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Prospects of cooling a mechanical resonator with a transmon qubit in c-QED setup
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Hybrid devices based on the superconducting qubits have emerged as a promising platform for controlling the
quantum states of macroscopic resonators. The nonlinearity added by a qubit can be a valuable resource for such
control. Here we study a hybrid system consisting of a mechanical resonator longitudinally coupled to a transmon
qubit. The qubit readout can be done by coupling to a readout mode like in c-QED setup. The coupling between
the mechanical resonator and transmon qubit can be implemented by the modulation of the superconducting
quantum interference device inductance. In such a tripartite system, we analyze the steady-state occupation of
the mechanical mode when all three modes are dispersively coupled. We use the quantum noise and the Lindblad
formalism to show that the sideband cooling of the mechanical mode to its ground state is achievable. We further
experimentally demonstrate that measurements of the thermomechanical motion are possible in the dispersive
limit, while maintaining a large coupling between qubit and mechanical mode. Our theoretical calculations
suggest that single-photon strong coupling is within the experimental reach in such hybrid devices.
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I. INTRODUCTION

Control over the quantum states of a mechanical resonator
by coupling them to optical modes can have several potential
applications in the field of quantum technologies [1]. The
traditional cavity-optomechanics based approach of coupling
a mechanical resonator to an optical mode via the radiation-
pressure interaction has been quite successful [2–9]. While the
radiation-pressure mediated coupling in such devices is non-
linear, its magnitude is usually small in most implementations.
Further, due to the dispersive interaction, the effects originat-
ing from the Kerr term are strongly suppressed [10,11].

To mitigate the limitations of linear cavity optomechanics,
hybrid devices based on the strong nonlinearity of qubits
have been proposed and developed [12–14]. These proposals
explore their performance from the sideband cooling of the
mechanical resonator [15] to the matter interferometry [16],
while considering a wide range of two-level systems such as
superconducting qubits [15,17–22], quantum dots [23], and
nitrogen-vacancy defects in diamond [24]. Particularly, in the
microwave domain, experimental realization of several hybrid
devices has been shown using the nonlinearity of a supercon-
ducting qubit [25], Josephson capacitance [26,27], Josephson
inductance [28–31], and piezoelectricity [32,33].

Among these different schemes, the electromechanical
coupling stems from charge or flux modulation, and its tun-
ability is controlled by the external parameters. Recently,
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the magnetic flux-mediated coupling approach have shown
promising experimental results [28]. These systems have
demonstrated large electromechanical coupling [29–31], four-
wave cooling of the mechanical resonator to near the quantum
ground state [34], and Lorentz-force induced backaction on
the mechanical resonator [35].

Motivated by the progress on the flux-mediated approach,
here we investigate a coupled three-mode system consisting
of a mechanical mode, transmon qubit, and a readout cavity.
From the practical point of view, the additional readout cavity
is a useful ingredient to consider as it allows the quantum non-
demolition measurement of qubit mode in circuit-QED setup
[36,37]. While a mechanical mode coupled to a two-level sys-
tem has been studied extensively in the past [12,15,17,38,39],
the focus of our investigation has been on treating the trans-
mon qubit as a weakly anharmonic oscillator. In addition, we
theoretically and experimentally address the readout of the
mechanical mode when the transmon is detuned far away
from the readout cavity. This regime is particularly impor-
tant as large electromechanical coupling with the qubit mode
can be achieved. Using the quantum-Langevin equation of
motion [40] and Lindblad formalism [41], we analyze the
possibility of sideband cooling of the mechanical resonator.
Experimentally, we use a two-tone method to measure the
thermomechanical motion, and compare it with analytical
results.

This paper is organized as follows: In Sec. II, we discuss
the theoretical model of the three coupled modes. We solve
the system’s equations of motion in Sec. III. The analytical
solution of the system is analyzed in Sec. IV, where we have
shown the possibility of cooling the mechanical resonator.
In Sec. V, we show experimental and analytical results dis-
cussing the detection of mechanical motion in the dispersive
regime of the cavity and the qubit mode. We summarize and
conclude our discussion in Sec. VI.
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FIG. 1. (a) A conceptual schematic of the three-mode hybrid
device showing a linear cavity coupled to a qubit which in turn
couples to a mechanical resonator. A direct coupling between the
cavity and the mechanical mode is not considered. (b) A pos-
sible implementation using a frequency tunable transmon qubit,
where coupling to mechanical mode is achieved by embedding it
in the SQUID loop and by applying a constant magnetic field. A
magnetic field perpendicular (parallel) to the SQUID loop couples
the in-plane (out-of-plane) mechanical mode to the qubit.

II. THEORETICAL MODEL

We consider a coupled system where the mechanical mode
modulates the transmon qubit frequency, therefore resulting in
a longitudinal coupling. Such coupling between the transmon
qubit and the mechanical resonator can be implemented by
embedding a mechanical resonator into the superconducting
quantum interference device (SQUID) loop of the qubit. In
addition, the qubit couples to a linear mode (the readout
cavity) transversely as in the circuit-QED setup. A schematic
diagram of the system and a possible implementation with the
equivalent circuit diagram are shown in the Figs. 1(a) and 1(b).

Using the dispersive approximation between the transmon
and the readout cavity, we arrive at the following system
Hamiltonian:

Ĥ0 = ωcâ†â + ωqĉ†ĉ − αq

2
ĉ†ĉ†ĉĉ + ωmb̂†b̂

+ χ â†âĉ†ĉ + g0ĉ†ĉ(b̂ + b̂†), (1)

where â (â†), ĉ (ĉ†), and b̂ (b̂†) are the annihilation (creation)
operators for the cavity, qubit, and the mechanical mode of
frequency ωc, ωq, and ωm, respectively. The Kerr nonlinearity
of the transmon is denoted as αq. The last two terms are the
interaction terms between the modes. The dispersive coupling
between the qubit and the readout cavity is denoted by χ . The
radiation-pressure type coupling between the transmon and
the mechanical mode is denoted by the single-photon coupling
rate g0.

Two additional drive terms of amplitude δ and ε at fre-
quency of ωL (near ωc) and ωd (near ωq) are added to the

Hamiltonian. The drive Hamiltonian can be written as

Ĥd = (δâe+iωLt + εĉe+iωd t ) + H.c. (2)

By carrying out rotating frame transformations, given
by the unitary operators U a = exp [iωLâ†ât] and U c =
exp [iωd ĉ†ĉt], the transformed Hamiltonian can be written as

Ĥ = −�câ†â − �qĉ†ĉ − αq

2
ĉ†ĉ†ĉĉ + ωmb̂†b̂ + χ â†âĉ†ĉ

+ g0ĉ†ĉ(b̂ + b̂†) + δ(â + â†) + ε(ĉ + ĉ†), (3)

where �c = ωL − ωc and �q = ωd − ωq. In this frame of
rotation, the transformed Hamiltonian becomes time indepen-
dent. For further analysis, we shift to a mean-field frame using
the following displacement transformation:

D(α,μ, β ) = exp [α(â − â†) + μ(ĉ − ĉ†) + β(b̂ − b̂†)],
(4)

where α, μ, and β are real scalar quantities. For a particular
choice of α = ᾱ, μ = μ̄, and β = β̄, all the drive terms (terms
proportional to â + â†, b̂ + b̂†, and ĉ + ĉ†) get canceled. After
dropping the third- and higher-order terms, we arrive at the
following effective Hamiltonian:

Ĥ′ ≈ − �̃câ†â − �̃qĉ†ĉ − η(ĉ2 + ĉ†2) + ωmb̂†b̂

+ J (â + â†)(ĉ + ĉ†) + g(ĉ + ĉ†)(b̂ + b̂†), (5)

where �̃c = �c − χμ̄2, �̃q = �q + 2αqμ̄
2 − χᾱ2 − 2g0β̄,

η = αqμ̄
2

2 , J = χᾱμ̄, and g = g0μ̄. It might be important to
underline here that the coupling rates g and J as defined above
are the scaled coupling rates. Both the coupling rates, g and J ,
show the scaling with drive tone amplitude similar to the case
in a linear optomechanical device.

III. EQUATIONS OF MOTION

Dynamics of the system depends on various decay rates
associated with different modes and drive amplitudes. We
write the equations of motion for the field operators while
incorporating all the noise operators and decay rates as

˙̂a = −i[â, Ĥ′] − κ

2
â + √

κex âin + √
κ0 f̂in, (6a)

˙̂c = −i[ĉ, Ĥ′] − �

2
ĉ +

√
�ex ĉin +

√
�0 ξ̂in, (6b)

˙̂b = −i[b̂, Ĥ′] − γm

2
b̂ + √

γm b̂in, (6c)

where âin, ĉin, b̂in, f̂in, and ξ̂in are the noise operators of cavity,
qubit, and mechanical mode, respectively. The mechanical
energy dissipation rate is γm. The internal, external, and total
cavity (qubit) dissipation rates are κ0 (�0), κex (�ex), and κ (�),
respectively. This set of equations can be solved by perform-
ing a Fourier transformation, defined as x[ω] = F[x(t )] =∫ +∞
−∞ x(t )eiωt dt , of the equations. We now define a field vec-

tor u[ω] = [
â[ω], (â†)[ω], ĉ[ω](ĉ†)[ω], b̂[ω], (b̂†)[ω]

]T
and

evaluate its governing equation of the form

u[ω] = (−iω1 − A)−1 r[ω] = B r[ω], (7)
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where

r[ω] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
κex âin[ω] + √

κ0 f̂in[ω]
√

κex (â†
in)[ω] + √

κ0 ( f̂ †
in)[ω]

√
�ex ĉin[ω] + √

�0 ξ̂in[ω]
√

�ex (ĉ†
in)[ω] + √

�0 (ξ̂ †
in)[ω]

√
γm b̂in[ω]

√
γm (b̂†

in)[ω]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

The matrix B can be calculated from Eqs. (5) and (6) as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/χc 0 iJ iJ 0 0

0 1/χ̃c −iJ −iJ 0 0

iJ iJ 1/χq −2iη ig ig

−iJ −iJ 2iη 1/χ̃q −ig −ig

0 0 ig ig 1/χm 0

0 0 −ig −ig 0 1/χ̃m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(9)

All χ ’s in the matrix represent the susceptibility of the modes,
defined as

χc[ω] = 1

−iω − i�̃c + κ
2

; χ̃c[ω] = 1

−iω + i�̃c + κ
2

,

χq[ω] = 1

−iω − i�̃q + �
2

; χ̃q[ω] = 1

−iω + i�̃q + �
2

,

χm[ω] = 1

−iω + iωm + γm

2

; χ̃m[ω] = 1

−iω − iωm + γm

2

.

From Eq. (7), we can solve for the field operators. Further, we
define the spectrum of any mode as

SO(ω) = 1

2π

∫ +∞

−∞
〈(Ô[ω′])†Ô[ω]〉dω′. (10)

Equation (10) and the solution of field operators can be used to
get the spectrum of the modes. The detailed calculations and
the correlators of noise operators are given in Appendix A.
The calculated spectrum is as follows:

Sx(ω)|xε{1,3,5} = ni
mγm(|Bx5[ω]|2 + |Bx6[ω]|2)

+ κ|Bx2[ω]|2 + �|Bx4[ω]|2 + γm|Bx6[ω]|2,
(11)

where ni
m is the initial phonon occupation in the mechanical

mode. The indexing {S1, S3, S5} maps to the spectrum of cav-
ity, qubit, and mechanics as {Sa, Sc, Sb}, respectively.

IV. SPECTRUM OF THE QUBIT
AND THE MECHANICAL MODE

In this section, we discuss the best cooling scenario of
the mechanical resonator by inspecting the qubit and the
mechanical spectrum. Figure 2 shows the spectrum of the
transmon qubit for two different detunings of the drive tone
�̃q = −1.0ωm (dashed blue line) and �̃q = −1.2ωm (solid
orange line). In the presence of a nearly red-detuned drive on

FIG. 2. Plot of the qubit spectrum for two different val-
ues of drive detunings, �̃q = −1.0ωm (dashed blue line) and
�̃q = −1.2ωm (solid orange line). The parameters used for the plots
are �̃c = 0, ωm = 2π×6 MHz, J = 2π×0.8 MHz, g = 2π×2 kHz,
κ = 2π×4 MHz, ωm/� = 5, γ = 2π×6 Hz, and η = 2π×2 MHz.

qubit mode, its spectrum becomes asymmetric. The cooling
rate is calculated from the asymmetry of the spectrum, which
is large for a specific drive position. In the weak-coupling
regime (g � �), the cooling rate for the mechanical resonator
is given by �c = 2{g2[Sc(ωm) − Sc(−ωm)] + γm} [12,17]. The
optimum cooling rate, as seen from Fig. 2, is a function of the
position of the drive [17]. Unlike a linear cavity as a bath for
cooling, the cooling rate of a mechanical resonator for an an-
harmonic oscillator (the qubit) depends on the position of the
cooling tone applied and the anharmonicity of the resonator
mode. This is a direct consequence of the Kerr term. In the
steady state, the final phonon occupancy can be calculated
from the cooling rate and the qubit spectrum as

n f = 2
ni

mγm

�c
+ 2g2 Sc(−ωm)

�c
. (12)

To further understand the backaction on the mechanical
resonator due to a drive on the qubit mode, we compute the
mechanical spectrum Sb(ω). In the steady state, the mean
phonon occupancy of the mechanical mode can be calcu-
lated as n f = 1

2π

∫
Sb(ω)dω, which is the area under the

Lorentzian in the mechanical mode spectrum. While it is
possible to reduce the expression of the mechanical spectrum
to a Lorentzian form, we find it more efficient to compute the
spectrum and carry out a numerical fit to extract the effective
linewidth and the effective resonant frequency. Figures 3(a)
and 3(b) show the linewidth broadening and resonant fre-
quency shift of the mechanical mode, for a red-detuned (�̃q =
−1.2ωm) qubit drive. The backaction on the mechanical res-
onator from the drive on qubit is reflected in the change of me-
chanical frequency and an increase in the effective linewidth.
The final phonon occupation is plotted in Fig. 3(c) for differ-
ent values of sideband parameter ωm/�. It is evident from the
figure that in the steady driving of the qubit, the final phonon
occupancy strongly depends on sideband parameter ωm/�.
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FIG. 3. Cooling of the mechanical mode: The spectrum of the mechanical mode is analyzed to characterize the effect of backaction arising
from the drive tone near the qubit frequency ωq. The extracted parameters for effective mechanical linewidth and shift in the mechanical
resonant frequency as the electromechanical coupling between the qubit and the mechanical mode is varied, are shown in (a) and (b). Panel
(c) shows the final phonon occupancy (nf ) of the mechanical mode. It is extracted by calculating the area under the Lorentzian in the mechanical
spectrum. For large qubit-mechanics coupling a final phonon occupation well below 1 can be achieved for various sideband parameters. The
dashed, dot-dashed, and solid lines correspond to ωm/� = 5, ωm/� = 1, and ωm/� = 0.1, respectively. (d) Final phonon occupancy as a
function of qubit-mechanics coupling and scaled detuning between the drive and the qubit frequency for ωm/� = 5. The parameters used for
the plots are �̃c = 0, ωm = 2π×6 MHz, J = 2π×0.8 MHz, η = 2π×2 MHz, κ = 2π×4 MHz, γ = 2π×6 Hz, and ni

m = 300. For the plot in
panels (a), (b), and (c), we use �̃q = −1.2ωm as the detuning.

A larger value of sideband parameter offers better cooling
of the mechanical mode. It is important to underline here that
the cooling to the quantum ground state of the mechanical
resonator is possible well before entering the strong-coupling
regime, g � max(�, κ ).

To gain insight into the spectrum calculation, we consider
a simpler case when qubit anharmonicity is set to zero, η = 0,
and it is being driven at the lower mechanical sideband �̃q =
−ωm. With these parameters and Eq. (10), the mechanical

spectrum can be approximately written as

Sb(ω) = ni
mγm�2/(�2 − 8g2)

(ω − ωm)2 + (4g2+γm�)2

4(�2−8g2 )

. (13)

From this simplified expression of the mechanical spectrum,
we can write the effective linewidth of the mechanical res-
onator as γeff = 4g2+γm�√

�2−8g2
	 γm(C + 1), where C = 4g2

γm�
is
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defined as the cooperativity. Similarly, the final mean phonon

occupation can be written as n f = ni
mγm�2

4g2+γm�
1√

�2−8g2
	 ni

m
1+C for

� 
 g. We note that in the limit of zero anharmonicity and
weak coupling, the results are consistent with that obtained
from linear cavity optomechanics [2].

For the model Hamiltonian given by Eq. (5), the mean
phonon occupation can also be obtained by solving the Lind-
blad master equation. Here, we obtain the equations of motion
for the expectation values of mode operators and solve for the
steady-state solutions. From this formalism, we calculate the
steady-state occupancy in the mechanical mode for the various
drive detuning �̃q and coupling g. Figure 3(d) shows the color
plot of the final phonon occupation for the sideband parameter
of ωm/� = 5. We can see that the optimum cooling can be
achieved near the detuning of �̃q ≈ −1.2ωm. It is important
to emphasize here that the lowest phonon occupation of the
mechanical resonator depends on the device parameters, such
as qubit thermal occupation and dissipation rate �. For the
calculations presented in this section, we assumed the thermal
occupation of the qubit and readout cavity to be zero. Another
important parameter that affects the ultimate performance
of the sideband cooling is sideband parameter ωm/� [12],
and cooling to the ground state can only be achieved in the
sideband-resolved limit ωm/� � 1.

V. EXPERIMENTAL DETAILS

After discussing the performance of the sideband cool-
ing when the qubit is dispersively coupled to the readout
cavity, we address the next question on the possibility of
the mechanical readout. In the dispersive regime, there is
no direct coupling between the cavity and the mechanical
resonator. The modulation of qubit frequency translates to the
cavity mode via dispersive coupling, thus creating an effective
coupling between the cavity and the mechanical motion. By
tuning the transmon qubit frequency near half flux quantum, a
large electromechanical coupling with the qubit mode can be
obtained. However, when |ωq − ωc| is large, the effective cou-
pling between the cavity and mechanical mode is suppressed.
Next, we show that the addition of cooling tone near the qubit
frequency is helpful for the readout of the mechanical motion.

For experimental realization, we use a device consisting of
a transmon qubit with a doubly clamped suspended nanowire
embedded in the SQUID loop. For the qubit readout, we use a
three-dimensional copper rectangular waveguide cavity. The
scanning electron microscope (SEM) image of the device is
shown in Fig. 4(a). The transmon, fabricated on a silicon sub-
strate coated with highly stressed SiN, is designed to have tun-
able frequency realized via SQUID. One arm of the SQUID is
made suspended to form a nanowire, essentially establishing
the mechanical mode. The silicon substrate is placed inside
the readout cavity and cooled down to 20 mK in a dilution
refrigerator. A detailed description of the device fabrication
methods and the measurement setup can be found in Ref. [31].

Figure 4(b) shows the cavity transmission amplitude |S21|
as the magnetic flux through the SQUID loop is varied. When
the qubit is brought in resonance with the cavity mode, the
vacuum-Rabi splitting is observed and two hybrid modes
emerge as indicated by the dashed box in Fig. 4(b). From

FIG. 4. (a) A SEM image of the device showing the suspended
part of the SQUID loop and the Josephson junctions. The length and
width of the nanowire is 40 μm and 200 nm, respectively. The scale
bar corresponds to 5 μm. (b) Color plot of the cavity transmission
|S21| as a function of the magnetic flux through the SQUID loop.
(c) Two-tone measurements spectroscopic linewidth of the qubit in
the dispersive regime.

the avoided crossing, we determine the qubit-cavity cou-
pling strength to be 75 MHz. We measure the dressed cavity
frequency to be 6.006 GHz, the maximum qubit frequency to
be 7.8 GHz, and the qubit anharmonicity to be −130 MHz.
We apply a magnetic field of B ≈ 1.1 mT, perpendicular to
the plane of the SQUID loop. It couples the in-plane motion
of the mechanical resonator to the qubit.

To operate in the dispersive limit, we choose a qubit de-
tuning � = ωq − ωc of −2π×900 MHz. A representative
two-tone measurement of the qubit is shown in Fig. 4(c). To
record the mechanical motion at this operating point, we apply
two tones to the device, a drive tone near the qubit frequency
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FIG. 5. Experimental data: power spectral density of the cavity mode is measured while varying the drive detuning from the qubit mode.
(a) Schematic of the measurement process showing a drive tone present near the qubit mode. The detuning between the qubit and the drive
frequency is changed during the measurement. A probe of frequency ωc is added and its lower and upper mechanical sidebands are recorded
with a spectrum analyzer. (b) The spectral density is shown for the drive detuning of �̃q = −1.7ωm (blue square) and �̃q = +1.7ωm (orange
circle). The difference in the magnitude of the spectrum as the detuning changes sign is evident. The mechanical resonator has a frequency of
ωm/2π ≈ 5.9 MHz and a linewidth γm/2π = 6 Hz. (c) A color plot of normalized spectral density as a function of detuning and measurement
frequency.

and a probe tone near ωc, and record the mechanical sidebands
of the probe tone using a spectrum analyzer. The positioning
of various frequencies and drive tones is shown in Fig. 5(a).

Figure 5(b) shows the recorded spectrum for two different
detunings. The experimentally measured microwave spectrum
Smw(ω) is normalized and represented in the units of intracav-
ity photons defined as S̃a = Smw(ω)/(h̄ωcGκexRBW), where
G is the estimated net gain of the output line, κex is the external
coupling rate of the output port of the cavity, and RBW is the
resolution bandwidth of the spectrum analyzer. Clearly, the
spectrum has a larger peak for negative detuning (blue square)
as compared to that for the positive detuning (orange circle).
This asymmetry becomes quite evident as the detuning of the
qubit drive is varied. Figure 5(c) shows the color plot of S̃a as
the drive frequency is varied across the qubit transition.

The mechanical resonator has a frequency of ωm/2π ≈
5.9 MHz and a linewidth of γm/2π ≈ 6 Hz. Here, we do not
observe any backaction on the mechanical resonator. Both, the
mechanical frequency and the linewidth do not show any mea-
surable change as the detuning �̃q is varied across the qubit
frequency. This is expected behavior within the experimental
parameters. For these measurements, we estimated a single-
photon coupling rate of g0/2π ≈ 7.5 kHz, and measured a
qubit linewidth of �/2π ≈ 15 MHz. The lower sideband
parameter and single-photon coupling rate reduces the effect
of backaction from the qubit drive.

Another aspect of the measurement is the enhancement of
the transduction and asymmetry with respect to �̃q. Qualita-
tively, it can be understood from the qubit-cavity dispersive

coupling and the Kerr term of the qubit mode. A drive tone
near the qubit frequency acts like a parametric pump due to the
qubit nonlinearity, resulting in the amplification of the field
fluctuations due to electromechanical coupling. Further, due
to the dispersive interaction between the qubit and the cavity
mode, these field fluctuations result in the modulation of the
intracavity probe field, and hence in an improved transduction.
The asymmetry in the response is a direct manifestation of the
weak anharmonicity of the qubit.

To quantitatively understand the enhancement in the trans-
duction and the asymmetry in spectral density with respect
to �̃q, we compute the cavity spectrum from Eq. (10) as a
function of susceptibilities. Approximately, the cavity spectral
density can be written as

Sa(ω) ≈ ni
mγm(|χm|2 + |χ̃m|2)σ (ω), where (14)

σ (ω) =
∣∣∣∣ gJχcχqq̃(�q − 2η)

�q + 2iη2χqq̃ + g2χmm̃χqq̃(�q − 2η)

∣∣∣∣
2

, (15)

χqq̃ = χq − χ̃q, (16)

χmm̃ = χm − χ̃m. (17)

Here, we note that the presence of the effective anharmonicity
η in the above equation accounts for the asymmetry observed
with respect to the detuning of qubit drive. In the limit η → 0,
the expression of σ becomes symmetric with respect to �q as
it enters the expression through χqq̃ only.
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FIG. 6. (a) Plot of the calculated cavity mode spectrum from
the theoretical model as a function of detuning �̃q and frequency.
Parameters are taken from the device studied here, as described in
the main text. (b) Plot of integrated spectrum ST = ∫

Sa(ω)dω for
different detuning is calculated from the theoretical and experimental
results. The square points indicate the experimental data, plotted as
a function of drive detuning (�̃q). The solid curve is plotted using
the estimated device parameters and the analytical expression. The
dashed straight line indicates the noise level of the measurements.
The parameters used for the plots: �̃c = 0, ωm = 2π×5.9 MHz,
J = 2π×5.6 MHz, g = 2π×3.6 kHz, η = 2π×2.8 MHz,
κ = 2π×4 MHz, � = 2π×8 MHz, γm = 2π×6 Hz, and ni

m = 350.

Similar to the measurement performed, we analyze the
cavity spectral density as �̃q is varied. Figure 6(a) shows
theoretically calculated S̃a(ω) using the device parameters.
We observe a pattern in Sa(ω) which is similar to the ex-
perimental measurement. For a quantitative comparison, we
define the integrated spectrum as ST = ∫

Sa(ω)dω and evalu-
ate it for experimental data. Figure 6(b) shows the plot of ST

from the experimental results shown in Fig. 5(c) and theoret-
ical calculations. A good match validates the approximation
made in arriving at the effective Hamiltonian in the theoretical
calculations.

VI. OUTLOOK AND CONCLUSION

To summarize, this work has investigated a coupled three-
mode hybrid system with a transmon qubit in the presence

of external drives. Using the quantum noise and the Lindblad
formalism, we study the possibility of sideband cooling of
the mechanical resonator by the qubit mode. We find that
the readout of the mechanical mode is possible by coupling
the transmon qubit to a readout cavity just like in standard
c-QED setup while maintaining a dispersive coupling be-
tween the cavity and the qubit. In addition, we experimentally
demonstrate the applicability of the readout scheme, wherein
the experimental results match closely to the analytical cal-
culations. In this particular experiment, we do not observe
any cooling of the mechanical resonator due to lower g0 and
low sideband parameter (ωm/� ≈ 0.4). While the achieved
flux responsivity of the qubit in dispersive limit was high,
16 GHz/�0, the estimated coupling rate (g0/2π ≈ 7.5 kHz)
was inadequate due to the lower applied magnetic field,
1.1 mT.

Looking ahead, the recent experiments have shown promis-
ing results for the transmon linewidth in the parallel magnetic
field up to hundreds of millitesla with no significant change in
the spectroscopic linewidth [42]. In addition, the flux respon-
sivity of the qubit can be pushed to 40 GHz/�0 by increasing
the maximum qubit frequency. With these parameters, the
single-photon electromechanical coupling between the qubit
and mechanical resonator can be enhanced up to 10 MHz,
bringing the system near to ultrastrong-coupling regime [43].
Such regime opens up the possibilities of observing the photon
blockade effects [10], nontrivial ground state [7], and a path
of using a low-frequency mechanical resonator in the quantum
technologies.
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APPENDIX A: CALCULATIONS OF THE CAVITY
MODE SPECTRUM

Spectrum of the cavity mode is calculated from Eq. (10) in
the main text. In the cavity operator, it can be written as

Sa(ω) = 1

2π

∫ +∞

−∞
〈(â[ω′])†â[ω]〉dω′. (A1)

Equation (7) is used to calculate the steady-state value of â[ω],
which can be written as

â[ω] = (B r[ω])11 =
∑

j

B1 j (r[ω]) j1, (A2)
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where r[ω] is a column matrix of noise operators of all the modes.

r[ω] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
κex âin[ω] + √

κ0 f̂in[ω]
√

κex (â†
in)[ω] + √

κ0( f̂ †
in)[ω]

√
�ex ĉin[ω] + √

�0ξ̂in[ω]
√

�ex (ĉ†
in)[ω] + √

�0(ξ̂ †
in)[ω]

√
γm b̂in[ω]

√
γm (b̂†

in)[ω]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

The noise operators in the frequency domain satisfy the following relations:

〈âin[ω](âin[ω′])†〉 = 2πδ(ω − ω′); 〈(âin[ω])†âin[ω′]〉 = 0, (A4a)

〈 f̂in[ω]( f̂in[ω′])†〉 = 2πδ(ω − ω′); 〈( f̂in[ω])† f̂in[ω′]〉 = 0, (A4b)

〈ĉin[ω](ĉin[ω′])†〉 = 2πδ(ω − ω′); 〈(ĉin[ω])†ĉin[ω′]〉 = 0, (A4c)

〈ξ̂in[ω](ξ̂in[ω′])†〉 = 2πδ(ω − ω′); 〈(ξ̂in[ω])†ξ̂in[ω′]〉 = 0, (A4d)

〈b̂in[ω](b̂in[ω′])†〉 = 2π (ni
m + 1)δ(ω − ω′), (A4e)

〈(b̂in[ω])†b̂in[ω′]〉 = 2πni
mδ(ω − ω′), (A4f)

where ni
m is the thermal phonon occupancy of the mechanical mode. We can expand Eq. (A2) and write the solution of â[ω] as

â[ω] = √
κexB11[ω]âin[ω] + √

κ0B11[ω] f̂in[ω] + √
κexB12[ω](â†

in)[ω] + √
κ0B12[ω]( f̂ †

in)[ω] +
√

�exB13[ω]ĉin[ω]

+
√

�0B13[ω]ξ̂in[ω] +
√

�exB14[ω](ĉ†
in)[ω] +

√
�0B14[ω](ξ̂ †

in)[ω] + √
γmB15[ω]b̂in[ω] + √

γmB16[ω](b̂†
in)[ω]. (A5)

By using the identity (x†)[ω] = (x[−ω])†, we can rewrite the solution of â[ω].

â[ω] = √
κexB11[ω]âin[ω] + √

κ0B11[ω] f̂in[ω] + √
κexB12[ω](âin[−ω])† + √

κ0B12[ω]( f̂in[−ω])† +
√

�exB13[ω]ĉin[ω]

+
√

�0B13[ω]ξ̂in[ω] +
√

�exB14[ω](ĉin[−ω])† +
√

�0B14[ω](ξ̂in[−ω])† + √
γmB15[ω]b̂in[ω] + √

γmB16[ω](b̂in[−ω])†.

(A6)

From the above equation and Eq. (A4), we can calculate 〈(â[ω′])†â[ω]〉,
〈(â[ω′])†â[ω]〉 = 2πκexB∗

12[ω′]B12[ω]δ(ω − ω′) + 2πκ0B∗
12[ω′]B12[ω]δ(ω − ω′) + 2π�exB∗

14[ω′]B14[ω]δ(ω − ω′)

+ 2π�0B∗
14[ω′]B14[ω]δ(ω − ω′) + 2πni

mγmB∗
15[ω′]B15[ω]δ(ω′ − ω) + 2π (ni

m + 1)γmB∗
16[ω′]B16[ω]δ(ω − ω′).

(A7)

Substituting this to Eq. (10), the spectrum of the cavity mode can be written as

Sa(ω) = ni
mγm(|B15[ω]|2 + |B16[ω]|2) + κ|B12[ω]|2 + �|B14[ω]|2 + γm|B16[ω]|2, (A8)

where κ , �, and γm are total dissipation rates of the cavity, qubit, and mechanical mode, respectively. ni
m is the initial mechanical

mode occupancy. The terms B12[ω], B14[ω], B15[ω], and B16[ω] are calculated using Wolfram Mathematica.

B12[ω] = − J2χcχ̃c[−iχ̃q + χq(i + 4ηχ̃q)]

−4iη2χqχ̃q + J2(χc − χ̃c)[−iχ̃q + χq(i + 4ηχ̃q)] + i[1 + g2(χq − χ̃q)(χm − χ̃m)] + 4g2ηχqχ̃q(χm − χ̃m)
, (A9a)

B14[ω] = Jχc(1 + 2iηχq)χ̃q

−4iη2χqχ̃q + J2(χc − χ̃c)[−iχ̃q + χq(i + 4ηχ̃q)] + i[1 + g2(χq − χ̃q)(χm − χ̃m)] + 4g2ηχqχ̃q(χm − χ̃m)
, (A9b)

B15[ω] = − gJχc[−iχ̃q + χq(i + 4ηχ̃q)]χm

−4iη2χqχ̃q + J2(χc − χ̃c)[−iχ̃q + χq(i + 4ηχ̃q)] + i[1 + g2(χq − χ̃q)(χm − χ̃m)] + 4g2ηχqχ̃q(χm − χ̃m)
, (A9c)

B16[ω] = − gJχc[−iχ̃q + χq(i + 4ηχ̃q)]χ̃m

−4iη2χqχ̃q + J2(χc − χ̃c)[−iχ̃q + χq(i + 4ηχ̃q)] + i[1 + g2(χq − χ̃q)(χm − χ̃m)] + 4g2ηχqχ̃q(χm − χ̃m)
. (A9d)

APPENDIX B: CALCULATION OF THE FINAL MECHANICAL OCCUPATION USING THE LINDBLAD FORMALISM

From the Lindblad formalism the time-domain master equation of the density operator ˙̂ρ(t ) is written as

˙̂ρ = i[ρ̂, H̃] + κ (ni
c + 1)D[â]ρ̂ + κni

cD[â†]ρ̂ + �(ni
q + 1)D[ĉ]ρ̂ + �ni

qD[ĉ†]ρ̂ + �φ

2
D[ĉ†ĉ]ρ̂

+ γm(ni
m + 1)D[b̂]ρ̂ + γmni

mD[b̂†]ρ̂. (B1)
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Here κ and γm are the energy relaxation rates of the cavity and mechanical mode. Qubit relaxation and pure dephasing are
represented as � and �φ . The initial thermal occupancy of the cavity, qubit, and the mechanical modes are ni

c, ni
q, and ni

m,

respectively. For our calculation we have considered �φ = 0. D[Ô] is the Lindblad superoperator written as

D[Ô]ρ̂ := Ôρ̂Ô† − 1
2 Ô

†Ôρ̂ − 1
2 ρ̂Ô†Ô. (B2)

We write down the equation of motion from the Hamiltonian in Eq. (5). This is to calculate the expectation values of different
operators. The coupled linear equations are written in the matrix form,

ḋ = Md + N , (B3)

where d is the column matrix consisting of the expectation values of

â†â, b̂†b̂, ĉ†ĉ, â2, â†2, b̂2, b̂†2, ĉ2, ĉ†2, âb̂, â†b̂†, â†b̂, âb̂†, ĉb̂, ĉ†b̂†, ĉ†b̂, ĉb̂†, âĉ, â†ĉ†, â†ĉ, âĉ†. (B4)

M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −4iη 0 0 0 0 0 1/χ∗
ĉĉ 0 0 0 0 0 2ig 2ig 0 0 2iJ 0 2iJ

0 0 0 0 0 0 0 0 0 1/χâb̂ 0 0 0 −iJ 0 −iJ 0 −ig 0 0 −ig
0 0 0 0 0 0 0 0 0 0 1/χ∗

âb̂
0 0 0 iJ 0 iJ 0 ig ig 0

0 0 0 0 0 0 0 0 0 0 0 1/χâ† b̂ 0 iJ 0 iJ 0 0 −ig −ig 0
0 0 0 0 0 0 0 0 0 0 0 0 1/χ∗

â† b̂
0 −iJ 0 −iJ ig 0 0 ig

0 −ig −ig 0 0 −ig 0 −ig 0 −iJ 0 −iJ 0 1/χĉb̂ 0 2iη 0 0 0 0 0
0 ig ig 0 0 0 ig 0 ig 0 iJ 0 iJ 0 1/χ∗

ĉb̂
0 −2iη 0 0 0 0

0 ig −ig 0 0 ig 0 0 −ig iJ 0 iJ 0 −2iη 0 1/χĉ† b̂ 0 0 0 0 0
0 −ig ig 0 0 0 −ig ig 0 0 −iJ 0 −iJ 0 2iη 0 1/χ∗

ĉ† b̂
0 0 0 0

−iJ 0 −iJ −iJ 0 0 0 −iJ 0 −ig 0 0 −ig 0 0 0 0 1/χâĉ 0 0 2iη
iJ 0 iJ 0 iJ 0 0 0 iJ 0 ig ig 0 0 0 0 0 0 1/χ∗

âĉ −2iη 0
−iJ 0 iJ 0 −iJ 0 0 iJ 0 0 −ig −ig 0 0 0 0 0 0 2iη 1/χâ† ĉ 0
iJ 0 −iJ iJ 0 0 0 0 −iJ ig 0 0 ig 0 0 0 0 −2iη 0 0 1/χ∗

â† ĉ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B5)

Various susceptibilities are defined below.

χââ = 1

2i�c − κ
, (B6a)

χb̂b̂ = 1

−2iωm − γm
, (B6b)

χĉĉ = 1

2i�q − � − �φ

, (B6c)

χâb̂ = 1

i(�c − ωm) − 1
2 (κ + γm)

(B6d)

χâ†b̂ = 1

−i(�c + ωm) − 1
2 (κ + γm)

, (B6e)

χĉb̂ = 1

i(�q − ωm) − 1
2

(
� + �φ

2 + γm
) , (B6f)

χĉ†b̂ = 1

−i(�q + ωm) − 1
2

(
� + �φ

2 + γm
) , (B6g)

χâĉ = 1

i(�c + �q) − 1
2

(
� + �φ

2 + κ
) , (B6h)

χâ† ĉ = 1

−i(�c − �q) − 1
2

(
� + �φ

2 + κ
) , (B6i)

and N is a column vector given by

N = [ni
cκ, ni

mγm, ni
q�, 0, 0, 0, 0, 2iη, −2iη, 0, 0, 0, 0, −ig, ig, 0, 0, −iJ, iJ, 0, 0]T . (B7)

The steady-state solution of the d matrix can be written as

d = −M−1N . (B8)

From Eq. (B8) we have calculated the final mechanical occupation n f as a function of the device parameters. The plot of n f as a
function of coupling g and detuning (�̃q) is shown in Fig. 3(d).
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