ cannot be contained in a single pair of pants

otherwise σ would be a rim, which we have already excluded. Therefore, there is

a partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] and a sequence of (not necessarily

distinct) rims γ0, γ1, . . . , γn = γ0, so that σ(ti) ∈ γi, i = 0, 1, . . . , n and each segment

σi = σ|[ti−1,ti] lies in a single pair of pants, denoted by Yi. Again a pair of pants Yi

can occur more than once. Therefore, we have

lH(σ) =

n∑
i=1

lH(σi). (9)

Now there are following three cases to be considered.

Case 1. Assume γi−1 	= γi for all i = 1, 2, . . . , n. It is easy to see that each rim

corresponds to an edge of G. Hence σ corresponds to a closed path in the graph G.

We denote the closed path by P (σ). The closed path P (σ) contains a cycle (simple

closed path) whose length is greater than or equal to the girth T (G) of the graph

G. Hence n ≥ t(l). For each i, σi is a geodesic in Yi joining two distinct boundary

components. If Yi is the pair of pants with boundary geodesics of length 2l then it

follows from Lemma 5.4 that,

lH(σi) ≥ 2 arcsinh

(
1

2 sinh l
2

)
. (10)

If Yi = Y (l, 2l, 2l) then σi is a geodesic with endpoints on the boundaries of length

2l. In this case we have

lH(σi) ≥ arccosh

(
1 +

1 + cosh l
2

sinh2 l

)
. (11)
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Now from the definition of the function a(l) in Eq. (7), the inequalities (10) and (11),

we have lH(σi) ≥ a(l). Therefore,

lH(σ) =
n∑

i=1

lH(σi) ≥ n · a(l) ≥ t(l) · a(l) ≥ l.

Case 2. Suppose there exists i0 such that γi0−1 = γi0 where Yi0 = Y (2l, 2l, 2l).

Then it follows from Lemma 5.3 that lH(σi0 ) ≥ l which implies that lH(σ) ≥ l.

Case 3. In the remaining case we assume that there is a i0 such that γi0−1 = γi0
where Yi0 = Y (l, 2l, 2l). Then both the end points of γi0 are on the same boundary

of length 2l. In that case lH(σi0 ) ≥ l
2 . If there are two such different i0 and j0 then

we have two distinct geodesic segments σi0 and σj0 , each of length greater than or

equal to l
2 . Therefore the length of σ is greater than l. So we assume that there is

only one such i0. Hence the seams γ1, . . . , γi0−2, γi0+1, . . . , γn are pairwise distinct

and correspond to a closed path P in G. The length of the closed path P is (n− 1)

which is greater than or equal to T (G)(≥ t(l)). Therefore using arguments similar

to Case 1 we conclude that lH(σ) ≥ l.

Now we prove the second part of the lemma. Consider an essential geodesic

arc δ in Σl(G) with the end points on the boundary geodesic. If δ lies in the

pair of pants Y1 = Y (l, 2l, 2l) then the length of δ is greater than or equal to

the height of Y (l, 2l, 2l) which is greater than l by Lemma 5.3. Hence we have

lH(δ) ≥ l.

In the remaining cases, there is a sequence of rims γ0, γ1, . . . , γn = γ0 and a

partition 0 = t0 < t1 < · · · < tn = 1 such that δ(ti) ∈ γi and no other rim is crossed

over. So, δi = δ|[ti−1,ti] lies in a single pair of pants, denoted by Yi. If γi = γi−1

for some i, then the length of δi is greater than or equal to l. So the length of δ is

greater than or equal to l.

Now we assume that the segments γi are distinct. The rims γi determine a closed

path P in G which contains a cycle. Hence, as in the proof of the first part, we have

n ≥ n0 and the length of each δi is greater than or equal to a(l). Thus, the length

of δ satisfies:

lH(δ) =

n∑
i=1

lH(δi) ≥ n · a(l) ≥ n0 · a(l) ≥ l.

8.1. Proof of Theorem 8.1

Proof. Let Σ be a hyperbolic surface with b boundary components. Suppose the

boundary components are γi and lH(γi) = li where i = 1, . . . , b. We construct a

closed hyperbolic surface as follows.

Step 1. For each boundary component γi of Σ, we consider the hyperbolic surface

Σli(Gi) with single boundary component as in Lemma 8.2. We denote the boundary

component of Σli(Gi) by δi.
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Step 2. For each i = 1, 2, . . . , b, we glue the surface Σli(Gi) with Σ along the

geodesic boundaries γi and δi by an isometry and denote the obtained closed surface

by S. Now, it remains to show that S satisfies the conditions in Theorem 8.1.

Suppose γ is a shortest closed geodesic in S. If γ is not contained in Σ then

γ ∩Σli(Gi) 	= φ for some i ∈ {1, . . . , b}. Then Σli(Gi) either contains γ or contains

an essential subarc of γ with end points on the boundary of Σli(Gi). In both cases

it follows from Lemma 8.2 that lH(γ) ≥ li > l which contradicts the assumption

that γ is a shortest closed geodesic in S.

Thus we conclude that if γ is a shortest closed geodesic in S then it is a shortest

closed geodesic in Σ as well, as claimed.

Note that the results of Sec. 7 together with Theorem 8.1 give a proof of the

main result Theorem 1.1.

9. Minimum Genus for Embedding Systolic Graphs

In this section, we prove the following.

Theorem 9.1. For each g ≥ 2, there exists a closed hyperbolic surface Sg such

that the systolic graph SLG(Sg) cannot be realized as a systolic graph of a closed

surface of genus less than g.

Our proof is based on the existence of hyperbolic surfaces Sg of genus g with

a filling set of systoles. This is well-known since the work of Schmitz [13] that any

critical point of the function syst has a filling set of systoles.

Proof of Theorem 9.1. Let Sg be a closed hyperbolic surface such that the

systolic graph SLG(Sg) fills Sg. Then we show that the fat graph SLG(Sg) cannot

be realized as a systolic graph of any hyperbolic surface of genus less than g.

Let F be a closed hyperbolic surface of genus less than g such that the systolic

graph SLG(F ) is isomorphic to SLG(Sg). We have Sg = SLG(Sg)
⋃n

i=1 Di where

Di’s are discs and n is the number of components in Sg−SLG(Sg), the complement

of SLG(Sg) in Sg. Therefore,

χ(Sg) = χ(SLG(Sg)) + n.

Now, let Fi, i = 1, 2, . . . , k be the connected components in F − SLG(F ), then

(k ≤ n) and we have,

χ(F ) = χ(SLG(F )) +

k∑
i=1

χ(Fi).

Each surface Fi satisfies χ(Fi) ≤ 1. Thus we have
∑k

i=1 χ(Fi) ≤ n which is the

same as χ(SLG(Sg)) ≤ χ(F ). Moreover, we have equality if and only if n = k and

each Fi is a disc. In that case F is isometric to Sg. Hence the result follows.
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We remark that the above result is based on a topological obstruction for a fat

graph being embedded in a low genus surface. It would be interesting to know if

there are geometric obstruction, i.e. admissible fat graphs that topologically embed

in a surface but cannot be the systolic graph of the surface. Such a result may be

based on a lower bound on the shortening of lengths of cycles under rounding, given

an upper bound on the injectivity radius (in contrast to our main result being based

on an upper bound on shortening of length due to rounding), with admissibility

shown using computational tools. We hope to address this question in the future.
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291308.

2. J. W. Anderson, H. Parlier and A. Pettet, Relative shapes of thick subsets of moduli
space, Amer. J. Math. 138 (2016) 473–498.

3. F. Balacheff, E. Makover and H. Parlier, Systole growth for finite area hyperbolic
surfaces, Ann. Fac. Sci. Toulouse, Math. 23 (2014) 175–180.

4. A. F. Beardon, The Geometry of Discrete Groups (Springer-Verlag, 1983).
5. N. Biggs, Constructions for cubic graphs with large girth, Electron. J. Combin. 5

(1998) Article 1.
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