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Fast High-Dimensional Bilateral and
Nonlocal Means Filtering
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Abstract— Existing fast algorithms for bilateral and nonlocal
means filtering mostly work with grayscale images. They cannot
easily be extended to high-dimensional data such as color and
hyperspectral images, patch-based data, and flow-fields. In this
paper, we propose a fast algorithm for high-dimensional bilateral
and nonlocal means filtering. Unlike existing approaches, where
the focus is on approximating the data (using quantization) or the
filter kernel (via analytic expansions), we locally approximate
the kernel using weighted and shifted copies of a Gaussian,
where the weights and shifts are inferred from the data. The
algorithm emerging from the proposed approximation essen-
tially involves clustering and fast convolutions, and is easy to
implement. Moreover, a variant of our algorithm comes with
a guarantee (bound) on the approximation error, which is
not enjoyed by existing algorithms. We present some results
for high-dimensional bilateral and nonlocal means filtering to
demonstrate the speed and accuracy of our proposal. Moreover,
we also show that our algorithm can outperform the state-of-the-
art fast approximations in terms of accuracy and timing.

Index Terms— High-dimensional filter, bilateral filter, nonlocal
means, shiftability, kernel, approximation, fast algorithm.

I. INTRODUCTION

SMOOTHING images while preserving structures (edges,
corners, lines, etc.) is a fundamental task in image

processing. A classic example in this regard is the diffusion
framework of Perona and Malik [1]. In the last few decades,
several filtering based approaches have been proposed for this
task. Prominent examples include bilateral filtering [2]–[4],
mean shift filtering [5], weighted least squares [6], domain
transform [7], guided filtering [8], and nonlocal means [9].
The brute-force implementation of most of these filters is
computationally prohibitive and cannot be used for real-
time applications. To address this problem, researchers have
come up with approximation algorithms that can significantly
accelerate the filtering without compromising the quality.
Unfortunately, for bilateral and nonlocal means filtering, most
of these algorithms can be used only for grayscale images. It is
difficult to use them even for color filtering, while preserving
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their efficiency. The situation is more challenging for mul-
tispectral and hyperspectral images, where the range dimen-
sion is much larger. Of course, any algorithm for grayscale
filtering can be used for channel-by-channel processing of
high-dimensional images. However, by working in the com-
bined intensity space, we can exploit the strong correlation
between channels [4].

A. High-Dimensional Filtering

The focus of the present work is on two popular smoothers,
the bilateral and the nonlocal means filters, and their applica-
tion to high-dimensional data. The former is used for edge-
preserving smoothing in a variety of applications [10], while
the latter is primarily used for denoising. Though nonlocal
means has limited denoising capability compared to state-
of-the-art denoisers [11], [12], it continues to be of interest
due to its simplicity and the availability of low-complexity
algorithms [13]–[15]. The connection between these filters is
that they can be interpreted as a multidimensional Gaussian
filter operating in the joint spatio-range space [16]. The term
high-dimensional filtering is used when the dimension of
the spatio-range space is large [14], [17], [18]. In this paper,
we will use this term when the range dimension is greater
than one.

An unified formulation of high-dimensional bilateral and
nonlocal means filtering is as follows. Suppose that the input
data is f : � → [0, R]n , where � ⊂ Z

d is the spatial domain,
[0, R]n is the range space, and d and n are dimensions of
the domain and range of f . Let p : � → R

ρ be the guide
image, which is used to control the filtering [10]. The output
g : � → [0, R]n is given by

g(i) = 1

η(i)

�

j∈W

ω(j)ϕ
�
p(i − j)− p(i)

�
f (i − j), (1)

where

η(i) =
�

j∈W

ω(j)ϕ
�
p(i − j)− p(i)

�
. (2)

The aggregations in (1) and (2) are performed over a window
around the pixel of interest, i.e., W = [−S, S]d , where S is
the window length. We call ω : Z

d → R the spatial kernel
and ϕ : R

ρ → R the range kernel [4], where we denote the
dimension of the range space of p as ρ. The spatial kernel
is used to measure proximity in the spatial domain � (as in
classical linear filtering). On the other hand, the range kernel
is used to measure proximity in the range space of p.
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For (joint) bilateral filtering, ω and ϕ are generally
Gaussian. While f and p are identical for the bilateral filter
(ρ = n), they are different for the joint bilateral filter [10].
In the original proposal for nonlocal means [9], p(i) are the
spatial neighbors of pixel i (extracted from a patch around i)
and hence ρ is n times the size of image patch, ϕ is
a multidimensional Gaussian, and ω is a box filter. Later,
it was shown in [21] that by reducing the dimension of each
patch (e.g., by applying PCA to the collection of patches),
we can improve the speed and denoising performance. Similar
to [14], [17], and [18], we have also considered PCA-based
nonlocal means in this work. Needless to say, the proposed
algorithm can also work with full patches.

The brute-force computation of (1) and (2) clearly requires
O(Sd (n+ρ)) operations per pixel. In particular, the complexity
scales exponentially with the window length S, which can
be large for some smoothing applications. In the last decade,
several fast algorithms have been proposed for bilateral fil-
tering of grayscale images [20], [22]–[26]. The complexity
can be cut down from O(Sd ) to O(1) using these algo-
rithms. Similarly, fast algorithms have been proposed for
nonlocal means [13] and [15] that can reduce the complexity
from O(Sdρ) to O(Sd ).

B. Previous Work

1) Quantization Methods: Durand et al. [23] proposed a
novel framework for approximating (1) and (2) using clus-
tering and interpolation. In terms of our notations, their
approximation of (1) and (2) can be expressed as

1

η̂(i)

K�

k=1

ck(i)
� �

j∈W

ω(j)ϕ
�
p(i − j)− μk

�
f (i − j)

�
, (3)

and

η̂(i) =
K�

k=1

ck(i)
� �

j∈W

ω(j)ϕ
�
p(i − j)− μk

��
. (4)

The centers μk are obtained by uniformly sampling the range
space of p, whereas the interpolation coefficient ck(i) is
determined from the distance between p(i) and μk . Notice
that the inner summations in (3) and (4) can be expressed as
convolutions, which are computed using FFT in [23]. Further-
more, the entire processing is performed on the subsampled
image, following which the output image is upsampled. The
approximation turns out to be effective for grayscale images.
This is because the range space is one-dimensional in this case,
and hence a good approximation can be achieved using a small
the number of samples K . Moreover, it suffices to interpolate
just the two neighboring pixels. Paris and Durand [20] showed
that the accuracy of [23] can be improved by downsam-
pling the intermediate images (instead of the input image)
involved in the convolutions. Chen et al. [16] proposed to
accelerate [20] by performing convolutions in the higher-
dimensional spatio-range space. Yang et al. [26] observed that
this framework can also be used with non-Gaussian range
kernels, and that O(1) convolutions can be used to improve
the computational complexity. As the range dimension ρ

increases, these methods however become computationally
inefficient. In particular, an exponentially large K is required
to achieve a decent approximation, and linear interpolation
requires 2ρ neighboring samples. Yang et al. [27] extended
this method to perform bilateral filtering of color images, and
proposed a fast scheme for linear interpolation. However, [27]
is based on uniform quantization, which is not optimal given
the strong correlation between the color channels. In fact,
a more efficient algorithm for color filtering was later pro-
posed in [19], where clustering is used to find μk . Moreover,
instead of interpolation, they used local statistics prior to
improve the accuracy. However, the algorithm is used only
for color bilateral filtering and its application to other forms
of high-dimensional filtering is not reported in [19].

2) Splat-Blur-Slice Method: Another line of work
is [14], [17], and [18], which is based on a slightly different
form of approximation. More precisely, they are based
on the “splat-blur-slice” framework, which involves data
partitioning (clustering or tessellation), fast convolutions, and
interpolation as the core operations. These are considered to
be the state-of-the-art fast algorithms for high-dimensional
bilateral and nonlocal means filtering. The idea, originally
proposed in [16], is based on the observation that [20]
corresponds to convolutions in the joint spatio-range space.
The general idea is to sample the input pixels in a different
space (splatting), perform Gaussian convolutions (blurring),
and resample the result back to the original pixel space
(slicing). Adams et al. tessellated the domain and performed
blurring using the k-d tree in [17] and the permutohedral
lattice in [18]. Gastal and Oliveira [14] divided and resampled
the domain into non-linear manifolds, and performed blurring
on them. This was shown to be faster than all other methods
within the splat-blur-slice framework.

3) Kernel Approximation: In an altogether different direc-
tion, it was shown in [22], [24], [25], and [28] that fast algo-
rithms for bilateral filtering can be obtained by approximating
the range kernel ϕ using the so-called shiftable functions,
which includes polynomials and trigonometric functions. The
above mentioned algorithms provide excellent accelerations
for grayscale images, and are generally superior to algorithms
based on data approximation. Unfortunately, it is difficult
to approximate a high-dimensional Gaussian using low-order
shiftable functions. For example, the Fourier expansion in [25]
is quite effective in one dimension (grayscale images), but
its straightforward extension to even three dimensions (color
images) results in exponentially many terms. This is referred
to as the “curse of dimensionality.”

C. Contributions

Existing algorithms have focussed on either approximating
the data [14], [17]–[19], [26] or the range kernel [22], [24],
[25], [29], [30]. In this paper, we combine the ideas of shifta-
bility [22], [24], [28], [31] and data approximation [23], [26]
within a single framework to approximate (1) and (2).
In particular, we locally approximate the range kernel in (1)
and (2) using weighted and shifted copies of a Gaussian,
where the weights and shifts are determined from the data.
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Fig. 1. Bilateral filtering of a color image [20], where the filter parameters are σs = 10 and σr = 40. We have used 15 clusters for GCS and the proposed
method. The number of manifolds was automatically set to 3 in AM. The run-time and PSNR (see definition in (21)) with 15 manifolds are 1.48 sec
and 43.41 dB. In the second row, we show the error between a particular method (first row) and the brute-force implementation for just the red channel.
(a) Lena (3 × 512 × 512). (b) Proposed, 274 ms, 55.36 dB. (c) GCS [19], 278 ms, 53.31 dB. (d) AM [14], 272 ms, 40.58 dB. (e) Brute-force, 19 sec.
(f) Error: (b)–(e). (g) Error: (c)–(e). (h) Error: (d)–(e).

More specifically, we use clustering to determine the shifts,
whereby the correlation between data channels is taken into
account. Once the shifts have been fixed, we determine the
weights (coefficients) using least-squares fitting, where the
data is again taken into account. An important technical point
is that we are required to solve a least-squares problem at
each pixel, which can be expensive. We show how this can
be done using just one matrix inversion. In summary, the key
distinctions of our method in relation to previous approaches
are as follows:

• We use data-dependent methods to calculate both μk and
ck in (3) and (4). The latter is done in a heuristic fashion
in [14], [17], and [18]. We note that our approxima-
tion also reduces to the form in (3) and (4). However,
the notion of shiftable approximation (in a sense which
will be made precise in Section II) plays an important
role. Namely, it allows us to interpret the coefficients
in (3) and (4) from an approximation-theoretic point
of view. This in turn forms the basis of the proposed
optimization used to compute the coefficients.

• Unlike [19], [20], [23], [26], and [27], our approach is
scalable in the dimensions of the input f and the guide p.

• An important difference with [22], [24], [25], and [28]
is that a different shiftable approximation is used at each
pixel in our proposal, while the approximation is global
in [22], [24], [25], and [28]. This will be made precise
in Section II.

• Similar to [14], [17], and [18], our method also involves
splatting (clustering), blurring (convolutions) and slic-
ing (weighted recombinations). However, the important

difference is that we perform slicing in an optimal
manner, which is done in a heuristic fashion in these
methods.

We explain the proposed shiftable approximation in detail
in Section II. The algorithm emerging from the approximation
is conceptually simple and easy to code. The flowchart of the
processing pipeline is shown in Figure 2. The computation-
intensive components are “Cluster Range Space” and “Fast
Convolutions”, for which highly optimized routines are avail-
able. Excluding clustering, the complexity is O(K (n + ρ)),
where K is the number of clusters. Notice that there is no
dependence on S. This is a big advantage compared to fast
nonlocal means [13] and [15], where the scaling is O(Sd ).
The highlight of our proposal is that we are able to derive
a bound on the approximation error for a particular variant
of our algorithm [32]. In particular, the error is guaranteed
to vanish if we use more clusters. This kind of guarantee is
not offered by state-of-the-art algorithms for high-dimensional
filtering [14], [17], [18], partly due to the complex nature of
their formulation.

We use the proposed fast algorithm for various applications
such as smoothing [4], denoising [9], low-light denoising [33],
hyperspectral filtering [34], and flow-field denoising [35].
In particular, we demonstrate that our algorithm is competitive
with existing fast algorithms for color bilateral and nonlocal
means filtering (cf. Figures 1 and 11). We note that although
our original target was high-dimensional filtering, our algo-
rithm outperforms [26], which is considered as the state-of-
the-art for bilateral filtering of grayscale images (cf. Figure 5).
Finally, we note that we have not used the particular form of
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Fig. 2. Flowchart of our algorithm with the main modules. Also shown are the timings for the bilateral filtering of a 1MP color image. The filter parameters
are σs = 10 and σr = 75. When K = 4 (number of clusters), total time required is 253 ms and the PSNR is 48.30 dB. The symbols used in the flowchart
are defined in Section II (also see Algorithm 1).

the Gaussian kernel in the derivation of the fast algorithm.
Therefore, it can also be used for non-Gaussian kernels, such
as the exponential and the Lorentz kernel [23], [36].

D. Organization

This rest of the paper is organized as follows. In Section
II, we describe the proposed approximation and the resulting
fast algorithm. We also derive error bounds for a particular
variant of the approximation. In Section III, we apply the fast
algorithm for high-dimensional bilateral and nonlocal means
filtering, and compare its performance (timing and accuracy)
with state-of-the-art algorithms. We conclude the paper with
a summary of the results in Section IV.

II. PROPOSED METHOD

Notice that, if the guide p has constant intensity value at
each pixel, then (1) and (2) reduce to linear convolutions. This
observation is essentially at the core of the fast algorithms
in [20], [23], and [26]. On the other hand, the fast algorithms
in [22], [25], and [28] are derived using a completely different
idea, where the univariate Gaussian kernel ϕ is approximated
using a polynomial or a trigonometric function ψ . These
functions are shiftable in the following sense: There exists
basis functions ψ1, . . . , ψK such that, for any τ ∈ R, we can
write

ψ(x − τ ) =
K�

k=1

ck(τ )ψk(x), (5)

where the coefficients c1, . . . , cK depend only on τ . One can
readily see that polynomials and trigonometric functions,

ψ(x) =
N�

n=0

pnxn and ψ(x) =
N�

n=0

qncos(nω0x), (6)

are shiftable. The utility of expansion (5) is that it allows us
to factor out p(i) from the kernel. In particular, by replacing ϕ
by ψ , it was shown in [22] that we can compute the bilateral
filter using fast convolutions. The Taylor polynomial of ϕ was
used for ψ in [24], and the Fourier approximation of ϕ was
used in [22], [25], and [28].

A. Shiftable Approximation

As mentioned earlier, it is rather difficult to obtain shiftable
approximations for high-dimensional Gaussians that are prac-
tically useful. We can use separable extensions of (6) to
generate such approximations. However, the difficulty is that
the number of terms grows as Nρ in this case, where N is
the order in (6). We address this fundamental problem using a
data-centric approach. First, we do not use a shiftable (trigono-
metric or polynomial) approximation of ϕ [22], [25]. Instead,
for some fixed pixel i ∈ �, we consider the multidimensional
Gaussian ϕ(x−p(i)) centered at p(i) appearing in (1) and (2).
Similar to (5), we wish to find ψ1, . . . , ψK such that

ϕ(x − p(i)) ≈
K�

k=1

ck(i)ψk(x), (7)

where c1, . . . , cK depend only on p(i). The key distinction
with [22], [24], [25], and [28] is that the functional approxi-
mation is defined locally in (7), namely, the approximation is
different at each pixel. Moreover, (7) is neither a polynomial
nor a trigonometric function. In spite of this, we continue
to use the term “shiftable” to highlight the fact that the
approximation is based on “shifts” of the basis functions
ψ1, . . . , ψK . In this work, we propose to use the translates
of the original kernel as the basis functions, i.e., we set
ψk(x) = ϕ(x − μk). One can in principle use different basis
functions, but we will not investigate this possibility in this
paper.

The important consideration is that the shifts {μk} are set
globally. Since the range kernel is defined via the guide p,
we propose to cluster the range space of p and use the cluster
centroids for {μk}. That is we partition the range space


 = �
p(i) : i ∈ ��

, (8)

into clusters C1, . . . , CK . We set μk to be the centroid of Ck .
In summary, for each i, we require that

ϕ(x − p(i)) ≈
K�

k=1

ck(i)ϕ(x − μk). (9)
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Fig. 3. Proposed approximation of the Gaussian range kernel ϕ(x − p(i)) in (9) for p(i) = 25 (left) and p(i) = 100 (right). The shifts {μ k } are obtained by
clustering a grayscale image whose histogram is shown above. As expected, the approximation is better for order K = 8 compared to K = 4. In particular,
the approximation is quite accurate over the entire dynamic range [0, 255] when K = 8. However, notice that for K = 4, the approximation is better in the
interval [100, 200], where the density is higher. As the approximation is data-driven, the error gets distributed in tune with the underlying histogram.

At this point, notice the formal resemblance between (5)
and (9). Hence, we will refer to (9) as a shiftable approx-
imation in the rest of the discussion, even though it is not
shiftable in the sense of (5).

Note that we need a good approximation in (9) only for
x ∈ 
i = {p(i − j) : j ∈ W }. This is because the samples
appearing in (1) and (2) are ϕ(x − p(i)), where x takes values
in 
i. To determine the coefficients, it is therefore natural to
consider the following problem:

min
c(i)∈RK

�

x∈
i

	
ϕ(x − p(i))−

K�

k=1

ck(i)ϕ(x − μk)

2
. (10)

The difficulty is that this requires us to solve an expensive
least-squares problem (the matrix to be inverted is large) for
each i. More importantly, we have a different inversion, at each
pixel. This is time consuming and impractical. On the other
hand, notice that
i is included in
. Hence, we could perform
the fitting over 
. Instead, we set � = {μ1, . . . ,μK } and
choose to fit over �, which are quantized representatives of
the points in 
. In short, while the cluster centers � most
likely do not belong to 
i , they are representative of the larger
set 
. Therefore, instead of (10), we consider the surrogate
problem:

min
c(i)∈RK

�

x∈�

	
ϕ(x − p(i))−

K�

k=1

ck(i)ϕ(x − μk)

2
.

In matrix notation, we can compactly write this as

min
c(i)∈RK

�Ac(i)− b(i)�2, (11)

where A ∈ R
K×K and b(i) ∈ R

K are given by

Akl = ϕ(μk − μl) and bk(i) = ϕ(μk − p(i)). (12)

The solution of (11) is c(i) = A†b(i), where A† is the
pseudo-inverse of A. In particular, we need to compute the
pseudo-inverse just once; the coefficients at each pixel are
obtained using a matrix-vector multiplication. In Figure 6,
we show that solving (11) is much faster than solving (10),
and that the coefficients from (11) are close to those from (10).

The approximation result for univariate Gaussians are shown
in Figure 3. Notice that our approximation depends on the dis-
tribution of p (because of the clustering), and the coefficients
are obtained by solving a least square problem at each pixel i.
Hence, in Figure 3, a particular distribution is selected and

Fig. 4. Error rates for the proposed approximation (see text for the definition
of EK ), where ρ is the dimension of the range space of the guide image p.
We notice that the approximation error falls off with the increase in order K .
The error is averaged over the color images (ρ = 3) from the Kodak dataset
and hyperspectral images (ρ = 33) from [37].

the approximations for p(i) = 25 and p(i) = 100 are shown.
The error rates (error vs. K ) for multidimensional Gaussians
(covariance σ 2

r I) corresponding to dimensions ρ = 3 and
33 are shown in Figure 4. The error EK for a fixed K is
simply (10) averaged over all the pixels.

To summarize, the steps in the proposed shiftable approxi-
mation are as follows:

• Cluster the range space 
 and use the centers for μk .
• Set the basis functions as ψk(x) = ϕ(x − μk).
• Set up A using (12) and compute its pseudo-inverse A†.
• At each pixel i, set b(i) using (12) and c(i) = A†b(i).

We note that one can freely choose different shifts (and basis
functions) in (9) for different applications. That is, (9) offers a
broad approximation framework, where one can consider other
rules for fixing the parameters (shifts and coefficients).

B. Fast Algorithm

We now develop a fast algorithm by replacing the kernel
in (1) and (2) with the approximation in (9). For 1 ≤ k ≤ K ,
define vk : � → R

n and rk : � → R to be

vk(i) =
�

j∈W

ω(j)ϕ(p(i − j)− μk)f (i − j), (13)

and

rk(i) =
�

j∈W

ω(j)ϕ(p(i − j)− μk). (14)

For x = p(i − j), j ∈ W , we replace ϕ(x − p(i)) in (1) and (2)
with the approximation in (9). After some manipulations (see
Appendix), (1) and (2) are approximated as,

ĝ(i) = 1

η̂(i)

K�

k=1

ck(i)vk(i), (15)
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Algorithm 1 Fast High-Dimensional Filtering

1

and

η̂(i) =
K�

k=1

ck(i)rk(i). (16)

The advantage with (15) and (16) is clear once we notice
that (13) and (14) can be expressed as convolutions. Indeed,
by defining uk : � → R

n to be uk(i) = bk(i)f (i), where bk is
given by (12), we can write

vk(i) = (ω ∗ uk)(i) =
�

j∈W

ω(j)uk(i − j),

and

rk(i) = (ω ∗ bk)(i) =
�

j∈W

ω(j)bk(i − j),

where ∗ denotes linear convolution. In summary, using (9),
we have been able to approximate the high-dimensional fil-
tering using weighted combinations of fast convolutions. The
overall process is summarized in Algorithm 1. Note that
we have used ⊕, ⊗ and � to represent pointwise addition,
multiplication, and division. In steps 17 and 18, ck denotes
the mapping ck : � → R. The dominant computation in
Algorithm 1 are the (n +1)K convolutions in steps 17 and 18.
Clustering and inversion of A is performed just once. Notice
that bk , which is used for computing the coefficients in
step 13, is anyways required to form the intermediate images
in step 9. The flowchart of our algorithm, along with typical
timings for a megapixel image, is shown in Figure 2. Note
that the steps in Figure 2 (resp. loops in Algorithm 1) can

be parallelized: clustering the range space (loop 6), finding
coefficients (loop 12), and performing convolutions (loop 16).

C. Implementation

We have used bisecting K -means [38] for iteratively clus-
tering the range space in step 4. In particular, the cluster
with largest variance is divided into two parts (using 2-means
clustering) at every iteration. This ensures that we do not
end up with few large clusters at the end. We initialize the
2-means clustering using a pair of points with the largest
separation. We picked bisecting K -means over other cluster-
ing algorithms as its cost is linear in K , and is generally
faster than other clustering algorithms [38]. Importantly, its
computational overhead is negligible compared to the time
required for the convolutions. Needless to say, we can use any
efficient clustering method and the fast algorithm would still
go through.

We have used the Matlab routine pinv to compute A† in
step 5. As is well-known, when ω is a box or Gaussian,
we can convolve using O(1) operations, i.e., the cost does
not depend on the size of spatial filter [39], [40]. The
Gaussian convolutions in steps 17 and 18 are implemented
using Young’s O(1) algorithm [40]. For box convolutions,
we used a standard recursive procedure which require just
four operations per pixel for any box size. Since the leading
computations are the convolutions, and there are O(K n)
convolutions, the overall complexity is O(K (n + ρ)); the
additional O(Kρ) term is for computing (12). Importantly,
we are able to obtain a speedup of Sd/K over the brute-force
computations of (1) and (2). The storage complexity of
Algorithm 1 is clearly linear in n, K , as well as the image size.
The MATLAB implementation of our algorithm is available
here: https://github.com/pravin1390/FastHDFilter.

D. Approximation Accuracy

We note that the algorithm in [32] is a variant of our
method. Indeed, for 1 ≤ k ≤ K , if we set the coefficients
in (9) to be

ck(i) =
�

1 if p(i) ∈ Ck ,

0 else,
(17)

then we obtain the fast algorithm in [32]. In other words,
the filtering is performed on a cluster-by-cluster basis in this
case. Correspondingly, (15) reduces to

ĝ(i) = vs(i)
rs(i)

, (18)

assuming that p(i) is in cluster Cs .
In (15) and (16), we weight the results from the K clusters,

where the weights are obtained using the optimization in (11).
We will demonstrate in Section III that the weighting helps in
reducing the approximation error. Unfortunately, it also makes
the analysis of the algorithm difficult. Intuitively though, one
would expect the error from (15) to be less than that from (18).
For the latter approximation, we have the following result [32].

Theorem 1 (Error Bound): Suppose that ω and ϕ are non-
negative, and that the latter is Lipschitz continuous, i.e., for
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some L > 0, |ϕ(x)−ϕ(y)| ≤ L�x−y�, for any x and y in R
ρ .

Then, for some constant C > 0,
�

i∈�
�ĝ(i)− g(i)�2 ≤ C L2n|W |2 EK , (19)

where ĝ is given by (18), and EK is the clustering error:

EK =
K�

k=1

�

p(i)∈Ck

�p(i)− μk�2. (20)

We note that the assumptions in Theorem 1 are valid when
ω is a box or Gaussian, and ϕ is a multidimensional Gaussian.
For completeness, we provide the derivation of Theorem 1 in
Appendix. For several clustering methods, the clustering error
EK vanishes as K → ∞ [38]. For any of these methods,
we can approximate (1) with arbitrary accuracy provided
K is sufficiently large. We note that such a guarantee is
not available for existing fast approximation algorithms for
high-dimensional filtering [14], [17], [18].

III. NUMERICAL RESULTS

We now report some numerical results for high-dimensional
filtering. We have used the Matlab implementation of
Algorithm 1. For fair timing comparisons with Adaptive Man-
ifolds (AM) [14] and Global Color Sparseness (GCS) [19],
we have used the Matlab code provided by the authors.
The timing analysis was performed on an Intel 4-core 3.4
GHz machine with 32 GB memory. The grayscale and color
images used for our experiments were obtained from standard
databases.1 The infrared and hyperspectral images are the
ones used in [14] and [37], [41]. To compare the filtering
accuracy with existing methods, we have fixed the timings by
adjusting the respective approximation order. The objective
of this section is to demonstrate that, in spite of its simple
formulation, our algorithm is competitive with existing fast
approximations of bilateral and nonlocal means filtering.

We have used an isotropic Gaussian range kernel for bilat-
eral and nonlocal means filtering :

ϕ(x) = exp
	
−�x�2/2σ 2

r



,

where the standard deviation σr is used to control the effective
width (influence) of the kernel. We recall from (1) and (2)
that the input to ϕ is the difference x = p(i)− p(i − j). In one
of the experiments, ϕ(x) is an anisotropic Gaussian; we have
explicitly mentioned this at the right place. The spatial kernel
ω for bilateral filtering is also Gaussian:

ω(i) = exp
	
−�i�2/2σ 2

s



,

where σs is again the standard deviation. For nonlocal
means (NLM), ω is a box filter, namely, no spatial weighting
is used. The filter width for bilateral filtering is S = 3σs , while
that for NLM is explicitly mentioned (typically, S = 10).

Following [24] and [26], the error between the outputs of the
brute-force implementation and the fast algorithm is measured

1https://goo.gl/821N2G, https://goo.gl/2fcNmu, https://goo.gl/MvxCMX.

Fig. 5. Visual comparison of bilateral filtering for the House image. Filter
parameters: σs = 10 and σr = 30. For a fair comparison, we have used four
clusters for the proposed method and four bins for Yang’s method [26]. Notice
that our result is better than Yang’s, both visually (compare boxed areas) and
in terms of PSNR. This is because we use non-uniform quantization (clus-
tering) and data-driven approximation (see Figure 3). (a) Input (256 × 256).
(b) Brute-force filtering. (c) Proposed (43.5 dB). (d) Yang (34 dB).

TABLE I

COMPARISON OF APPROXIMATION ACCURACY (PSNR) FOR BILATERAL
FILTERING OF Barbara (512 × 512). AVERAGE TIMING IS 530 MS FOR

YANG AND 550 ms FOR PROPOSED METHOD

using the peak signal-to-noise ratio (PSNR). This is given by
PSNR = −10 log10(MSE), where

MSE = |�|−1
�

i∈�
�ĝ(i)− g(i)�2, (21)

and |�| is the number of pixels. Note that PSNR is also used
to measure denoising performance; in this case, ĝ(i) and g(i)
are the denoised and clean images in (21). It should be evident
from the context as to what is being measured using PSNR.
We also use SSIM [42] for measuring visual quality.

A. Grayscale Bilateral Filtering

As mentioned earlier, although the proposed method is
targeted at high-dimensional filtering, we can outperform [26],
which is considered the state-of-the-art for bilateral filtering of
grayscale images. We demonstrate this in Table I and Figure 5
using a couple of examples. In particular, notice in Figure 5
that artifacts are visible in Yang’s result (when K is small.).
Our PSNR is almost 10 dB higher, and our output does not
show any artifacts. A detailed PSNR comparison is provided
in Table I. We notice that, for the same timing, our PSNR is
consistently better than [26]. Note that we have set K = 4 as
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TABLE II

TIMINGS FOR BILATERAL FILTERING OF Barbara FOR
VARYING σs (σr = 100, K = 16)

TABLE III

PSNR FOR COLOR IMAGES (σs = 10, σr = 50)

Fig. 6. Bilateral filtering of a grayscale image. Parameters: σs = 2, σr = 20,
and K = 4. The coefficients are obtained from (10) and (11) in (c) and (d).
(a) Input (256×256). (b) Brute-force (495 ms). (c) Using (10) (5 sec, 35.3 dB).
(d) Using (11) (27 ms, 32.6 dB).

the number of clusters (resp. quantization bins) for our method
(resp. [26]).

For completeness, we have reported the timings for different
σs in Table II, where we have used Young’s fast algorithm
for performing the Gaussian convolutions [40]. As expected,
the timing essentially does not change with σs .

In Figure 6, we have compared the bilateral filtering results
obtained using (10) and (11). Since (11) is an approximation
of (10), we see a drop in PSNR using (10), but importantly
there is a significant speed up using (11). In fact, the time
required using (10) is more than that of the brute-force
implementation.

B. Color Bilateral Filtering

We next perform fast bilateral filtering of color images, for
which the state-of-the-art methods are AM [14] and GCS [19].
We have also compared with our previous work [32], which
we simply refer to as “Clustering.” In Figure 7, we have
studied the effect of the number of clusters on the filtering

Fig. 7. Scaling of filtering accuracy (average PSNR) with number of clusters
(manifolds for AM), for bilateral filtering of color images from the Kodak
dataset. The parameters are σs = 20 and σr = 40.

Fig. 8. Timing (seconds) vs. resolution (MP) for color filtering.

Fig. 9. Approximation accuracy (PSNR) for bilateral filtering of color
Barbara (3×512×512), at different σr values averaged over σs = 10, 20, 30.
The average timings are: Proposed: 475 ms, Global Color Sparseness: 490 ms,
Adaptive Manifolds: 370 ms and Clustering [32]: 370 ms.

accuracy, for our method, GCS, AM and [32]. While GCS
performs better for small K (coarse approximation), our
method outperforms GCS when K > 15. Note that the number
of manifolds can only take dyadic (discrete) values [14].

In Table III, we report the filtering accuracy for full HD,
4K ultra HD, and 8K ultra HD by varying the number of
clusters K . For a given resolution and K , we have averaged the
PSNR over six high resolution images2 with that resolution.
Notice that, irrespective of the image resolution, the PSNR
values are above 40 dB with just 8 clusters. In Figure 8,
the timings for filtering color images are plotted for varying
image sizes (1.5 MP to 32 MP). This plot verifies the linear
dependence of the timing on the image size, irrespective of
the number of clusters used.

In Figure 9, we have compared the PSNR and timings
for bilateral filtering a color image, at different σs and σr

values. We have used K = 16 clusters for all three methods:
proposed, GCS, and [32]. We use the default settings for
the number of manifolds in AM. Notice that we are better
by 5-10 dB, while the timings are roughly the same. In particu-
lar, notice the PSNR improvement that we obtain over [32] by
optimizing the coefficients, i.e., by using (15) in place of (18).
Interestingly, [32] can outperform GCS and AM at large σr

values.
A visual comparison for color bilateral filtering was already

shown in Figure 1, along with the error images, timings, and

2https://hdqwalls.com
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Fig. 10. Bilateral filtering of Peppers for different values of K (σs = 10 and σr = 40). Notice how the accuracy improves with K . (a) K = 2 (15 ms,
22 dB). (b) K = 4 (28 ms, 29 dB). (c) K = 8 (52 ms, 37 dB). (d) K = 16 (100 ms, 44 dB). (e) Brute-force.

Fig. 11. Color image denoising (Gaussian noise) using PCA-NLM [21], where the patch and search sizes are 7×7 and 21×21. For PCA-NLM, AM and our
method, PCA was used to reduce the range dimension from 3 × 7 × 7 to 25. We used 31 clusters for our method. The number of manifolds was automatically
set to 15 in the AM code [14]. The run-time, PSNR and SSIM for AM with 31 manifolds are 6 sec, 31.1 dB and 0.90 (top image) and 8.3 sec, 23.7 dB
and 0.69 (bottom image). For comparison, we have also shown the result from a state-of-the-art Gaussian denoiser [12]. (a) Clean/Noisy (22 dB, σ = 20).
(b) [21] (8 min, 33.3 dB, 0.92). (c) Ours (1.7 sec, 31.2 dB, 0.92). (d) AM (3 sec, 30.7 dB, 0.90). (e) [12] (3.5sec, 36.2 dB, 0.93). (f) Clean/Noisy (12 dB,
σ = 63). (g) [21] (9 min, 26.7 dB, 0.77). (h) Ours (2.7 sec, 26.8 dB, 0.82). (i) AM (4.2 sec, 25 dB, 0.70). (j) [12] (5 sec, 31 dB, 0.86).

Fig. 12. Comparison of the denoising performances of PCA-NLM [21],
Adaptive Manifolds, and the proposed method. The noise level is denoted
by σ(×255). The PCA dimension was set to 6 for all methods. The PSNR
and SSIM [42] values are averaged over the images from the Kodak dataset.
The parameters used are K = 31, S = 10, and m = 3.

PSNRs. In particular, notice that the error from our method is
smaller than AM and GCS. This is interesting as our method
is conceptually simpler than these algorithms — AM has a
complex formulation and GCS is based on two-pass filtering.

In Figure 10, a visual result is provided to highlight how
the approximation accuracy scales with K . Notice that the
accuracy improves significantly as K increases from 2 to 16.
In fact, the approximation already resembles the result of
brute-force filtering when K is 8.

C. Color Nonlocal Means

In NLM, f (i) is the noisy image (corrupted with additive
Gaussian noise) and p(i) is a square patch of pixels around i.

Fig. 13. Denoising of a hyperspectral image (1340 × 1017 × 33) using
bilateral filtering (σs = 5 and σr = 100). The image in (b) shows one of the
noisy bands; the same band after filtering is shown in (c) and (d). We have
shown one of the bands just for visualization; the filtering was performed on
the entire hyperspectral image and not on a band-by-band basis. (a) Input [37].
(b) 440nm band. (c) Brute-force (27 min). (d) Proposed (15 sec).

In particular, if the patch is m × m, then the dimension of
p(i) is ρ = 3m2 for a color image. A popular trick to
accelerate NLM (called PCA-NLM) is to project the patch
onto a lower-dimensional space using PCA [21]. We note that

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 27,2022 at 09:11:47 UTC from IEEE Xplore.  Restrictions apply. 



NAIR AND CHAUDHURY: FAST HIGH-DIMENSIONAL BILATERAL AND NONLOCAL MEANS FILTERING 1479

(e)(d)

Fig. 14. Nonlocal means denoising of a low-light image using [43] and the proposed method, with and without infrared data [33]. Notice that we obtain
better denoising by taking the infrared information into account (see zoomed sections). (a) Infrared input. (b) Noisy low-light input. (c) Without infrared.
(d) With infrared data. (e) [43].

PCA was used for reducing the patch dimension (as explained
earlier) for both AM and our algorithm.

A visual comparison is provided in Figure 11 for low and
high noise, where the superior performance of our method
over AM is evident. We have also compared with a state-
of-the-art Gaussian denoiser (CPU implementation3) based
on deep neural nets [12]. It is not surprising that the result
from [12] is better both in terms of PSNR and visual quality.
However, we are somewhat faster. Figure 11 also suggests
that our method is visually closer to PCA-NLM at both
low and high noise levels, albeit with a significant speedup
(10 min to 2.7 sec).

In Figure 12, we have reported Gaussian denoising
results on the Kodak dataset for different noise levels (σ ).
While the proposed method and AM perform similarly for
small σ , the former is more robust when σ is large. In fact,
the denoising performance of AM degrades rapidly with the
increase in σ . Another important point is that our result is close
to PCA-NLM in terms of PSNR and SSIM for all noise levels.

D. Hyperspectral Denoising

We next perform denoising of hyperspectral images using
the bilateral filter. For such images, the range dimension
(i.e., the number of spectral bands) is high. In Figure 13,
denoising results are exclusively shown to highlight the
speedup of our approximation over brute-force implementation
for a 33-band image. Notice the dramatic reduction in timing
compared to the brute-force implementation. Moreover, notice
that the denoising quality is in fact quite good for our method
(compare the text in the boxed regions).

Moreover, we also compare with recent optimization-based
denoising methods [44], [45], where parameters are tuned
accordingly. Visual and quantitative comparisons are shown
in Figure 15 (Pavia dataset). For quantitative comparisons,
we have used MPSNR and MSSIM, which are simply the
PSNR and SSIM values averaged over the spectral bands.
We notice that the restoration obtained using our method is
better than [44] and [45] (source code made public by authors),
which is supported by the metrics shown in the figures. The
same is visually evident from a comparison of the boxed
regions in Figure 15. In particular, the color is not restored
properly in [44], and grains can be seen in [45]. As expected,

3https://github.com/cszn/FFDNet

Fig. 15. Hyperspectral denoising of a natural image corrupted with Gaussian
noise. Image size: (610×340)×200 bands. For our method, σs = 3, σr = 100,
and K = 32. We used 4 iterations for [44] and 1 iteration for [45]. The
(timing, MPSNR, MSSIM) for (b), (c) and (d) are (36 sec, 31.29 dB, 0.87),
(192 sec, 30.54 dB, 0.89) and (1250 sec, 30.09 dB, 0.74). (a) Clean/Noisy
(σ = 0.1). (b) Proposed. (c) [44]. (d) [45].

we are much faster than these iterative methods, since we
perform the filtering in one shot.

E. Low-Light Denoising

Finally, we use our fast algorithm for NLM denois-
ing of low-light images using additional infrared data [33].
In Figure 14, we have shown a visual result which compares
our method, both with and without infrared data, and [43] (an
optimization method). We set the patch and search window
sizes as 7 × 7 and 17 × 17. We used an anisotropic Gaussian
kernel, where σr = 50 for the low-light data and σr = 10
for the infrared data. The dimension was reduced from 3 ×
7 × 7 to 6 using PCA, and the infrared data was added as
the seventh dimension. We used 32 clusters for our method.
In Figure 14, notice that some salient features are lost if we
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Fig. 16. Denoising of a synthetic flow-field using proposed NLM approxi-
mation and Gaussian smoothing. The synthetic flow-field used is u(x, y, z) =
x2 − zey , v(x, y, z) = y3 − xzey , and w(x, y, z) = z4 − xey . The patch and
search window sizes for NLM are 7 × 7 × 7 and 21 × 21 × 21, and σr = 7.5.
We have used PCA to reduce the dimension of the patch from 3 × 73 to 6.
Notice that isotropic Gaussian smoothing fails to preserve sharp changes
in the flow direction. (a) Clean flow-field. (b) Noisy flow-field (σ = 7.5).
(c) NLM output. (d) Gaussian smoothing.

solely use the low-light input as the guide. Instead, if we
add the infrared data to the guide, then the restored image is
sharper and the features are more apparent compared to [43]
and NLM without infrared data.

F. Flow-Field Denoising

Finally, we apply the proposed method for flow-field denois-
ing. In particular, sharp directional changes in the flow can
be preserved much better using NLM, while simultaneously
removing the noise (with Gaussian filtering as the baseline).
An instance of flow-field denoising [35] is shown in Figure 16
and compared with Gaussian smoothing.

IV. CONCLUSION

We proposed a framework for fast high-dimensional filtering
by approximating both the data and the kernel. In particular,
we derived an algorithm that fuses the scalability of the former
with the approximation capability of the latter. At the core
of our algorithm is the concept of shiftable approximation,
which allows us to interpret the coefficients in the framework
of Durand and Dorsey [23] from an approximation-theoretic
point of view. We proposed an efficient method for determin-
ing the shifts (centers) and the coefficients using K -means
clustering (inspired by [19]) and data-driven optimization.
Though the proposed algorithm is conceptually simple and
easy to implement (about 15 lines of code), it was shown to
yield promising results for diverse applications. In particular,
our algorithm was shown to be competitive with state-of-the-
art methods for fast bilateral and nonlocal means filtering of
color images.

APPENDIX

A. Derivation of (15) and (16)

We recall that the basis of the approximation is the follow-
ing: For x = p(i − j), j ∈ W , we replace ϕ(x − p(i)) in (1)
and (2) with

�K
k=1 ck(i)ϕ(x − μk). That is, we approximate

the numerator of (1) with

�

j∈W

ω(j)



K�

k=1

ck(i)ϕ(p(i − j)− μk)

�
f (i − j), (22)

and (2) with
�

j∈W

ω(j)



K�

k=1

ck(i)ϕ(p(i − j)− μk)

�
. (23)

Exchanging the sums, we can write (22) as

K�

k=1

ck(i)

⎛

⎝
�

j∈W

ω(j)ϕ(p(i − j)− μk)f (i − j)

⎞

⎠=
K�

k=1

ck(i)vk(i),

where vk is defined in (13). Similarly, we can write (23) as�K
k=1 ck(i)rk(i), where rk is defined in (14). This completes

the derivation of (15) and (16).

B. Proof of Theorem 1

For notational convenience, let g(i) = ξ(i)/η(i), where

ξ (i) =
�

j∈W

ω(j)ϕ
�
p(i − j)− p(i)

�
f (i − j),

and η is as defined in (2). For some fixed i ∈ �, assume that
p(i) ∈ Cs where 1 ≤ s ≤ K . Then, following (18),

ĝ(i) = vs(i)
rs(i)

. (24)

Note that we can write

ĝ(i)− g(i) = 1

η(i)

	
ĝ(i)

�
η(i)− rs(i)

� + �
vs(i)− ξ (i)

�

.

By triangle inequality, we can bound �ĝ(i)− g(i)� using

1

|η(i)|
	√

n R |η(i)− rs(i)| + �vs(i)− ξ(i)�


, (25)

where we have used the fact that ĝ(i) ∈ [0, R]n . This follows
from (13), (14), and (24). Now

vs(i)− ξ(i) =
�

j∈W

ω(j)δ(i, j)f (i − j),

where δ(i, j) = ϕ (p(i − j)− p(i))− ϕ
�
p(i − j)− μs

�
.

By Lipschitz property, �δ(i, j)� ≤ L�p(i)− μs�.
Note that we can assume that each ω(j) is in [0, 1]. This is
simply because the weights appear both in the numerator and
denominator in (1) and (24). Moreover, since the range of f
is [0, R]n , using triangle inequality again, we obtain

�vs(i)− ξ(i)� ≤ L |W |√n R�p(i)− μs�. (26)

Similarly,

|η(i)− rs(i)| ≤ L|W |�p(i)− μs�. (27)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 27,2022 at 09:11:47 UTC from IEEE Xplore.  Restrictions apply. 



NAIR AND CHAUDHURY: FAST HIGH-DIMENSIONAL BILATERAL AND NONLOCAL MEANS FILTERING 1481

Now, since ω and ϕ are non-negative, η(i) ≥ ω(0)ϕ(0). Using
the fact that 1/|η(i)| ≤ 1/ω(0)ϕ(0) along with (25), (26)
and (27), we obtain

�ĝ(i)− g(i)� ≤ C|W |√nL�p(i)− μs�, (28)

where C = 2
√

R/ω(0)ϕ(0). On squaring (28) and summing
over all pixels, we arrive at (19).
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