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ABSTRACT

The three-dimensional (3D) Hall magnetohydrodynamics (HMHD) equations are often used to study turbulence in the solar wind. Some
earlier studies have investigated the statistical properties of 3D HMHD turbulence by using simple shell models or pseudospectral direct
numerical simulations (DNSs) of the 3D HMHD equations; these DNSs have been restricted to modest spatial resolutions and have covered
a limited parameter range. To explore the dependence of 3D HMHD turbulence on the Reynolds number Re and the ion-inertial scale di, we
have carried out detailed pseudospectral DNSs of the 3D HMHD equations and their counterparts for 3D MHD (di ¼ 0). We present several
statistical properties of 3D HMHD turbulence, which we compare with 3D MHD turbulence by calculating (a) the temporal evolution of the
energy-dissipation rates and the energy; (b) the wave-number dependence of fluid and magnetic spectra; (c) the probability distribution func-
tions of the cosines of the angles between various pairs of vectors, such as the velocity and the magnetic field; and (d) various measures of the
intermittency in 3D HMHD and 3D MHD turbulence.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0107434

I. INTRODUCTION

Electrically conducting fluids can exhibit turbulence that is char-
acterized not only by fluctuations in the fluid velocity and the vorticity
but also in the magnetic field and the current. At the simplest level,
such fluids can be modeled by using the equations of magnetohydro-
dynamics (MHD).1–9 Examples of such conducting-fluid flows can be
found in liquid metals, in the interiors of planets or in laborato-
ries,10–13 solar or stellar settings,1–4 the solar wind,14–19 and the inter-
stellar medium.1–4,20 The MHD description of a plasma is based on a
single-fluid approximation. However, in plasmas like the solar wind,
this single-fluid assumption is not valid, especially at small scales com-
parable to or smaller than the ion-inertial length scale di ¼ c=xpi,
with c the velocity of light and the ion plasma frequency

xpi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pniZ2e2=mi

p
, where Z is the charge state, ni is the ion den-

sity, and mi is the mass of the ion. Hall magnetohydrodynamics
(HMHD) is a simplified fluid description of a plasma that accounts for
two-fluid effects, to some extent; HMHD includes the Hall term in the
Ohm’s law;21–46 and it reduces to MHD if di ¼ 0. Shell models have

also been developed to study the statistical properties of HMHD tur-
bulence.38,47 The HMHD partial differential equations (PDEs) pose
several challenges for mathematicians, who study the regularity prop-
erties of solutions of these PDEs,48,49 for fluid dynamicists and statisti-
cal mechanicians, who seek to characterize the statistical properties of
HMHD turbulence, and for astrophysicists, who use these PDEs to
model turbulence in astrophysical systems such as the solar wind. The
solar wind2,14–17,50–58 has been described as a turbulence laboratory,52

for it is in a highly turbulent state: the magnetic Reynolds number ReM
lies in the range 105 � ReM � 109 and the magnetic Prandtl number
PrM ’ 1; the kinetic- and magnetic-energy spectra, EuðkÞ and EbðkÞ,
respectively, extend over many decades of the wave number k; for
time-domain measurements, k is replaced by the frequency f. Satellite
observations of solar-wind-plasma turbulence15,54–61 have shown that,
in the inertial range, Euð f Þ � f �a, with a ’ 5=3, the scaling exponent
that follows from the Kolmogorov hypotheses62 of 1941 (henceforth
K41). In contrast, the magnetic-energy spectrum has two different
scaling or inertial ranges (henceforth, we refer to them as the inertial
and second-inertial ranges): (i) for fI � f � fci; Ebð f Þ � f �a, where
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the frequency fI is related inversely to the integral length scale of the
turbulence, fci, the ion-cyclotron frequency is related inversely to di
and a ’ 5=3 is consistent with the K41 value; (ii) for fci � f � fd ,
where the frequency fd is related inversely to the dissipation length
scale at which viscous losses become significant, Ebð f Þ � f �a1 , with a1
in the range 1� a1 � 4. The solar wind is unlike a well-controlled
experiment in a laboratory, so it is not surprising that spectral expo-
nents show a range of values (see, e.g., Ref. 63, Figs. 5 in Ref. 64, and 3
of Ref. 58); this variability of exponents has been attributed to transi-
ents, unsteady conditions, anisotropies, and effects that lie beyond an
incompressible-MHD description.64–66 Solar-wind-turbulence data
have also been analyzed to uncover (a) intermittency and multiscaling
of velocity and magnetic-field structure functions54,67 and (b) the
alignment of velocity and magnetic-field fluctuations.16 In particular,
the study of Ref. 54 has found structure–function multiscaling (simple
scaling), in the first (second) frequency range mentioned above. The
magnetosheath is another near-Earth space plasma; for a comparison
of plasma turbulence in the solar wind and in the magnetosheath, we
refer the reader to Refs. 58 and 61.

There has been a steady stream of theoretical studies and direct
numerical simulations (DNSs) of HMHD;21–44,68 most of these concen-
trate on three-dimensional (3D) HMHD or related shell-model or
large-eddy-simulation investigations. These studies yield a spectral expo-
nent a ’ 5=3, which is consistent with K41; however, the values of the
spectral exponent a1, suggested in different theoretical and DNS studies,
lie in a large range: 1� a1 � 5:5; clearly, it is more challenging to
develop an understanding of 3D HMHD turbulence than of its MHD
and fluid counterparts. Some of these works (see, e.g., Refs. 33, 37, 39,
and 43) have provided phenomenological arguments for the values of
a1 that have been obtained in different DNSs. It has been suggested that,
in addition to di and the Reynolds and Prandtl numbers, the statistical
properties of 3D HMHD might well depend on other parameters like
the Alfv�en number, which is the ratio of kinetic and magnetic energies.
Furthermore, DNSs have explored (a) the intermittency and multiscal-
ing of velocity and magnetic-field structure functions30,38,56,67,69 and (b)
the alignment of velocity and magnetic-field fluctuations.16

Given the uncertainties in spectral exponents and the statistical
properties of 3D HMHD turbulence, it behooves us to initiate system-
atic investigations of these properties of the type that have been carried
out for 3D MHD turbulence.8,70 We present such a study. In particu-
lar, we use extensive pseudospectral DNSs, with two different types of
initial conditions [henceforth, the initial conditions A and B (see
below)], to obtain the statistical properties of turbulence in the
unforced 3D HMHD equations; a comparison of such properties pro-
vides valuable insights into the initial-condition dependence of the
exponent a1 and multiscaling exponents. Before we present the details
of our work, we provide a qualitative overview of the principal results
from our DNSs:

• Spectra: In our 3D MHD and 3D HMHD DNSs, in the inertial
range mentioned above, both

EuðkÞ � k�a;

EbðkÞ � k�a;
(1)

the value of the spectral exponent a is consistent with the K41
result 5/3. In the second-inertial range, with lengths l in the range
di � l � gbd , where gbd is the magnetic-dissipation length scale,

EbðkÞ � k�a1 ; (2)

with the value of a1 consistent with (A) 11/3, for the initial condi-
tion A, and (B) 7/3, for the initial condition B (see Sec. II for pre-
cise definitions of these spectra and the initial conditions). We
also explore the k-dependence of other spectra and of the wave-
number-dependent Alfv�en number EbðkÞ=EuðkÞ for these two
initial conditions.

• Probability distribution functions (PDFs):
• We compute the PDFs of the cosines of the angles between vari-
ous fields, such as the velocity u, vorticity x ¼ r� u, magnetic
field b, and current density j ¼ r� b, to highlight the impor-
tance of the Hall term in suppressing the tendency of alignment
(or antialignment) of these fields for both the initial conditions
(A) and (B).

• We also explore intermittency in 3D HMHD turbulence (and
compare it with its 3D MHD counterpart) by calculating the
PDFs of the velocity and magnetic-field increments as a function
of the separation length scale l. We find evidence of small-scale
intermittency in our 3D HMHD plasma turbulence DNSs (as in
3D MHD plasma turbulence DNSs); our DNSs, especially those
for the initial condition (A), show clearly that intermittency is
suppressed significantly in the second scaling range of 3D
HMHD plasma turbulence, in agreement with the results of
solar-wind measurements.54

• Structure functions: We compute the l-dependence of velocity
and magnetic-field structure functions and, therefrom, their
order-p multiscaling exponents fup and fbp, respectively. In the
inertial range, fup and fbp are nonlinear, monotone increasing
functions of p; this is a clear signature of multiscaling. By con-
trast, in the second-inertial range, fup and fbp increase linearly with
p, a hallmark of simple scaling; this linear dependence is in con-
sonance with solar-wind results.54

The remainder of this paper is organized as follows. In Sec. II, we
present the 3D HMHD PDEs (Subsection IIA), the pseudospectral
DNSs we employ to solve these PDEs, and the definitions of various
statistical measures (Subsection II B) that we use to characterize 3D
HMHD turbulence. In Sec. III, we provide results from our DNSs in
three subsections: in Subsection IIIA, we discuss the temporal evolu-
tion of the energy-dissipation rates and the energy and the wave-
number dependence of spectra, such as EuðkÞ and EbðkÞ. In
Subsection IIIB, we compute PDFs of the cosines of the angles
between the following pairs of vectors: {u; b}, {u; j}, {u;x}, {b; j},
{b;x}, and {x; j}; by using these PDFs, we quantify the degree of
alignment between these pairs of vectors. In Subsection III C, we pre-
sent some joint PDFs. In Subsection IIID, we characterize intermit-
tency in 3D HMHD turbulence by examining the l dependence PDFs
of velocity- and magnetic-field increments and the order-p structure
functions of these increments. Finally, we discuss the implications of
our study in Sec. IV.

II. MODEL AND METHODS

We begin with the 3D HMHD PDEs (Subsection IIA); then, we
present an outline of our pseudospectral DNS method and the defini-
tions of statistical measures (Subsection IIB) for 3D HMHD
turbulence.
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A. Basic equations

Three-dimensional (3D) HMHD is described by the following set
of coupled PDEs for u and b:

@u
@t
þ u � rð Þu ¼ �r�p þ b � rð Þbþ �r2uþ fu; (3)

@b
@t
¼ r� u� b� dij� bð Þ þ gr2bþ fb; (4)

r � u ¼ 0; r � b ¼ 0: (5)

Equation (3) is the momentum equation; this includes a contribution
from the Lorentz force j� b, with the current density j ¼ r� b,
which can be separated into the magnetic-tension term ðb � rÞb and
the magnetic pressure, which we combine with the pressure p to
obtain the total pressure �p � pþ jbj2=4p. The induction equation (4)
uses the generalized form of Ohm’s law, which includes the Hall term
�j� b, whose coefficient di is the ion-inertial length; g and � are,
respectively, the kinematic viscosity and the magnetic resistivity (or
diffusivity); fu and fb are the forcing terms. The Poisson equation for
�p follows from the divergence of Eq. (3) and the incompressibility con-
ditionr � u ¼ 0:

r2�p ¼ r � ðb � rÞb� ðu � rÞu½ � þ r � fu: (6)

We study decaying HMHD turbulence, so we set fu ¼ 0 and fb ¼ 0.
Thus, the final form for the pressure-Poisson equation is

r2�p ¼ r � b � rð Þb� u � rð Þu
� �

: (7)

B. Direct numerical simulations and statistical
measures

We solve Eqs. (3) and (4) by using the pseudospectral method in
a cubical domain of side L ¼ 2p, with periodic boundary conditions
(see, e.g., Ref. 8 for 3D MHD). We remove the aliasing error, because
of the nonlinear terms, by using the 2/3 dealiasing method. For time
integration, we employ the second-order slaved, Adams–Bashforth
scheme.

We perform four sets of simulations, Run1, Run2, Run3, and
Run4, in which the initial energy spectra (initial condition A) for the
velocity and magnetic fields are as follows:

E0
uðkÞ ¼ E0

bðkÞ ¼ E0k4 exp ð�2k2Þ; (8)

where E0 ’ 10 is the initial amplitude in our DNSs. For the DNSs
Run5a, Run5b, and Run5c, these initial spectra (initial condition B)
are

E0
uðkÞ ¼ E0

bðkÞ ¼ E0k2 exp ð�2k2Þ: (9)

The phases of the Fourier modes of the velocity and magnetic fields in
Eqs. (8) and (9) are distributed randomly and uniformly on the inter-
val ½0; 2pÞ. Some data from the DNSs Run5a, Run5b, and Run5c have
been published34 in a different context.

Given the uncertainties in spectral exponents and the statistical
properties of 3D HMHD turbulence, it is important to investigate sys-
tematically if these properties depend on initial conditions. Therefore,
we used two types of initial conditions (A and B) that are often used in
studies of decaying MHD turbulence.8 We carry out a detailed com-
parison of results from Run1–Run4 and Run5a–Run5c. The values of
various parameters from our DNSs are listed in Table I.

To characterize the statistical properties of 3D MHD and 3D
HMHD turbulence, we compute the following (cf. Ref. 8 for 3D MHD
turbulence):

• At time t, we obtain the kinetic energy, magnetic energy, kinetic-
energy-dissipation rate, magnetic-energy-dissipation rate, and
pressure spectra, which are, respectively,

Euðk; tÞ �
X

k�1
2	k0	kþ1

2

j~uðk0; tÞj2;

Ebðk; tÞ �
X

k�1
2	k0	kþ1

2

j~bðk0; tÞj2;

�uðk; tÞ ¼ �k2Euðk; tÞ;
�bðk; tÞ ¼ gk2Ebðk; tÞ;

Pðk; tÞ �
X

k�1
2	k0	kþ1

2

j~�pðk0; tÞj2;

(10)

here, tildes denote spatial Fourier transforms, and k0 � jk0j; we
compute the time evolution of different energies and dissipation
rates by summing the corresponding spectrum over the wave num-
ber k; e.g., EuðtÞ ¼

P
k Euðk; tÞ. In the inertial and second-inertial

TABLE I. Parameters in our DNSs Run1, Run2, Run3, Run4, Run5a, Run5b, and Run5c: N3 is the number of collocation points; � is the kinematic viscosity; PrM is the magnetic
Prandtl number; di is the ion-inertial length (it is 0 for the MHD runs); dt is the time step; urms, lI, k, and Rek are the root-mean-square velocity, the integral scale, the Taylor
microscale, and the Taylor-microscale Reynolds number, respectively. Most of these quantities are obtained at the cascade-completion time tc (see the text); gud and gbd are,
respectively, the Kolmogorov dissipation length scales for the velocity and magnetic fields. kmax is the magnitude of the largest wave numbers in our DNSs
(kmax ’ 85:33; 170:67; and 343.33 for N ¼ 256, 512, and 1024, respectively).

Run N � PrM di dt urms lI k Rek tc kmaxgud kmaxgbd

Run1 256 10�3 1 0.0 5:0� 10�4 0.29 1.193 0.13 39 6.76 2.09 1.89
Run2 256 10�3 1 0.05 5:0� 10�4 0.13 0.12 0.128 17 7.4 2.1 1.8
Run3 512 5:0� 10�4 1 0.0 10�4 0.28 0.29 0.25 142 9.13 1.82 1.65
Run4 512 5:0� 10�4 1 0.05 10�4 0.29 0.32 0.28 165 9.65 1.8 1.6
Run5 1024 5:0� 10�4 1 0.0 10�4 1.0 0.35 0.07 143 0.5 1.53 1.37
Run5b 1024 5:0� 10�4 1 0.025 10�4 1.0 0.37 0.08 153 0.5 1.60 1.30
Run5c 1024 5:0� 10�4 1 0.05 10�4 1.0 0.36 0.09 176 0.5 1.71 1.25
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ranges mentioned above, these spectra show power-law dependen-
ces on k, which we elucidate below.

• We compute PDFs of the cosine of the angles between the follow-
ing pairs of vectors, to characterize the degree of alignment
between them: {u; b}, {u; j}, {u;x}, {b; j}, {b;x}, and {x; j}.

• To characterize multifractality and the intermittency, we calcu-
late the order–p, equal-time longitudinal structure functions at
time t:

SapðlÞ ¼ hjdajjðx; lÞj
pi;

dajjða; lÞ ¼ aðx þ l; tÞ � aðx; tÞ � l
l

� �
;

(11)

here, ajj is the longitudinal component of a, which is u or b for
velocity and magnetic-field structure functions, and dajjða; lÞ is
the longitudinal component of its increment; we suppress t in the
arguments of structure functions for notational convenience. In
the inertial range,

SupðlÞ � lf
u
p ;

SbpðlÞ � lf
b
p ;

(12)

fup and fbp are the velocity and magnetic-field multiscaling expo-
nents of order p. As we show below, in 3D HMHD turbulence,
the magnetic-field spectra and structure functions exhibit two
different scaling regions called inertial and second-inertial
regions; e.g.,

di � l � L; SbpðlÞ � lf
b;1
p ;

gbd � l � di; SbpðlÞ � lf
b;2
p ;

(13)

here, fb;1p and fb;2p are the multiscaling exponents in these two
scaling regions. To study intermittency, we also compute PDFs
of velocity and magnetic field increments and the hyperflatnesses

Fa
6ðlÞ ¼ Sa6ðlÞ= Sa2ðlÞ

� �3
: (14)

III. RESULTS

We present the results of our DNSs in four subsections: In
Subsection IIIA, we discuss the temporal evolution of the energy-
dissipation rates and the energy; we then present the spectra that we
have defined above. In Subsection III B, we compute probability distri-
bution functions (PDFs) of the cosine of the angles between the fol-
lowing pairs of vectors: {u; b}, {u; j}, {u;x}, {b; j}, {b;x}, and {x; j};
these PDFs help us quantify the degree of alignment between these
pairs. In Subsection IIIC, we present the joint PDFs of the invariants
of the velocity-gradient tensor and the moduli of the vorticity and the
current. In Subsection IIID, we characterize intermittency in 3D
HMHD turbulence by examining PDFs of velocity and magnetic-field
increments and the l dependences of order-p structure functions of
these increments.

A. Temporal evolution and spectra

In Fig. 1(a), we display the time evolution of the kinetic-energy
dissipation rate (blue curves), the magnetic-energy dissipation rate
(red curves), and total-energy dissipation rate (black curves) from

Run1 (dashed lines) and Run2 (solid lines) for 3D MHD and 3D
HMHD turbulence, respectively. We remark that these dissipation
rates increase sharply, up until a cascade-completion time sc, and then
they decay slowly. The peak positions are nearly the same for all these
curves; the peaks for Run1 occur marginally earlier than they do in
Run2. In Fig. 1(b), we present the time dependence of the fluid, mag-
netic, and total energies in simulations Run1 and Run2. Figures 1(c)
and 1(d) are the counterparts of 1(a) and 1(b) for Run3 and Run4.
Figures 1(e) and 1(f) display the spectra of the kinetic-energy-dissipa-
tion rate and the magnetic-energy-dissipation rate, respectively, at sc
for Run1, Run2, Run3, Run4, Run5a, Run5b, and Run5c; the well-
developed peaks in these spectra show that our DNSs are well resolved;
we also summarize this in Table I, which shows that kmaxgud > 1 and
kmaxgbd > 1 for all these runs.

In Fig. 2, we show the compensated spectra of the kinetic
energy and the magnetic energy EuðkÞ (open circles) EbðkÞ (aster-
isks), respectively, which we have obtained from our DNSs at the
cascade-completion time sc. Specifically, we present log –log (base
10) plots vs the wave number k of the following: (a) k5=3EuðkÞ
(lower two curves) and k11=3EbðkÞ (upper two curves) from Run3
(red curves) and Run4 (blue curves), with solid black lines indicat-
ing different power-law regions [Fig. 2(a)]; (b) k5=3EuðkÞ (lower
three curves) and the compensated magnetic energy spectra
k11=3EbðkÞ (upper three curves) from Run5a (blue curves), Run5b
(red curves), and Run5c (black curves); (c) the wave-number-
dependent Alfv�en ratios EbðkÞ=EuðkÞ for Run3, Run4, Run5a,
Run5b, and Run5c [Fig. 2(c)]; the wavenumber ki / 1=di. From
these plots, we conclude that the spectral exponents [Eqs. (1) and
(2)] are consistent with

a ’ 5=3; the K41 value;

a1 ’ 11=3 for initial condition A;

a1 ’ 7=3 for initial condition B:

(15)

The values of a1 are clearly different for initial condition A [Eq. (8)
and Run2 and Run4] and initial condition B [Eq. (9) and
Run5b–Run5c]. These differences stem, in part, from the disparities in
the wave-number-dependent Alfv�en ratios EbðkÞ=EuðkÞ [Fig. 2(c)]
and, as we show in Subsection III B, in the alignment PDFs of various
vector fields. In all our runs, the ratio EbðkÞ=EuðkÞ lies in the range
1–2 at small values of k� ki / di; for ki < k < kmax , this ratio is dif-
ferent for different runs. For example, for Run5c, EbðkÞ=EuðkÞ remains
nearly constant up until k � 60, i.e., up until ’ 3ki beyond ki; by con-
trast, for Run4, this ratio rises rapidly, with increasing k, at large k. For
Run5c, this near constancy, with EbðkÞ=EuðkÞ in the range of 1–2,
indicates approximate equipartition of the energies in the velocity and
magnetic fields. It has been recognized39 that such equipartition sug-
gests a1 ¼ 7=3. In contrast, a1 ¼ 11=3 can be obtained by equating
snl and sh and by using Eb=Eu ¼ d2i k

2, where snl is the energy-transfer
because of the nonlinear term in the momentum equation and sh is
the energy-transfer time because of the Hall term in the induction
equation.39

Furthermore, to understand these two different scaling behav-
iors in our HMHD DNSs, we have computed the magnetic
polarization41
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PmðkÞ ¼ rmðkÞrcðkÞ;

rmðkÞ ¼
~A � ~b
 þ ~A


 � ~b
2j~Ajj~bj

;

rcðkÞ ¼
~u � ~b
 þ ~u
 � ~b

2j~ujj~bj
;

(16)

where A is the magnetic vector potential, �~ denotes the spatial Fourier
transform, and 
 is the complex conjugation. rmðkÞ and rcðkÞ are
averaged over shells of radius k in Fourier space [like the spectra in Eq.
(10)]. Hall MHD supports both right R and left L circularly polarized
waves, for which Pm ¼ þ1 and Pm ¼ �1, respectively. We follow
Ref. 41, designate by R and L fluctuations for which Pm > 0 and

FIG. 1. Plots vs the scaled time t of (a) the kinetic-energy dissipation rate �u (blue curves), magnetic-energy dissipation rate �b (red curves), and the total-energy dissipation
rate � (black curves) for Run1 (dashed lines) and Run2 (solid lines) and (b) the kinetic energy Eu (blue curve), magnetic energy Eb (red curve), and the total energy E (black
curve) for Run1 (dashed lines) and Run2 (solid lines). (c) and (d) are, respectively, the counterparts of (a) and (b) for Run3 and Run4. Log –log (base 10) plots vs the wave
number k of (e) the kinetic-energy-dissipation-rate spectra �uðkÞ and (f) the magnetic-energy-dissipation-rate spectra �bðkÞ from Run1 (blue-dashed curve), Run2 (blue-solid
curve), Run3 (red-dashed curve), Run4 (red-solid curve), Run5a (black-dashed curve), Run5b (black-dashed-dotted curve), and Run5c (black-solid curve).

FIG. 2. Log–log (base 10) plots vs the wave number k of (a) the compensated kinetic energy spectra k5=3EuðkÞ (lower two curves) and the compensated magnetic energy
spectra k11=3EbðkÞ (upper two curves) from Run3 (red curves) and Run4 (blue curves); solid black lines indicate different power-law regions; (b) the compensated kinetic
energy spectra k5=3EuðkÞ (lower three curves) and the compensated magnetic energy spectra k7=3EbðkÞ (upper three curves) from Run5a (blue curves), Run5b (red curves),
and Run5c (black curves); solid black lines indicate different power-law regions; (c) the wave-number-dependent Alfv�en ratios ðEbðkÞ=EuðkÞÞ for Run3, Run4, Run5a, Run5b,
and Run5c. We compute these spectra at the cascade-completion time sc and the wavenumber ki / 1=di.
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Pm < 0, respectively, and define the following energy spectra for these
fluctuations and their sum:

ER;Lðk; tÞ � Euðk; tÞ þ Ebðk; tÞ½ �R;L;

ETðk; tÞ � ERðk; tÞ þ ELðk; tÞ½ �:
(17)

In Fig. 3(a), we plot vs k, for Run5c, the fractions ELðkÞ=ET and ER=ET
of the energy stored in L� and R� polarized waves, respectively; this
plot clearly shows the spontaneous chiral symmetry breaking of HMHD
turbulence that is discussed in Ref. 41. In Fig. 3(b), we depict compen-
sated magnetic-energy spectra, for Run5c, for the fluctuations with (i) Pm
> 0 (L), (ii) Pm � 0:5 (L), and (iii) Pm < 0 (R); the first two of these
spectra are compensated with k11=3, whereas the third is compensated
with k7=3. These compensated spectra indicate k�7=3 and k�11=3 scaling
forms in the second-inertial region of HMHD plasma turbulence for R
and L fluctuations, respectively. In Figs. 3(c) and 3(d), we give the Run4
counterparts of 3(a) and 3(b); here too, we obtain k�7=3 and k�11=3 scal-
ing forms in the second-inertial region of HMHD plasma turbulence for
R and L fluctuations, respectively. We expect the k�11=3 region to be
more prominent than it is here in very-high-resolution DNSs.

The initial energy spectra in Eqs. (8) and (9) do not specify the
initial condition completely: the initial phases of ~uðkÞ and ~bðkÞ must

also be given. We now explore the sensitivity of our results to this
choice of phases, for the illustrative case of Run2, by taking four differ-
ent choices of random phases for these Fourier modes of the velocity
and magnetic fields; we label these four runs Run2a, Run2b, Run2c,
and Run2d. We display illustrative results from these simulations in
Figs. 4 and 5. In Fig. 4, we present plots vs time of various energy dissi-
pation rates and energies; although the qualitative t-dependences of
these plots are the same for Run2a–Run2d, there are distinct quantita-
tive differences between them. By contrast, the scaling behaviors of the
kinetic- and magnetic-energy spectra are not affected significantly by
the choice of the initial phases as we can see by comparing the plots in
Fig. 5.

B. Probability distribution functions

In Fig. 6, we display, at the cascade-completion time sc, the PDFs
of the cosines of the angles between the following pairs of vectors:
{u; b}, {u; j}, {u;x}, {b; j}, {b;x}, and {x; j}, for Run3 (blue curve) and
Run4 (red curve). We present their counterparts for Run5a (blue
curve), Run5b (red curve), and Run5c (black curve) in Fig. 7. In Figs. 6
and 7, the blue curves are from the MHD runs Run3 and Run5a (see
Table I).

FIG. 3. Run5c: Plots of the energy ratios (see the text for its definition) (a) EL=ET (solid curve) and ER=ET (dashed curve) and (b) compensated magnetic energy spectra for
fluctuations with (see the text) Pm > 0 (blue curve), Pm � 0:5 (red curve), and Pm < 0 (blue curve). In (c) and (d), we present the counterparts of (a) and (b), respectively, for
Run4.
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In all these PDFs, there are, roughly speaking, two peaks at
cos h ’ 61, which quantify the degree of antialignment (h ¼ 180�)
and alignment (h ¼ 0�) between the two vectors. The amplitudes of
these peaks depend upon the parameters in our DNSs. One qualita-
tive trend shows up clearly: the alignment and antialignment and
peaks [Figs. 6(a) and 7(a) for the pair {u; b}] are more pronounced
in the 3D MHD runs (Run3 and Run5a) than in their 3D HMHD
counterparts, and this trend of the suppression of the peaks appears
in most of the PDFs we show in Figs. 6 and 7. In 3D MHD, the

alignment or antialignment of {u; b} is associated with a depletion of
nonlinearity. This can be seen most simply by writing the 3D MHD
equations in terms of Els€asser variables.9 To the extent that the
alignment or antialignment of peaks in the PDF of the cosine of the
angle between {u; b} are suppressed in 3D HMHD, relative to 3D
MHD, we conclude that this depletion of nonlinearity is also
suppressed.

We remark that the PDFs of the cosines of the angles mentioned
above are related to PDFs of various helicities, which we list below:

FIG. 4. Plots vs time t of (a) the kinetic-energy dissipation rate �u, (b) the magnetic-energy dissipation rate �b, (c) the total-energy dissipation rate �; (d) the kinetic energy Eu,
(e) magnetic energy Eb, and (f) the total energy E for Run2a (red-solid curves), Run2b (blue-solid curves), Run2c (green-solid curves), and Run2d (black-solid curves).

FIG. 5. Log –log (base 10) plots vs the wave number k of: (a) the compensated kinetic energy spectra k5=3EuðkÞ (lower curves) and the compensated magnetic energy spectra
k11=3EbðkÞ (upper curves) from Run2a (red), Run2b (blue), Run2c (green), and Run2d (black); and (b) log –log (base 10) plots of the compensated magnetic energy spectra
for the fluctuations Pm � 0 and Pm 	 0 from the same runs. (c) Plots vs k of the energy ratios EL=ET and ER=ET from the same runs.
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FIG. 6. Semilog (base 10) plots of PDFs of cosines of angles, denoted by h, between (a) u and b, (b) u and j, (c) u and x, (d) b and j, (e) b and x, and (f) x and j from
Run3 (blue curves) and Run4 (red curves).

FIG. 7. Semilog (base 10) plots of PDFs of cosines of angles, denoted by h, between (a) u and b, (b) u and j, (c) u and x, (d) b and j, (e) b and x, and (f) x and j from
Run5a (blue curves), Run5b (red curves), and Run5c (black curves).
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Hc ¼ hu � bi;
Hm ¼ hA � bi;
Hu ¼ hu � xi;

Hg ¼ Hm þ 2diHc þ d2i Hu:

(18)

Here, Hc is the cross helicity; Hm is the magnetic helicity, with A the
vector potential that follows from b ¼ r� A; Hu is the kinetic helic-
ity; and Hg is a generalized helicity that is useful in 3D HMHD. Hu is
conserved for an ideal, unforced fluid; in the absence of forcing, Hm is
conserved in both ideal 3D MHD and ideal 3D HMHD; Hc is con-
served in ideal, unforced 3D MHD, but not in its 3D HMHD counter-
part; in ideal, unforced 3D HMHD, the generalized cross helicity Hg is
conserved.71

It is useful to define the electron velocity ve � u� dir� b.29 In
Figs. 8(a) and 8(b), we present, respectively, the PDFs of the cosines of
the angles between (a) ve and j and (b) ve and b from runs Run5a
(blue curve), Run5b (red curve), and Run5c (black curve). In Figs. 8(c)
and 8(d), we present similar plots for Run3 (blue curve) and Run4
(red curve).

C. Joint probability distribution functions

Insights into the topology of the flows can also be obtained by
studying joint PDFs (JPDFs) of invariants of the velocity-gradient

tensor and the moduli of the vorticity and the current as has been
done in 3D MHD turbulence.8 We obtain such JPDFs for 3D HMHD
and compare them with their MHD counterparts.

We display color-contour plots of the joint probability distribu-
tion functions (JPDFs) of Q and R, at the cascade-completion time sc,
in Fig. 9 from Run3, Run4, Run5a, and Run5c, with Q and R the fol-
lowing, well-known invariants (see, e.g., Ref. 8) for an ideal, incom-
pressible fluid:

Q ¼ � 1
2
trðA2Þ;

R ¼ � 1
3
trðA3Þ;

(19)

here, A is the velocity-derivative tensor with components Aij ¼ @iuj;
the zero-discriminant line D ¼ 27

4 R
2 þ Q3 ¼ 0 is shown by black

curves in these plots. We observe that the characteristic, tear-drop
shape of these JPDFS of Q and R is more prominent in 3D HMHD
turbulence (Run4 and Run5c) than in their 3D MHD counterparts
(Run3 and Run5a), and the tails of these JPDFs are more elongated in
3D HMHD turbulence (Run4 and Run5c) than in their 3D MHD
counterparts (Run3 and Run5a).

In Fig. 10, we show plots of JPDFs of x and j, the moduli of the
vorticity (x), and the current (j), at the cascade-completion time sc,

FIG. 8. Semilog (base 10) plots of PDFs of cosines of angles, denoted by h, between (a) ve and j, and (b) ve and b from Run5a (blue curves), Run5b (red curves), and Run5c
(black curves); (c) and (d) are similar plots from Run3 (blue curves) and Run4 (red curves).
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from Run3, Run4, Run5a, and Run5c. We observe that in 3D MHD
turbulence (Run3 and Run5a), the outer region of the JPDFs of x
and j shows curved, roughly circular contours, whereas in 3D
HMHD turbulence (Run4 and Run5c), the counterparts of these

contours are flattened and suppressed significantly; furthermore,
there is an elongation of the JPDFs of x and j along the axes, at low
values of x and j. Similar observations of the JPDFs of x and j have
been reported in Ref. 72.

FIG. 9. Color-contour plots of the JPDFs
of Q and R for (a) Run3, (b) Run4, (c)
Run5a, and (d) Run5c.

FIG. 10. Color-contour plots of the JPDFs
of x and j for (a) Run3, (b) Run4, (c)
Run5a, and (d) Run5c.
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D. Intermittency

At the cascade-completion time sc, we investigate intermittency
in 3D HMHD turbulence, and in its 3D MHD counterpart, by calcu-
lating the length-scale-l dependence of (a) PDFs of the velocity and
magnetic-field increments [Eq. (11)] and (b) of the velocity and
magnetic-field structure functions [Eq. (11)] and, therefrom, their
order-p multiscaling exponents, Eqs. (12) and (13), in the inertial and
the second-inertial ranges. We also examine the dependence on l of
the hyperflatness Eq. (14).

In Figs. 11 and 12, we display the l dependence of the PDFs of,
respectively, the velocity- and magnetic-field increments, from Run3,
Run4, Run5a, Run5b, and Run5c. In these PDFs, l goes from the
second-inertial range to the inertial range: l ¼ 0:05 (blue solid curves),
l¼ 0.11 (red dotted curves), l¼ 0.53 (green dashed-dotted curves),
and l¼ 3.08 (magenta dashed curves) from Run3 and Run4; we give
similar plots for Run5a–Run5c in Fig. 12; we include, for reference,
Gaussian PDFs (black lines) with zero mean and unit variance. We
note that the field-increment PDFs show tails that deviate significantly

from those of Gaussian PDFs: the smaller the value of l, the greater
this deviation, a clear signature of small-scale intermittency (see, e.g.,
Ref. 73).

In Figs. 13(a) and 13(b), we present semilog plots of PDFs of
magnetic-field increments from simulations Run5a (MHD) and
Run5c (HMHD) for many values of l in the range l¼ 0.11 to l¼ 0.53,
which include length scales in the second-inertial range for the
HMHD run; in these units, di ¼ 0:05� 2:0p ’ 0:314. The tails of
these PDFs show considerable deviations from a Gaussian PDF, which
is shown for comparison.

We turn now to structure functions [Eq. (11)], multiscaling
exponents [Eqs. (12) and (13)], and the ratios of these exponents. We
present plots of such structure functions in Figs. 14–18. To extract
multiscaling exponents [Eqs. (12) and (13)] directly, we use log –log
(base 10) plots of structure functions [Eq. (11)] vs the separation l. We
obtain such plots, at tc, for Run3 and Run4 in, respectively, Figs. 14(a),
14(b), 15(a), and 15(b), for order p from 1 to 6; we indicate by straight,
black lines the regions that we use to obtain estimates for the

FIG. 11. Semilog (base 10) plots of PDFs of (a) the velocity- and (b) magnetic-field increments from Run3 for l¼ 0.05 (blue solid lines), 0.11 (red dotted lines), 0.53 (green
dashed-dotted lines), and 3.08 (magenta dashed lines). (c) and (d) are the corresponding plots from Run4; for reference, we also show zero-mean and unit-variance Gaussian
PDFs (black lines) in each subplots.
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multiscaling exponents [Eqs. (12) and (13)]; we get these exponents
and their error bars by using a local-slope analysis.8 We present plots,
vs p, of the resulting multiscaling exponents [Eqs. (12) and (13)], for
Run3 and Run4 in, respectively, Figs. 14(c), 15(c), and 15(d). If the

scaling range extends over a limited range of scales, this range can
often be extended by using the extended-self-similarity (ESS) proce-
dure.74,75 In this procedure, we use log –log (base 10) plots of the
structure function of order p, vs, e.g., the p¼ 3 structure function;

FIG. 12. Semilog (base 10) plots of PDFs of (a) the velocity- and (b) magnetic-field increments from Run5a for l¼ 0.05 (blue solid lines), 0.11 (red dotted lines), 0.53 (green
dashed-dotted lines), and 3.08 (magenta dashed lines). The corresponding plots from Run5b and Run5c are shown in (c)–(f), respectively; for reference, we also show zero-
mean and unit-variance Gaussian PDFs (black lines).
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FIG. 13. Semilog plots (base 10) of PDFs of magnetic-field increments from simulations (a) Run5a (MHD) and (b) Run5c (HMHD) for many values of l in the range l¼ 0.11 to
l¼ 0.53, which include length scales in the second inertial range for the HMHD run; in these units, di ¼ 0:05� 2:0p ’ 0:314. The tails of these PDFs show considerable
deviations from a Gaussian PDF, which is shown for comparison (via black lines).

FIG. 14. Log–log (base 10) plots vs l, at tc, for Run3 and (a) velocity and (b) magnetic structure functions [Eq. (11)]; the order p goes from 1 to 6; we indicate by straight, black
lines the regions that we use to obtain estimates for the multiscaling exponents [Eqs. (12) and (13)]. Plots vs the order p of (c) the multiscaling exponents [Eqs. (12) and (13)]
and (d) their ratios; for reference, we show the linear K41 scaling of exponents with p=3.
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straight-line regions in such plots yield the ratios of the order p and
order p¼ 3 multiscaling exponents [Eqs. (12) and (13)]. [This has
proved to be especially useful in incompressible-fluid turbulence,
where the third-order exponent is known to be 1.] We give such ESS

plots for structure functions in Figs. 16(a) and 16(b) (Run5a), 17(a)
and 17(b) (Run5b), and 18(a) and 18(b) (Run5c); we then plot the
resulting multiscaling exponent [Eqs. (12) and (13)] ratios in Figs.
15(e) and 15(f) (Run4), 16(c) (Run5a), 17(c) and 17(d) (Run5b),

FIG. 15. Log–log (base 10) plots vs l, at tc, for Run4 and (a) velocity and (b) magnetic structure functions [Eq. (11)]; the order p goes from 1 to 6; we indicate by straight, black
lines the regions that we use to obtain estimates for the multiscaling exponents [Eqs. (12) and (13)]. Plots vs the order p of the multiscaling exponents [Eqs. (12) and (13)] for
(c) the inertial range and (d) the second-inertial range. Plots vs the order p of the ratios of multiscaling exponents [Eqs. (12) and (13)] for (e) the inertial range and (f) the
second-inertial range; for reference, we show simple scaling predictions.
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and 18(c) and 18(d) (Run5c). We list our values for multiscaling expo-
nents [Eqs. (12) and (13)], along with error bars, in Tables II–IV; these
Tables provide a quantitative summary of our results for these expo-
nents. We note, at the qualitative level, that prior experimental

studies54 suggest that the magnetic-field structure functions in 3D
HMHD turbulence exhibit (a) inertial and second-inertial scaling
regions and (b) multiscaling is replaced by simple scaling in the second
of these ranges; our results are in consonance with these observations.

FIG. 16. Log–log (base 10) ESS plots (see the text), at tc, for Run5a and (a) velocity and (b) magnetic structure functions [Eq. (11)]; the order p goes from 1 to 6; we indicate
by straight, black lines the regions that we use to obtain estimates for the ratios of multiscaling exponents [Eqs. (12) and (13)]. Plots vs the order p of (c) the ratios of multiscal-
ing exponents [Eqs. (12) and (13)]; for reference, we show the K41 scaling of exponents with p=3.

FIG. 17. Log–log (base 10) ESS plots (see the text), at tc, for Run5b and (a) velocity and (b) magnetic structure functions [Eq. (11)]; the order p goes from 1 to 6; we indicate
by straight, black lines the regions that we use to obtain estimates for the ratios of multiscaling exponents [Eqs. (12) and (13)]. Plots vs the order p of the ratios of multiscaling
exponents [Eqs. (12) and (13)] for (c) the inertial range and (d) the second-inertial range; for reference, we show the K41 scaling of exponents with p=3.
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The length-scale dependence of the hyperflatness [Eq. (14)] is
often used to characterize small-scale intermittency. We present semi-
log plots of the hyperflatnesses [Eq. (14)], for the velocity and the mag-
netic fields, in Run5a–Run5c [Figs. 19(a)–19(c)], respectively. In these
plots, we observe that these hyperflatnesses are more-or-less flat, over
a large range of l, but they increase rapidly, at small l; this is the hall-
mark of small-scale intermittency.

IV. CONCLUSIONS
Our study, which has been motivated by the uncertainties in

spectral exponents and the statistical properties of 3D HMHD turbu-
lence, is a systematic investigation of these properties by pseudospec-
tral DNSs. Although many numerical studies of 3D HMHD
turbulence have been carried out earlier, none of them has compared
results from two different types of initial conditions {initial condition

FIG. 18. Log–log (base 10) ESS plots (see the text), at tc, for Run5c and (a) velocity and (b) magnetic structure functions [Eq. (11)]; the order p goes from 1 to 6; we indicate
by straight, black lines the regions that we use to obtain estimates for the ratios of multiscaling exponents [Eqs. (12) and (13)]. Plots vs the order p of the ratios of multiscaling
exponents [Eqs. (12) and (13)] for (c) the inertial range and (d) the second-inertial range; for reference, we show the K41 scaling of exponents with p=3.

TABLE II. List of the multiscaling exponents [Eqs. (12) and (13)], for Run3 and
Run4. Run4 has two sets of exponents, one for the inertial range and the other for
the second-inertial range (see the text).

P fu;Run3p fb;Run3p fu;Run4p fðb;1Þ;Run4p fðb;2Þ;Run4p

1 0.356 0.06 0.456 0.03 0.346 0.04 0.406 0.04 0.716 0.06
2 0.656 0.10 0.816 0.07 0.646 0.07 0.766 0.10 1.316 0.13
3 0.906 0.13 1.096 0.12 0.906 0.06 1.086 0.18 1.836 0.16
4 1.136 0.17 1.326 0.15 1.146 0.12 1.346 0.28 2.286 0.21
5 1.356 0.22 1.536 0.17 1.366 0.32 1.496 0.38 2.696 0.39
6 1.586 0.28 1.736 0.18 1.576 0.66 1.536 0.50 3.106 0.70

TABLE III. List of the ratios of multiscaling exponents [Eqs. (12) and (13)], for Run3
and Run4. Run4 has two sets of exponents, one for the inertial range and the other
for the second-inertial range (see the text).

p ðfup=f
u
3Þ

Run3 ðfbp=f
b
3Þ

Run3 ðfup=f
u
3Þ

Run4 ðfb;1p =fb;13 Þ
Run4 ðfb;2p =fb;23 Þ

Run4

1 0.396 0.01 0.426 0.01 0.386 0.03 0.386 0.04 0.396 0.02
2 0.726 0.01 0.756 0.01 0.716 0.04 0.716 0.04 0.726 0.03
3 1.06 0.00 1.06 0.00 1.06 0.00 1.06 0.00 1.06 0.00
4 1.276 0.01 1.226 0.02 1.266 0.13 1.236 0.05 1.256 0.08
5 1.546 0.02 1.426 0.04 1.526 0.36 1.376 0.12 1.486 0.22
6 1.826 0.04 1.616 0.07 1.766 0.72 1.396 0.24 1.716 0.39
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A [Eq. (8) and Run2–Run4] and initial condition B [Eq. (9) and
Run5b and Run5c]} nor studied, in one work, the different statistical
properties we consider. (For similar studies of 3D MHD turbulence,
we refer the reader to Refs. 8 and 70). Our work provides valuable
insights into the initial-condition dependence of the spectral exponent
a1 and the multiscaling exponents [Eqs. (12) and (13)]. We find clear
evidence of inertial- and second-inertial range scaling, with the value
of the spectral exponent a consistent with the K41 result 5/3. In the
second-inertial range, the value of a1 is consistent with (A) 11/3, for
the initial condition A, and (B) 7/3, for the initial condition B. These
different values can be attributed, in part, to the disparities in the k
dependence of EbðkÞ=EuðkÞ for these two initial conditions. Our com-
putations of the PDFs of the cosines of the angles between various fields,
such as the velocity u andx or b and j, help us highlight the importance
of the Hall term in suppressing the tendency of alignment (or antialign-
ment) of these fields for both the initial conditions (A) and (B). We
carry out a careful exploration of intermittency in 3D HMHD turbu-
lence by calculating the PDFs of the velocity and magnetic-field incre-
ments as a function of the separation length scale l. We compute the
l-dependence of velocity and magnetic-field structure functions and,
therefrom, their order-p multiscaling exponents [Eqs. (12) and (13)]. In
the inertial (second-inertial) range, we find clear signatures of multiscal-
ing (simple scaling), in consonance with solar-wind results.54

In a future work, we will carry out the Hall-MHD analog of the
studies of small-scale structures in MHD turbulence with the initial
data of Refs. 65 and 66. Furthermore, it will be interesting to examine
Hall-MHD flows by generalizing the studies in the following lattice

Boltzmann models (LBM) papers on MHD flows that have appeared
recently.76,77
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