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ABSTRACT In this paper, a novel neural control architecture is proposed and investigated for resolving
redundancy in trajectory tracking applications formanipulators with joint velocity constraints. First, a nonlin-
ear invertible map is invoked to transform the constrained system state into a set of unconstrained variables,
which allows the proposed framework to realize solutions that rigorously adhere to the specified bound
constraints. Next, a quadratic program (QP) architecture is synthesized by incorporating suitably prescribed
performance constraints to ensure that the resulting system error achieves exponential convergence to the
ground truth while also ensuring that the system states evolve along trajectories with good transient and
steady-state behavior. Thus, in contrast with previous approaches that do not rigorously guarantee the
satisfaction of the bound constraints in the transient phase and/or the steady-state, the proposed scheme
ensures that these constraints are rigorously satisfied while achieving prescribed performance both during
the transient phase and in the steady-state. The novelty of the proposed scheme lies in the fusion of prescribed
performance constraints with the state and input constraints within the QP framework, which offers the
important advantage of higher computational efficiency compared to leading alternative designs. A detailed
theoretical analysis is undertaken to prove the global stability and convergence of the proposed scheme.
Simulation and experimental results with the KUKA LBR IIWA 14 R820 manipulator are used to verify
the efficacy of the proposed scheme in accomplishing trajectory tracking for the fault-free and fault-tolerant
cases with multiple joint failures. Finally, detailed performance comparison studies with leading alternative
designs are further used to illustrate the advantages of the proposed scheme.
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neural networks.

I. INTRODUCTION21

A redundant robotic manipulator refers to a manipulator22

which possesses more degrees of freedom than it is required23

to complete a task objective. The presence of these additional24

degrees of freedom leads to multiple sets of solutions for the25

same problem statement, thus allowing for the enforcement of26

additional sets of constraints on the manipulator in addition27

to the primary task. A fundamental problem in robotics is28

the problem of redundancy resolution for trajectory tracking29

applications using redundant manipulators. It refers to the30
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computation of the joint poses required to achieve desired 31

end-effector path in the Cartesian space. Due to the nonlinear 32

nature of themapping between the joint pose and end-effector 33

positions, redundancy resolution via inverse kinematics is 34

often quite difficult. Hence, redundancy resolution is usu- 35

ally performed at the velocity level, which can be repre- 36

sented in the form of a time-varying underdetermined linear 37

equation [1], [2]. 38

The zeroing neural network (ZNN) represents a special 39

class of recurrent neural networks that is primarily aimed at 40

finding the zeros of a time-varying system represented by 41

a set of linear or nonlinear equations. ZNNs were first pro- 42

posed for finding the solution of the time-varying Sylvester’s 43
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equation [3]. Compared to the traditional gradient-based neu-44

ral networks (GNNs), these neural network architectures are45

better suited for finding the solution of time-varying prob-46

lems related to trajectory tracking, which is attributed to the47

fact that the time-derivative information of the time-varying48

coefficients is incorporated seamlessly within the ZNN archi-49

tecture, thus providing a stark contrast with the traditional50

GNN framework [4]. As such, numerous ZNN architec-51

tures have been proposed for finding the solution of various52

time-varying problems of practical interest [5], [6], [7], [8],53

[9], [10]. In particular, ZNN models are proposed as solu-54

tions to the dynamic matrix inversion problem in [5], [6],55

and [7], time-varying linear inequalities in [8] and [9], and56

time-varying nonlinear inequalities in [10].57

Over the years, a few prominent studies have been58

conducted for finding the solution of time-varying under-59

determined linear systems with application to redundancy60

resolution. Two newZNNmodels are proposed in [11] for this61

purpose, while a gain-adjustment neural network (GANN)62

that ensures super-exponential convergence to the ground63

truth is proposed in [12] for finding the solution of an under-64

determined linear system. Further, a projected ZNN (PZNN)65

based joint drift-free scheme is proposed in [13] for redun-66

dancy resolution of a manipulator in the presence of noise.67

However, the previously mentioned studies do not include68

constraints on joint velocity. In contrast, a novel ZNN model69

is proposed in [14] that relies on equality transformations70

for finding the online solution of a time-varying system71

of linear equations with bound constraints. Subsequently,72

an equivalent discrete-time version of this ZNN model is73

proposed in [15], and a noise-tolerant ZNN for the solution74

of a time-varying underdetermined linear system of equations75

with bounds on both the state and residual error is proposed76

in [16]. Further, a ZNN model with finite-time convergence77

is proposed in [17] and a ZNN model based on infinity norm78

minimization is proposed in [18] for the solution of an under-79

determined system with state and input constraints. However,80

these studies do not always guarantee rigorous enforcement81

of the state constraints either during the transient phase or82

in steady-state, which is a critical drawback, especially for83

redundancy resolution applications in robotics.84

To overcome this drawback, a novel quadratic program85

(QP)-based neural control architecture is proposed in this86

paper, which incorporates prescribed performance constraints87

with state and input constraints at the joint velocity level.88

First, the joint velocity constraints are implemented via an89

invertible nonlinear map to transform the constrained system90

state into a new set of unconstrained variables. This trans-91

formation ensures that the bound constraints are rigorously92

adhered to during the solution process, distinguishing it from93

the approaches proposed in [14], [15], and [17] that provide94

no such formal guarantees, especially in the transient state.95

The proposed model further incorporates suitably prescribed96

performance constraints, which guarantee desired tran-97

sient and steady-state performance characteristics, and have98

been shown to deliver prescribed performance for various99

dynamical systems [19], [20], [21], [22]. Prescribed perfor- 100

mance control ensures that the system forces the tracking 101

error to converge to a small residual set with a convergence 102

rate greater than or equal to some predefined value in such 103

a manner that the overshoot does not exceed a predefined 104

limit. The proposed model uses a convex optimization frame- 105

work to enforce both the bounds on the state and the input, 106

and the prescribed performance constraints simultaneously. 107

Combining these approaches and incorporating themwithin a 108

quadratic program further ensures that the solutions obtained 109

from the proposed model are optimal in accomplishing the 110

task objective. In particular, the optimization framework is 111

designed with the aim of enforcing bounds on the mathe- 112

matical range of the solution, which is in contrast with the 113

ZNN-based optimization model proposed in [23], which does 114

not impose any bounds on the system state/input. Moreover, 115

the proposed framework is used to impose explicit expo- 116

nentially convergent dynamic bounds on the residual error 117

as opposed to the study in [16], where only static bounds 118

are imposed on the tracking error and thus cannot guaran- 119

tee desired transient and steady-state performance. Theoret- 120

ical analysis is undertaken to demonstrate the stability and 121

convergence properties of the proposed scheme. Complex- 122

ity analysis is also undertaken to demonstrate the compu- 123

tational efficiency of the proposed model as compared to 124

leading alternative designs such as [14], [24]. Simulation 125

and experimental studies are carried out with a KUKA LBR 126

IIWA 14 R820 to show the efficacy of the proposed models 127

for path tracking applications in redundant manipulators with 128

bounds on the joint velocities. The suitability of the proposed 129

model for fault-tolerant trajectory tracking is then demon- 130

strated in simulation and experiments in the presence of mul- 131

tiple joint failures. Note that this approach differs from the 132

previous approaches proposed for fault tolerance such as [24], 133

in the sense that it incorporates limits on the state/input of 134

the system. Further, the presence of prescribed performance 135

constraints and the inclusion of formal guarantees for rigor- 136

ous adhesion to bound constraints distinguishes it from the 137

fault-tolerant approaches proposed in [25], [26], and [27]. 138

To the best of the authors’ knowledge, no other study has 139

focused on the constrained resolution of redundant manipu- 140

lators that delivers prescribed transient and steady-state per- 141

formance of the tracking error within an optimal framework. 142

The main contributions of this paper are summarized 143

below. 144

i) A novel QP-based neural control framework is intro- 145

duced for redundancy resolution with bound constraints at the 146

joint velocity level. To the best of the authors’ knowledge, this 147

is the only framework that incorporates both prescribed per- 148

formance and joint velocity constraints within an optimiza- 149

tion framework for redundancy resolution in fault-tolerant 150

trajectory tracking applications. 151

ii) The proposed model relies on an invertible nonlinear 152

map to transform the constrained system state into a new 153

set of unconstrained variables. This transformation formally 154

guarantees that the proposed model will rigorously satisfy the 155
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joint constraints both during the transient phase and in the156

steady-state, which is in contrast with most previous studies.157

iii) Further, the proposed model also incorporates pre-158

scribed performance constraints which allow the proposed159

model to exert control over the transient and steady-state160

behavior of the system error, thus leading to superior perfor-161

mance in contrast with previous studies.162

iv) For robotic trajectory tracking applications, the adop-163

tion of the proposed model is shown to deliver superior164

trajectory tracking performance in comparison with leading165

alternative designs both in the presence and absence of mul-166

tiple joint failures.167

The rest of the paper is organized as follows. Section II168

describes the problem formulation for redundancy resolution169

with bound constraints at the joint velocity level. Section III170

presents the analytical formulation of the proposed model171

with the associated theoretical analysis. The application of the172

proposed ZNNmodels to KUKA LBR IIWA 14 R820 for tra-173

jectory tracking in the presence and absence of joint failures174

is shown in Section IV. A detailed performance comparison175

study with leading alternative designs is also included. The176

conclusions of the paper are presented in Section V.177

II. PROBLEM FORMULATION178

In this section, the problem of redundancy resolution for sys-179

tems involving inverse kinematics with bound constraints on180

the joint velocity is introduced. The problem of redundancy181

resolution can be stated as follows. Given a desired path182

rd ∈ Rm of the end-effector in the task space, the required183

joint angles θ ∈ Rn in the joint space have to be determined.184

The solution to this problem can be achieved by solving the185

forward kinematics of the manipulator, which is given as186

f (θ ) = rd , (1)187

where f (·) : Rn
→ Rm represents the forward kinematic188

mapping. Due to the nonlinear nature of the mapping, it is189

very difficult to solve (1) by finding the inverse mapping190

for f (·). Hence, this problem is usually solved at the velocity191

level. Redundancy resolution at the velocity level [28], [29],192

[30] with bound constraints is achieved by the solution of the193

time-dependent underdetermined system with the bounds on194

the joint velocity given below195

J(θ )θ̇ (t)=ṙd (2)196

subject to ˙θ−≤θ̇ (t)≤ ˙θ+, (3)197

where J(θ ) ∈ Rm×n represents the Jacobian matrix, θ̇ (t) ∈198

Rn×1 represents the joint velocity, and ṙd ∈ Rm×1 represents199

the desired end-effector velocity. ˙θ− and ˙θ+ represent the200

constant limits on joint velocity.201

Remark 1: This study considers only the bounds at the202

velocity level. However, the problem definition can be easily203

extended to include limits on the joint angular position level204

by making use of dynamic constraints as ξ−(t) ≤ θ̇ (t) ≤205

ξ+(t) [31], where the individual components of the dynamic206

bounds are defined as ξ−i (t)=max{κp(θ
−

i − θi(t)), θ̇i
−
},207

ξ+i (t)=min{κp(θ
+

i −θi(t)), θ̇i
+
}, where θ−i and θ+i represent 208

the limits on the angular position of the ith joint, and κp > 0 is 209

a scaling factor for the joint limits. 210

III. QP-BASED NEURAL CONTROL ARCHITECTURE 211

In this section, a quadratic program-based ZNN embedded 212

with performance constraints is proposed for the solution of 213

system (2) subject to bound constraints (3) alongwith the sub- 214

sequent theoretical analysis to demonstrate the convergence 215

properties of the proposed scheme. For the proposed scheme, 216

both the system constraints and the prescribed performance 217

constraints are included in the formulation via a nonlinear 218

mapping, and a QP framework is subsequently introduced to 219

impose both of them simultaneously. 220

A. CONSTRAINED VELOCITY AND ERROR 221

TRANSFORMATION 222

In this subsection, a nonlinear transformation is introduced 223

to impose the constraints on the state of the system. Subse- 224

quently, prescribed performance constraints (PPCs) are incor- 225

porated into a ZNN framework for better transient and steady- 226

state performance. 227

In order to ensure that the state of the system remains 228

within the given bounds ∀ t ∈ [0, ∞), a nonlinear transfor- 229

mation that converts the system state θ̇ (t) to an unconstrained 230

variable χ (t) is given below [21] 231

ηi =
θ̇i(t)− θ̇

−

i

θ̇+i − θ̇
−

i

=
eχi

1+ eχi
i = 1, 2, . . . , n. (4) 232

where ηi ∀ i = 1, 2, .., n represents the required nonlinear 233

transformation. Then, by introducing the variables, 0 = 234

[01 02 . . . 0n]> ∈ Rn×1 and χ = [χ1 χ2 . . . χn]> ∈ Rn×1, 235

the components of the transformed variable vector χ(t) can 236

be obtained from (4) as 237

χi(t) = ln
(

ηi

1− ηi

)
= ln

(
θ̇i(t)− θ̇

−

i

θ̇+i − θ̇i(t)

)
= 0i(θ̇i). (5) 238

where 0(θ̇ ) : Rn
→ Rn represents the mapping from the 239

constrained variable θ̇(t) to the unconstrained variable χ (t). 240

It is straightforward to observe that the transformation 0(θ̇ ) 241

is a smooth monotonically increasing function, and hence is 242

invertible. Consequently, it is evident that while χ (t) remains 243

bounded within the limits (−∞, ∞), the state θ̇ (t) remains 244

bounded between the bounds ( ˙θ−, ˙θ+), fulfilling the con- 245

straints imposed by (3). Thus, the objective of finding the 246

solution of (2) subject to (3) now translates to driving the 247

unconstrained variable χ (t) to its desired value. 248

Introducing the tracking error ε(t) = f (θ )− rd , and using 249

a non-negative constant k ≥ 0, the system error is defined as 250

e(t) = ε̇(t)+ kε(t) 251

= J(θ )θ̇ (t)− ṙd + k(f (θ )− rd ) 252

= J(θ )0−1(χ )−ṙd+k (f (θ)−rd) . (6) 253

where 0−1(χ ) : Rn
→ Rn represents the inverse mapping 254

for the transformation 0(θ̇ ). To improve tracking perfor- 255
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mance, especially in the presence of multiple joint failures,256

we consider the inclusion of the performance constraints to257

impose bounds on the system error (6) through the following258

transformation [21]259

η̃i =
ei(t)− ρl
ρr − ρl

=
eχ̃i

1+ eχ̃i
i = 1, 2, . . . ,m, (7)260

where η̃i ∀ i = 1, 2, ..,m represents the required nonlinear261

transformation. ρr = ρ0e−δt + ρ∞ and ρl = −ρr represent262

the time-varying prescribed performance constraints (PPCs)263

on the error function (6). Here, ρ0 and ρ∞ represent the264

initial and steady-state values of the performance constraints265

respectively. A straightforward choice for the parameter ρ0 is266

ρ0 = ||e(0)|| + κ0 for some user-defined constant κ0, and267

ρ∞ � ρ0. The constant δ scales the convergence rate of the268

performance constraints and hence, allows for control over269

the system’s transient performance.270

Similar to (5), we introduce the vectors χ̃ = [χ̃1 χ̃2271

. . . χ̃m]> ∈ Rm×1 and 0̃ = [0̃1 0̃2 . . . 0̃m]> ∈ Rm×1, and272

consider the component-wise transformation by using (7) as273

χ̃i(t) = ln
(

η̃i

1− η̃i

)
= ln

(
ei(t)− ρl
ρr − ei(t)

)
= 0̃i(ei). (8)274

where 0̃(e) : Rm
→ Rm represents the mapping from275

the constrained variable (e(t)) to the unconstrained variable276

(χ̃(t)). Again, owing to the invertible map 0̃(χ̃ ), it is apparent277

that the component-wise error function ei(t) remains bounded278

between the bounds (ρl, ρr ) provided that χ̃i remains uni-279

formly bounded such that χ̃i ∈ (−∞, ∞) ∀ 1 ≤ i ≤ m.280

Hence, the rigorous satisfaction of the performance con-281

straints is ensured.282

B. QP FRAMEWORK WITH JOINT VELOCITY AND283

PERFORMANCE CONSTRAINTS284

In this subsection, a QP-based neural control architecture is285

developed by combining both the joint velocity constraints286

and the prescribed performance constraints. Further, a com-287

parison study of the computational efficiency is undertaken288

relative to the schemes proposed in [14] and [24].289

To account for the bounds on the error function, a vector290

g(χ̃ ) is defined as291

g(χ̃ ) =
1
2
χ̃ ◦ χ̃ =

1
2

[
χ̃2
1 χ̃

2
2 · · · χ̃

2
m
]>
∈ Rm×1, (9)292

where ◦ represents the Hadamard product. To satisfy both the293

velocity constraints and the performance constraints simul-294

taneously, a convex optimization program is formulated by295

invoking the invertible transformation (5) as296

arg minθ̇(t)
1
2
χ (θ̇ )>χ (θ̇ ) subject to g(χ̃ (θ̇ )) = 0. (10)297

To solve this optimization problem, the Lagrangian function298

is expressed as [32]299

L =
1
2
χ>χ + λ>g(χ̃ ), (11)300

where λ = [λ1 λ2 . . . λm]> ∈ Rm×1 represents the 301

Lagrange’s multipliers. The design methodology used in [23] 302

is adopted to formulate the desired ZNN model. The aug- 303

mented state vector for the system is given as 304

y(t) =
[
θ̇(t)>, λ>

]>
∈ R(m+n)×1. (12) 305

A vector h(y(t), t) is then defined as 306

h(y(t), t)=
(
∂L
∂y

)>
=

[(
∂L
∂ θ̇

)
∂L
∂λ

]>
∈ R(m+n)×1. (13) 307

For the solution of problem (10), a ZNNmodel is formulated 308

to drive the components of h(y(t), t) to zero as 309

ḣ(y(t), t)) = −γ8(h(y(t), t)). (14) 310

where 8(·) : Rm+n
→ Rm+n represents a vector array 311

of monotonically increasing odd activation functions, and 312

γ ≥ 0 is a constant that scales the convergence rate of ZNN. 313

The total derivative of h(y(t), t) can be expressed as 314

ḣ(y(t), t) =
∂h
∂y
ẏ+

∂h
∂t
, (15) 315

where 316

∂h
∂y
=

 ∂

∂ θ̇

(
∂L
∂ θ̇

)>
∂
∂λ

(
∂L
∂ θ̇

)>(
∂

∂ θ̇

(
∂L
∂λ

)>)>
0

 ∈ R(m+n)×(m+n), 317

∂h
∂t
=

[
∂h1
∂t

∂h2
∂t . . .

∂hm+n
∂t

]>
∈ R(m+n)×1. 318

The ZNN model (14) can be reformulated using (15) as 319

ẏ = −
(
∂h
∂y

)† (
γ8(h(y(t), t))+

∂h
∂t

)
. (16) 320

where † represents the pseudoinverse. The neuronal form of 321

the proposed model (16) can be written as 322

yi =
∫ r∑

j=1

H̃ij

(
γφ

(
hj
)
+
∂hj
∂t

)
, (17) 323

where r = m+ n. hi represents the ith neuron. H̃ij represents 324

ijth component of the matrix −
(
∂h
∂y

)†
which acts as a weight 325

for the neural network. The neural network architecture of the 326

proposed model (16) is presented in Fig. 1. From (17) and 327

Fig. 1, it can be seen that the neural architecture representing 328

the proposed model (16) involves n2 + 2mn + m2
+ m + 329

n − 1 additions/subtractions, n2 + 2mn + m2
+ 2m + n 330

multiplications, 4m + 5n nonlinear operations and m + n 331

integral operations. In contrast, the ZNN model proposed 332

in [14] requires 18n2 + 9mn+ m− n additions/subtractions, 333

18n2 + 9mn + m + 2n multiplications, m + 2n nonlin- 334

ear operations, and 3n integrator operations. While as the 335

VP-ZNNmodel proposed in [24] requires 3(m2
+n2+m2

a)+ 336

6(mn + man + mam) additions/subtractions, 3(m2
+ n2 + 337

m2
a) + 6(mn + man + mam) + m + n + ma multiplications, 338

m+ n+ma nonlinear operations, and m+ n+ma integrator 339

operations, where ma is the number of faulty joints. Despite 340
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FIGURE 1. Neural network architecture for the proposed model (16).

the higher number of nonlinear transformations, the number341

of addition/subtraction, multiplication and integration opera-342

tions is notably fewer than the ZNN architecture developed343

in [14] and the fault-tolerant scheme proposed in [24]. Thus,344

the proposed model (16) is more computationally efficient345

compared to the studies in [14] and [24].346

C. THEORETICAL ANALYSIS347

In this subsection, the theoretical analysis of the proposed348

model (16) is undertaken to prove the global convergence349

property of the system (10). To this end, we now have the350

following Lemmas.351

Lemma 1: The optimization function f (χ ) = 1
2χ
>χ of the352

problem (10) is convex with respect to the state variables θ̇ (t).353

Proof: The function f (χ ) can be expanded as354

f =
1
2
χ>χ =

1
2

n∑
k=1

χ2
k , (18)355

so that for ijth element of the Hessian ∂2f

∂ θ̇∂ θ̇
>
, we have,356

∂2f

∂θ̇j∂θ̇i
=

1+ (2ηi − 1)ln
(

ηi
1−ηi

)
(θ̇+i − θ̇

−

i )2(ηi(1− ηi))2
δij, (19)357

where δij represents the Kronecker delta function. Note that358

ηi ∈ (0, 1) ∀χi ∈ (−∞,∞), so that359

ηi ∈

(
0,

1
2

)
H⇒ (2ηi − 1) < 0, ln

(
ηi

1− ηi

)
< 0360

ηi ∈

(
1
2
, 1
)
H⇒ (2ηi − 1) > 0, ln

(
ηi

1− ηi

)
> 0361

H⇒

(2ηi − 1)ln
(

ηi
1−ηi

)
= 0, if ηi = 1

2

(2ηi − 1)ln
(

ηi
1−ηi

)
> 0, otherwise.

362

(20) 363

From (19) and (20), it can be concluded that ∂
2f
∂θ̇2i

> 0 ∀ i = 364

1, .., n. Hence, the Hessian ∂2f

∂ θ̇∂ θ̇
>
is a diagonal matrix with 365

positive diagonal elements and hence is positive definite. 366

Thus, the function f is convex with respect to θ̇ (t) [33]. 367

Lemma 2: The constraint function g(χ̃ ) = 1
2 χ̃ ◦ χ̃ of the 368

optimization problem (10) is convex with respect to the state 369

variable θ̇ (t). 370

Proof: The component-wise constraint equation is given 371

as 372

gk =
1
2
χ̃2
k , ∀ 1 ≤ k ≤ m. (21) 373

The ijth element of the Hessian ∂2gk
∂ η̃∂ η̃>

∈ Rm×m is then given 374

as 375

∂2gk
∂η̃j∂η̃i

=

1+ (2η̃k − 1)ln
(

η̃k
1−η̃k

)
(ρr − ρl)2(η̃k (1− η̃k ))2

δijk , (22) 376

where δijk represents the Kronecker delta function. Since χ̃k 377

is uniformly bounded and thus finite with χ̃k ∈ (−∞,∞), 378

hence η̃k ∈ (0, 1). Proceeding in the same manner as 379

Lemma 1, it can be shown that ∂
2gk
∂η̃2k

> 0 ∀ 1 ≤ k ≤ m. 380

Thus, the Hessian ∂2gi
∂ θ̇∂ θ̇

>
∈ Rn×n is given as 381

∂2gk

∂ θ̇∂ θ̇
>
= J>

∂2gk
∂ η̃∂ η̃>

J, (23) 382
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which represents a positive semi-definite matrix. Hence, the383

constraint functions g(χ̃ ) is convex with respect to θ̇(t) [33].384

Theorem 1: Given that the solution θ̇∗(t) exists within385

the given bounded limits, the state θ̇(t) of the system will386

converge to the solution θ̇∗(t) for the proposed model (16).387

Proof: Lemmas 1 and 2 prove that both the objective388

function as well as the equality constraints for the prob-389

lem (10) are convex with respect to θ̇ (t). Hence, (10) repre-390

sents a convex optimization problem in θ̇ (t).391

Consider the component-wise Lyapunov function, which392

is defined as393

V (hi) =
1
2
h2i (t). (24)394

The time-derivative of the Lyapunov function is given as395

V̇ = hi(t)ḣi(t) = −γ hi(t)φ(hi)

{
< 0, if hi 6= 0
= 0, if hi = 0.

(25)396

This proves the negative definiteness of V̇ . Hence, as per397

the Lyapunov theory [34], all the elements of h(y(t), t) are398

globally convergent to zero. Therefore, the proposed model399

solves the problem (10). Hence, the constraint equations have400

to be satisfied as401

lim
t→∞

gi= lim
t→∞

χ̃i= lim
t→∞

ei(t)= 0 ∀ 1≤i≤m, (26)402

where the last equality is satisfied by invoking the fact that403

ρl(t) = −ρr (t). From (6), as k ≥ 0, it follows that404

limt→∞ ε(t) = limt→∞ ε̇(t) = 0.405

Let χ∗ be the value of the unconstrained variable which406

satisfies the given system (2) such that407

J(θ )0−1(χ∗)(t)− ṙd = 0. (27)408

Hence, it follows that409

lim
t→∞

J(θ )
(
0−1(χ )−0−1(χ∗)

)
=0. (28)410

Thus, we have limt→∞ 0
−1(χ ) = 0−1(χ∗), or411

limt→∞ χ (t) = χ∗(t) where the last equality is derived by412

invoking the one-to-one correspondence of the map 0(θ̇).413

Note that the mapping 0(θ̇ ) is invertible so that the inverse414

mapping 0−1(χ ) is well defined for all time. Moreover,415

it is apparent that the unconstrained variable χ (t) resulting416

from the proposed model (16) remains uniformly bounded417

as ˙θ− ≤ θ̇ (t) ≤ ˙θ+ ∀ t ≥ 0. Hence, corresponding to the418

unconstrained variable χ∗(t), there exists a unique state θ̇∗(t)419

satisfying limt→∞ θ̇ (t) = θ̇∗(t), so that limt→∞ J(θ )θ̇ (t) =420

ṙd , and ˙θ− ≤ θ̇ (t) ≤ ˙θ+ ∀ t ≥ 0.421

Furthermore, as the variable χ̃i is uniformly bounded,422

we have ρl(t) ≤ ei(t) ≤ ρr (t)∀1 ≤ i ≤ m, t ∈ [0,∞). This423

proves that the proposedmodel (16) is able to find the solution424

of the underdetermined system (2) subject to bounds (3),425

which satisfies the prescribed performance constraints.426

IV. VALIDATION 427

In this section, numerical and experimental validation stud- 428

ies are undertaken with the proposed model (16) to accom- 429

plish trajectory tracking on the KUKA LBR IIWA 14 R820 430

manipulator with physical constraints on the joint velocity. 431

A detailed performance comparison study with leading alter- 432

native designs is also undertaken. 433

A. NUMERICAL RESULTS 434

In this subsection, path tracking simulations are performed 435

for the cardioid and tricuspid paths using the proposed 436

model (16). The simulations are undertaken for both the 437

fault-free and fault-tolerant scenarios. Then, the effect of 438

the inclusion of prescribed performance constrains (PPCs) is 439

demonstrated, followed by a performance comparison of the 440

proposed model (16) with the ZNN model proposed in [14] 441

and the VP-ZNN model proposed in [24]. The simulation 442

results are obtained using MATLAB R© 2022a. 443

1) FAULT-FREE CASE 444

In this subsection, path tracking simulations are performed 445

for the cardioid and tricuspid paths using the proposed 446

model (16) for the fault-free scenario. The simulations are 447

carried out for a duration of 10 s. The limits on the joint 448

velocity are specified as 449

˙θ+=− ˙θ−=
[
0.2 0.2 0.2 0.2 0.2 0.2 0.2

]> rad/s 450

The initial joint positions are specified as θ (0) = 451

[−0.26, 0.29, 0.59,−0.99, 0.49, 0.31, 0.86] rad. The sim- 452

ulations are performed with a linear activation function, 453

γ = 100, δ = 100, ρ0 = 2, k = 10 and ρ∞ = 454

0.005. Figs. 2 and 3 show the simulation results for the 455

cardioid and the tricuspid path, respectively. In particular, 456

Figs. 2a and 3b demonstrate the efficacy of the proposed 457

model (16) in the trajectory tracking of the desired shapes 458

while ensuring that the states of the system remain within 459

the specified bounds (Figs. 2c and 3c). The tracking errors 460

are of the order 10−5 m for both cases, as demonstrated by 461

Figs. 2b and 3b. 462

To further demonstrate the capabilities of the proposed 463

scheme (16), nonzero initial tracking errors are considered. 464

In this scenario, it is assumed that the desired initial posi- 465

tion is different from the actual initial position of the end- 466

effector. The initial tracking errors are considered to be 467

[−4, 3.5, 2.5]×10−2 m and [3.3,−3.5,−2.6]×10−2 m for 468

the tricuspid and cardioid path respectively which accounts 469

for a significant initial deviation of [19.8%, 17.3%, 21.4%] 470

and [16.3%, 17.3%, 22.2%] compared to the size of the afore- 471

mentioned shapes in the Cartesian space. The gain for posi- 472

tion level error is specified as k = 1 and k = 2 for the cardioid 473

and tricuspid shapes respectively. The joint velocity limits for 474

this scenario are taken as 475

˙θ+=− ˙θ−=
[
0.3 0.3 0.3 0.3 0.3 0.3 0.3

]> rad/s 476

The rest of the parameters are kept the same. The simu- 477

lation results are shown in Figs. 4 and 5. Figs. 4a and 5a 478
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FIGURE 2. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 10,
δ = 100, and γ = 100 for the fault-free case with zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ε(t). (c) Variation of
joint velocities θ̇(t).

FIGURE 3. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 10,
δ = 100, and γ = 100 for the fault-free case with zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ε(t). (c) Variation of
joint velocities θ̇(t).

FIGURE 4. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 1,
δ = 100, and γ = 100 for the fault-free case and nonzero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ε(t). (c) Variation
of joint velocities θ̇(t).

FIGURE 5. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
δ = 100, and γ = 100 for the fault-free case and nonzero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ε(t). (c) Variation
of joint velocities θ̇(t).

demonstrate the efficacy of the proposed model (16) in track-479

ing the desired shapes while ensuring that the states of the480

system remain within the specified bounds (Figs. 4c and 5c).481

The evolution of tracking errors is shown by Figs. 4b and 5b. 482

These tracking errors eventually converge to an order of 483

10−5 m. As is evident from the simulations, an additional 484
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FIGURE 6. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 10,
δ = 100, and γ = 100 with joint failures of 1st ,5th, and 6th joint and zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error
ε(t). (c) Variation of joint velocities θ̇(t).

FIGURE 7. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 10,
δ = 100, and γ = 100 with joint failures of 1st ,5th, and 6th joint and zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking
error ε(t). (c) Variation of joint velocities θ̇(t).

FIGURE 8. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 1,
δ = 100, and γ = 100 with joint failures of 1st ,5th, and 6th joint and nonzero initial tracking errors.(a) Simulated motion path. (b) Variation of tracking
error ε(t). (c) Variation of joint velocities θ̇(t).

FIGURE 9. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
δ = 100, and γ = 100 with joint failures of 1st ,5th, and 6th joint and nonzero initial tracking errors.(a) Simulated motion path. (b) Variation of tracking
error ε(t). (c) Variation of joint velocities θ̇(t).

advantage of the proposed model (16) is that it ensures the485

return of the joint variables to zero values at end of the sim-486

ulation run, thus rendering the proposed approach drift-free.487

This property of the proposed model (16) can be attributed488

to incorporating nonlinear mapping for imposing state con- 489

straints within the optimization framework, which gives pref- 490

erence to solutions that lie in the middle of the admissible 491

region. 492
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2) FAULT-TOLERANT CASE493

In this subsection, path tracking simulations are performed494

using the KUKA LBR IIWA 14 R820 manipulator for the495

cardioid and tricuspid paths using the proposed model (16)496

in the presence of multiple joint failures.497

To illustrate the fault tolerance capabilities of the proposed498

model (16), the 1st , 5th, and 6th joints are considered to be499

faulty. To allow for fault tolerance, the joint velocity limits500

for the scenario with zero initial tracking errors are set as501

˙θ+=− ˙θ−=[10−4 0.26 0.26 0.26 10−4 10−4 0.26]>rad/s502

For the faulty joints (joints 1, 5, and 6), note that the503

joint velocity limits are set to very small values as504

[−10−4, 10−4] rad/s such that the motion for these joints505

is practically nonexistent. Figs. 6 and 7 show the tracking506

simulation results for fault tolerance with the faulty joints.507

In particular, Figs. 6a and 7a demonstrate the efficacy of the508

proposed model (16) in the trajectory tracking of the desired509

shapes in spite of the three joints being locked. Further, it is510

ensured that the joint velocities remain within the specified511

bounds (Figs. 6c and 7c). The tracking errors are of the order512

10−5 m and 10−6m, respectively (Figs. 6b and 7b) which is513

comparable to those obtained for the fault-free scenario.514

For the scenario with nonzero initial errors, the joint veloc-515

ity limits are set as516

˙θ+=− ˙θ−=[10−4 0.36 0.36 0.36 10−4 10−4 0.36]>rad/s517

The simulation results are shown in Figs. 8 and 9. Figs. 8a518

and 9a demonstrate the efficacy of the proposed model (16)519

in accomplishing trajectory tracking of the desired shapes in520

presence of multiple joint failures. Figs. 8c and 9c show that521

the joint velocities remain well within the specified limits.522

The tracking errors evolution for both cases is shown by523

Figs. 8b and 9b. These tracking errors eventually converge to524

an order of 10−5 m, which is again comparable to the fault-525

free case.526

3) EFFECT OF PERFORMANCE CONSTRAINTS527

This subsection focuses on the effect of the inclusion of528

prescribed performance constraints (PPCs) in the proposed529

scheme (16). A comparison of the average tracking error530

for the proposed model (16) with and without the PPCs is531

made using the normalized metric defined over the duration532

of simulation as533

εm =

√
1
30

∫ 10

0
||ε(t)||22 dt. (29)534

where ||.||2 represents the Euclidean norm. The comparison535

of the mean tracking error (εm) for the proposed scheme (16)536

in presence and absence of PPCs is shown in Table 1. It is537

observed that the mean tracking errors in the absence of PPCs538

exceed the corresponding values in the presence of PPCs by539

an order of 103 m for the fault-free case and 104 m for the540

fault-tolerant scenario for the case of zero initial tracking541

errors. For the case with nonzero initial tracking errors, mean542

TABLE 1. Comparison of mean tracking error εm(×10−4) (m) with and
without the performance constraints.

tracking errors in the absence of PPCs still significantly 543

exceed the corresponding values in the presence of PPCs for 544

the case with multiple joint failures. However, the apparent 545

difference is not as pronounced as before due to the presence 546

of nonzero initial tracking errors which contribute signifi- 547

cantly to the mean tracking error values. To glean a deeper 548

insight into the effect of the PPCs for the case with nonzero 549

initial tracking errors, the corresponding simulation results 550

for trajectory tracking in the absence of PPCs are shown in 551

Figs. 10 - 13. It can be seen (Figs. 10b - 13b) that the absence 552

of prescribed performance constraints consistently results in 553

a significant overshoot and a non-exponential decay, espe- 554

cially for the fault-tolerant case, thus leading to significant 555

degradation of the transient performance. Further, as can be 556

seen from Figs. 10c - 13c, absence of PPCs leads to a slower 557

decay rate and larger steady-state errors which results in a 558

poorer steady-state performance. The performance difference 559

is drastic in some cases, as seen in Fig. 12a, where the 560

traced path shape is severely distorted. The superior tracking 561

error obtained in the presence of performance constraints 562

is due to the fact that PPCs force the residual error of the 563

system to exponentially converge to a small residual set at 564

a decay rate equal to or faster than a predefined rate, forcing 565

the tracking error to decay faster and achieve lower steady- 566

state values. Thus, the inclusion of prescribed performance 567

constraints significantly improves both the transient as well 568

as the steady-state performance of the proposed scheme (16). 569

4) COMPARISON WITH RELATED STUDIES 570

This subsection includes the performance comparison studies 571

for the proposed model (16) with the ZNN model [14] and 572

the VP-ZNN model [24]. This is followed by a qualitative 573

comparison study with previous related studies to show the 574

novelty of present work. 575

The performance comparison studies are only undertaken 576

for scenarios with zero initial tracking error as the ZNN 577

model in [14] implements trajectory tracking at the velocity 578

level which cannot compensate for nonzero initial track- 579

ing errors. Figs. 14 and 15 present the trajectory track- 580

ing results obtained with the ZNN model [14] and the 581

VP-ZNN model [24] for the fault-free case respectively. 582

To illustrate the benefits of the proposed schemes for robotic 583

trajectory tracking applications, a comparison of the average 584

tracking error (29) and the average control effort required 585
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FIGURE 10. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 1,
δ = 100, and γ = 100 for the fault-free case with nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation of tracking
error ε(t). (c) Effect of PPCs on norm of tracking errors |||ε||2.

FIGURE 11. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
δ = 100, and γ = 100 for the fault-free case with nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation of tracking
error ε(t). (c) Effect of PPCs on norm of tracking errors |||ε||2.

FIGURE 12. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 1,
δ = 100, and γ = 100 with joint failures of 1st ,5th, and 6th joint and nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation
of tracking error ε(t). (c) Effect of PPCs on norm of tracking errors |||ε||2.

FIGURE 13. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
δ = 100, and γ = 100 with joint failures of 1st ,5th, and 6th joint and nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation
of tracking error ε(t). (c) Effect of PPCs on norm of tracking errors |||ε||2.

to accomplish trajectory tracking is considered for the586

ZNN [14], VP-ZNN [24] and the proposed model (16).587

The average control effort is defined over the duration of588

simulation using normalized metrics as 589

u =
√

1
70

∫ 10
0 ||θ̇ (t)||

2
2 dt. 590
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FIGURE 14. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for ZNN [14] for the fault-free case with
zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ε(t). (c) Variation of joint velocities θ̇(t).

FIGURE 15. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for VP-ZNN [24] for the fault-free case
with zero initial tracking error. (a) Simulated motion path. (b) Variation of tracking error ε(t). (c) Variation of joint velocities θ̇(t).

TABLE 2. Comparison of mean control effort u (rad/s) and mean tracking
error εm (m) for various control schemes.

Table 2 lists the comparison of the mean control effort and591

the mean tracking error obtained using the various models for592

the fault-free case and the fault-tolerant case with multiple593

joint failures and zero initial tracking errors. It is apparent594

that the proposed model (16) has a lower mean tracking error595

as compared to ZNN [14] and VP-ZNN [24], which leads to596

superior tracking performance. Further, it is evident that the597

control effort required for implementing trajectory tracking598

using the proposed model (16) is lower than the scheme599

proposed in [14] and comparable to the VP-ZNN scheme600

in [24]. The marginally lower computational effort required601

by the VP-ZNN scheme in [24] is realized at the cost of602

greater tracking error compared to the proposed scheme for603

the fault-free case, as is observed from Fig. 15. The superior604

performance and computational efficiency of the proposed605

model (16) can be attributed to the prescribed performance606

constraints, which drive the admissible solutions towards the607

middle of the admissible region, leading to a lower control608

effort and lower error in accomplishing trajectory tracking.609

This also helps avoid situations thatmay lead to possible input610

saturation scenarios when the solution ventures close to the611

bounded limits, as can be seen from Fig. 14. In particular, 612

as observed from Fig. 14a, this leads to the traced path 613

differing significantly from the desired path for the scheme 614

proposed in [14]. This deviation from the desired path occurs 615

due to saturation of states θ̇1(t) and θ̇2(t) (Fig. 14c) corre- 616

sponding to the computed solution by the ZNN model [14]. 617

As is apparent from Fig. 14b, this situation leads to a sudden 618

surge in errors which leads to deviation from the desired path. 619

A similar scenario can be seen for the VP-ZNN proposed 620

in [24], where states θ̇2(t) and θ̇4(t) show violation of bounds 621

as the scheme lacks any structure for enforcing velocity 622

constraints (Fig. 15c). Again, due to saturation limits, these 623

desired velocities (which violate the bounds constraints for 624

this controller) cannot be achieved, leading to input satura- 625

tion, as seen in Fig. 15c. Again, as before, there is a surge 626

in tracking error, as seen in Fig. 15b, which leads to a sig- 627

nificant deviation from the desired path. In contrast, as seen 628

in the previous section, the proposed model (16) keeps these 629

joint velocities away from the bounds and avoids any bound 630

violation leading to superior steady-state performance both 631

for the fault-free case and the case of multiple joint failures. 632

Thus, the proposed model (16) clearly offers the advantage 633

of rigorously combining enforcement of joint velocity con- 634

straints of ZNN [14] with the fault tolerance of VP-ZNN [24] 635

in a computationally efficient framework. 636

A qualitative comparison of the proposed scheme (16) with 637

related redundancy resolution studies is shown in Table 3. 638

The QP formulation of the proposed scheme (16) allows it to 639

synthesize optimal control inputs which distinguishes it from 640

the schemes proposed in [14], [15], and [17]. The presence of 641
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TABLE 3. Qualitative comparison of proposed scheme (16) with related
studies.

FIGURE 16. Experimental setup.

performance constraints allows the proposed scheme (16) to642

impose constraints over the residual error and assert control643

over the transient performance separating it from other opti-644

mal schemes proposed in [23], [35], and [36]. Moreover, the645

constraints imposed by prescribed performance constraints646

are dynamic in nature which distinguishes the proposed647

scheme (16) from [16] where the bounds imposed on the648

residual error are static. Further, the proposed scheme (16) 649

employs nonlinear mapping to rigorously enforce state and 650

input constraints, as well as prescribe performance which 651

separates it from the previously mentioned studies. As seen 652

from this comparison, the proposed scheme (16) is the only 653

scheme that combines both the state and input constraints as 654

well as prescribed performance constraints in a QP frame- 655

work to synthesize an optimal input for trajectory tracking 656

applications both in a fault-free and a fault-tolerant setting. 657

B. EXPERIMENTAL VERIFICATION 658

In this subsection, physical path tracking experiments are 659

performed for the tricuspid and star paths using the pro- 660

posed model (16) for both the fault-free and fault-tolerant 661

scenarios with the KUKA LBR IIWA 14 R820 manip- 662

ulator, as shown in Fig. 16, with zero initial tracking 663

errors. The hardware capabilities of the setup used include 664

the Intel R© Core
TM

i7-7700 processor with 32GB RAM 665

and 1GB Intel R© HD Graphics 630 graphics card. The 666

experiments are performed for a time duration of 10 s. 667

The initial joint positions are specified as θ (0) = [−0.299, 668

0.959, 0.562,−1.242,−0.249,−0.479, 0.477]> rad. The 669

simulations are performed with a linear activation function, 670

and for parameters chosen as γ = 90, δ = 90, ρ0 = 2, 671

ρ∞ = 0.01. The values of the gain parameter k for the 672

tricuspid and star-shaped paths are set to 1 and 0 respectively. 673

The joint velocity limits for the fault-free case are specified 674

as 675

˙θ+=− ˙θ−=[0.8 0.8 0.8 0.8 0.8 0.8 0.8]>rad/s 676

FIGURE 17. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with
k = 1, δ = 90, and γ = 90 for the fault-free case with zero initial tracking errors. (a), (b) Traced end-effector path. (c) Variation of tracking error ε(t).

FIGURE 18. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with
k = 1, δ = 90, and γ = 90 with joint failures of 1st ,5th and 6th joint with zero initial tracking errors.(a), (b) Traced end-effector path. (c) Variation of
tracking error ε(t).
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FIGURE 19. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a star path for the proposed model (16) with k = 0,
δ = 90, and γ = 90 for the fault-free case with zero initial tracking errors. (a), (b) Traced end-effector path. (c) Variation of tracking error ε(t).

FIGURE 20. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a star path for the proposed model (16) with k = 0,
δ = 90 and γ = 90 with joint failures of 1st ,5th and 6th joint with zero initial tracking errors.(a), (b) Traced end-effector path. (c) Variation of tracking
error ε(t).

It can be seen from Figs. 17 and 19 that the manipulator677

is able to trace both the tricuspid and star-shaped paths678

in a smooth manner for the fault-free case. As seen from679

Figs. 17c and 19c, the trajectory tracking errors for both paths680

are of the order of 10−4 m. For the fault-tolerant scenario, the681

1st , 5th, and 6th are again assumed to be faulty and the joint682

velocity limits are set to683

˙θ+=− ˙θ−=[10−4 0.8 0.8 0.8 10−4 10−4 0.8]>rad/s684

Again, the manipulator is able to trace smooth tricuspid685

and star paths even in presence of joint failures as seen in686

Figs. 18 and 20. The errors are again of the order of 10−4 m,687

as seen in Figs. 18c and 20c.688

Clearly, the experimental results above demonstrate the689

efficacy of the proposed model (16) for accomplishing tra-690

jectory tracking for the fault-free case and the fault-tolerant691

case with several joint failures.692

V. CONCLUSION693

This study proposes and investigates a novel neural con-694

trol architecture for accomplishing trajectory tracking of695

redundant manipulators with joint velocity constraints. The696

novelty of the proposed scheme lies in the synthesis of a697

quadratic program framework that combines a nonlinear state698

transformation with state and prescribed performance con-699

straints to realize drift-free control policies that rigorously700

satisfy prescribed velocity and performance constraints. This701

framework allows the proposed scheme to provide for-702

mal guarantees for the delivery of stringent transient and703

steady-state performance. A detailed theoretical analysis is704

undertaken to demonstrate the stability and convergence 705

properties of the proposed scheme (16). Complexity analysis 706

reveals the higher computational efficiency of the proposed 707

model compared to leading alternative designs. Computer 708

simulations are used to verify the efficacy of the proposed 709

model in solving the trajectory tracking problem for the 710

KUKA LBR IIWA 14 R820 manipulator with bounds on 711

joint velocities both in the absence and presence of joint 712

failures. These validation studies clearly demonstrate the 713

superior performance delivered using lower control effort for 714

the proposed model (16) compared to the alternate designs. 715

Moreover, the proposed model is shown to realize zero 716

terminal joint velocities obtained by embedding the non- 717

linear mapping for imposing state constraints within the 718

optimization framework. Finally, physical experiments are 719

carried out to further substantiate the efficacy of the proposed 720

scheme. 721

A possible direction for future work is the inclusion of 722

obstacle avoidance capabilities in the proposed models to 723

accomplish obstacle-aware trajectory tracking with bounds 724

on the system state and control input. Moreover, incorpo- 725

rating a state observer for estimating the system’s Jacobian 726

online, which could potentially lead to a platform-agnostic 727

observer-controller framework, would find wide suitabil- 728

ity in constrained trajectory tracking applications. Finally, 729

the efficacy of the proposed scheme for trajectory tracking 730

applications in redundant robotic manipulators alludes to 731

the suitability of these schemes to other constrained robotic 732

applications such as visual target tracking and visual servo 733

control. 734
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